Foundations for Optimal Inattention

Andrew Ellis

London School of Economics

March 2014

Motivation

- Vast amount of information is freely available
- Individuals appear not to pay attention to all of it

Inattention can imply:

- Delayed response to shocks (Sims (1998, 2003))
- Sticky-prices (Mackowiak and Wiederholt (2009))
- Onder-diversification (Van Nieuweburgh and Veldkamp (2010))
- Sticky investment (Woodford (2008))
- Source (Hellwig and Veldkamp (2009))
- Specialization (Dow (1991))
- Price discrimination (Rubinstein (1993))
- Extreme price swings (Gul, Pesendorfer and Strazlecki (2011))

This Paper

• Studies an agent who may exhibit inattention to information

- Coarser, subjective information rather than objective info.
- Behavior not well understood
 - * Cost of attention, subjective information and underlying preference are all **unobservable**
- Provides **behavioral foundations** for the **optimal inattention** model based on **conditional choices**
 - Subjective information maximizes EU net of cost
 - Actions maximize EU given subjective information
 - Agent considers every feasible action
 - ★ Explicitly rule out inattention to the available alternatives (e.g. Masatlioglu, Nakajima and Ozbay (2012))

Contributions

- Clarify and justify the assumptions made by previous work
- What can be identified from choices?
 - Which choices reveal optimal inattention?
 - How can one identify tastes, subjective information and attention cost?
- What does this theory imply about choices?
 - Conditional choices are **observable** but violate almost all of the properties satisfied by a fully attentive EU DM
 - ★ Weak Axiom of Revealed Preference (WARP), Independence, Continuity and Consequentialism are all violated
 - ★ Conditions on different information when facing different problems

- Benevolent doctor treats patients suffering from a given disease
- Three drugs (Generic (g), Merck (m) and Pfizer (f)) treat it
 - One of the three will be strictly more effective than the others
 - Which works best for a given patient is initially unknown, and the doctor can, in principle, determine it
- Modeled as a three state decision problem

$$\Omega = \{generic, merck, pfizer\}$$

- State indicates which drug is the most effective
- Objective information is represented by the partition

$$P = \{\{generic\}, \{merck\}, \{pfizer\}\}$$

- Two patients are identical except for their insurance plans
 - One's plan covers all three drugs
 - Other's plan does not cover Pfizer's drug
- Prescribing a drug is choosing an act
 - Acts give state-contingent outcomes (patient's health)
- Each patient corresponds to a choice problem
 - ▶ First patient is {g, m, f}
 - Second patient is {g, m}

	generic	merck	pfizer
$c(\lbrace g, m, f \rbrace \cdot)$	<i>{m}</i>	<i>{m}</i>	$\{f\}$
$c(\{g,m\} \cdot)$	{ g }	<i>{m}</i>	<i>{m}</i>

	generic	merck	pfizer
$c(\lbrace g, m, f \rbrace \cdot)$	{ <i>m</i> }	{ <i>m</i> }	$\{f\}$
$c(\{g,m\} \cdot)$	{g}	{ <i>m</i> }	{ <i>m</i> }

- Which choices reveal she does not process all information?
 - If she processes all information, then in a given state, each choice maximizes the same conditional preference relation
 - So her choices satisfy WARP
- Choices conditional on the state "generic" violate WARP
 - Implies that the consumer does not pay attention to P

	generic	merck	pfizer
$c(\lbrace g, m, f \rbrace \cdot)$	{ <i>m</i> }	{ <i>m</i> }	$\{f\}$
$c(\{g,m\} \cdot)$	{g}	{ <i>m</i> }	{ <i>m</i> }

• To what **does** she pay attention?

Observation

If $c(B|\omega) \neq c(B|\omega')$, then ω and ω' must be in different cells of her subjective information when facing B

- Asks "Is Pfizer's drug the most effective?" when faces $\{g, m, f\}$
- Asks "Is generic drug the most effective?" when faces $\{g, m\}$

This data is the natural generalization of the domain considered by the papers studying implications of inattention

How can one observe these conditional choices?

- Laboratory
- Any setting in which information and state are iid
 - Doctor treats "many" patients who are a priori identical except for their insurance plans
 - Modeler learns state by observing reaction to treatment

Outline

Model

- Poundations
- Representation Theorem
- Identification

Formal Setup

• Anscombe-Aumann setting with information

- Objective state space: Ω
- Objective information: P (finite partition)
- Acts: mappings from Ω to (lotteries over) consequences
- **Data:** DM's conditional choice correspondence
 - Choice from each feasible set of acts in every state
 - She chooses $c(B|\omega)$ from the problem B in the state ω

★ $c(B|\cdot)$ must be *P*-measurable

The Model

 $c(\cdot)$ has an optimal inattention representation if there exists a $(u, \pi, \gamma, \hat{P})$ so that for every problem B,

$$\hat{P}(B) \in rg\max_{Q} [\sum_{E \in Q} \pi(E) \max_{f \in B} \int u \circ \mathit{fd}\pi(\cdot|E) - \gamma(Q)]$$

and for every problem B and state ω ,

$$c(B|\omega) = rg\max_{f\in B}\int u\circ \mathit{fd}\pi(\cdot|\hat{P}(B)(\omega))$$

The Model

Where:

- *u* is an affine, continuous, and unbounded **utility index**
- π is a \mathbf{prior} probability measure on Ω
 - Assigns positive probability to each cell of P
- γ is the attention cost function
 - maps each partition to a cost between 0 and ∞
 - γ({Ω}) = 0
 - $Q \gg R \implies \gamma(Q) \ge \gamma(R)$
- \hat{P} is an **attention rule** mapping problems to subjective information
 - DM pays attention to $\hat{P}(B)$ when facing B

The Model: Special Cases

- A fully attentive DM processes all information
 - $c(\cdot)$ has a full attention representation if

$$c(B|\omega) = rg\max_{f\in B}\int u\circ fd\pi(\cdot|P(\omega))$$

- Standard Dynamic SEU model
- $\gamma(P) = 0$ and $\hat{P}(B) = P$ for all B
- A **DM with fixed attention** processes the same information, regardless of the problem faced
 - $c(\cdot)$ has a fixed attention representation if

$$c(B|\omega) = rg\max_{f\in B}\int u\circ \mathit{fd}\pi(\cdot|\mathit{Q}(\omega))$$

for some Q that is coarser than P

- $\gamma(Q) = 0$ and $\gamma(R) < \infty$ only if $Q \gg R$
- $\hat{P}(B) = Q$ for all B

The Model: Special Cases

 $c(\cdot)$ has a constrained attention representation if there exists a $(u, \pi, \mathbb{P}^*, \hat{P})$ so that for every problem B,

$$\hat{P}(B) \in rg\max_{Q \in \mathbb{P}^*} \sum_{E \in Q} \pi(E)[\max_{f \in B} \int u \circ \mathit{fd}\pi(\cdot|E)],$$

where \mathbb{P}^* is an **attention constraint**

and for every problem B and state ω ,

$$c(B|\omega) = \arg \max_{f \in B} \int u \circ fd\pi(\cdot|\hat{P}(B)(\omega))$$

• Special case where
$$range(\gamma(\cdot)) = \{0, \infty\}$$

Aside: Alternative Settings

- All conditional choices from a fixed problem, e.g. Sims (2003)
 - **Cannot identify** tastes, prior or constraint
 - Admits testable implications under additional assumptions
- Choice from each problem, in a fixed state (Van Zandt, 1996)
 - No testable implications
 - Does not model underlying uncertainty
- Preference over menus (de Oliveira-Denti-Mihm-Ozbek, 2013)
 - Implied properties for choice of actions unclear
- Stochastic conditional choice (Caplin and Dean, 2013)
 - ► Focus on testability rather than identification and behavior
 - Signals rather than partitions equivalent if Savage-style state space where information is part of state

Outline

Model

Poundations

- Independence of Never Relevant Acts
- Attention Constrained Independence
- Monotonicity
- Subjective Consequentialism
- S Continuity
- O Unbounded
- Representation Theorem
- Identification

Weak Axiom of Revealed Preference

- WARP, aka Independence of Irrelevant Acts, requires that $[A \subset B \& c(B|\omega) \cap A \neq \emptyset] \implies c(A|\omega) = c(B|\omega) \cap A$
 - Only considers choices in state ω
- Graphically (with $\Omega = \{\omega_1, \omega_2, \omega_3\}$):

- Violates WARP only if she pays attention to different information
- Independence of Never Relevant Acts gives one situation where an optimally inattentive DM does not violate WARP

Andrew Ellis (LSE)

Foundations for Optimal Inattention

Axiom 1: Independence of Never Relevant Acts (INRA) For any $A \subset B$, if $c(B|\omega') \cap A \neq \emptyset$ for **every** state ω' , then $c(A|\omega) = c(B|\omega) \cap A$ for any ω

• If two patients differ only in that one's plan drops the drug *h* but the doctor **never** prescribes *h* to the patient with better insurance, then she prescribes the same drugs to both

Independence of Never Relevant Acts

- Fix a problem B and an act f so that $\{f\} \neq c(B|\omega')$ for all ω'
 - f is "never relevant"
- Set $A = B \setminus \{f\}$, noting that $A \cap c(B|\omega') \neq \emptyset$ for all ω'
- Suppose her subjective information is Q when facing B
 - Conditional on any cell of Q, an act in A at least as good as f
 - ▶ Benefit from *Q* when facing *A* is the same as when facing *B*
 - Q optimal when facing $B \implies Q$ still optimal when facing A
- The DM should **pay attention to the same** information when facing *B* as when facing *A*
- So her choices from A and B should not violate WARP

INRA: Example and Counterexample

The first doctor chose:

	generic	merck	pfizer
$c(\lbrace g, m, f \rbrace \cdot)$	{ <i>m</i> }	{ <i>m</i> }	$\{f\}$
$c(\{g,m\} \cdot)$	{g}	{ <i>m</i> }	<i>{m}</i>

A second doctor chooses:

	generic	merck	pfizer
$c'(\lbrace g, m, f \rbrace \cdot)$	{ <i>m</i> }	<i>{m}</i>	<i>{m}</i>
$c'(\{g,m\} \cdot)$	{ g }	<i>{m}</i>	<i>{m}</i>

- First satisfies INRA (but not WARP)
- Second violates INRA and cannot have optimal inattention repn.

Andrew Ellis (LSE)

Notation

For any problems A, B and any $\alpha \in [0, 1]$, $\alpha A + (1 - \alpha)B = \{ \alpha f + (1 - \alpha)g : f \in A, g \in B \}$

- Suppose $f \in c(B|\omega)$, $g \in c(C|\omega)$, $h \in c(D|\omega)$, and $\alpha, \beta \in (0, 1)$
- Independence implies

$$(1 - \alpha)f + \alpha g \in c((1 - \alpha)B + \alpha C|\omega)$$
$$\iff (1 - \beta)f + \beta h \in c((1 - \beta)B + \beta D|\omega)$$

- If attends to same info. when facing *B*, *C*, *D*, $(1 \alpha)B + \alpha C$ and $(1 - \beta)B + \beta D$, then an inattentive DM does not violate Independence
- Attention Constrained Independence gives one situation where the DM **does not violate** Independence

Andrew Ellis (LSE)

Foundations for Optimal Inattention

Axiom 2: Attention Constrained Independence (ACI) For every $\alpha \in [0, 1]$, $\omega \in \Omega$, problem *B* and acts *f*, *h*, *h*':

$$(1-\alpha)f + \alpha h \in c((1-\alpha)B + \alpha\{h\}|\omega) \iff (1-\alpha)f + \alpha h' \in c((1-\alpha)B + \alpha\{h'\}|\omega)$$

- If there is a (state-independent) probability α that the patient will take drug *h* regardless of what the doctor prescribes, then her choices are **unaffected** by the identity of *h*
- Independence holds when $\alpha = \beta$ and C, D are singletons
- $\bullet\,$ Choice MAY be affected by magnitude of $\alpha\,$
 - Choose from *B* but get h(h') with probability α
 - $\blacktriangleright \alpha$ "small" implies likely to get choice
 - $\blacktriangleright \alpha$ "large" implies unlikely to get choice

Attention Constrained Independence

- Fix problems B, $\{h\}$, and $\{h'\}$
- {h}, {h'} are singletons ⇒ DM's choice is the same no matter what her subjective information is
 - Difference between the benefits of any two partitions is the same for αB + (1 − α){h} and αB + (1 − α){h'}
- Q optimal when facing αB + (1 α){h} if and only if
 Q optimal when facing αB + (1 α){h'}
- The DM pays attention to the same information when facing $\alpha B + (1 \alpha)\{h\}$ as when facing $\alpha B + (1 \alpha)\{h'\}$
- So her choices from $\alpha B + (1 \alpha)\{h\}$ and $\alpha B + (1 \alpha)\{h'\}$ do not violate Independence

For two constant acts x and y, say that x is **revealed** (resp. **strictly**) **preferred** to y if there exists a state ω so that $x \in c(\{x, y\} | \omega)$ (resp. and $y \notin c(\{x, y\} | \omega)$)

Axiom 3: Monotonicity

If $f, g \in A$ and $f(\omega')$ is **revealed preferred** to $g(\omega')$ for every ω' , then $g \in c(A|\omega) \implies f \in c(A|\omega)$ Moreover, if $f(\omega')$ is revealed **strictly** preferred to $g(\omega')$ for every $\omega' \in P(\omega)$, then $g \notin c(A|\omega)$

- Restatement of Anscombe-Aumann monotonicity
- Tastes are state independent
- DM never chooses an act that always yields a worse outcome

Axiom 4: Subjective Consequentialism

For each choice problem B and state ω : If "the only states in which f and g differ must be in a different cell of her subjective information than ω ," then whenever $f, g \in B$

$$f \in c(B|\omega) \iff g \in c(B|\omega)$$

- The DM's choice between any two acts is unaffected by their consequences in states that she knows did not occur
- Recall: $c(B|\omega) \neq c(B|\omega')$ only if ω and ω' in different cells of subjective information

Axiom 4: Subjective Consequentialism

For each choice problem *B* and state ω : If $f(\omega) = g(\omega)$ and for all $\omega' \neq \omega$ either $f(\omega') = g(\omega')$ or $c(B|\omega') \neq c(B|\omega)$, then whenever $f, g \in B$

$$f \in c(B|\omega) \iff g \in c(B|\omega)$$

- The DM's choice between any two acts is unaffected by their consequences in states that she knows did not occur
- Recall: $c(B|\omega) \neq c(B|\omega')$ only if ω and ω' in different cells of subjective information

Axiom 5: Continuity

- Technical continuity condition required
- Ensures the continuity of the underlying preference relation
- Complication: the DM's choices from different problems may be conditioned on different information so her choices may appear discontinuous to the modeler
- It is implied by the combination of WARP and upper hemi-continuity

Last axiom guarantees range of $u(\cdot)$ is all of \mathbb{R}

X is set of lotteries

Axiom 6: Unbounded

There exist $x, y \in X$ so that $\{x\} = c(\{x, y\} | \omega)$, and for every $\beta \in [0, 1]$, there exists a $z \in X$ so that

$$\{\beta z + (1-\beta)y\} = c(\{\beta z + (1-\beta)y, x\}|\omega)$$

and a $z' \in X$ so that

$$\{y\} = c(\{\beta z' + (1 - \beta)x, y\}|\omega)$$

- Standard, technical axiom
- Technical remark: needed for sufficiency proof, not just identification

Outline

- Model
- Poundations
- 8 Representation Theorem
 - Representation Theorem
 - Special Cases
- Identification

Representation Theorem: Sufficiency of Axioms

Theorem

If $c(\cdot)$ satisfies INRA, ACI, Monotonicity, Subjective Consequentialism, Continuity, and Unbounded, then $c(\cdot)$ has an optimal inattention representation.

• The six axioms are sufficient for the DM to behave **as if** she has optimal inattention

Skip To Necessity

Proof Idea

- Choice of acts very poorly behaved
- Consider choice on another domain: plans
- A plan is a mapping from states to acts
 - ► In example, doctor chooses the plan "pick g in state 'generic', otherwise pick m" from {g, m} and chooses the plan "pick f in state 'pfizer', otherwise pick m" from {g, m, f}
- INRA guarantees that her choice over plan maximizes a preference relation \succeq
- Other axioms ensure
 <u>≻</u> well-behaved and has desired represention
- Show choosing plan equivalent to choosing info.

Representation Theorem: Necessity of Axioms

- Necessity of axioms complicated because I have not restricted attention to "regular" tie-breaking rules
 - May be more than one optimal partition for a given problem
 - Axioms necessary given some conditions on tie-breaking
 - The axioms are generically necessary for any tie-break rule
- Since tie-breaking is of secondary interest, my axioms capture the behavioral content of optimal inattention

Representation Theorem: Necessity of Axioms

Theorem

If $c(\cdot)$ has an optimal inattention representation, then $c(\cdot)$ satisfies Monotonicity, Subjective Consequentialism, Continuity and Unbounded.

Moreover, there exists $c'(\cdot)$ satisfying **all six axioms** and there exists **an open, dense** subset K of choice problems so that:

- c(·) and c'(·) have optimal inattention representations parametrized by (u(·), π(·), γ(·), P(·)) and (u(·), π(·), γ(·), Q(·))
 c(B|ω) = c'(B|ω) for every ω ∈ Ω and B ∈ K.
 - $c(\cdot)$ and $c'(\cdot)$ differ only because of tie-breaking
 - Tie-breaking is unnecessary for "most" problems

Special Cases

Axiom: Consequentialism

For any ω , if $f, g \in B$ and $f(\omega') = g(\omega')$ for all $\omega' \in P(\omega)$, then

$$f \in c(B|\omega) \iff g \in c(B|\omega).$$

- Standard property of models of choice under uncertainty
- Guarantees that DM respects the objective information partition
- Implies Subjective Consequentialism

Special Cases

Corollary

 $c(\cdot)$ satisfies **Consequentialism** as well as INRA, ACI, Monotonicity, Continuity, and Unbounded if and only if $c(\cdot)$ has a full attention representation.

- Optimally inattentive DM respects objective information partition if and only if she processes all available information
- Novel characterization of dynamic SEU model
- Only behavioral difference between optimally inattentive and fully attentive is latter must satisfy Consequentialism

Special Cases Axiom: Independence $f \in c(A|\omega)\&g \in c(B|\omega) \iff \alpha f + (1-\alpha)g \in c(\alpha A + (1-\alpha)B|\omega)$

Corollary

The following are equivalent: (i) $c(\cdot)$ satisfies **WARP** as well as ACI, Subjective Consequentialism, Monotonicity, Continuity, and Unbounded (ii) $c(\cdot)$ satisfies **Independence** as well as INRA, Subjective Consequentialism, Monotonicity, Continuity, and Unbounded (iii) $c(\cdot)$ has a fixed attention representation

- WARP and Independence are equivalent for an optimally inattentive DM
- DM violates WARP only if $\hat{P}(B) \neq \hat{P}(A)$
 - If she never violates WARP, then $\hat{P}(B) = \hat{P}(B')$ for all B, B'

Axiom 2*: Strong ACI For every $\alpha, \beta \in (0, 1], \omega \in \Omega$, problem B and act h, h': $(1 - \alpha)f + \alpha h \in c((1 - \alpha)B + \alpha\{h\}|\omega) \iff$ $(1 - \beta)f + \beta h' \in c((1 - \beta)B + \beta\{h'\}|\omega)$

- Similar interpretation to ACI
- Requires choice unaffected by **magnitude of** α as well as identity of *h*
- Choose from *B* but get *h* (*h*') with probability α (β)
 - Suppose $\alpha < \beta$
 - $\blacktriangleright \alpha$ "small" implies likely to get choice
 - β "large" implies unlikely to get choice
 - Pays attention to same information in both cases

Constrained Attention Representation

Corollary

If $c(\cdot)$ satisfies INRA, **Strong** ACI, Monotonicity, Subjective Consequentialism, Continuity, and Unbounded, then $c(\cdot)$ has a **constrained attention** representation.

If $c(\cdot)$ has a **constrained attention** representation, then there exists $c'(\cdot)$ satisfying **the above six axioms** and **an open**, **dense** subset *K* of problems so that:

 c(·) and c'(·) have optimal inattention representations parametrized by (u(·), π(·), P*, P(·)) and (u(·), π(·), P*, Q(·))

2 $c(B|\omega) = c'(B|\omega)$ for every $\omega \in \Omega$ and $B \in K$.

Outline

- Model
- Poundations
- Representation Theorem
- Identification
 - Uniqueness result
 - Omparative behavior

Identification

Theorem

If c has an optimal inattention representation, then:

- The support of γ is **unique**
- There is a **unique**, **canonical** (coarsest) \hat{P}
- *u* is **unique** up to a positive affine transformation
- If the relative likelihood of all events is decision-relevant:
 - π is unique \bullet details

 γ is unique up to the same affine transformation as u

- Reason for non-uniqueness: only ex post choice observed
- If either
 - ex ante choice is also observed or
 - cost function is "rich enough"

then π and γ are uniquely identified

Identification: Prior

Example: Suppose $\Omega = \{\omega_1, \omega_2, \omega_3\}$ and $P = \{\{\omega_1\}, \{\omega_2\}, \{\omega_3\}\}$.

- **1** If $\gamma(P) = 0$, then **any** prior represents her choices
 - No choices reveal tradeoffs between any two states
- **2** If $\gamma(Q) > 0$ for all $Q \neq \{\Omega\}$, then π is **uniquely identified**
 - Optimal to pay attention to {Ω} with "small stakes" bets
- In general:
 - If γ(P) > γ({{ω₁, ω₂}, {ω₃}}), then when she pays attention to the latter, her choices reveal tradeoff between ω₁ and ω₂
 - If γ(P) > γ({{ω₁, ω₃}, {ω₂}}), then when she pays attention to the latter, her choices reveal tradeoff between ω₁ and ω₃

Identification: How Is γ Identified?

- Suppose DM only pays attention to either Q or $\{\Omega\}$
- Construct a problem that has
 - "bets" on each cell of Q at stakes x and y
 - constant act giving y for sure
- If x s.t. u(x) < γ(Q), then optimal to pay attention to {Ω}
 If x s.t. u(x) > γ(Q), then optimal to pay attention to Q
- $\gamma(Q)$ is smallest u(x) so that DM pays attention to Q
- Generalizes but must choose bets and partitions carefully

Comparative Behavior

• What is behavioral interpretation of γ ?

Definition

 $c_1(\cdot)$ pays more attention than $c_2(\cdot)$ if for all* B and $\omega, \omega' \in \Omega$ $c_2(B|\omega) \neq c_2(B|\omega') \implies c_1(B|\omega) \neq c_1(B|\omega')$

- $\bullet\,$ Whenever DM2 distinguishes ω and $\omega',$ so does DM1
 - Implies that $\hat{P}_1(B) \gg \hat{P}_2(B)$ for all B
 - If same ex ante preference, then DM1 gets at least as high expected benefit from information
- Conjecture: $\gamma_1(Q) \le \gamma_2(Q)$ for all Q if and only if $c_1(\cdot)$ pays more attention than $c_2(\cdot)$

Comparative Behavior

- This conjecture is false
- Suppose $\Omega = \{1, 2, 3\}$ & $\pi(i) = \frac{1}{3}$ for all $i \in \Omega$
 - $u \circ f = (24, 0, 0), u \circ g = (0, 12, 12), and u \circ h = (0, 0, 21)$
 - Let $Q = \{\{1\}, \{2, 3\}\}$ and $R = \{\{1\}, \{2\}, \{3\}\}$ * $\gamma_1(Q) = 4$ and $\gamma_1(R) = 8$ * $\gamma_2(Q) = 7$ and $\gamma_2(R) = 9$
 - Gain from paying attention to x given $\{f, g, h\}$ is G(x)

*
$$G({\Omega}) = 8$$
, $G(Q) = 16$, $G(R) = 19$
* $G(Q) - \gamma_1(Q) = 12$ and $G(R) - \gamma_1(R) = 11$
* $G(Q) - \gamma_2(Q) = 9$ and $G(R) - \gamma_2(R) = 10$

• Conclude $\hat{P}_1(\{f,g,h\}) = Q$ and $\hat{P}_2(\{f,g,h\}) = R$

Comparative Behavior

Proposition

Suppose that:

- (u, π, γ₁, P̂₁) represents c₁(·) and (u, π, γ₂, P̂₂) represents c₂(·),
 supp(γ₁) = supp(γ₂),
 and [Q, R ∈ supp(γ₂) ⇒ Q ≫ R or R ≫ Q].
- Then:
 - c_1 pays more attention c_2 if and only if $Q \gg R \implies \gamma_1(Q) - \gamma_1(R) \le \gamma_2(Q) - \gamma_2(R)$
 - Marginal, not total, cost impacts ex-post choice
 - Implies $\gamma_1(Q) \leq \gamma_2(Q)$ for all Q
 - Also requires decreased marginal cost

Discussion and Interpretation

- Attention is a positive, not a negative (INRA)
 - DM chooses her subjective information because she wants to choose acts, not because she wants to avoid choosing acts
- Behavioral distinction between costly and constrained attention is ACI versus strong ACI
- Stickiness" is a defining feature of optimal inattention
 - Sims's seminal 1998 paper title: "Stickiness"
 - Identified with violations of consequentialism
- Oynamic Optimal Inattention
 - Consequentialism violated
 - Dynamic consistency undefined

Thank you

Axiom 5: Continuity (i)

If for every n

$$f_n \in c(B_n|\omega) \& \forall \omega'[c(B|\omega') \neq c(B|\omega) \implies c(B_n|\omega') \neq c(B_n|\omega)],$$

then $B_n \to B$ and $f_n \to f$ imply that $f \in c(B|\omega)$. (ii) For any $x, y \in X$ and $\omega \in \Omega$, if $\{y\}$ \overline{IS} $\{x\}$ and $x \in c(\{x, y\}|\omega)$, then $y \in c(\{x, y\}|\omega)$ as well

The acts in problem B₁ are indirectly selected over the acts in problem B_n (B₁ IS B_n) if there is a finite sequence of problems B₂, ..., B_{n-1} so that the DM chooses an act from B_{i-1} in every state of the world when the available acts are B_i

• Let
$$\overline{IS}$$
 be the sequential closure of IS

Return

Identification

- Define $BEg = \{ fEg : f \in B \}$ for any problems B and act g
 - All acts in BEg equal g on E^c

Definition

The likelihood of *E* is **not decision-relevant** if for any^{*} *B* and *g*: (i) $\forall \omega \in E : f \in c(B|\omega) \iff fEg \in c(BEg|\omega)$, and (ii) $\forall \omega' \in E^c : f' \in c(B|\omega') \iff f'E^cg \in c(BE^cg|\omega')$.

• Strong condition

• Can "split up" any problem without changing choices

Theorem

If the likelihood of all* events is decision-relevant, then π and γ are unique as claimed.

Fix any $B, f, g \in B$ and ω .

Suppose for all ω' either $f(\omega') = g(\omega')$ or $c(B|\omega') \neq c(B|\omega)$

• Consider any
$$\omega'' \in {\sf P}(\omega)$$

- By measurability, $c(B|\omega'') = c(B|\omega)$
- Since either $f(\omega'') = g(\omega'')$ or $c(B|\omega'') \neq c(B|\omega)$, $f(\omega'') = g(\omega'')$
- Since ω'' arbitary, $f(\omega'') = g(\omega'') \forall \omega'' \in P(\omega)$

Consequentialism implies that

$$f \in c(B|\omega) \iff g \in c(B|\omega).$$

Return