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Abstract. The Condorcet Jury Theorem states that given subjective expected utility max-
imization and common values, the equilibrium probability that the correct candidate wins
goes to one as the size of the electorate goes to infinity. This paper studies strategic voting
when voters have pure common values but may be ambiguity averse – exhibit Ellsberg-type
behavior – as modeled by maxmin expected utility preferences. It provides sufficient con-
ditions so that the equilibrium probability of the correct candidate winning the election is
bounded above by one half in at least one state. As a consequence, there is no equilibrium
in which information aggregates.

1. Introduction

When deciding how to vote, each individual may have private information about which of
the two candidates will be better. Both the information itself and how others react to it affect
how a rational voter casts her ballot. If each voter maximizes subjective expected utility
(henceforth, SEU) and voters have common values, then there exists an equilibrium to the
voting game in which all private information is revealed for a large enough electorate.1 This
result, known as the Condorcet Jury Theorem, provides an important efficiency justification
for democracy as a political system. It describes conditions under which democracy is
superior to even a benevolent dictatorship, since the probability of selecting the better policy
is higher when an election rather than a privately informed dictator picks the policy.

This paper shows that when voters are ambiguity averse and their private information is
ambiguous, there may not exist an equilibrium in which information aggregates, regardless of
the size of the electorate. Theorems 2 and 4 show that for many pure common-values voting
games, no equilibrium of the game aggregates information. A rational voter conditions her
action on the probability that her vote changes the outcome of the election. Consequently,
each voter’s equilibrium strategy may differ from the action that her private information
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would suggest is best if she disregarded others’ strategies. Given SEU, each vote noisily
reveals private information, and with enough voters, information aggregates. When voters
are ambiguity averse, each picks a voting strategy as if to insure herself against altering the
outcome in favor of the worse candidate. Theorem 4 relates this behavior to an extreme
“swing voter’s curse”: if others play a strategy profile that would aggregate information,
each voter best responds by minimizing the probability that she casts a pivotal vote. She
either plays a mixed strategy (Theorem 2) or abstains (Theorem 4). In any equilibrium, no
vote reveals information, precluding aggregation.

A large literature, initiated by Ellsberg [1961], criticizes SEU on both normative and
descriptive grounds. When payoffs depend on ambiguous events – that is, events about
which the decision maker has only vague information – SEU does not accurately describe
preferences. Agents typically prefer betting on unambiguous events to ambiguous ones. For
example, a bet on an event E, which is known to occur with probability 0.5, may be preferred
both to a bet on the event F and a bet on its complement F c when no information is provided
about F . Ambiguity aversion explains evidence from asset markets that contradicts SEU
(for instance, see Epstein and Schneider [2010]).

Many important policy decisions are made under ambiguity.2 A policy to cap carbon
emissions deals with poorly understood costs, base case emissions, and tails of the probability
distribution of temperature changes. The recession of 2008-2009 resulted at least in part
from an unprecedented event (systematic default in AAA rated bonds) in the credit market.
The Federal Reserve decided whether or not to bail out banks and hedge funds based on
their beliefs about the poorly understood connection between this default, these companies
and the financial system as a whole. Many foreign policy decisions must be made despite
possessing only poor quality information, such as that leading to the 2003 invasion of Iraq.

To accommodate ambiguity averse voters, this paper assumes that voter preference con-
forms to maxmin expected utility (henceforth, MEU; introduced and axiomatized in Gilboa
and Schmeidler [1989]). Voters consider a set of probability measures and evaluate an act by
taking its minimum expected utility with respect to every measure in that set. Formally, for
some set of probability measures Π and a von Neumann-Morgenstern index u(·), the utility
of an act f can be written as

min
p∈Π

Ep[u ◦ f ].

SEU is the special case when Π is singleton. When Π is not singleton, the behavior in the
Ellsberg paradox can be rationalized.

Section 2 gives an example that illustrates how ambiguity averse voters behave differently
from their SEU counterparts. Section 3 introduces ambiguous Poisson games and proves
2Papers that address political economy questions with ambiguity averse voters or candidates include Berliant
and Konishi [2005], Ashworth [2005], Ghirardato and Katz [2006] and Bade [2011], though none consider
strategic interaction between voters.
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existence of an equilibrium. Section 4 describes a common values voting game when voter
preferences are MEU and presents the paper’s main results. Theorem 2 shows that ambiguity
aversion can preclude the existence of any equilibrium that aggregates information. Theorem
3 provides sufficient conditions for existence of an equilibrium that aggregates information.
Section 5 modifies the setup by allowing voters to abstain strategically. Theorem 4 shows
that information may fail to aggregate in this setting as well. Section 6 concludes by relating
the main results to other works that show failure of information aggregation in voting games.
Proofs are collected in appendices.

2. Sincere Voting and Ambiguity

This section offers an example showing how ambiguity aversion alters the set of equilibria
to voting games. Formal definitions of the game and equilibrium are deferred to Appendix
A.

Consider an election with 101 voters who vote for one of two candidates, A and B. The
candidate with the most votes wins. Suppose there are two states of the world, a and b, and
all voters agree that A’s policy is better in state a but B’s policy is better in state b. Before
voting, all voters observe a signal from the set {1, 2}. They believe that signal 1 occurs
with probability 0.6 in state a, that signal 2 occurs with probability 0.6 in state b, and that
signals are independently distributed conditional on the state of the world. After observing
signal t, each voter considers the set of posteriors Πt consisting of the Bayesian updates of
the probability measures in some set Π. Because the state space is one dimensional, it is
convenient to represent Πt and Π as intervals, [pt, p̄t] and [p, p̄] respectively, corresponding
to the probability each of the measures in the set assigns to a. For simplicity, suppose that
the interval [p, p̄] is symmetric about 1

2 . Voters get utility equal to 1 if the correct candidate
is elected but 0 otherwise. After observing signal t, voter preference is represented by

(1) min
p∈[pt,p̄t]

[p(Pr(A wins|a)) + (1− p)Pr(B wins|b)].

Because of the noted symmetry, a voter (strictly) prefers to bet on a over b if she observes
signal 1 and vice versa if she observes signal 2. If all voters who observe 1 vote for A and all
those who observe 2 vote for B, information aggregates. If voters were SEU (p = p̄ = 1

2), then
McLennan [1998, Thm. 1] would show that this sincere voting strategy is an equilibrium. In
that equilibrium, information aggregates and each voter receives the same expected utility
in each state, about 0.979. However, when p < 0.4 and 0.6 < p sincere voting is not
an equilibrium because all players best respond by voting for both A and B with equal
probability.

For instance, assume that p = .39 and p = .61. After updating, players who observe signal
1 use Π1 = [0.49, 0.7] and players who observe signal 2 use Π2 = [0.3, 0.51]. Consider the
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problem of an arbitrary voter when all others vote sincerely. If this voter observes signal 1,
then she picks her vote to maximize

(2) min
p∈[0.49,0.7]

[pPr(A wins|a) + (1− p)Pr(B wins|b)].

She affects the outcome only when she is pivotal, or when exactly 50 of the others vote for
A. Since all others vote sincerely,

Pr(A has 50 votes|a) = Pr(B has 50 votes|b) =
 100

50

 .650.450 = ρ,

which is approximately 0.01, and

Pr( 51+ votes for A|a) = Pr( 51+ votes for B|b) =
100∑
j=51

 100
j

 .6j.4100−j = θ,

which is approximately 0.973. If she votes for A with probability α, then

Pr(A wins|a) = θ + ρα

and
Pr(B wins|b) = θ + ρ(1− α).

Therefore, this voter’s utility from voting for A with probability α is

(3) min
p∈[0.49,0.7]

p[αρ+ θ] + (1− p)[(1− α)ρ+ θ].

If she voted sincerely, then she would always vote for A (α = 1) and her utility would be

min
p∈[0.49,0.7]

p[ρ+ θ] + (1− p)θ = θ + .49ρ,

about 0.9779. If she played her other pure strategy, voting for B (α = 0), then she would
get utility

min
p∈[0.49,0.7]

pθ + (1− p)[θ + ρ] = θ + .3ρ,

about 0.976 which is less than if she voted for A.
When the voter picks her strategy, the state of the world is determined but unknown.

By randomizing, she replaces subjective uncertainty with objective risk. While she prefers
to follow her signal rather than vote against it, voting for A and B with equal probability
insures her against ambiguity. By doing so, she receives utility equal to

min
p∈[0.49,0.7]

p[θ + .5ρ] + (1− p)[θ + .5ρ] = θ + .5ρ,

about 0.978, so she prefers this mixture to sincere voting. A symmetric argument shows that
the voter also prefers to mix in this way after observing signal 2. Hence, her best response
is to randomize between voting for A and B regardless of the signal she observes.
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As in the SEU case, each voter picks her strategy based on her “beliefs” about the state of
the world if her vote decides the election. If all voters were SEU, then each vote would reveal
something about the voter’s private information, and as the number of voters approached
infinity, the outcome of the election would reflect all private information. In contrast, in the
example the voter minimizes the probability that she makes a mistake (conditional on her
being pivotal) by randomizing between voting for A and B. She thinks that if she is pivotal,
she will make a mistake with probability as high as 0.51 by voting for A or as high as 0.7 by
voting for B. By mixing, she makes a mistake with precisely probability 0.5. Because the
voter is ambiguity averse, she strictly prefers the latter strategy. Should the whole electorate
play this strategy, information could not aggregate because no individual’s vote reveals the
underlying signal. Indeed, all voters randomizing as above is an equilibrium to this game.

That sincere voting fails to be an equilibrium is not in itself surprising; in fact, Austen-
Smith and Banks [1996] show this is typically the case even with SEU voters. However,
Theorem 2 below shows that there is no equilibrium to the above game in which information
aggregates: if σ is an equilibrium where the expected winner in state a is A, then the expected
winner in state b is not B.3 Theorem 2 extends the logic above to any strategy profile. If
information would aggregate should voters play strategy profile σ, then some voter prefers
to insure herself rather than follow her prescribed strategy. Consequently, σ cannot be an
equilibrium.

3. Ambiguous Poisson Games

This section introduces ambiguous Poisson games, a generalization of Myerson [1998]’s
notion of extended Poisson games. Extended Poisson games simplify the analysis of large
population games with some underlying uncertainty. Myerson proves that if an extended
Poisson voting game has a common prior, common values and informative signals, then
there exists an equilibrium in which information aggregates. The notation and definition of
equilibrium are adapted from Myerson [1998]. Theorem 1 proves existence of an equilibrium.

For any finite set E, denote by ∆E the set of probability measures on E.

3This paper’s results are stated for games with Poisson population uncertainty, but only Theorem 4 relies
on this assumption. Theorems 2 and 3 hold without population uncertainty. Details available upon request.
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Definition. An ambiguous Poisson game Γ is a collection (Ω, C, T, U, (Πt)t∈T , r, n) where:

• Ω is a finite set of states.
• C is a finite set of actions. Define Z(C) = {x ∈ RC : x(c) ∈ N∀c ∈ C}, the set of all
possible realized action profiles (the number of players taking each action).
• T is a finite set of types.
• U : T × C × Ω × Z(C) → R is a bounded function that represents preference.
U(t, c, ω, x) is the utility for a voter of type t who takes action c when the realized
state is ω and the realized action profile is x.
• Πt ⊂ ∆(Ω) is a closed, non-empty and convex set, representing the set of posteriors
for each type. If Πt is a singleton for every t, then all players are SEU, though they
may have different priors.
• r : Ω → ∆T maps each state to a probability measure over types. Types are drawn
independently according to r(ω) in state ω.
• The number of players is a random variable distributed Poisson with mean n ∈ R++.

The timing of the game is as follows. Nature chooses the number of players according to
the Poisson distribution with mean n and chooses the state of the world according to some
unknown, unmodeled procedure. Each player learns her type and forms a set of posteriors.4

Before learning the realized state, how many other players there are or what actions the
other players have taken, she picks a strategy s ∈ ∆C. When she picks this strategy, the
state of the world is realized but unknown, so ambiguity aversion leads each player to act as
if Nature picked the distribution over states with the goal of minimizing her utility. A mixed
strategy may equalize her expected utility across states, limiting her exposure to Nature’s
choice. For this reason, she may find a mixed strategy to be the only best response. For a
more in depth discussion of this issue see Lo [1996] or Klibanoff [1996].

As in Myerson [1998], assuming a Poisson population yields convenient properties. Because
types are conditionally independent and the population is distributed Poisson, the number
of players that take each action c in state ω is also distributed Poisson and is independent
of the number of players taking action c′ 6= c in state ω. Moreover, each player’s conditional
expectation does not depend on her private information. If λ(ω)(c) is the expected number
of players in state ω that take action c, the probability of any given action profile x in state
ω is p(x|λ(ω)) where

(4) p(x|λ) =
∏
c∈C

e−λ(c)λ(c)x(c)

x(c)! .

4Note that posterior beliefs rather than prior beliefs are taken as a primitive. One could specify a set of
priors and an updating rule (in the example from Section 2, the updating rule is prior-by-prior Bayesian
updating), which would constitute a special case of the above. However, there are no ex-ante actions so the
set of priors only enters a voter’s decision through her set of posteriors.
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These properties imply that the best response correspondence is the same for any two players
with the same type. A strategy profile σ is a map from types to strategies, σ : T → ∆(C).
A player of type t picks a strategy σt ∈ ∆C to maximize

(5) Vt(σt, σ) = min
q∈Πt

ˆ
Ω

ˆ
Z(C)

∑
c∈C

σt(c)U(t, c, ω, x)dp(x|λ(σ, ω))dq(ω)

where

(6) λ(σ, ω)(a) = n
∑
t∈T

σ(t)(a)r(t|ω).

Definition. A strategy profile σ∗ is an equilibrium for Γ if for each t ∈ T

(7) σ∗(t) ∈ arg max
σ̂∈∆C

Vt(σ̂, σ∗).

If σ∗ is an equilibrium, then every player picks her strategy to maximize the minimum
expected utility over all measures in her set of posteriors, given she knows that the other
players follow the strategy profile σ∗. When Πt is singleton for all t ∈ T , this definition
is equivalent to the definition in Myerson [1998], though players may not have a common
prior. Because each player maximizes her minimum expected utility given her beliefs and all
player’s beliefs agree, the behavior of each player is as in Lo [1996]’s “beliefs equilibrium with
agreement.” While he does not consider games with population uncertainty, this definition
of equilibrium otherwise coincides with his.

In ambiguous Poisson games, a player perceives ambiguity about the distribution of the
state of the world, not about the other players’ strategies, so she best responds to her correct
perception of the other players’ strategies and her information. This paper focuses on failure
of information aggregation in voting games, and this restriction stacks the deck in favor
of the Condorcet Jury Theorem holding. This is because the Condorcet Jury Theorem
shows that the strategy played by an SEU voter given her correct perception of other voters’
strategies leads to information aggregation. If a player perceives ambiguity about other
voters’ strategies, then she no longer correctly perceives other voters’ strategies, so one
should not expect the result to hold.5

Theorem 1 shows that an equilibrium exists for every ambiguous Poisson game.

Theorem 1. For any ambiguous Poisson game Γ, there exists a strategy profile σ∗ that is
an equilibrium for Γ.

5If each player’s perception of ambiguity about others’ strategies is consistent with Lo [1996]’s equilibrium
concept, then Theorem 2 continues to hold in large electorates if there are only two signals (details available
upon request). However, analysis of most voting games where voters perceive ambiguity about others’
strategies is intractable due to difficulties determining the minimizing strategy profile .
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4. The Condorcet Jury Theorem

This section describes common values voting games with MEU players and discusses the
limiting equilibria. Theorem 2 establishes the existence of voting games for which no equilib-
rium aggregates information. Theorem 3 shows that information aggregates in equilibrium
for some voting games where no voter is SEU. Neither of these two results depends on
population uncertainty – very similar arguments work when the population is fixed at n.

4.1. Ambiguous voting games. Candidates A and B each commit to a distinct policy.
Voters cast a vote for one of them, and the candidate with the most votes wins; in a tie, each
candidate is selected with equal probability. Voters have common values and are instrumen-
tally rational: they care only about the policy outcome and they have the same preference
over policies given the state. Depending on the state of the world, the policy is either good
or bad. There are two states, a and b, representing which policy is the good one.

Formally, an ambiguous voting game is an ambiguous Poisson game where the action set
is C = {A,B}, the set of states is Ω = {a, b} and the utility function of all types takes value
1 if the candidate elected matches the state and 0 otherwise. The action A is interpreted as
a vote for candidate A, the action B is interpreted as a vote for B and the set of types T
is interpreted as a set of signals. Given that others play strategy profile σ, the payoff to a
voter of type t using strategy σ̂ ∈ ∆{A,B} is

Vt(σ̂, σ) = min
π∈Πt
{π(a)[σ̂(A)Pr(A wins|a, vA, σ) + σ̂(B)Pr(A wins|a, vB, σ)] +

+π(b)[σ̂(A)Pr(B wins|b, vA, σ) + σ̂(B)Pr(B wins|b, vB, σ)]},

where Pr(c wins|ω, vd, σ) is the probability candidate c wins in state ω if she votes for
candidate d and others play strategy profile σ.

As in Section 2, represent Πt by the interval of probabilities that the measures within it
assign to a. That is, Πt ≡ [pt, qt] where pt = minρ∈Πt ρ(a) and qt = maxρ∈Πt ρ(a).

4.2. Main result. This subsection describes a set of ambiguous voting games for which no
equilibrium aggregates information. Theorem 2 below shows that if voters lack confidence,
then no equilibrium aggregates information. Voters lack confidence when the following con-
dition on posteriors holds.

Definition. An ambiguous voting game has voters who lack confidence if pt < 1
2 < qt for all

t ∈ T .

An outsider can detect when voters lack confidence through betting preferences. If voters
lack confidence, then all voters strictly prefer betting on the outcome of a fair coin toss over
betting on either a or b. Even if the voter thinks that a is a better bet than b, she lacks
confidence in this judgment and strictly prefers to hedge her bet on a by mixing it with a
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bet on b. This is impossible with SEU: if a is at least as likely as b when a and b are the
only two states, then a bet on a is at least as good as a fifty-fifty lottery.

This translates into the voting setting as follows. Suppose a random voter were made a
dictator – whichever policy she chooses will be implemented. If, irrespective of the signal
she receives, she strictly prefers to pick the policy implemented by flipping a fair coin rather
than implementing either policy for sure, then, and only then, voters lack confidence.

To give a better sense of the meaning of lacking confidence, suppose that voters form pos-
terior beliefs by updating a common set of priors Π using prior-by-prior Bayesian updating.
Precision of signals and the set of priors both contribute to posterior beliefs. Voters lack
confidence when the signals do not provide enough information to offset the prior ambiguity.
With very precise signals (there is some t so that r(t|b)

r(t|a) is very high or very low), Π must be
very close to [0, 1] for voters to lack confidence; however, if signals are not very precise ( r(t|b)

r(t|a)
close to one for all t), then Π can be a much smaller interval. For instance, with the signal
structure described in Section 2, voters lack confidence whenever [.4, .6] ⊂ Π without equal-
ity, but if r(1|a) = r(2|b) = .51, then voters lack confidence whenever [.49, .51] ⊂ Π without
equality. If Π = [.45, .55], then voters lack confidence given the second signal structure but
not the first.

Theorem 2. Suppose that Γ is an ambiguous voting game with voters who lack confidence.
If σ is an equilibrium for Γ in which the expected vote share for A in state a is greater than
1
2 , then the expected vote share for B in state b is less than 1

2 .

Theorem 2 implies that the equilibrium probability of the correct candidate winning the
election is bounded above by 1

2 in at least one state, prohibiting information aggregation.
The following outlines the proof.

Suppose, for the sake of contradiction, that there is an equilibrium strategy profile σ
where the expected winner is correct in both states of the world. The key is to show that
the worst case scenario (the state in which the wrong candidate is more likely to be elected)
is not independent of the voter’s strategy when the others play σ. If the worst case scenario
were independent, then the voter acts as if maximizing SEU according to the posterior that
maximizes the probability of the worst case scenario and familiar arguments (for instance,
Myerson [1998, Thm. 2]) would imply that there is an equilibrium in which information
aggregates when n is large.

To see why the worst case scenario depends on the voter’s strategy, suppose that it doesn’t,
that n is “large” and that σ calls for all voters to play a pure strategy. Since the ratio of
pivot probabilities must not go to either 0 or infinity, Myerson [2000, Thm. 1] shows that the
expected vote share for A in state a is the same as the expected vote share for B in state b.
As a consequence, each voter thinks that if she abstains, then her conditional expected utility
is equal across states. When a player votes for A for sure, her expected utility conditional on
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state a increases and her expected utility conditional on state b decreases (vice versa when
voting for B). It follows that the worst case scenario depends on her vote. When voters lack
confidence, this argument can be extended to any σ, regardless of n.

Because the worst case scenario depends on her vote, there is a mixed strategy that insures
the voter against making a mistake and altering the election in favor of the wrong candidate
when others play σ, as in Section 2. Since voters lack confidence, each voter weakly prefers
to play this mixed strategy over any other strategy. If every voter insured herself, then
information could not aggregate because this insurance strategy is independent of private
information. Therefore, it must be that some voter is willing to play a different strategy.
However, the only strategies that are at least as good as the insurance strategy assign higher
probability to voting for the candidate that receives more votes from the insurance strategy.
All voters expect to vote for the same candidate regardless of signal. This candidate is the
expected winner in both states, a contradiction.

The following result characterizes one equilibrium to the game.

Proposition 1. If an ambiguous voting game Γ has voters who lack confidence, then the
strategy profile σ defined by σ(t)(A) = 1

2 for all t ∈ T is an equilibrium for Γ.

In this equilibrium, both candidates are elected with equal probability regardless of the
state. Therefore, knowing the winner of the election would not change the beliefs of a
Bayesian agent. Neither Proposition 1 nor Theorem 2 show that this is the only equilibrium.
However, Theorem 2 shows that if an equilibrium results in a higher probability of electing
the correct candidate than this equilibrium in one state of the world, then it must result in
a lower probability of electing the correct candidate in the other state of the world.

4.3. Information aggregation. This subsection provides a formal definition of information
aggregation and proves that some ambiguous voting games have an equilibrium in which
information aggregates. Because there is always some possibility of a mistake in a finite
electorate, one cannot require full certainty that voters elect the proper candidate in a given
game. Instead, the literature focuses on sequences of voting games where the probability of
electing the wrong candidate vanishes along some sequence of equilibria. Below, a sequence of
ambiguous voting games is indexed by the mean number of players, with all other primitives
remaining the same.

Definition. A sequence of ambiguous voting games (Γn)∞n=1 satisfies full information equiva-
lence (FIE) if there exists a sequence of strategy profiles (σn)∞n=1 so that σn is an equilibrium
for Γn, and for any ε > 0, there exists N so that n > N implies that the correct candidate
is elected in each state with probability higher than 1− ε when σn is played.6

6This definition is adapted from Feddersen and Pesendorfer [1997].
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An implication of Theorem 2 is that FIE fails for many sequences of ambiguous voting
games. In contrast, as long as the signal structure is informative (the conditional distribution
of signals varies with the state), any sequence of SEU voting games satisfies FIE. Since SEU
is a special case of MEU, some ambiguous voting games satisfy FIE. However, SEU is not
necessary for information to aggregate. In fact, Theorem 3 proves the existence of a sequence
of equilibria that aggregates information whenever the game has disjoint* posteriors.

Definition. An ambiguous Poisson game has disjoint* posteriors if for any distinct t and t′

in T either pt′ = qt, pt = qt′ or [pt, qt] ∩ [pt′ , qt′ ] is empty.

If all voters are SEU, then each Πt is a singleton and the ambiguous Poisson game has
disjoint* posteriors. More generally, one can distinguish between SEU, disjoint* posteriors
and voters who lack confidence using Lemma 1 (in the appendix). Consider an ambiguous
voting game Γ. If Γ has singleton posteriors, then all voters act as SEU maximizers and none
strictly prefer to randomize for any strategy profile. If Γ has disjoint* posteriors, then for
any strategy profile at most one type of voter strictly prefers to randomize. If Γ has voters
who lack confidence, then there exists a strategy profile such that all voters strictly prefer
randomizing to playing a pure strategy.

Theorem 3. Suppose that (Γn)∞n=1 is a sequence of ambiguous voting games that have dis-
joint* posteriors, that 0 < pt ≤ qt < 1 for all t and that for each ω and t, r(t|ω) > 0. If
there is some t ∈ T s.t. r(t|a) 6= r(t|b), then (Γn)∞n=1 satisfies FIE.

The proof generalizes the construction from Myerson [1998, Thm. 2]. As in that paper,
the equilibrium consists of a “step strategy”: at most one type of voter randomizes, and all
others play a pure strategy, determined by how likely they view a relative to the randomizing
voter. Because of disjoint* posteriors, at most one type of voter has a strict preference for
randomization. The proof shows that along this sequence, even if some voter strictly prefers
to randomize for every element of the sequence, the strategy is the same as in the SEU game
with the same signal structure at the limit. In fact, Myerson [1998, Thm. 2] is the special
case where each Πt is a singleton that results from Bayesian updating of a common prior.

5. Strategic Abstention

In SEU voting games, abstention typically improves the outcome of the election. This
is due to the “swing voter’s curse” (introduced in Feddersen and Pesendorfer [1996]): un-
informed voters are more likely to abstain than informed voters. As a consequence, the
expected percentage of votes for the correct candidate is larger than if voters could not ab-
stain, so abstention improves the expected outcome of the election. The ambiguous voting
games studied in Section 4 explicitly rule out the possibility of strategic abstention, leaving
open the possibility that the conclusion of Theorem 2 fails when voters can choose to abstain.
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This section shows that a version of Theorem 2 holds without mandatory voting. The
analysis provides insight into the mechanism behind Theorem 2; namely, equilibrium behav-
ior can be interpreted as an extreme swing voter’s curse. Each voter prefers to minimize
the chance that she casts a pivotal vote. If she abstained, then she would never be pivotal,
which would be better than any available strategy. However, Theorem 2 assumes that she
must vote. Among her available choices, her best option is to mimic abstention through a
mixed strategy.

In order to allow for abstention, modify the ambiguous voting games from Section 4 by
replacing the action set with C = {A,B, ∅} and requiring that T = {1, 2}. The action ∅
corresponds to abstention. The payoffs for each voter are as in the previous section. The
restriction to two types is for simplicity. Call such a game an ambiguous voting game with
abstention.

Say that an ambiguous Poisson game has symmetric signals if r(1|a) = r(2|b) and that
players have posteriors that respect likelihood ratios if r(t|a)

r(t|b) >
r(t′|a)
r(t′|b) implies that minπ∈Πt π(a) ≥

minπ∈Πt′ π(a) and maxπ∈Πt π(a) ≥ maxπ∈Πt′ π(a) for every t, t′ ∈ T . In ambiguous voting
games with abstention satisfying these two assumptions, information does not aggregate
along any sequence of equilibria.

Theorem 4. Suppose that (Γn)∞n=1 is a sequence of ambiguous voting games with abstention
and symmetric signals. If voters lack confidence and have posteriors that respect likelihood
ratios, then (Γn)∞n=1 does not satisfy FIE.

For a sequence of ambiguous voting games with abstention to satisfy FIE, it is necessary
that there exists a sequence of equilibrium strategy profiles where the winner is correct in
both states and the expected number of votes in each state goes to infinity. The proof
of Theorem 4 adapts and extends the arguments from Theorem 2 to show that either the
number of votes is bounded above in some state or the expected winner is incorrect in at
least one state. As a consequence, FIE must fail.

With SEU voters, Feddersen and Pesendorfer [1999] and Bouton and Castanheira [2009]
show the swing voter’s curse persists in voting games similar to those considered here. Given
two SEU voters who observe different signals, the voter whose signal conveys less information
about the state of the world is more likely to abstain in equilibrium. As a consequence, for
a fixed signal structure, the percentage of votes cast by more informed voters is higher in
an election with abstention compared to one with mandatory voting. In contrast, Theorem
4 demonstrates that ambiguity aversion strengthens the swing voter’s curse. An ambiguity
averse swing voter perceives the probability of making a mistake with her vote to be larger
than her SEU counterpart. Allowing abstention leads to fewer votes in expectation but,
unlike SEU, may not change the composition of the votes when voters lack confidence.
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Figure 1. Signal Distributions Where FIE Fails

In the appendix, the symmetric signals assumption is relaxed substantially. Relabeling
so that r(1|a) + r(1|b) ≥ r(2|a) + r(2|b) and r(1|a) ≥ r(1|b), the distributions of signals for
which FIE does not hold are indicated by Figure 1.7

Proposition 2 constructs a set of equilibria for any ambiguous voting game with abstention
in which voters lack confidence.

Proposition 2. If Γ is an ambiguous voting game with abstention that has voters who
lack confidence, then for any s ∈ [0, 1], the strategy profile σ∗ defined by σ∗(t)(∅) = s and
σ∗(t)(A) = σ∗(t)(B) = 1−s

2 for every t ∈ T is an equilibrium for Γ.8

Proposition 2 shows that equilibrium expected turnout with MEU voters can be anywhere
between zero and one hundred percent. Of particular interest are the equilibrium where
σ∗(t)(∅) = 0 for all t ∈ T and the equilibrium where σ∗(t)(∅) = 1 for all t ∈ T . In the

7While the proof only shows that FIE fails in the dark gray region, I conjecture that FIE fails in the light
gray region as well. In fact, it’s clear from the proof that FIE fails for at least part of this region.
8This result generalizes immediately to the case where T is any finite set.
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former case, voters behave exactly as in the equilibrium constructed by Proposition 1: each
voter plays a mixed strategy, voting for each candidate with equal probability. In the latter
equilibrium, all voters play a pure strategy, abstain. Despite the different strategies, the
expected outcome is the same for either equilibrium, as it is for all of the equilibria shown
to exist by Proposition 2: each candidate is elected with equal probability, regardless of the
state of the world that obtains. Consequently, the payoffs are the same for each voter, as is
the information that observing the outcome would provide to an observer.

The equilibrium in which all voters abstain contrasts with Propositions 2 and 3 of Fed-
dersen and Pesendorfer [1996] and Proposition 5 of Feddersen and Pesendorfer [1999]. In
these papers, the fraction of voters who don’t abstain remains bounded away from zero along
any sequence of equilibria. This result is a consequence of SEU preferences: even a small
difference in the expected benefits of voting for A instead of B induces a strict preference to
vote for A.

6. Conclusion

Theorems 2 and 4 show that rational but ambiguity averse voters may find it optimal to
insure themselves by minimizing the chance they cast a pivotal vote. This mechanism leads
to a failure of information aggregation not documented by previous work. These papers show
that the dimensionality of the uncertainty and the degree of commonality between voters
are important in evaluating the efficiency of the election. In contrast, this paper suggests
that how familiar the electorate is with the issues at stake also matters a good deal. By way
of conclusion, this section reviews some of these results and contrasts them with Theorems
2 and 4.

Feddersen and Pesendorfer [1997] prove that if the distribution of preferences is unknown,
then FIE fails generically. The problem is one of dimensionality; namely, each voter must
infer both the distribution of signals and the distribution of preferences from these votes.
Even if a voter knew which votes others cast and the electorate were large, she could not
infer the state of the world. In contrast, this paper assumes common knowledge of the
distribution of preferences. However, the distribution of votes may not vary with the state
(see Proposition 1 or 2) because voters insure themselves against ambiguity by abstaining
or randomizing.

Mandler [2011] shows that if the conditional distribution of signals is unknown, then FIE
may fail. If all the signals were observed by each voter, then uncertainty would remain as
to which state is correct even as the size of the electorate goes to infinity. In this paper, if
all signals were observed, then the true state would be known with probability approaching
1 despite the prior ambiguity.
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Bhattacharya [2008] drops the assumption of common values and characterizes the dis-
tributions of preferences for which FIE fails. For instance, FIE fails when any voter who
receives information in favor of the Condorcet-winner with perfect information is very likely
to strongly prefer the other candidate.9 In contrast, this paper maintains pure common
values.

Finally, the result in this paper relates to work that studies the effect of ambiguous infor-
mation in other contexts. For instance, Condie and Ganguli [2011] demonstrates a failure of
information transmission with ambiguity averse agents in general equilibrium. They show
that a rational expectations equilibrium for an exchange economy may be partially revealing
when agents are ambiguity averse; in contrast, fully revealing equilibria are generic with
SEU agents. Two differences are worth pointing out. First, in their model agents do not act
strategically – they are price takers. Second, they assume that only a subset of agents are
ambiguity averse, while an ambiguous voting game has voters who lack confidence only if all
voters are ambiguity averse.
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Appendix A. Details for Section 2

Consider n = 101, a set of players I = {1, ..., n}, a set of alternatives A = {A,B}, set of
types Ti = {1, 2} for each i ∈ I and T0 = {a, b}. Set T := T0×T1× ...×Tn. Each player has
the same preference over state-alternative pairs given by a function u : T ×A → R. Define
u(·) by

u((t0, ..., t101), c) ≡ u(t0, c) =

1 t0 = c

0 t0 6= c
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for all T . Player i’s pure strategies are Si = {A,B}; let S = S1 × ... × Sn. An aggregation
rule f : S → A maps the profile of actions to an alternative. Set

f(s0, ..., s101) =

A if ∑101
i=1 χsi(A) ≥ 51

B otherwise

for all (s0, ..., s101) ∈ S, where χE(·) is the indicator function of the set E. Fix a non-empty,
closed and convex set of common priors Π ∈ ∆T . Define Π by

Π = {π ∈ ∆T : π({a} × T1 × ...× T101) ∈ [p, p̄] and

π({(a, t1, ..., t101)})
π({a} × T1 × ...× T101) =

101∏
i=1

.6ti .41−ti and

π({(b, t1, ..., t101)})
π({b} × T1 × ...× T101) =

101∏
i=1

.61−ti .4ti}

which gives the desired form of priors. The game is defined by the collection (A, I, T, u, S, f,Π).
For each i, let Ŝi : Ti → ∆Si be a strategy for player i and let Σ := Ŝ0× ...× Ŝn be the set

of strategy profiles. This requires that the player’s strategy be measurable with respect to
her type. As is convention, let σi denote player i’s strategy and let σ−i represents the vector
of strategies chosen by players other than i. A strategy profile σ∗ ∈ Σ is an equilibrium if

σ∗i (ti) ∈ arg max
σ∈∆Si

min
π∈Π

Eπ[Eσ∗−i [u((t0, ..., tn), f((s0(t0), ..., si−1(ti−1), σ, si+1(ti+1), ..., sn(tn))]|ti]

for every i ∈ I.

Appendix B. Proof of Theorem 1

Proof. Define the set Λ = {l ∈ RC×Ω : ∑
a∈C l(a, ω) = n}, noting that Λ is compact, and

consider the correspondence At : Λ � ∆C defined by

At(λ) = arg max
σ̂∈∆C

min
q∈πt

ˆ
ω

ˆ
Z(A)

∑
a∈C

σ̂(a)U(x, t, a, ω)dp(x|λ(ω))dq.

Define A(λ) = ×t∈TAt(λ) and let F : Λ � Λ be defined by

F (λ) = {n
∑
t∈T

ct(a)r(t|ω) : c ∈ A(λ)}.

If λ ∈ F (λ) then equation (7) is satisfied for the strategy profile σ∗ that generates λ. Hence,
existence of an equilibrium is equivalent to showing that F (·) has a fixed point, which follows
if F is convex and closed. Since F (λ) is an affine transformation of A(λ), need to show that
A(·) is convex and closed. Show first that all At are convex, compact and UHC.
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[Convex:] Define φ : C(Ω) → R by φ(f) = minq∈πt
´
fdq, where C(Ω) is the set of

continuous functions from Ω to the real numbers). Then φ and p(x|λ(ω))U(x, t, ·, ω) are
both concave. So g : ∆C → R defined by g(σ̂) = φ(p(x|λ(ω)) ∑

a∈C σ̂(a)U(x, t, a, ω)) is also
concave. Hence g(x) = g(y) =⇒ g(αx + (1− α)y) ≥ g(x)∀α ∈ [0, 1] and x, y ∈ At(λ) =⇒
αx+ (1− α)y ∈ At(λ). Therefore At(λ) is convex, from which it follows that A(·) is convex
since a product of convex sets is convex. Since A(·) is convex, F (·) is convex.

[Closed:] φ is continuous by the Maximum Theorem (Theorem 17.31 of Aliprantis and Bor-
der [2006]; henceforth, AB). p(x|·) is continuous since it is a product of continuous functions.
U(x, t, ·, ω) is continuous by assumption. So minq∈πt

´
ω
p(x|λ(ω))[∑a∈A σ̂(a)U(x, t, a, ω)]dq

is continuous. Hence At(λ) is UHC and compact by the Maximum Theorem as the set of
solutions to a maximization problem.
A(λ) is compact for all λ by the Tychonoff product theorem (AB Theorem 2.61) because

A(λ) is a product of compact sets. By AB Theorem 17.20, it suffices to show that if λn → λ,
xn ∈ A(λn), and xn → x then x ∈ A(λ). Given such sequences, let xn,t be the t-th component
of xn and xt the t-th component of x for any t ∈ T . By definition of the product topology,
xn → x ⇐⇒ xn,t → xt for all t ∈ T . By definition of A(·), xn,t ∈ At(λn) for each n.
Because At(·) is UHC and compact, xt ∈ At(λ). Since t is arbitrary, xt ∈ At(λ) for all t ∈ T
and by definition of A(·), x ∈ A(λ). Hence A(·) is UHC and compact. AB Theorem 17.10
establishes that A(·) is closed and thus F (·) is closed.

Since Λ is compact and F (·) is closed and convex, applying Kakutani’s Fixed point theorem
(AB Corollary 17.55) yields a λ∗ such that λ∗ ∈ F (λ∗), establishing the existence of an
equilibrium. �

Appendix C. Preliminaries for the Remaining Proofs

Lemma 1 relies on two functions of the strategy profile.
Formally, if other votes unfold so that the realized action profile is in the event

(8) PivA = {x ∈ Z(C) : x(A) = x(B) or x(A) = x(B)− 1},

then the voter is pivotal for candidate A; let PivB be the corresponding event for B. Each
voter’s best response depends on the relationship between her set of posteriors and the
function b : Ω× (∆C)T → [0, 1] given by b(b, σ) =

(9) Pr(PivB|b, σ) + Pr(PivA|b, σ)
Pr(PivB|b, σ) + Pr(PivB|a, σ) + Pr(PivA|b, σ) + Pr(PivA|a, σ) .

and b(a, σ) = 1 − b(b, σ). The probabilities in this function depend only on the strategy
profile and not on an individual voter’s type.
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Another key equation is the insurance strategy, denoted ŝ(·, σ), is given by

ŝ(A, σ) = 2(E[U |b, σ]− E[U |a, σ]) + Pr(PivB|b, σ) + Pr(PivB|a, σ)
Pr(PivB|b, σ) + Pr(PivB|a, σ) + Pr(PivA|b, σ) + Pr(PivA|a, σ) .

and ŝ(B, σ) = 1 − ŝ(A, σ). This maps a strategy profile σ into the strategy a voter would
play to ensure his expected utility is independent of the state if ŝ(A, σ) ∈ [0, 1]. Otherwise,
no strategy equalizes a voters expected utilities between states.

Notice that expected utility in state ω if the voter abstained is given by

E[U |a, σ] =
∞∑
n=0

e−λ(a)(A)λ(a)(A)n
n! [

n−1∑
j=0

e−λ(a)(B)λ(a)(B)j
j! + 1

2
e−λ(a)(A)λ(a)(A)n

n! ]

where λ(ω)(c) = E[x(c)|ω, σ] as in equation (6). Define E[U |b, σ] analogously. This expres-
sion is precisely the probability that candidate ω wins in state ω. The expected utility of
voting for candidate c in state ω when others play strategy profile σ is

E[U |ω, vc, σ] = E[U |ω, σ] + [χ{ω}(c)−
1
2]Pr(Pivc|ω).

Additionally, let τ : C × Ω×∆CT → [0, 1] be the expected vote share for a candidate in
a state given a strategy profile. Formally,

τ(c|ω, σ) =
∑
t∈T

r(t|ω)σ(t)(c).

Note that this does not depend on the number of voters.

Appendix D. Proofs from Section 4

Lemma 1 establishes the form of a voter’s best response correspondence. This will be used
to prove both Theorem 2 and Theorem 3.

Lemma 1. For any σ∗, σ∗ is an equilibrium if σ∗t (A) ∈ BRt(σ∗)(A) where

BRt(σ)(A) =



{0} if E[U |a, vB, σ] ≥ E[U |b, vB, σ] & b(b, σ) > pt

or E[U |b, vA, σ] ≥ E[U |a, vA, σ] & b(b, σ) > qt

[0, 1] if E[U |a, vB, σ] ≥ E[U |b, vB, σ] & b(b, σ) = pt

or E[U |b, vA, σ] ≥ E[U |a, vA, σ] & b(b, σ) = qt

{1} if E[U |a, vB, σ] ≥ E[U |b, vB, σ] & b(b, σ) < pt

or E[U |b, vA, σ] ≥ E[U |a, vA, σ] & b(b, σ) < qt

B̂Rt(σ)(A) otherwise
and
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B̂Rt(σ)(A) =



{0} if b(b, σ) > qt

[0, ŝ(A, σ)] if b(b, σ) = qt

{ŝ(A, σ)} if qt > b(b, σ) > pt

[ŝ(A, σ), 1] if b(b, σ) = pt

{1} if b(b, σ) < pt

where pt = minρ∈Πt ρ(a) and qt = maxρ∈Πt ρ(a). If BRt(σ) = ˆBRt(σ) then ŝ(A, σ) ∈ [0, 1].

Proof. Throughout, a strategy is indexed solely by the probability of playing A. This is
WLOG since ∆C is one dimensional. Let pt and qt be as in the statement of the Lemma.

A player of type t has a best response to σ of playing A with probability s if s maximizes

Vt(s, σ) = min
ρ∈Πt

Eρ[
ˆ

[sU(t, A, ω, x) + (1− s)U(t, B, ω, x)]p(dx|λ(ω))].

This function is not in general differentiable everywhere. Since Vt(·, σ) is concave as a
minimum of a set of linear functions, the super-differential exists everywhere. By definition
and adapted to this setting, the super-differential is given by

∂Vt(s, σ) = {x ∈ RΩ : Vt(y, σ) ≤ Vt(s, σ) +
∑
ω

[(y(ω)− s(ω))x(ω)]∀y ∈ ∆A}.

The best response correspondence is the set of all s s.t. 0 ∈ ∂Vt(s, σ) where ∂Vt(s, σ) is the
super-differential of Vt(·, σ) at s. This follows from the dual to Aliprantis and Border [2006,
Lem 7.10], which states that s is a maximum of Vt(·, σ) if and only if 0 ∈ ∂Vt(s, σ).

Consider the case where E[U |a, vB, σ] ≥ E[U |b, vB, σ]. Note that

Vt(s, σ) = min
p∈Πt(A)

{p[s1
2Pr(PivA|a)− (1− s)1

2Pr(PivB|a) + E[U |a, σ]] +

+(1− p)[(1− s)1
2Pr(PivB|b)− s

1
2Pr(PivA|b) + E[U |b, σ]]}

= pt[s
1
2Pr(PivA|a)− (1− s)1

2Pr(PivB|a) + E[U |a, σ]] +

+(1− pt)[(1− s)
1
2Pr(PivB|b)− s

1
2Pr(PivA|b) + E[U |b, σ]]

because for every s

sPr(PivA|a)−(1−s)Pr(PivB|a)+2E[U |a, σ] ≥ (1−s)Pr(PivB|b)−sPr(PivA|b)+2E[U |b, σ].

This occurs because the RHS reaches its minimum at s = 0 and the LHS reaches its maximum
at s = 0. At s = 0 the RHS equals E[U |a, vB, σ] and the LHS equals E[U |b, vB, σ]. By
hypothesis, E[U |a, vB, σ] ≥ E[U |b, vB, σ] so for every s the RHS is larger than the LHS.
Thus, Vt(s, σ) is differentiable in s ∈ (0, 1). By Aliprantis and Border [2006, Cor 7.17]
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∂Vt(s, σ) is singleton and coincides with the Gateaux derivative when it exists. Hence,

∂Vt(s, σ) = {pt[
1
2Pr(PivA|a) + 1

2Pr(PivB|a)]− (1− pt)[
1
2Pr(PivA|b) + 1

2Pr(PivB|b)]}

and 0 ∈ ∂Vt(s, σ) only if b(b, σ) = pt. If b(b, σ) < pt this is positive and if b(b, σ) < pt this is
negative and hence no s ∈ (0, 1) is a maxima.

If s = 1 then the derivative is not defined since Vt(1 + ε, σ) for any ε > 0 does not exist.
The super-differential does exist:

∂Vt(1, σ) = {x ∈ R : Vt(y, σ)− Vt(1, σ) ≤ (y − 1)x∀y ∈ [0, 1]}.

Since

Vt(y, σ)−Vt(1, σ) = (y−1)1
2(pt[Pr(PivA|a)+Pr(PivB|a)]−(1−pt)[Pr(PivA|b)+Pr(PivB|b)])

0 ∈ ∂Vt(1, σ) if and only if

pt[Pr(PivA|a) + Pr(PivB|a)]− (1− pt)[Pr(PivA|b) + Pr(PivB|b) > 0.

As noted above, b(b, σ) < pt implies this is positive.
Additionally, if s = 0 the derivative is not defined since Vt(0− ε, σ) for any ε > 0 does not

exist. The super-differential does exist:

∂Vt(0, σ) = {x ∈ R : Vt(y, σ)− Vt(0, σ) ≤ y · x∀y ∈ [0, 1]}.

Since Vt(y, σ)− Vt(0, σ) =

y
1
2(pt[Pr(PivA|a) + Pr(PivB|a)]− (1− pt)[Pr(PivA|n) + Pr(PivB|n)])

0 ∈ ∂Vt(0, σ) if and only if

pt[Pr(PivA|a) + Pr(PivB|a)]− (1− pt)[Pr(PivA|b) + Pr(PivB|b)] < 0.

As noted above, b(B, σ) > pt implies this is negative.
The above observations show that if E[U |a, vB, σ] ≥ E[U |b, vB, σ], then the set of maxi-

mizers of Vt(·, σ) is

arg max
s∈[0,1]

Vt(s, σ) =


{1} if b(b, σ) > pt

[0, 1] if b(b, σ) = pt.

{0} if b(b, σ) < pt

If E[U |a, vB, σ] ≤ E[U |b, vB, σ], similar arguments show the same form of BR correspon-
dence with the probability assigned to a equal to qt instead of pt.

Now, suppose that neither of the above inequalities hold. Then there exists an s̄ ∈ (0, 1) so
that the conditional expected utilities in A and B are equal. Further, if s > s̄ the conditional
expected utility in state a is larger than that in state b and if s < s̄ then the expected utility
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in state B is larger than that in state A. Algebra shows that

s̄ = 2(E[U |b, σ]− E[U |a, σ]) + Pr(PivB|b) + Pr(PivB|a)
Pr(PivB|a) + Pr(PivA|a) + Pr(PivB|b) + Pr(PivA|b)

which is ŝ(A, σ).
Since for all s ∈ (0, s̄) and every s ∈ (s̄, 1) the minimizer is unique, the Gateaux derivative

exists whenever s /∈ {0, s̄, 1}. If s ∈ (s̄, 1) then

∂Vt(s, σ) = { ∂
∂s
Vt(s, σ)} = {pt

1
2[Pr(PivA|a)+Pr(PivB|a)]−(1−pt)

1
2[Pr(PivA|b)+Pr(PivB|b)]}.

If s′ ∈ (0, s̄) then

∂Vt(s′, σ) = { ∂
∂s
Vt(s, σ)} = {qt

1
2[Pr(PivA|a)+Pr(PivB|a)]−(1−qt)

1
2[Pr(PivA|b)+Pr(PivB|b)]}.

Thus any s ∈ (s̄, 1) is an optimum only if

pt[Pr(PivA|a) + Pr(PivB|a)]− (1− pt)[Pr(PivA|b) + Pr(PivB|b)] = 0,

which happens when pt = b(b, σ). Similarly, any s ∈ (0, s̄) is an optimum when qt = b(b, σ).
Otherwise there cannot be an optimum in (0, 1)\{s̄}.

As above, when s = 1 then the derivative is not defined since Vt(1 + ε, σ) for any ε > 0
does not exist. The super-differential does exist:

∂Vt(1, σ) = {x ∈ R : Vt(y, σ)− Vt(1, σ) ≤ (y − 1)x∀y ≤ 1}.

Since Vt(y, σ)− Vt(1, σ) is equal to

(y − 1)(pt
1
2[Pr(PivA|a) + Pr(PivA|b)]− (1− pt)

1
2[Pr(PivB|a) + Pr(PivB|b)]),

0 ∈ ∂Vt(1, σ) if and only if

Vt(y, σ)− Vt(1, σ) ≤ 0 ⇐⇒ b(b, σ) ≤ pt.

Hence s = 1 is optimal only if b(b, σ) ≥ pt. Similar arguments show then 0 ∈ ∂Vt(0, σ) ⇐⇒
b(b, σ) ≥ qt.

By the above, we have covered the cases where b(b, σ) ≥ qt and b(b, σ) ≤ pt. Suppose
pt < b(b, σ) < qt. In this case,

qt[Pr(PivA|a) + Pr(PivB|a)] > (1− qt)[Pr(PivA|b) + Pr(PivB|b)]

and
pt[Pr(PivA|a) + Pr(PivB|a)] < (1− pt)[Pr(PivA|b) + Pr(PivB|b)].

So for s > s̄,

∂Vt(s, σ) = {pt
1
2[Pr(PivA|a) + Pr(PivB|a)]− (1− pt)

1
2[Pr(PivA|b) + Pr(PivB|b)]}
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is a singleton strictly smaller than zero. For s′ < s̄,

∂Vt(s′, σ) = {qt
1
2[Pr(PivA|a) + Pr(PivB|a)]− (1− qt)

1
2[Pr(PivA|b) + Pr(PivB|b)]}

is a singleton strictly larger than zero. However, for s = s̄

∂Vt(s̄, σ) = {p(a)1
2[Pr(PivA|a) + Pr(PivB|a)]− p(b)1

2[Pr(PivA|b) + Pr(PivB|b)] : p ∈ Πt}

Since qt > ρ(A) > pt, ∃ρ ∈ Πt s.t.
ρ(a)

1− ρ(a) = Pr(PivA|b) + Pr(PivB|b)
Pr(PivA|a) + Pr(PivB|a)

implying that 0 ∈ ∂Vt(s̄, σ) and s̄ is the only maximizer when qt > b(B, σ) > pt.
Combining the above results yields the desired form of the best response function. �

In order to prove Theorem 2, two more preliminary results are necessary. Lemma 2 and
Lemma 3 allow characterization of the worst case scenario. The proof of Theorem 2 will
use both these facts to show that no equilibrium exists where a voter thinks the worst case
scenario is independent of her vote.

Lemma 2. For any n ≥ 1, E[U |a, σn] ≥ E[U |B, σn] ⇐⇒ τ(A|a, σn) ≥ τ(A|b, σn).

Proof. Let f(x, λ) = e−λλx

x! , the probability mass function of the Poisson distribution with
mean λ, and F (x, λ) its CDF. The CDF of the Poisson distribution has the form Γ([x+1],λ)

[x]!
where [z] is the greatest integer less than or equal to z and Γ(z, y) is the generalized incom-
plete gamma function:

Γ(z, y) =
ˆ ∞
y

e−ttz−1dt.

We can write

E[U |a, σn] = Q(τ(A|a, σn)n) + 1
2

∞∑
j=0

f(j, τ(A|a, σn)n)f(j, τ(B|a, σn)n)

where Q(·) is given by

Q(λ) =
∞∑
j=0

f(j, λ)F (j − 1, n− λ).

Observe that
∂Q

∂λ
=
∞∑
x=1

[∂f(j, λ)
∂λ

F (j − 1, n− λ) + f(j, λ)∂F (j − 1, n− λ)
∂λ

].

By the fundamental theorem of calculus, ∂F (x,λ)
∂λ

= − e−λλx

x! and ∂f(x,λ)
∂λ

= e−λλx−1(x−λ)
x! when-

ever x is an integer. Given this, the above sum can be written as
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∂Q
∂λ =

∑∞
x=1[∂f(x,λ)

∂λ F (x− 1, n− λ) + f(x, λ)∂F (x−1,n−λ)
∂λ ]

=
∑∞
x=1[ e

−λλx−1(x−λ)
x! F (x− 1, n− λ) + e−λλx

x!
e−n+λ(n−λ)x−1

x−1! ]

=
∑∞
x=1[−λ

xe−λ

x! F (x− 1, n− λ) + xλx−1e−λ

x! F (x− 1, n− λ) + e−λλx

x!
e−n+λ(n−λ)x−1

x−1! ]

=
∑∞
x=1

λx−1e−λ

x−1! F (x− 1, n− λ)−
∑∞
x=1

λxe−λ

x! F (x− 1, n− λ) +
∑∞
x=1

e−λλx

x!
e−n+λ(n−λ)x−1

x−1!

=
∑∞
x=1

λx−1e−λ

x−1! [F (x− 2, n− λ) + f(x− 1, n− λ)] +
∑∞
x=1[ e

−λλx

x!
e−n+λ(n−λ)x−1

x−1! − λxe−λ

x! F (x− 1, n− λ)]

=
∑∞
y=0

λye−λ

y! F (y − 1, n− λ) +
∑∞
x=1[ e

−λλx−1

x−1!
e−n+λ(n−λ)x−1

x−1! + e−λλx

x!
e−n+λ(n−λ)x−1

x−1! − λxe−λ

x! F (x− 1, n− λ)]

=
∑∞
x=1

e−λλx

x!
e−n+λ(n−λ)x−1

x−1! +
∑∞
x=0

λxe−λ

x!
(n−λ)xe−n+λ

x!

= e−n[
∑∞
x=1

λx

x!
(n−λ)x−1

x−1! +
∑∞
x=0

λx

x!
(n−λ)x
x!

Now, we must deal with the second term.
∂
∂λ

∑∞
j=0 f(j, λ)f(j, n− λ) =

∑∞
x=0

∂
∂λe
−n λx(n−λ)x

x!x! ]

=
∑∞
x=1 e

−n[xλ
x−1(n−λ)x
x!x! − xλx(n−λ)x−1

x!x! ]

= ∑∞
x=1 e

−n[λ
x−1(n−λ)x
x!(x−1)! −

λx(n−λ)x−1

x!(x−1)! ]
Adding together shows that ∂

∂λ
E[U |a, σn, n] is equal to

e−n[
∞∑
x=0

λx

x!
(n− λ)x

x! + 1
2

∞∑
x=1

(λ
x

x!
(n− λ)x−1

x− 1! + λx−1(n− λ)x
x!(x− 1)! )].

Clearly, this term is positive. Recall that λ = τ(A|a, σn)n so that ∂E[U |a,σn]
∂τ(A|a,σn) = ∂E[U |a,σn]

∂λ
∂λ

∂τ(A|A,σn) =
n∂E[U |a,σn]

∂λ
. Since ∂E[U |a,σn]

∂λ
≥ 0, so is ∂E[U |a,σn]

∂τ(A|a,σn) .
Since ∂E[U |a,σn]

∂τ(A|a,σn) ≥ 0, as τ(A|a, σn) increases, E[U |a, σn] increases. Similarly for τ(A|b, σn)
and E[U |b, σn]. Since the expected number of voters in each state is equal, the terms
E[U |a, σn] and E[U |b, σn] are equal whenever τ(A|a, σn) and τ(B|b, σn) are equal. This
establishes the claim. �

Lemma 3. If 1
2 < τ(B|b, σn) < τ(A|a, σn), then ŝ(A, σn) < 1

2 . In particular, when the
expected winner in each state is correct, ŝ(A, σn) < 1

2 ⇐⇒ b(b, σn) > 1
2 .

Proof. Suppose 1
2 < τ(B|b, σn) < τ(A|a, σn). By Lemma 2, E[U |b, σn] < E[U |a, σn]. Consider

the numerator of ŝ(A, σn). Recall that it is

φ(σn) = 2(E[u|b, σn]− E[u|a, σn]) + Pr(PivB|b, σn) + Pr(PivB|a, σn).

The fraction is less than 1
2 if and only if

2φ(σn) < [Pr(PivB|b, σn) + Pr(PivB|a, σn) + Pr(PivA|b, σn) + Pr(PivA|a, σn)].

Equivalently, this holds if and only if

4(E[u|b, σn]−E[u|a, σn])+Pr(PivB|b, σn)+Pr(PivB|a, σn)−Pr(PivA|b, σn)−Pr(PivA|a, σn) < 0.

We can rewrite

γ = Pr(PivB|b, σn) + Pr(PivB|a, σn)− Pr(PivA|b, σn)− Pr(PivA|a, σn)
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as a function only of τ(A|a, σn) and τ(B|b, σn). Set t = τ(B|b, σn) and s = τ(A|a, σn) for
convenience. Expanding and writing in terms of t and s,

γ = e−n
∞∑
j=0

n2j[t
j(1− t)j
j!j! + n

tj(1− t)j+1

j!j + 1! + sj(1− s)j
j!j! + n

sj+1(1− s)j
j!j + 1! ]−

−e−n
∞∑
j=0

n2j[t
j(1− t)j
j!j! + n

tj+1(1− t)j
j!j + 1! + sj(1− s)j

j!j! + n
sj(1− s)j+1

j!j + 1! ]

=
∞∑
j=0

e−nn2j+1[t
j(1− t)j+1

j!j + 1! + sj+1(1− s)j
j!j + 1! − tj+1(1− t)j

j!j + 1! − sj(1− s)j+1

j!j + 1! ].

Recall that

E[U |b, σn] =
∞∑
j=0

f(j; tn)F (j − 1; (1− t)n) + 1
2

∞∑
j=0

f(j; tn)f(j; (1− t)n)

:= ψ̂n(τ(B|b, σn))

and similarly E[U |a, σn] = ψ̂n(τ(A|a, σn)). Setting

θn(t) =
∞∑
j=0

e−nn2j+1[t
j(1− t)j+1

j!j + 1! − tj+1(1− t)j
j!j + 1! ]

and
ψn(x) = 4ψ̂n(x) + θn(x).

gives that
ŝ(A, σn) < 1

2 ⇐⇒ ψn(t)− ψn(s) < 0.

From Lemma 2 and writing λ = nt, we have that

∂ψ̂n
∂λ

= e−n[
∞∑
x=0

λx

x!
(n− λ)x

x! + 1
2

∞∑
x=1

(λ
x

x!
(n− λ)x−1

x− 1! + λx−1(n− λ)x
x!(x− 1)! )].

which is positive. Now,

θn(λ) =
∞∑
j=0

e−n
λj(n− λ)j+1 − λj+1(n− λ)j

j!(j + 1)!

so that
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∂θn
∂λ

=
∞∑
j=0

e−n
∂

∂λ

λj(n− λ)j+1 − λj+1(n− λ)j
j!(j + 1)!

=
∞∑
j=0

e−n
λj−1(n− λ)j+1

(j − 1)!(j + 1)! −
λj(n− λ)j

j!j! − λj(n− λ)j
j!j! + λj+1(n− λ)j−1

(j − 1)!(j + 1)!

=
∞∑
j=1

e−n
λj−1(n− λ)j+1 + λj+1(n− λ)j−1

(j − 1)!(j + 1)! − 2
∞∑
j=0

e−n
λj(n− λ)j

j!j!

Combining,

∂ψn
∂t

= [4∂ψ̂n
∂λ

+ ∂θn
∂λ

]∂λ
∂t

= n[2
∞∑
x=0

e−n
λx(n− λ)x

x!2 + 3
∞∑
j=1

e−n
λj−1(n− λ)j+1 + λj+1(n− λ)j−1

(j − 1)!(j + 1)! ]

which is clearly greater than 0.
To show that ψn(τ(B|b, σn)) − ψn(τ(A|a, σn)) < 0, recall that we can write this as´ t

s
∂ψn(x)
∂x

dx which is negative because the integrand is positive but τ(A|a, σn) > τ(B|b, σn).
Therefore, whenever τ(A|a, σn) > τ(B|b, σn) it must be that ŝ(A, σn) < 1

2 .
To complete the second part of the Lemma, note the following.

Claim 1. b(b, σn) > 1
2 ⇐⇒ |τ(A|a, σn)− 1

2 | > |τ(B|b, σn)− 1
2 |.

Proof. b(b, σn) > 1
2 ⇐⇒ Pr(PivA|b) + Pr(PivB|b) > Pr(PivA|a) + Pr(PivB|a)

Let t = τ(A|a, σn) so that Pr(PivA|a) + Pr(PivB|a) equals

2
∞∑
j=0

p(2j)
 2j

j

 tj(1− t)j +
∞∑
j=0

p(2j + 1)
 2j + 1

j + 1

 [tj(1− t)j+1 + tj+1(1− t)j]

where p(x) = e−nnx

x! . Take the derivative with respect to t to get

(1− 2t)[2
∞∑
j=0

j{p(2j)
 2j

j

 tj−1(1− t)j−1 +
∞∑
j=0

p(2j + 1)
 2j + 1

j + 1

 tj−1(1− t)j−1}]

which is positive whenever t < .5 and negative whenever t > .5. Similarly for Pr(PivA|b) +
Pr(PivB|b). Given the symmetry of Pr(PivA|a) + Pr(PivB|b) with respect to τ(A|a, σn)
and Pr(PivA|b) +Pr(PivB|b) with respect to τ(B|b, σn), the claim follows immediately. �

From Claim 1, whenever b(b, σn) > 1
2 , |τ(A|a, σn) − 1

2 | > |τ(B|a, σn) − 1
2 |. Further, if the

expected winners are correct, it must be that both τ(A|a, σn) > 1
2 and τ(B|b, σn) > 1

2 . It
follows that τ(A|a, σn) > τ(B|b, σn), so ŝ(A, σn) < 1

2 . Similarly, suppose that ŝ(A, σn) < 1
2
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and the expected winners are correct. From the above, τ(A|a, σn) > τ(B|b, σn) > 1
2 , so by

Claim 1 b(b, σn) > 1
2 . �

Proof of Theorem 2:

Proof. First, note that if there is no t so that r(t|a) 6= r(t|b), vote shares must be equal
across states, completing the proof. Therefore, assume that for some t, r(t|a) 6= r(t|b).

Suppose, for the sake of contradiction, that σn is an equilibrium for Γn where τ(A|a, σn) >
1
2 and τ(B|b, σn) > 1

2 .

Claim 2. BRt(σn) = B̂Rt(σn) for all t.

Proof. If BRt(σn) 6= B̂Rt(σn) then either

(10) E[U |a, σn] ≥ E[U |b, σn] + 1
2(Pr(PivB|b) + Pr(PivB|a))

or

(11) E[U |b, σn] ≥ E[U |a, σn] + 1
2(Pr(PivA|b) + Pr(PivA|a))

by Lemma 1.
In the first case, some type t̂ plays a mixed strategy in σn. First, suppose equation (10)

holds. In this case, because σn is an equilibrium, Lemma 1 implies that b(b, σn) = pt̂. Because
voters lack confidence, pt̂ < 1

2 which implies that

|τ(A|a, σn)− 1
2 | < |τ(B|b, σn)− 1

2 |

by Claim 1. Since τ(A|a, σn), τ(B|b, σn) > 1
2 it follows that τ(A|a, σn) < τ(B|b, σn) and

Lemma 2 implies that E[U |b, σn] > E[U |a, σn], a contradiction.
Similarly, if instead equation (11), it must be that b(n, σn) = qt̂. Because voters lack

confidence, qt̂ > 1
2 which implies that

|τ(A|a, σn)− 1
2 | > |τ(B|b, σn)− 1

2
by Claim 1. Since τ(A|a, σn), τ(B|b, σn) > 1

2 it follows that τ(A|a, σn) > τ(B|b, σn), Lemma
2 implies that E[u|a, σn] > E[U |b, σn], a contradiction.

In the second case, all types play pure strategies in σn. Further, at least one type (WLOG,
1) votes for A for sure and another type (WLOG, 2) votes for B for sure. By Lemma 1,
if equation (10) holds then p2 ≤ b(b, σn) ≤ p1 <

1
2 . By Lemma 2, E[U |b, σn] > E[U |a, σn],

contradicting that equation (10) holds. Suppose instead that equation (11) holds. By Lemma
1, 1

2 < q2 ≤ b(b, σn) ≤ q1. By Lemma 2, E[U |a, σn] > E[U |b, σn], contradicting that equation
(11) holds.

Hence, BRt(σn) = B̂Rt(σn) for all t. �
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I now show that no type plays a pure strategy.

Claim 3. σn(t) ∈ (0, 1) for all t.

Proof. Suppose σn(t)(A) ∈ {0, 1} for some t. WLOG, assume that either σn(2)(A) = 1 or
σn(2)(B) = 1.

Assume the former. Then it must be that 1 ∈ BR2(σn)(A) so b(b, σn) ≤ p2 < 1
2 by

Lemma 1. By Lemma 3 it must be that ŝ(A, σn) > 1
2 . By assumption, some type of

voter must vote for A with probability smaller than 1
2 . WLOG, assume this type is 1, so

that σn(1)(A) ≤ 1
2 < ŝ(A, σn) for n high enough. Hence, it must be that b(b, σn) ≥ q1.

Combining with p2 ≥ b(b, σn) gives that p2 ≥ q1, which is a contradiction of p2 <
1
2 < q1.

Now, assume the latter. It must be that 0 ∈ BR2(σn)(A) so b(B, σn) ≥ q2 by Lemma 1.
By Lemma 3 it must be that ŝ(A, σn) < 1

2 . By assumption, some type of voter must vote
for A with probability larger than 1

2 . WLOG, assume this type is 1, so that σn(1)(A) ≥
1
2 > ŝ(A, σn) for n high enough. Lemma 1 implies that b(B, σn) ≤ p1. Combining with
b(B, σn) ≥ q2 gives that p1 ≥ q2, which is a contradiction of p1 <

1
2 < q2. �

This claim shows that all types of voters must play a mixed strategy. Setting [p, p̄] =
∩t∈T [pt, qt], b(b, σn) ∈ [p, p̄], since otherwise at least one type of voter plays a pure strategy
by Lemma 1. Further, if b(b, σn) ∈ (p, p̄), the best response of all voters is to play σn(t)(A) =
ŝ(A, σn). Because of this, vote shares in each state are the same, a contradiction.

Claim 4. Suppose that b(b, σn) = p. Then the expected winner in state b is not B.

Proof. WLOG, assume that p = p1; in fact, p1 = maxt∈T pt so qt > b(b, σn) > pt∀t 6= 1. By
Lemma 1, σn(1)(A) ≥ ŝ(A, σn) and σn(t)(A) = ŝ(A, σn) for all t 6= 1. Because b(b, σn) = p1 <
1
2 , by Lemma 3 it must be that ŝ(A, σn) > 1

2 . Therefore σn(t)(A) > 1
2 for all t. Therefore,

τ(B|b, σn) < 1
2 and thus B is not the expected winner in state b. �

Claim 5. Suppose that b(B, σn) = p̄ . Then the expected winner in state a is not A.

Proof. WLOG, assume that p̄ = q1. By Lemma 1, σn(1)(A) ≤ ŝ(A, σn) and σn(t)(A) =
ŝ(A, σn) for all t 6= 1. By Lemma 3 it must be that ŝ(A, σn) < 1

2 . Therefore σn(t)(A) < 1
2

for all t, so τ(A|a, σn) < 1
2 and A is not the expected winner in state a. �

Therefore, there is no equilibrium where both τ(A|a, σn) > 1
2 and τ(B|b, σn) > 1

2 . �

Proof of Proposition 1:

Proof. Suppose σ is played. Clearly, E[U |a, σ] = E[U |b, σ] = 1
2 . This implies that BRt(σ) =

B̂Rt(σ) for all t by Lemma 1. Further, note that b(b, σ) = 1
2 since Pr(Pivc|a) = Pr(Pivc|b)

for c ∈ {A,B} since the vote shares are equal in both states. Since b(b, σ) ∈ [pt, qt], voters
of type t are willing to play σ(t)(A) = ŝ(A, σ) = 1

2 . Therefore, σ is an equilibrium. �
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Proof of Theorem 3:

Proof. This proof adapts the arguments of Myerson [1998] Theorem 2.
Relabel T = {1, 2, ..., T} so that minp∈Πi p(a) < minp∈Πi+1 p(a) for every i ∈ {1, 2, ..., T−1}.

Denote [h] = maxz∈Z z ≤ h and σ(h) for some h ∈ [1, T ] the strategy profile such that if h is
an integer then σ(t)(A) = 0 if t ≤ h and σ(t)(A) = 1 if t > h. If h is not an integer then σ(h)
is such that σ(t)(A) = 0 if t < [h] and σ(t)(A) = 1 if t > h and σ([h])(A) = h − [h]. The
proof will show that for all n high enough, there is an h(n) so that σ(h(n)) is an equilibrium
and that the expected winner in a is A and the expected winner in b is B.

Define functions z : [1, T ]× N→ [0, 1] and β : [1, T ]× N→ [0, 1] by the formulas

z(h, n) :=


ŝ(A, σ(h), n) ŝ(A, σ(h), n) ∈ [0, 1]
1 ŝ(A, σ(h), n) > 1
0 ŝ(A, σ(h), n) < 0

where ŝ(c, σ, n) is ŝ(c, σ) when there are n expected players. Further, define β(h, n) to be
b(b, σ(h)) when there are n expected players.

Let qt = maxp∈Πt p(a) and pt = minp∈Πt p(a). If ŝ(A, σ, n) < 0 then

E[U |b, σ]− E[U |a, σ] + 1
2(Pr(PivB|b) + Pr(PivB|a)) < 0

so that E[U |a, vB, σ] > E[U |b, vB, σ]. Hence

BRt(σ) =


1 b(b, σ) > pt

[0, 1] b(b, σ) = pt

0 b(b, σ) < pt

by Lemma 1. Similarly, if ŝ(A, σ) > 1 then 1− ŝ(A, σ) < 0 which implies

E[U |a, σ]− E[U |b, σ] + 1
2((Pr(PivA|a) + Pr(PivA|b))) < 0

and thus E[U |a, vB, σ] > E[U |b, vB, σ]. Hence

BRt(σ) =


1 b(b, σ) > qt

[0, 1] b(b, σ) = qt

0 b(b, σ) < qt

by Lemma 1. Otherwise, BRt(σ)(A) = B̂Rt(σ)(A).
Given the above notes, Lemma 1 shows that σh is an equilibrium if β(h, n) ∈ η(h, n)
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η(h, n) =



[qh, ph+1] h ∈ Z

q[h] h ∈ ([h] + z(h, n), [h] + 1)
[p[h], q[h]] h = [h] + z(h, n)
p[h] h ∈ ([h], [h] + z(h, n))

.

It’s clear that ŝ(·, σn) is continuous by construction. It follows that z(·, n) is continuous since
it can be written as the minimum of two continuous functions. Therefore η(·, n) is UHC,
compact and convex.

There exists numbers I(a) 6= I(b) so that τ(A|ω, σI(ω)) = τ(B|ω, σI(ω)) for each ω ∈ {a, b}
and for every h ∈ (I(a), I(b)) (or (I(b), I(a)) if I(b) < I(a)) τ(A|ω, σh) 6= τ(B|ω, σh) for
each ω because r(·|a) 6= r(·|b) and h 7→ τ(c|ω, σh) is a continuous function with range equal
to [0, 1]. Assume WLOG that I(a) < I(b). For n high enough, ∃h(n) so that β(h(n), n) ∈
η(h(n), n) and h(n) ∈ (I(a), I(b)). This follows from β(I(a), n)→ 0, β(I(b), n)→ 1, β(·, n)
is continuous and η(·, n) is convex and UHC. Since h(n) ∈ (I(a), I(b)), τ(A|a, σh(n)) >

τ(B|a, σh(n)) and τ(B|b, σh(n)) > τ(A|b, σh(n)). Define σ∗n = σh(n) when n is large enough;
otherwise, σ∗n let σ∗n be an arbitrary equilibrium. Using the arguments of Myerson [1998]
Theorem 2, the sequence of equilibrium vote shares from (σ∗n)∞n=1 must converge. Applying
the law of large numbers gives that the correct candidate is elected with arbitrarily high
probability in both states. Therefore, (Γn)∞n=1 satisfies FIE. �

Appendix E. Proofs from Section 5

Theorem 4 follows from a special case of Theorems 5 and 6.

Theorem 5. Suppose Γn is an ambiguous voting game with abstention that has voters who
lack confidence and posteriors that respect likelihood ratios. If σn is an equilibrium for Γn
where the worst case scenario for all voters is not independent of their vote and the expected
vote share for A in state a is greater than 1

2 , then the expected vote share for B in state b is
less than 1

2 .

Proof. The proof will be by contradiction. Suppose σn is an equilibrium for Γn where the
worst case scenario for all voters is not independent of their vote and the expected vote share
for A in state a is greater than 1

2 and the expected vote share for B in state b is also greater
than 1

2 .
Begin by deriving the best response correspondence for voters when the worst case scenario

varies with the strategy played. For any strategy s ∈ ∆C, represent s by the ordered pair
( s(A)

1−s(∅) , s(∅)) if s(∅) < 1 and (0, 1) otherwise. Note that there is a bijection between these
ordered pairs corresponds and each strategy profile. Now, define a function ŝ : Ω× [0, 1)×
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(∆C)T → R by

ŝ(A; s, σ) = 2(E[U |b, σ]− E[U |a, σ]) + (1− s)[Pr(PivB|a, σ) + Pr(PivB|b, σ)]
(1− s)[Pr(PivB|a, σ) + Pr(PivB|b, σ) + Pr(PivA|a, σ) + Pr(PivA|b, σ)]

and s̄ : σ → [0, 1] implicitly by

ŝ(A; s̄(σ), σ) =

1 if E[U |b, σ] > E[U |a, σ]
0 if E[U |b, σ] < E[U |a, σ]

and s̄(σ) = 1 if E[U |b, σ] = E[U |a, σ]. Note that if σ(t)(∅) < s̄(σ), the voter’s worst
case scenario still changes with her vote. In this case, playing the strategy defined by
σ(t)(A) = ŝ(A;σ(t)(∅), σ) equalizes the voter’s expected utilities across states. On the other
hand, if σ(t)(∅) ≥ s̄(σ), the voter is abstaining enough that her vote will no longer affect the
worst case scenario.

Lemma 4. Suppose that the worst case scenario is not independent of the strategy picked
given σ and that the expected winner is correct in each state. If σ is an equilibrium and
b(b, σ) ∈ (pt, qt), then σ(t) ∈ BRt(σ) where

BRt(σ) =



{(0, 1)} if E[U |b, σ] = E[U |a, σ]

=


{(0, 1)} if qt

1−qt <
Pr(PivA|b,σ)
Pr(PivA|a,σ)

{1} × [s̄(σ), 1] if qt
1−qt = Pr(PivA|b,σ)

Pr(PivA|a,σ)

{(1, s̄(σ))} if qt
1−qt >

Pr(PivA|b,σ)
Pr(PivA|a,σ)

if E[U |b, σ] > E[U |a, σ]

=


{(0, 1)} if pt

1−pt >
Pr(PivB |b,σ)
Pr(PivB |a,σ)

{0} × [s̄(σ), 1] if pt
1−pt = Pr(PivB |b,σ)

Pr(PivB |a,σ)

{(0, s̄(σ))} if pt
1−pt <

Pr(PivB |b,σ)
Pr(PivB |a,σ)

if E[U |b, σ] < E[U |a, σ]

.

Proof. (I drop the subscript t for convenience).
Suppose p < b(b, σ) < q. If the voter plays strategy (s, θ), she gets

Vt(s, θ;σ) = min
π∈[p,q]

π{E[U |a, σ] + (1− θ)[sPr(PivA|a, σ)− (1− s)Pr(PivB|a, σ)]}+

+(1− π){E[U |b, σ] + (1− θ)[(1− s)Pr(PivB|b, σ)− sPr(PivA|b, σ)]}.

Given a fixed θ < s̄(σ), consider vθσ : [0, 1]→ R define by vaσ(s) = Vt(s, θ;σ). Note that
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∂vaσ(s) =



{(1− θ)[p[Pr(PivA|a, σ) + Pr(PivB|a, σ)]− if s > ŝ(A; θ, σ)
−(1− p)[Pr(PivB|b, σ) + Pr(PivA|b, σ)]]}

{(1− aθ)[π[Pr(PivA|a, σ) + Pr(PivB|a, σ)]− if s = ŝ(A, θ, σ)
−(1− π)[(Pr(PivB|b, σ) + Pr(PivA|b, σ)]] : π ∈ [p, q]}

{(1− θ)[q[Pr(PivA|a, σ) + Pr(PivB|a, σ)]+ if s < ŝ(A, θ, σ)
+(1− q)[Pr(PivB|b, σ) + Pr(PivA|b, σ)]]}

As in Lemma 1, given p < b(b, σ) < q, 0 ∈ ∂vθσ(s) only if s = ŝ(A, θ, σ). Given this,
consider vσ : [0, 1] → R defined by vσ(θ) = Vt(ŝ(A, θ, σ), θ, σ). Write pcω = Pr(Pivc|ω, σ).
By construction

E[U |a, σ]+(1−θ)[ŝP r(PivA|a, σ)−(1−ŝ)Pr(PivB|a, σ)]] = [E[U |b, σ]+(1−θ)[(1−ŝ)Pr(PivB|b, σ)−ŝP r(PivA|b, σ)]]

when ŝ = ŝ(A, θ, σ). So if θ < s̄(σ)

vσ(θ) = E[U |a, σ] + (1− θ)[ŝP r(PivA|a, σ)− (1− ŝ)Pr(PivB|a, σ)]]

∂vσ(θ) = { ∂
∂θ

[(1− θ)2(E[U |b, σ]− E[U |a, σ]) + (1− θ)[pBa+ pBb]
(1− θ)[pAa+ pBb+ pBa+ pAb] pAa−

−(1− θ)2(E[U |a, σ]− E[U |b, σ]) + (1− θ)[pAa+ pAb]
(1− θ)[pAa+ pBb+ pBa+ pAb] pBa]}

= { ∂
∂θ

[2(E[U |b, σ]− E[U |a, σ])− 2(E[U |a, σ]− E[U |b, σ])
pAa+ pBb+ pBa+ pAb

+

+(1− θ)[pBa+ pBb]pAa− pBa[pAa+ pAb]
pAa+ pBb+ pBa+ pAb

]}

= {pBa[pAa+ pAb]− [pBa+ pBb]pAa
pAa+ pBb+ pBa+ pAb

}

= { pBa(pAb)− pBb(pAa)
pAa+ pBb+ pBa+ pAb

}

Since FIE implies that Pr(PivA|A,σ)
Pr(PivB |A,σ) <

Pr(PivA|B,σ)
Pr(PivB |B,σ) , no σ(t)(∅) < s̄(σ) is optimal. Therefore,

the voter abstains enough that worst case scenario is independent of whether she votes for
A or B when she votes.

We can think of her as a SEU voter that assigns either probability p to a (if E[U |b, σ] <
E[U |a, σ]) or q to a (if E[U |b, σ] > E[U |a, σ]). In this case, because p < b(b, σ) < q, the
voter votes for B (in the first case) or A (in the second case) for sure conditional on voting.
In the first case, she abstains for sure if p

1−p >
Pr(PivB |b,σ)
Pr(PivB |a,σ) , and abstains with probability

s̄(σ) if p
1−p <

Pr(PivB |b,σ)
Pr(PivB |a,σ) . She is willing to abstain with any probability between [s̄(σ), 1] if

p
1−p = Pr(PivB |b,σ)

Pr(PivB |a,σ) . In the second case, she abstains for sure if q
1−q <

Pr(PivA|b,σ)
Pr(PivA|a,σ) , and abstains
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with probability ā(σ) if q
1−q >

Pr(PivA|b,σ)
Pr(PivA|a,σ) . She is willing to abstain with any probability

between [ā(σ), 1] if q
1−q = Pr(PivA|b,σ)

Pr(PivA|a,σ) . This establishes the best response correspondence
when p < b(b, σ) < q. �

Lemma 5. Suppose that the worst case scenario is not independent of the strategy picked
given σ and that the expected winner is correct in each state. If σ is an equilibrium and
b(b, σ) ≤ pt, then σ(t) ∈ BRt(σ) where

BRt(σ) =


{(1, 0)} if pt

1−pt >
Pr(PivA|b,σ)
Pr(PivA|a,σ)

{1} × [0, s̄(σ)] if pt
1−pt = Pr(PivA|b,σ)

Pr(PivA|a,σ)

B̃RA,t(σ) if pt
1−pt <

Pr(PivA|b,σ)
Pr(PivA|a,σ)

and

B̃RA,t(σ) =


=


{(0, 1)} if qt

1−qt <
Pr(PivA|b,σ)
Pr(PivA|a,σ)

{1} × [s̄(σ), 1] if qt
1−qt = Pr(PivA|b,σ)

Pr(PivA|a,σ)

{(1, s̄(σ))} if qt
1−qt >

Pr(PivA|b,σ)
Pr(PivA|a,σ)

if E[U |b, σ] > E[U |a, σ]

{(0, 1)} otherwise

Proof. She votes for A conditional on voting because b(b, σ) is low enough relative to her
priors. She never abstains if pt

1−pt >
Pr(PivA|b,σ)
Pr(PivA|a,σ) . If pt

1−pt = Pr(PivA|b,σ)
Pr(PivA|a,σ) , she’s indifferent

between abstaining and voting for B and so is willing to play any mixture between voting
and abstaining. She abstains at least enough that she can’t affect the outcome with her vote
if pt

1−pt <
Pr(PivA|b,σ)
Pr(PivA|a,σ) . If she abstains more than s̄(σ), she acts as if she’s an SEU voter who

assigns probability pt to a if E[U |a, σ] > E[U |b, σ] and qt to a if E[U |b, σ] > E[U |a, σ]. Her
best response correspondence is exactly as in Bouton and Castanheira [2009], establishing
the result. �

Lemma 6. Suppose that the worst case scenario is not independent of the strategy picked
given σ and that the expected winner is correct in each state. If σ is an equilibrium and
b(B, σ) ≥ qt, then σ(t) ∈ BRt(σ) where

BRt(σ) =


{(0, 0)} if qt

1−qt <
Pr(PivB |b,σ)
Pr(PivB |a,σ)

{0} × [0, s̄(σ)] if qt
1−qt = Pr(PivB |b,σ)

Pr(PivB |a,σ)

B̃RB,t(σ) if qt
1−qt >

Pr(PivB |b,σ)
Pr(PivB |a,σ)
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and

B̃RB,t(σ) =


=


{(0, 1)} if pt

1−pt >
Pr(PivB |b,σ)
Pr(PivB |a,σ)

{0} × [s̄(σ), 1] if pt
1−pt = Pr(PivB |b,σ)

Pr(PivB |a,σ)

{(0, s̄(σ))} if pt
1−pt <

Pr(PivB |b,σ)
Pr(PivB |a,σ)

if E[U |a, σ] > E[U |b, σ]

{(0, 1)} otherwise

Proof. She votes for B conditional on voting because b(b, σ) is high enough. She never
abstains if qt

1−qt <
Pr(PivB |b,σ)
Pr(PivB |a,σ) . If qt

1−qt = Pr(PivB |b,σ)
Pr(PivB |a,σ) , she’s indifferent between abstaining

and voting for B and so is willing to play any mixture between voting and abstaining. She
abstains at least enough that she can’t affect the outcome with her vote if qt

1−qt >
Pr(PivB |b,σ)
Pr(PivB |a,σ) .

If she abstains more than s̄(σ), she acts as if she’s an SEU voter who assigns probability
pt to a if E[U |a, σ] > E[U |b, σ] and qt to a if E[U |b, σ] > E[U |a, σ]. Her best response
correspondence is exactly as in Bouton and Castanheira [2009], establishing the result. �

Now, focus on the specific conditions at equilibrium. Because posteriors that respect
likelihood ratios and voters lack of confidence, p2 ≤ p1 < 1

2 < q2 ≤ q1 (perhaps after
relabeling). These values partition [0, 1] into regions where the best response correspondence
of the voters has similar properties when b(·) is within that region. Proceed by analyzing
these regions separately.

Suppose now that b(b, σn) ∈ (p2, p1]. By assumption, σn is so that σn(1)(∅) < 1. Since
b(b, σn) < p1, Lemma 5 gives that σn(1)(B) = 0.

First, consider the case where σn(1)(∅) < s̄(σn) so p1
1−p1

≥ Pr(PivA|b,σ)
Pr(PivA|a,σ) . Since τ(B|b, σn) >

τ(A|b, σn), it must be that σn(2)(A) = 0 and σn(1)(∅) < 1. By Lemma 4, E[U |b, σn] >
E[U |a, σn] and q2

1−q2 ≤
Pr(PivB |b,σ)
Pr(PivB |a,σ) . Because τ(B|b, σn) > τ(A|b, σn) and τ(A|a, σn) >

τ(B|a, σn), it follows that Pr(PivA|b, σn) > Pr(PivB|b, σn) and Pr(PivA|a, σ) < Pr(PivB|a, σ)
and

Pr(PivA|b, σ)
Pr(PivA|a, σ) >

Pr(PivB|b, σ)
Pr(PivB|a, σ) .

However, p1 < q2 so these are mutually impossible.
Now, consider the case where 1 > σn(1)(∅) ≥ s̄(σn). Since b(b, σn) ≤ p1, Lemma 5 gives

that σn(1)(B) = 0 and σn(1)(A) > 0 implies that E[U |b, σn] > E[U |a, σn]. Since σn(1)(B) =
0, for the expected winner in state b to be correct it must hold that σn(2)(B) > 0. But
because E[U |b, σn] > E[U |a, σn] and p2 < b(b, σn) < q2, Lemma 4 gives that σn(1)(B) = 0, a
contradiction.

Now suppose that b(b, σn) ∈ [q2, q1). By assumption, σn(2)(∅) < 1. Since b(B, σn) > q2,
Lemma 6 gives that σn(2)(A) = 0.

First, consider the case where σn(2)(∅) < s̄(σn). From Lemma 6, q2
1−q2 ≤

Pr(PivB |b,σ)
Pr(PivB |a,σ) .

By assumption, it must be that σn(1)(A) > 0 so σn(1)(∅) < 1. Because b(b, σn) ∈ (p1, q1),
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Lemma 4 requires that E[U |a, σn] > E[U |b, σn] and p1
1−p1
≥ Pr(PivA|b,σn)

Pr(PivA|a,σn) . Because τ(B|b, σn) >
τ(A|b, σn) and τ(A|a, σn) > τ(B|a, σn), it follows that Pr(PivA|b, σn) > Pr(PivB|b, σn) and

Pr(PivB|b, σ)
Pr(PivB|a, σ) <

Pr(PivA|b, σn)
Pr(PivA|a, σn) ,

which is impossible since p1 < q2.
Now, consider the case where 1 > σn(2)(∅) ≥ s̄(σn). By assumption and Lemma 6,

σn(2)(B) > 0. From Lemma 5, E[U |a, σn] > E[U |b, σn]. But since p1 < b(b, σn) < q1, Lemma
4 yields that σn(1)(A) = 0, a contradiction.

If b(b, σn) ∈ [0, p1]∪ [p2, q1]∪ [q2, 1] it follows from Lemmas 4-6 that all voters will vote for
the same candidate whenever they do not abstain, a contradiction. �

Assume WLOG that r(1|a) + r(1|b) ≥ 1 and that r(1|a) ≥ r(1|b) (otherwise, relabel
candidates and types).

Define τ̂ : {A,B} × Ω→ [0, 1] by

τ̂(A|a) = (

√
r(2|a) +

√
r(2|b)√

r(1|a) +
√
r(1|b)

)2r(1|a)

τ̂(B|a) = r(2|a)

τ̂(A|b) = (

√
r(2|a) +

√
r(2|b)√

r(1|a) +
√
r(1|b)

)2r(1|b)

τ̂(B|b) = r(2|b)

which would be the limiting vote shares for each candidate in each state if voters were
expected utility.

Theorem 6. Fix any sequence (Γn)∞n=1 of AVGAs with voters who lack confidence and pos-
teriors that respect the likelihood ratio. If the inequalities

(12) 2 +

√√√√ τ̂(B|b)
τ̂(A|b) +

√√√√ τ̂(B|a)
τ̂(A|a) > 2( τ̂(A|b)τ̂(B|b)

τ̂(A|a)τ̂(B|a)) 1
4 − 1)

√
τ̂(A|b)
τ̂(B|b)

1−
√

τ̂(A|b)
τ̂(B|b)

and

(13) 2 +

√√√√ τ̂(B|b)
τ̂(A|b) +

√√√√ τ̂(B|a)
τ̂(A|a) >

√
τ̂(A|b)
τ̂(B|b)

1−
√

τ̂(A|b)
τ̂(B|b)

−
τ̂(B|a)√

τ̂(A|b)τ̂(B|b)

1− τ̂(B|a)√
τ̂(A|b)τ̂(B|b)

both hold and σn is an equilibrium for Γn where the expected votes in each state goes to
infinity and the expected winners are correct given σn, then for n sufficiently high, the worst
case scenario for all voters is independent of their vote in σn.
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Proof. The proof will be by contradiction.
Without loss of generality, suppose that r(1|a) + r(1|b) ≥ r(2|a) + r(2|b) and that r(1|a)

r(1|b) >
r(2|a)
r(2|b) (which implies that r(1|a) > r(1|b)), so that p2 ≤ p1 <

1
2 < q2 ≤ q1. Define σ(1)(∅) =

ā = 1− (
√

1−r(1|a)+
√

1−r(1|b)√
r(1|a)+

√
r(1|b)

)2, σ(1)(A) = 1− ā and σ(2)(B) = 1.

Lemma 7. Suppose that (σ∗nk) is a convergent sub-sequence of equilibrium strategy profiles
to Γnk so that the worst case scenario for every voter is independent of her strategy for every
σ∗nk . Then σnk → σ. Moreover, τ(A|a, σ) ≤ τ(B|b, σ) and τ(A|b,σ)

τ(B|b,σ) ≥
τ(B|a,σ)
τ(A|a,σ) , with equality

only if r(1|a) + r(1|b) = r(2|a) + r(2|b).

Proof. This follows follows from Bouton and Castanheira [2009] Lemma 1 and Theorem 1,
noting that when the strategy profile is played all voters act as if SEU with posterior pt or
qt. At the limit, it must be that

µ(a) = µ(b) ⇐⇒ (
√
τ(A|a)−

√
τ(B|a))2 = (

√
τ(B|b)−

√
τ(A|b))2.

Rewriting, √
(1− ā)r(1|a)−

√
r(2|a) =

√
r(2|b)−

√
(1− ā)r(1|b)

where ā = σ(1)(∅). Solving for ā yields

1− (

√
1− r(1|a) +

√
1− r(1|b)√

r(1|a) +
√
r(1|b)

)2.

The remaining results follow from algebra. �

Note that τ̂(c|ω) = τ(c|ω, σ).
The worst case scenarios is independent of the strategy chosen given σ is played if and

only if either

(14) E[U |b, σ]− 1
2Pr(PivA|b, σ) ≥ E[U |a, σ] + 1

2Pr(PivA|a, σ)

or

(15) E[U |a, σ]− 1
2Pr(PivB|a, σ) ≥ E[U |b, σ] + 1

2Pr(PivB|b, σ)

as in Lemma 1. If r(1|a) = r(2|b), then it’s clear that neither of the equalities are satisfied
because E[U |b, σ, n] = E[Ua, σ, n]. Therefore, suppose r(1|a) 6= r(2|b) an Consider the
limiting equilibrium strategy profile. At this strategy profile, neither of these equations
holds for n large enough.
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Lemma 8. If

2 +

√√√√τ(B|b, σ)
τ(A|b, σ) +

√√√√τ(B|a, σ)
τ(A|a, σ) > 2( τ(A|b, σ)τ(B|b, σ)

τ(A|a, σ)τ(B|a, σ)) 1
4 − 1)

√
τ(A|b,σ)
τ(B|b,σ)

1−
√

τ(A|b,σ)
τ(B|b,σ)

then E[U |b, σ]− E[U |a, σ] < 1
2(Pr(PivA|a, σ, n) + Pr(PivA|b, σ, n)) for n large enough.

Proof. For notational purposes, drop the dependence on σ. Lemma 7 shows that

(16) τ(B|b)τ(A|b) > τ(A|a)τ(B|a)

and

(17) τ(A|b)
τ(B|b) >

τ(B|a)
τ(A|a)

whenever the above conditions are satisfied. Set

µ(ω) = −τ(A|ω)− τ(B|ω) + 2
√
τ(B|ω)τ(A|ω)

noting that µ(A) = µ(B) = µ ∈ [−1, 0].
Since

E[U |a, σ] = 1− e−(τ(A|a)+τ(B|a))n(
∞∑
k=1

(τ(B|a)
τ(A|a) ) k2 Ik(2n

√
τ(A|a)τ(B|a))− 1

2I0(2n
√
τ(A|a)τ(B|a))

and

E[U |b, σ] = 1− e−(τ(A|b)+τ(B|b))n(
∞∑
k=1

√√√√ τ(A|b)
τ(B|b)

k

Ik(2n
√
τ(A|b)τ(B|b))− 1

2I0(2n
√
τ(A|b)τ(B|b))

(where Ik(·) is a modified Bessel function of the first kind (see Myerson [2000], p. 27)), the
conclusion is equivalent to
(18)

e−(τ(A|a)+τ(B|a))n
∞∑
k=1

√
τ(B|a)
τ(A|a)

k

Ik(2n
√
τ(A|a)τ(B|a))−e−(τ(A|b)+τ(B|b))n

∞∑
k=1

√
τ(A|b)
τ(B|b)

k

Ik(2n
√
τ(A|b)τ(B|b))

is less than
1
2(Pr(PivA|b) + Pr(PivA|a) + I0(2n

√
τ(A|b)τ(B|b))− I0(2n

√
τ(A|a)τ(B|a))).

Let φ(n) be the value of (18).
By Baricz [2010] equation (2.6) we have that if y > x > 0 and k > 0 is an integer then

(19) Ik(x) < ex−y(y
x

) 1
2 Ik(y).
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Using equations (16) and (19), we have that

e−(τ(A|a)+τ(B|a))n(
∞∑
k=1

√√√√τ(B|a)
τ(A|a)

k

Ik(2n
√
τ(A|a)τ(B|a))

< e(µ−2
√
τ(B|b)τ(B|b))n( τ(A|b)τ(B|b)

τ(A|a)τ(B|a)) 1
4

∞∑
k=1

√√√√τ(B|a)
τ(A|a)

k

Ik(2n
√
τ(A|b)τ(B|b))

so we find that

φ(n)
e−2
√
τ(B|A)τ(B|B))n

< eµn( τ(A|b)τ(B|b)
τ(A|a)τ(B|a)) 1

4

∞∑
k=1

√√√√τ(B|a)
τ(A|a)

k

Ik(2n
√
τ(A|b)τ(B|b))−

−eµn
∞∑
k=1

√√√√ τ(A|b)
τ(B|b)

k

Ik(2n
√
τ(A|b)τ(B|b))

< ( τ(A|b)τ(B|b)
τ(A|a)τ(B|a)) 1

4

∞∑
k=1

√√√√τ(B|b)
τ(A|b)

k

Ik(2n
√
τ(A|b)τ(B|b))−

−eµn
∞∑
k=1

√√√√ τ(A|b)
τ(B|b)

k

Ik(2n
√
τ(A|b)τ(B|b))

since τ(B|a)
τ(A|a) <

τ(A|b)
τ(B|b) . Setting

K̄(n) =
∞∑
k=1

√√√√ τ(A|b)
τ(B|b)

k

Ik(2n
√
τ(A|b)τ(B|b)) > 0

and
θ = ( τ(A|b)τ(B|b)

τ(A|a)τ(B|a)) 1
4 − 1 > 0

yields that
E[U |b, σ]− E[U |a, σ] < θeµnK̄(n)e−2n

√
τ(A|b)τ(B|b)
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Note that

K̄(n) =
∞∑
k=1

√√√√ τ(A|b)
τ(B|b)

k

Ik(2n
√
τ(A|b)τ(B|b))

<
∞∑
k=1

√√√√ τ(A|b)
τ(B|b)

k

I0(2n
√
τ(A|b)τ(B|b))

≈
∞∑
k=1

√√√√ τ(A|b)
τ(B|b)

k

e

√
(2n
√
τ(A|b)τ(B|b))2√

2π
√

(2n
√
τ(A|b)τ(B|b))2

=

√
τ(A|b)
τ(B|b)

1−
√

τ(A|b)
τ(B|b)

e2n
√
τ(A|b)τ(B|b)

2
√
πn

√
τ(A|b)τ(B|b)

by Abramowitz and Stegun [1972] equations (9.7.1) and (9.7.7) and that when k ≥ 0 it
follows that Ik(x) > Ik+1(x). Therefore, for n large enough

φ(n) <

√
τ(A|b)
τ(B|b)

1−
√

τ(A|b)
τ(B|b)

θeµnI0(2n
√
τ(A|b)τ(B|b))e−2n

√
τ(A|B)τ(B|B)

Since
1
2[Pr(PivA|b) + Pr(PivA|a) + e−(τ(A|b)+τ(B|b))nI0(2n

√
τ(A|b)τ(B|b))−

−e−(τ(A|a)+τ(B|a))nI0(2n
√
τ(A|a)τ(B|a))]

= 1
2[e−(τ(A|b)+τ(B|b))n(2I0(2n

√
τ(A|b)τ(B|b)) + I1(2n

√
τ(A|b)τ(B|b))

√√√√τ(B|b)
τ(A|b) ) +

+e−(τ(A|a)+τ(B|a))nI1(2n
√
τ(A|a)τ(B|a))

√√√√τ(B|a)
τ(A|a) ]

≈ eµn

4
√
πn

(

√
τ(B|a)
τ(A|a)

(τ(A|a)τ(B|a)) 1
4

+
2 +

√
τ(B|b)
τ(A|b)

(τ(A|b)τ(B|b)) 1
4

),

it suffices to show that

[

√
τ(B|a)
τ(A|a)

(τ(A|a)τ(B|a)) 1
4

+
2 +

√
τ(B|b)
τ(A|b)

(τ(A|b)τ(B|b)) 1
4

] >

√
τ(A|b)
τ(B|b)

1−
√

τ(A|b)
τ(B|b)

2( τ(A|b)τ(B|b)
τ(A|a)τ(B|a))

1
4 − 1)

(τ(A|b)τ(B|b)) 1
4
.
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Note that √
τ(B|a)
τ(A|a)

(τ(A|a)τ(B|a)) 1
4

+
2 +

√
τ(B|b)
τ(A|b)

(τ(A|b)τ(B|b)) 1
4
>

2 +
√

τ(B|b)
τ(A|b) +

√
τ(B|a)
τ(A|a)

(τ(A|b)τ(B|b)) 1
4

because τ(B|b)τ(A|b) > τ(B|a)τ(A|a). Therefore, if

2 +

√√√√τ(B|b)
τ(A|b) +

√√√√τ(B|a)
τ(A|a) > 2( τ(A|b)τ(B|b)

τ(A|a)τ(B|a)) 1
4 − 1)

√
τ(A|b)
τ(B|b)

1−
√

τ(A|b)
τ(B|b)

then the claim holds. �

Lemma 9. If

2 +

√√√√τ(B|b, σ)
τ(A|b, σ) +

√√√√τ(B|a, σ)
τ(A|a, σ) >

√
τ(A|b,σ)
τ(B|b,σ)

1−
√

τ(A|b,σ)
τ(B|b,σ)

−
τ(B|a,σ)√

τ(A|b,σ)τ(B|b,σ)

1− τ(B|a,σ)√
τ(A|b,σ)τ(B|b,σ)

then E[U |a, σ]− E[U |b, σ] < 1
2Pr(PivB|a, σ) + 1

2Pr(PivB|b, σ) for n large enough.

Proof. For notational purposes, drop the dependence on σ. As in Lemma 8, we can write
the claim as

e−(τ(A|b)+τ(B|b))n
∞∑
k=1

√√√√ τ(A|b)
τ(B|b)

k

Ik(2n
√
τ(A|b)τ(B|b))−(20)

− e−(τ(A|a)+τ(B|a))n
∞∑
k=1

√√√√τ(B|a)
τ(A|a)

k

Ik(2n
√
τ(A|a)τ(B|a))

is less than
1
2(Pr(PivA|b) + Pr(PivA|a)− I0(2n

√
τ(A|b)τ(B|b)) + I0(2n

√
τ(A|a)τ(B|a))).

Write φ(n) to be the value of (20). Note that

e−(τ(A|a)+τ(B|a))n
∞∑
k=1

√
τ(B|a)
τ(A|a)

k

Ik(2n
√
τ(A|a)τ(B|a))

> e−(τ(A|a)+τ(B|a))n
∞∑
k=1

√
τ(B|a)
τ(A|a)

k√
τ(A|a)τ(B|a)
τ(A|b)τ(B|b)

kIk(2n
√
τ(A|b)τ(B|b))e2n

√
τ(A|a)τ(B|a)−2n

√
τ(A|b)τ(B|b)

= eµn−2n
√
τ(A|b)τ(B|b)

∞∑
k=1

τ(B|a)√
τ(A|b)τ(B|b)

k

Ik(2n
√
τ(A|b)τ(B|b))

since whenever k > 1
2 and y > x we have

(21) Ik(x) > (x
y

)kex−yIk(y)
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by equation (2.2) of Baricz [2010].
We have that

φ(n) < e−(τ(A|b)+τ(B|b))n
∞∑
k=1

√√√√ τ(A|b)
τ(B|b)

k

Ik(2n
√
τ(A|b)τ(B|b))−

−eµn−2n
√
τ(A|b)τ(B|b)

∞∑
k=1

τ(B|a)√
τ(A|b)τ(B|b)

k

Ik(2n
√
τ(A|b)τ(B|b))

=
eµn

∑∞
k=1(

√
τ(A|b)
τ(B|b)

k

− τ(B|a)√
τ(A|b)τ(B|b)

k
)Ik(2n

√
τ(A|b)τ(B|b))

e2n
√
τ(A|b)τ(B|b)

<
eµnI0(2n

√
τ(A|b)τ(B|b) ∑∞

k=1(
√

τ(A|b)
τ(B|b)

k

− τ(B|a)√
τ(A|b)τ(B|b)

k
)

e2n
√
τ(A|b)τ(B|b)

≈
eµn

∑∞
k=1(

√
τ(A|b)
τ(B|b)

k

− τ(B|a)√
τ(A|b)τ(B|b)

k
)

2
√
πn

√
τ(A|b)τ(B|b)

=
eµn(

√
τ(A|b)
τ(B|b)

1−
√

τ(A|b)
τ(B|b)

−
τ(B|a)√

τ(A|b)τ(B|b)

1− τ(B|a)√
τ(A|b)τ(B|b)

)

2
√
πn

√
τ(A|b)τ(B|b)

so it suffices to show that

2 +

√√√√τ(B|b)
τ(A|b) +

√√√√τ(B|a)
τ(A|a) >

√
τ(A|b)
τ(B|b)

1−
√

τ(A|b)
τ(B|b)

−
τ(B|a)√

τ(A|b)τ(B|b)

1− τ(B|a)√
τ(A|b)τ(B|b)

which is the hypothesis. �

Now, consider the specific conditions at equilibrium. Suppose that σ is an equilibrium. If
the election is not close, then it must be that either

E[U |a, σ]− E[U |b, σ] > 1
2(Pr(PivB|b, σ) + Pr(PivB|a, σ))

or
E[U |b, σ]− E[U |a, σ] > 1

2(Pr(PivA|b, σ) + Pr(PivA|a, σ)).

By Bouton and Castanheira [2009] Lemma 1, restrict attention to profiles indexed by θ ∈
[0, 1] defined by σθ(1)(∅) = θ, σθ(1)(A) = 1 − θ and σθ(2)(B) = 1. Let ā be defined as in
Lemma 1.



CONDORCET MEETS ELLSBERG 42

For n high enough, if σθ is an equilibrium then θ ∈ (0, 1). Therefore, it must be the case
that either

(22) p1(Pr(PivA|a, σθ)) = (1− p1)Pr(PivA|b, σθ),

(23) p2

1− p2
<
Pr(PivA|b, σθ) + Pr(PivB|b, σθ)
Pr(PivA|a, σθ) + Pr(PivB|a, σθ)

<
p1

1− p1
,

and (14) all hold or

(24) q1(Pr(PivA|a, σθ)) = (1− q1)Pr(PivA|b, σθ),

(25) q2

1− q2
<
Pr(PivA|b, σθ) + Pr(PivB|b, σθ)
Pr(PivA|a, σθ) + Pr(PivB|a, σθ)

<
q1

1− q1
,

and (15) all hold.
By Lemmas 8 and 9 above neither (15) nor (14) holds at σθ̄. The following inequalities

hold given the signal structure, as long as θ is so that τ(A|a, σθ) > 1
2 and τ(B|b, σθ) > 1

2 .

•
∂
Pr(PivA|b,σθ)+Pr(PivB |b,σθ)
Pr(PivA|a,σθ)+Pr(PivB |a,σθ)

∂θ
< 0

•
∂
Pr(PivA|b,σθ)
Pr(PivA|a,σθ)

∂θ
< 0

• ∂
∂θ

(E[U |b, σθ]− 1
2Pr(PivA|b, σθ)) > 0

• ∂
∂θ

(E[U |a, σθ] + 1
2Pr(PivA|a, σθ)) < 0

• ∂
∂θ

(E[U |b, σθ] + 1
2Pr(PivB|b, σθ)) > 0

• ∂
∂θ

(E[U |a, σθ]− 1
2Pr(PivB|a, σθ)) < 0

Suppose that equations (22), (23) and (15) all hold for some σθ. It is the case that
Pr(PivA|b, σθ̄)
Pr(PivA|a, σθ̄)

> 1

for n large enough (using standard formulas for pivot probabilities). Since (22) holds and
p1

1−p2
< 1, it must be that θ > θ̄ because

∂
Pr(PivA|B,σθ̄)
Pr(PivA|A,σθ̄)

∂θ
< 0. However, this implies that

E[U |a, σθ]−
1
2Pr(PivA|a, σθ) < E[U |a, σθ̄]−

1
2Pr(PivA|a, σθ̄))

and
E[U |b, σθ] + 1

2Pr(PivB|b, σθ) > E[U |b, σθ̄] + 1
2Pr(PivB|b, σθ̄).

Note therefore that

E[U |b, σθ] + 1
2Pr(PivB|b, σθ) > E[U |a, σθ]−

1
2Pr(PivA|a, σθ))

which means that (15) cannot hold.
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Now, suppose that equations (24), (25) and (14) all hold for some σa. It can be verified
that

Pr(PivA|b, σθ̄) + Pr(PivB|b, σθ̄)
Pr(PivA|a, σθ̄) + Pr(PivB|a, σθ̄)

≤ 1

for n large enough using Myerson [2000] Equation 5.5, with equality holding only if r(1|a) =

r(2|b). Since (25) holds and q2
1−q2 > 1, since

∂
Pr(PivA|B,σθ)+Pr(PivB |B,σθ)
Pr(PivA|A,σθ)+Pr(PivB |A,σθ)

∂θ
< 0 it must be that

θ < θ̄ for n large enough. However, this implies that

E[U |a, σθ] + 1
2Pr(PivA|a, σθ)) > E[U |a, σθ̄] + 1

2Pr(PivA|a, σθ̄))

and
E[U |b, σθ]−

1
2Pr(PivA|b, σθ) < E[U |b, σθ̄]−

1
2Pr(PivA|b, σθ̄).

Note therefore that

E[U |b, σθ]−
1
2Pr(PivA|b, σθ) < E[U |a, σθ] + 1

2Pr(PivA|a, σθ))

which means that (14) cannot hold. Therefore, σθ is not an equilibrium, which is a contra-
diction and completes the proof. �

Proof of Proposition 1:

Proof. Given σ∗, E[U |a, σ∗] = E[U |b, σ∗] and Pr(Pivc|ω, σ∗) = Pr(Pivc′|ω′, σ∗) for any c, c′ ∈
C and any ω, ω′ ∈ Ω. The logic in Proposition 1 shows that a fixed voter would prefer to
randomize with equal probability between A and B rather than play any other strategy that
mixes between voting for A and B. However, abstaining with probability s and voting for A
and B with probability 1−s

2 each induces the same distribution over outcomes by abstaining.
Hence, she’s indifferent between playing this strategy and any other strategy. �

Proof of Proposition 3:

Proof. Given σ∗, E[U |a, σ∗] = E[U |b, σ∗], Pr(PivA|a, σ∗) = Pr(PivB|b, σ∗) and Pr(PivB|a, σ∗) =
Pr(PivA|b, σ∗) because τ(A|a, σ∗) = τ(B|b, σ∗) and τ(B|a, σ∗) = τ(A|b, σ∗). Lemma 4 gives
that 1m and 2m best respond by abstaining with probability 1, since π > r implies that
pim < 1

2 < qim for i ∈ {1, 2}. Further, Lemma 5 gives that 1s best responds to σ∗ by voting
for A, and Lemma 6 gives that 2s best responds by voting for B. Consequently, σ∗ is an
equilibrium. �


