On Dynamic Consistency in Ambiguous Games

Andrew Ellis

Department of Economics London School of Economics

August 25, 2016

question

- Static, incomplete information games where players
 - I have Maxmin Expected Utility preferences (Gilboa-Schmeidler, 1989)
 - A have a common set of priors
 - obey a consequentialist, strategy-independent update rule
- Under what circumstances will Dynamic Consistency hold?
- What assumptions on set of priors ("beliefs") suffice for DC?

answer

- Under minor technical conditions, only if no ambiguity about signals
 - At least two types for each player
 - Full support (ex-ante)
- applies to most mechanism design settings with at least two agents
- applies to most models of ambiguity-sensitivity
- if only uncertainty (for agents) is about their types, then either:
 - No ambiguity,
 - No DC, or
 - Different ex-ante behavior

positive implications

- Renegotiation, even with complete contracts
- Ex-ante vs Ex-post participation
- Non-equivalence of normal vs. strategic form of game

normative / modeling implications

- Interpretation of "non-Bayesian" equilibrium
 - ▶ Is it caused by ambiguity, failure of DC, failure of consequentialism, etc.
 - All 3 EU properties important for some classic results, e.g. on speculative trade
- Lack of "common beliefs"
- Ex-ante vs Ex-post welfare
- Conditional independence impossible

Potential solutions

- Sophistication (Siniscalchi, 2011)
- Non-consequentialist updating (Hanany and Klibanoff, 2007)
- Allow distinct ex-ante behavior
- Get rid of ambiguity
- Take interim behavior as given

literature

- Dynamic consistency:
 - Epstein-Lebreton (1993): no restrictions on information structure and DC implies probabilistic sophistication
 - In games, not every information structure relevant
 - Follow Epstein and Schneider (2003), Maccheroni et al. (2006), Klibanoff et al. (2009); only require DC w.r.t. one info. structure
 - Alternative approaches: Hanany and Klibanoff (2007), Siniscalchi (2011), Hanany, Klibanoff and Mukerji (2016)
- Formulations of Incomplete Information games w/ ambiguity: Lo (1999), Kajii and Ui (2005), Azrieli and Teper (2011)
- Results apply to (discretized versions of): Salo-Weber (1995), Lo (1998), Bose et al (2006), Chen et al (2007), Bose and Daripa (2009), Bodoh-Creed (2012), Bose-Renou (2014), Ellis (2015), others ?

Illustration of setting

- Two players with two types each (R and B)
- Player i's type drawn from Ellsberg urn i with
 - 100 total balls each
 - all balls either R or B
- Other details of the game abstracted away
- Concreteness: both players have Gilboa-Schmeidler preferences
- Assumption: symmetric information (and taste for ambiguity) so sets of priors are the same
- Allow utility index to differ across players
- Which common sets of priors make both players DC?

Model

• Players:
$$I = \{1, ..., n\} \ (n \ge 2)$$

- Types: T_0 be a finite set of states of nature
- Types: T_i be a finite set of types of player i
 - $\#T_i \ge 2$ for all i > 0
- $T = T_0 \times T_1 \times \ldots \times T_n$
 - $T_{-i} = T_0 \times \ldots \times T_{i-1} \times T_{i+1} \times \ldots \times T_n$
 - ► (t_i, t_{-i}) defined in usual way
- Information: Player *i* learns her type before choosing strategy
- Outcomes: convex set X
- Strategy profiles form subset of acts, $f : T \rightarrow X$
- Player *i*'s ex-ante preference: \succeq_0^i (over acts)
- Player *i*'s preference conditional on $t_i = t$: \succeq_t^i

Assumptions

- Consequentialism: If $f(t_i, t_{-i}) = g(t_i, t_{-i})$ for all $t_{-i} \in T_{-i}$, then $f \sim_{t_i}^i g$
- **2** DC for *i*: If $f \succeq_{t_i}^i g$ for all $t_i \in T_i$, then $f \succeq_0^i g$ (strict if $\succ_{t_i}^i$ for some t_i)
- Full support: If $f(t) \succeq_0^i g(t)$ for all t, then $f \succeq_0^i g$. Moreover, if there exists t' so that $f(t') \succ_0^i g(t)$, then $f \succ_0^i g$.
 - Epstein-Schneider: still role for ambiguity given these three assumptions
- Ommon ex-ante behavior: There exists an interval B ⊆ ℝ, a family of utility indexes u_i with range B, and a function U₀ : (B^T) → ℝ such that

$$f \succeq_0^i g \iff U_0(u_i \circ f) \ge U_0(u_i \circ g)$$

Scope

Model includes:

- EU: $U_0(f) = \int f d\pi$, Savage (1954)
- MEU: $U_0(f) = \min_{\pi \in \Pi} \int f d\pi$, Gilboa-Schmeidler (1989)
- Variational: $U_0(f) = \min_{\pi \in \Delta\Omega} [\int f d\pi + c(\pi)], c : \Delta\Omega \to [0, \infty],$ Maccheroni et al (2006)
- Smooth: $U_0(f) = \int \phi(\int f d\pi) \mu(d\pi)$, $\mu \in \Delta(\Delta\Omega)$, Klibanoff et al (2005)
- most others you can name

Result

Theorem

Players satisfy common ex-ante behavior, full support, consequentialism, and DC for each i if and only if

$$U_0(f) = \sum_{t_{-0} \in \mathcal{T}_{-0}} U_t(f(\cdot, t_{-0}))$$

(perhaps after a normalization), where each of the $U_t : B^{T_0} \to \mathbb{R}$ is a (strictly) monotone, continuous function.

Result

Corollary

If players satisfy Assumptions 1-4 and U_0 is MEU with set of priors Π , then for any $t \in T_{-0}$ and any $\pi, \pi' \in \Pi$, $\pi(T_0 \times \{t\}) = \pi'(T_0 \times \{t\})$.

• Expected utility when uncertainty only involves signals

Corollary

Under Assumptions 1-4, if T_0 is a singleton, then $U_0(\cdot)$ is expected utility, after a normalization.

• If types/signals are only uncertainty, then no role for ambiguity

Idea of proof

- Similar idea to Epstein and Seo (2011) but different construction
- Key tool: Gorman (1968)'s overlapping theorem: intersection and union of overlapping, separable events are also separable
 - Separable: Savage's P2 holds for event
 - i.e. $fEh \succeq_0 gEh$ if and only if $fEh' \succeq_0 gEh'$
- If DC and Consequentialism hold, event {t ∈ T : t_i = τ} is separable for any i and any τ ∈ T_i
- Use this to show $\mathcal{T}_0 imes \{t_1\} imes ... imes \{t_n\}$ separable
- Given at least 3 pairs of types, Gorman's theorem implies U_0 has additive structure

Idea of proof

• In example, DC + C imply the following are separable:

 $\{R_I\} \times \{B_{II}, R_{II}\}, \\ \{B_I\} \times \{B_{II}, R_{II}\} \\ \{B_I, R_I\} \times \{R_{II}\} \\ \{B_I, R_I\} \times \{R_{II}\} \\ \{B_I, R_I\} \times \{B_{II}\} \\ \}$

all separable

• Taking intersection, the following are also separable:

- $\begin{array}{c}
 1 \quad \{(R_I, B_{II})\} \\
 2 \quad \{(B_I, B_{II})\}
 \end{array}$
- $\bigcirc \{(R_I, R_{II})\}$
- (B_I, R_{II})
- Classic representation result: U_0 must be additive

Extension

- All assumptions important for result
- Common ex-ante behavior is less compelling than common priors
 - Common "perception" of uncertainty (good)
 - Common "attitude" towards uncertainty (not so good)
- Remainder of talk: relax common ex-ante behavior
- Focus on α -MEU model with heterogeneous α but same priors

Extension

Definition

A preference relation \succeq has an (α, C) -MEU representation if for any acts $f, g, f \succeq g \iff V(f) \ge V(g)$ where

$$V(h) = \alpha \min_{p \in C} \int u \circ hdp + (1 - \alpha_i) \max_{p \in C} \int u \circ hdp.$$

Definition (α_i -MEU with set of priors C)

There exist sets $C_t \subset \Delta\Omega$ and an $\alpha_i \in [0,1] \setminus \frac{1}{2}$ for every $i \in I$ such that for all $i \in I$: (i) \succeq_0^i has a minimal (α_i, C) -MEU representation, and (ii) \succeq_t^i has a minimal (α_i, C_t) -MEU representation for each $t \in T_i$.

• **NB:** $\alpha_i = \frac{1}{2}$ ruled out & $\alpha_i = 0$ for all *i* is earlier assumption

Extension

Corollary

If players satisfy DC for each *i*, Consequentialism, Full-Support, and α_i -MEU with set of priors C, then for any $t \in T_{-0}$ and any $\pi, \pi' \in C$, $\pi(T_0 \times \{t\}) = \pi'(T_0 \times \{t\})$.

- "Beliefs" the same but taste for ambiguity different
- Same conclusion as main Theorem
- Suggests (but does not prove) that same perception of ambiguity drives result
- Have attempted same result with KMM but assumptions