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Motivation
“All organisms assign objects and events in the envi-

ronment to separate classes or categories... Any species
lacking this ability would quickly become extinct.”

–Ashby & Maddox (2005)

Mental categories used to simplify decision making
(Rosch 1978, Ashby and Lee 1993, Loken et al 2008)

Features of categorization:
1 Categories are context dependent

(Barsalou 1985, Stewart et al 2002, Baird et al 1980)
2 How an object categorized affects valuation

(Chernev 2011, Mogilner et al 2008, Wanke et al 1998)
3 Categories often take the form of “decision bounds”

(Ashby 1992 with many follow ups; Anderson 1991, Love et al
2004)





Motivation

Categories in (Behavioral) Economics:
1 Safe vs. Risky
2 Past vs. Present vs. Future
3 Fair vs. Unfair
4 Equal vs. Unequal
5 Similar to x vs. similar to y vs. ...
6 Gain vs. Loss
7 Unambiguously better than status quo vs. not
8 Attribute 1 important vs. Attribute 2 important vs. ...



Contribution

Provide & axiomatize model of reference-based categorization
I Axioms: DM acts “rationally” within a category

Identify categorization endogenously
Nests a number of prominent economic models including:

1 Gain-Loss utility: Tversky and Kahneman (1991)
2 Status quo effects: Masatlioglu and Ok (2005)
3 Salience: Bordalo, Gennaioli, and Shleifer (2012,13, etc.; BGS)
4 Fairness preferences: Fehr and Schmidt (1999)
5 Distributional preferences: Charness and Rabin (2002)

Uncover relationships between these and other models
Apply model to provide a behavioral foundation for Salient
Thinking Model (BGS)



Model

Domain: X = Rn++ (X = R2
++ for this talk)

I x = (x1, x2)
Reference point: r ∈ X
I does not effect material outcome but may alter choice
I potentially endogenous, i.e. varies with choice problem S

Data: Either
1 complete and transitive family of relations {%r}r∈X , or
2 choice correspondence c on finite subsets S of X



Model

DM categorizes each alternative according to its
characteristics and the reference’s
I Categories “partition” state space
I Partition described by category function that maps r to

categories
Categorization affects preference
I Preference within category unaffected by reference
I Preference across categories may be



Categorical Thinking Model
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Model

Definition
The family {%r}r∈X conforms to the Categorical Thinking
Model (CTM) under category function K = (K1,K2, . . . ,Km) if
for each category k there is an additively separable category utility
function Uk so that when x ∈ Kk(r) and y ∈ K l(r) for some r

x %r y ⇐⇒ Uk(x|r) ≥ U l(y|r)

and Uk(·|r) is an increasing transformation of Uk(·) for each
r ∈ X and category k.

increasing CTM if Uki is increasing in xi for every category k
and dimension i
Regular CTM if Uk(·|r) is an affine transformation of Uk(·)
Strong CTM if Uk(·|r) = Uk(·)
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An Illustration

Bordalo, Gennaioli, and Shleifer [2013]
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Salience Function

Salience function σ(xi, ri)
I measures the salience of xi compared to ri

ri: the average level



Salience

Attribute 1 is salient for good x if
σ(x1, x̄1) > σ(x2, x̄2)

attribute 1

attribute 2

Attribute 2 is salient for good x if
σ(x1, x̄1) < σ(x2, x̄2)

attribute 1

attribute 2 



BGS
A salience function proposed by BGS,

σ(a, b) = |a− b|
a+ b
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Utility Function

If attribute i “stands out”, it receives higher “decision weight”

VBGS(x|r) :=
{
wu1(x1) + (1− w)u2(x2) if attribute 1 is salient
(1− w)u1(x1) + wu(x2) if attribute 2 is salient

where w ∈ (1/2, 1)



BGS
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Tversky and Kahneman [1991]

Extends Prospect Theory to the case of riskless consumption
bundles

The workhorse of modeling behavior in risk-less environment

Loss Aversion

6193 Google citations (as of July 2019)

Exogenous reference point



Tversky and Kahneman [1991]

VTK(x|r) =


(u(x1)− u(r1)) + (v(x2)− v(r2)) if gain-gain

λ1(u(x1)− u(r1)) + (v(x2)− v(r2)) if loss-gain
(u(x1)− u(r1)) + λ2(v(x2)− v(r2)) if gain-loss

λ1(u(x1)− u(r1)) + λ2(v(x2)− v(r2)) if loss-loss

Losses hurt: λ1 and λ2 are greater than 1
Constant Loss Aversion
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Masatlioglu and Ok [2005,2014]

Status Quo Bias

Psychologically constrained utility maximization

The status quo imposes a psychological constrain on decision
makers (Q(r))



Masatlioglu and Ok [2005,2014]

VMO(x|r) :=
{

u(x1) + v(x2) if x ∈ Q(r)
u(x1) + v(x2)− c(r) otherwise

r

MO
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Comparing Models
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Categories

Every category is “well behaved”
Almost everything is in a category
Nothing is in two categories
As the reference point changes, categories change
continuously

Social



Categories

Definition
A vector-valued function K = (K1,K2, . . . ,Km) is a category
function if each Kk : X → 2X satisfies the following properties:

1 Kk(r) is a non-empty, regular open set, and cl(Kk(r)) is
connected,

2
⋃m
k=1K

k(r) is dense,
3 Kk(r)

⋂
K l(r) = ∅ for all k 6= l, and

4 Kk(·) is continuous.



Categories

Categories arise from the psychology of the phenomenon to be
modeled
Psychology often makes unambiguous predictions about
categorization (Gain-Loss)
Other times only partial predictions are possible (Salience)
Solutions:
I non-choice data
I Reveal categorization from choice



Revealing Categories

identify categories by looking at how DM makes trade-offs

Definition
LISk(x) = LISl(x) if there exists a neighborhood O of x so that

Uk(y) = Uk(x) ⇐⇒ U l(y) = U l(x) for all y ∈ O;

otherwise, LISk(x) 6= LISl(x).

MRSk(x) = MRSl(x) vs. MRSk(x) 6= MRSl(x)
LISk(x) 6= LISl(x) implies categorization distorts trade-offs



Revealing Categories

Theorem
Let {%r}r∈X be a CTM. For any category k such that
LISk(x) 6= LISl(x) for every x ∈ X and category l 6= k, category
k is uniquely identified.

categories are uniquely identified whenever categorization
distorts tradeoffs
must use discontinuities otherwise (or impossible)



Behavior

Axioms require DM to act “rationally”, but only within a category
Within a category, the DM’s choices:

1 have no cycles (Reference Irrelevance)
2 respect Monotonicity (Categorical Monotonicity)
3 are “additive” (Categorical Cancellation)
4 are continuous (Categorical Continuity)

Given earlier result, we take categories as given



Categorical Consistency

For each category i, define %i so that x %i y if and only if
there exists r such that x, y ∈ Ri(r) and x %r y.
%i captures within category preference

Axiom (Reference Irrelevance)
The relation %i is acyclic.

That is, if x1 %r1 x2 and x1, x2 ∈ Ki(r1),
x2 %r2 x3 and x2, x3 ∈ Ki(r2), ..., and
xm %rm xm+1 and xm, xm+1 ∈ Ki(rm),
then xm+1 6�rm+1 x1 whenever x1, xm+1 ∈ Ki(rm+1).

Let %∗i be the transitive closure if %i



Double Cancellation
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Categorical Double
Cancellation

Axiom
Restricted to Kk(r), %r satisfies Double Cancellation.



Categorical Monotonicity

Axiom
For any x, y, r ∈ X: if x ≥ y and x 6= y, then y 6%∗k x for any
category k. In particular, if x, y ∈ Kk(r), then x �r y.



Categorical Continuity
Axiom
For any r ∈ X and any x ∈

⋃
iK

i(r), the sets

UCj(x) = {y ∈ Kj(r) : y �r x}

and
LCj(x) = {y ∈ Kj(r) : x �r y}

are open.
Moreover, the set

{x ∈
⋃
i

Ki(r) :UCj(x)
⋃
LCj(x) = Kj(r)

and UCj(x) 6= Kj(r)
and LCj(x) 6= Kj(r)}

has an empty interior.



Categories

Assumption
For any category i, the following sets are connected:

Ei =
⋃
r∈X K

i(r),
{x ∈ Ei : xj = s} for all dimensions j and scalars s, and
{y ∈ Ei : x ∼∗i y} for all x ∈ Ei

The BGS, TK, and MO categories all satisfy the Structure
Assumption. Indeed, Ei = Rn++ for every category in these models.



Representation Theorem

Theorem
Under the Structure Assumption, the family {�r}r∈X satisfies
Reference Irrelevance as well as Categorical Monotonicity,
Categorical Double Cancellation, and Categorical Continuity for K
if and only if it conforms to increasing CTM under K.



Representation Theorem

Proof outline:
1 Construct a utility function within each category

I Each %∗k is continuous and complete on Ek

I Categorical cancellation implies %∗k is “locally” additive
I Chateauneuf & Wakker (1992) shows each has an additive

representation
• structure assumption allows application

2 Combine category utilities to get an overall representation
I This modified to get affine or strong CTM

Skip to Summary



List A

Many models of salience/attention
I Gabaix and Laibson [2006]
I Koszegi and Szeidl [2013]
I Bhatia and Golman [2013]
I Bordalo, Gennaioli, and Shleifer [2013] (a.k.a. BGS)
I Cunningham [2013]
I Gabaix [2014]
I Schwartzstein [2014]
I Bushong, Rabin and Schwartzstein et al. [2015]



List B

Classical Theory
Tversky and Kahneman [1991] (TK)
Koszegi and Rabin [2006] (KR) (without expectation)
Masatlioglu and Ok [2005] (MO)

List B: CTM
List A: Not CTM



Comparing Models

Under additional assumptions (in paper), V (·|r) restricted to
Rk(r) is a positive affine transformation of Uk and the Uk’s
are reweightings of each other
TK, MO, and BGS are special cases of such a model
What distinguishes them?



Comparing Models
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Comparing Models

Strong Reference Irrelevance
I Reference point does not affect ranking, only the categorys

I If x ∈ Ki(r)
⋂
Ki(r′) and y ∈ Kj(r)

⋂
Kj(r′)

x %r y iff x %r′ y

Monotonicity
I More is better

I If y ≥ x, then y %r x, strictly whenever y 6= x.

Double Cancellation (not Categorical)



Comparing Models

? ? ? ?
Monotonicity 3 7 3 3

Strong Reference Irrelevance 3 3 7 3

Double Cancellation 3 7 3 7



Comparing Models

Classical BGS TK MO
Monotonicity 3 7 3 3

Strong Reference Irrelevance 3 3 7 3

Double Cancellation 3 7 3 7



Preference-based CTM: Wrap up

In paper:
1 Full characterization of TK and BGS in this setting
2 CTM, Monotonicity, and SRI
3 New model based on simplification and similarity
4 Discussion of extensions like Fehr & Schidt (1999)

Conclusion



BGS

where A(S) is average levels in S
Now: only S and c(S) observed



BGS

Roadmap:
1 Find BGS categories for given r
2 Since know mapping from S to A(S), know categories!
3 Use this to provide axiomatization

I See paper or Appendix

I Versions of earlier axioms adapted to c



Categories in BGS

r = (r1, r2) the reference good
Kk(r) be the set of products that are k-salient for the
reference point r

Given a salience function σ, what are the properties of
categories, K1(r) and K2(r)?



Salience Function

σ is symmetric, continuous, σ(x, x) = σ(y, y) for all x, y, and
increases in contrast: For ε, ε′ ≥ 0 with ε+ ε′ > 0

If x > x̄, then σ(x+ ε, x̄− ε′) > σ(x, x̄)
If x < x̄, then σ(x− ε, x̄+ ε′) > σ(x, x̄)

Two additional properties
I Diminishing Sensitivity: Salience decreases as the value of

an attribute uniformly increases for all goods: For ε > 0,

σ(x+ ε, x̄+ ε) ≤ σ(x, x̄)

I Homogeneity: For all α > 0,

σ(αx, αx̄) = σ(x, x̄)



Categories in BGS

S0 no bundle is both 1-salient and 2-salient, and almost every
bundle is either one or the other.

S1 making a bundle’s less salient attribute closer to the reference
point does not change the salience of the bundle.

S6 if every attribute of a good differs from the reference point by
the same percentage, then none of the attributes stands out.



Categories in BGS

S0 (Basic) For any r ∈ X: K1(r)
⋂
K2(r) = ∅, K1(r)

⋃
K2(r)

is dense in X, K1,K2 are continuous at r, and K1(r),K2(r)
are regular open sets.

S1 (Moderation) For any λ ∈ [0, 1] and r ∈ X: if x ∈ Kk(r),
yk = xk, and y−k = λx−k + (1− λ)r−k, then y ∈ Kk(r).

S6 (Equal Salience) For any x, r ∈ X: if x1
r1

= x2
r2

or x1
r1

= r2
x2
,

then x /∈ Kk(r) for k = 1, 2.



Categories in BGS

Theorem
The category function satisfies S0, S1, and S6 if and only if it is
generated by a homogeneous salience function σ. Any
homogeneous salience function generates the same categories.

no need for more functional form assumptions
all homogeneous salience functions lead to the same categories
our figure independent of the salience function



More general salience functions

What if categories are not homogeneous? Can we identify salience
function?

S2 Salience depends on the level but not identity of
attribute

S3 “More salient than” is transitive
S4 Differences from the reference stand out
S5 An alternative’s attribute stands out less when both

it and the reference’s are increased



More general salience functions

S2 (Symmetry) If (a, b) ∈ Kk(c, d), then
(c, d) ∈ Kk(a, b) and (b, a) ∈ K−k(d, c).

S3 (Transitivity) If (a1, a2) /∈ K2(r1, r2) and
(a2, a3) /∈ K2(r2, r3) then (a1, a3) /∈ K2(r1, r3).

S4 (Difference) For any x, y, z with y 6= z,
(x, y) ∈ K2(x, z) and (y, x) ∈ K1(z, x).

S5 (Diminishing Sensitivity) For any x, y,K1,K2, ε > 0,
if (x, y) /∈ K1(r1, r2), then (x+ ε, y) /∈ K1(r1 + ε, r2)



More general salience functions
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Figure: Properties S0-S6 Illustrated



More general salience functions

Theorem
The category function satisfies:

1 S0-S4 if and only if there exists a salience function σ that
generates them;

2 S0-S5 if and only if the σ that generates it has diminishing
sensitivity; and

3 S0, S1, and S6 if and only if it satisfies S0-S6 if and only if it
is generated by a homogeneous salience function σ.



More general salience functions

Proposition
Given that {%r}r∈X has a BGS representation, the categories are
uniquely identified, namely Ki(r) equals

int
{
x ∈ X : ∃ε > 0 s.t. ∀y ∈ Bε(x), y ∼r x ⇐⇒ y ∼ri

x
x
}

where r1
x = (x1/2, x2) and r2

x = (x1, x2/2).

By S4, x ∈ K1(r1
x)

Compare slope of “IC” through x with r to that with rix



More general salience functions

Proposition
Given that c conforms to BGS with reference equal to average, the
categories are uniquely identified.

Conclusion



More general salience functions

Attribute 1
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Given r and y, pick y′ close to y with
U2(y) = U2(y′) 6= U1(y′)
Pick S concentrated around r so A({y, y′}

⋃
S) ≈ A(S) ≈ r



More general salience functions
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Either y and y′ chosen from {y, y′}
⋃
S so y ∈ R2(r)

Or not, in which case y ∈ R1(r)



More general salience functions

Attribute 1
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If y and y′ chosen, then σ(y2, r2) > σ(y1, r1)
Otherwise, σ(y2, r2) ≤ σ(y1, r1)
Use symmetry to fill in σ



Characterization of BGS

What if reference point differs from the average?

Definition
Function A is a generalized average if for any
S = {x1, . . . , xm} ∈ X :
(i) the function x 7→ A([S \ {x1}]

⋃
{x}) is continuous at x1,

(ii) for any ε > 0 and any finite S′ ∈
⋃
iRi(A(S)), there exists

S′ ∈ X so that S∗ ⊃ S
⋃
S′, d (A (S∗)−A(S)) < ε, and for any

x′ ∈ S∗ \ S′, minx∈S d(x′, x) < ε2, and
(iii) A(S) ∈ co(S) \ ext(S) for all S.

Same result



Literature Review



Wrapping up

Categorization important ingredient in many behavioral
models
Our framework and model help understand
I differences between modeling approaches to the same

phenomenon
I similarities between models of distinct phenomena
I testable implications of important models

categories can be derived endogenously from choice behavior



THANK YOU

“In those remote pages it has been written that the animals
can be divided into (a) those that belong to the Emperor,
(b) embalmed ones, (c) those that are trained, (d) suckling
pigs, (e) mermaids, (f) fabulous ones, (g) stray dogs, (h)
those that are included in the present classification, (i)
those that tremble as if they are mad, (j) innumerable
ones, (k) those drawn with a very fine camelhair brush, (l)
others, (m) those that have just broken a flower vase, (n)
those that look like flies from a long way off.”
–Borges (1966), allegedly quoting the Celestial Emporium
of Benevolent Knowledge



Continuous Salience
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BGS and Monotonicity

Attr. 1
salient

Attr. 2 salient
r

Attr. 2 salient

Attr. 1 salient
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r

Attribute 1

Attribute 2

Attribute 1

What causes BGS to violate monotonicity?
Is there a model “close” to BGS that satisfies it?



CTM and Monotonicity

A version of CTM that
I satisfies SRI,
I satisfies Monotonicity
I permits “salience” to affect preference

Salience reweighs utilities through categories
No category uniformly better or worse
An CTM has salience utilities if different slopes in different
categorys



CTM and Monotonicity

Proposition
Suppose there exists some x such that (x, x) ∈ X.
If {%r}r∈X is a CTM under R with at least two regions, has
salience utilities and satisfies RI, then %r violates Monotonicity
for some r.

No way to specify categories and weights that prevents
violations of Monotonicity
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Figure: Left: Fehr Schmidt (1999) and Right: Charness and Rabin
(2002)



Inequality Aversion

Categories KRIA = (KE ,KG) where

KG(r) = {x ∈ X : x1 − r1 > x2 − r2},

KE(r) = {x ∈ X : x1 − r1 < x2 − r2},

and

VRIA(x|r) =
{
x1 − α[(x1 − r1)− (x2 − r2)] if x ∈ KE(r)
x1 − β[(x2 − r2)− (x1 − r1)] if x ∈ KG(r)



Distributional preferences

KCR = (K1,K2) where

Kj(r) =
{
x ∈ X : j = arg min

i
(xi − ri)

}
and

VCR(x|r) =
{

(1− λ)(x1 − r1) + λ[δ(x1 − r1) + (1− δ)
∑
k(xk − rk)] if x ∈ K1(r)

(1− λ)(x1 − r1) + λ[δ(x2 − r2) + (1− δ)
∑
k(xk − rk)] if x ∈ K2(r)

Back



Axioms for BGS

First axiom is a version of WARP
Consider two budget sets S1 and S2

x1 ∈ c(S1) and x2 ∈ S1

x2 ∈ c(S2) and x1 ∈ S2

Then WARP implies x1 ∈ c(S2)



Axioms for BGS

Consider two budget sets S1 and S2

x1 ∈ c(S1) and x2 ∈ S1

x2 ∈ c(S2) and x1 ∈ S2

The salience of products does not change when the menu
changes from S1 to S2

I E.g., x1 is 1-salient in both sets and x2 is 2-salient in both sets
Then x1 ∈ c(S2).



Axioms for BGS

Consider two budget sets S1 and S2

x1 ∈ c(S1) and x2 ∈ S1

x2 ∈ c(S2) and x1 ∈ S2

The salience of products does not change when the menu
changes from S1 to S2

I xi ∈ Rk(A(S1)) ∩Rk(A(S2)) for some k
Then x1 ∈ c(S2).



Axioms for BGS

Axiom (Salience-SARP)
For any finite sequences of pairs (xi, Si)ni=1 such that for every
i = 1, . . . , n− 1,
xi ∈ c(Si), xi+1 ∈ Si, and xi+1 ∈ Rk(A(Si)) ∩Rk(A(Si+1)) for
some k ∈ {1, 2}:
if xn ∈ c(Sn), x1 ∈ Sn, and x1 ∈ Rk(A(S1))

⋂
Rk(A(Sn)) for

some k, then x1 ∈ c(Sn).



Axioms for BGS

Simply restrict usual axioms to within categories
I Categorical Monotonicity
I Categorical Continuity
I Categorical Linearity



Axioms for BGS

. The indifference curves in category 1 should be steeper than in
category 2

Axiom (Salient Dimension Overvalued (SDO))
For x, y ∈ S

⋂
S′ with xk > yk and y−k > x−k, if

x, y ∈ Rk(A(S)), x, y ∈ R−k(A(S′)), and y ∈ c(S), then
x /∈ c(S′).



Axioms for BGS

. both salience and preference treat attributes symmetrically,
permuting the attributes of all objects in the same way does not
change rankings.

Axiom (Reflection)
For any S ∈ X , if (a, b) ∈ c(S) and T is the reflection of S, then
(b, a) ∈ c(T ).



Characterization of BGS

Theorem
A choice correspondence c(·) satisfies Axioms 1-6 if and only if it
has a salient thinking representation.

In paper: generalization to additive but not linear utility function
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