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1. Introduction

Psychologists have long known that the context in which a decision takes place
plays a significant role in decision making.1 The context selects features of the alterna-
tives to highlight and makes them more salient in the agent’s subsequent evaluation.
Salience affects choice because “when one’s attention is differentially directed to one
portion on the environment rather than to others, the information contained in that
portion will receive disproportionate weighing in subsequent judgments,” as described
by Taylor and Thompson [1982]. This paper provides choice-theoretic foundations for
studying salience’s influence on economic decisions, and analyzes novel connections
between some prominent models thereof.

In economics, the most prominent model of salience is the salient thinking model of
Bordalo et al. [2013b] (henceforth, BGS). The model features an endogenous reference
point, and the decision maker (DM) puts more weight on the attribute that stands out
most relative to this reference. The BGS model is intuitive, tractable, and accounts
for a number of empirical anomalies for the neoclassical model of choice. Despite its
popularity, it can be difficult to understand all of the implications of BGS’s model for
behavior: its new components are unobservable and its functional form rather involved.

We provide the first complete characterization of the observable choice behavior
equivalent to the salient thinking model, clarifying and identifying the nature of the
assumptions used in the model. Our primitive is a choice correspondence describing
the DM’s choices. As in BGS, each alternative has a pair of observed attributes, such
as price and quality or height and weight.

The first crucial step towards understanding the model is getting a handle on its
novel salience function that determines which attribute stands out for a given reference
point. While one can work out the implications of a particular salience function, this
exercise is not fruitful since the particular function that applies to a given agent is

1See e.g. Tversky and Kahneman [1981], Slovic et al. [1982], Fischer et al. [1986], Rowe and Puto
[1987], Frisch [1993], Levin et al. [1998].
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unobservable. Moreover, it is not clear how the model changes when the underlying
salience function changes.

We study the salience function based on a simple observation: while it influences
which attribute is salient, the weight given to each attribute is independent of its
magnitude. Therefore, its role is simply to divide the domain into distinct regions,
each associated with a particular attribute being most salient. We study the salience
function by focusing on these regions. We characterize the properties of these regions
equivalent to their generation by a salience function. Surprisingly, any specification of
the salience function leads to the same regions, and thus the same choice behavior.

The main remaining challenge is that the reference point is endogenously deter-
mined by the set of available options. Since the salience of each alternative depends on
the reference point in addition to the salience function, varying the budget set affects
the salience of, and so the DM’s willingness to choose, a given alternative. Armed with
our observation about the salience function, one can nevertheless infer the salience of
every alternative in a menu, as the model hypothesizes that the reference point is the
average of the choice set. For a given context, we can first infer the reference point
and then apply our analysis of the salience function to determine the collection of
alternatives that have each attribute as their most salient.

From there, six simple axioms capture the behavior content of salient thinking.
The key property is Salience-SARP, which relaxes the classical Strong Axiom of Re-
vealed Preference so that it applies only when the salient attribute does not change
for the chosen alternatives. It requires that choice is rational when the same alterna-
tive with a different salient attribute is treated as a distinct (and possibly unavailable)
option.

Our characterization allows us to test whether a DM conforms to the salient think-
ing model and to identify the components of the model from behavior. The charac-
terization breaks down the BGS model into simple, easily understood behavioral regu-
larities. Splitting them behaviors apart suggests several directions for generalizations.
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For instance, we use our results to provide a natural extension of BGS to allow for
non-linear aggregation of attributes.

Our second goal is to understand the key intuition behind the BGS approach
to salience and how it differs from other approaches taken in the literature, such as
Gabaix and Laibson [2006], Kőszegi and Szeidl [2013], Bhatia and Golman [2013],
Gabaix [2014], Bushong et al. [2015]. To do so, we introduce the regional preference
model (RPM) of salience that retains the key ingredients of the BGS approach but
makes fewer functional form assumptions.2 To make our results comparable with pre-
vious work, we assume that we observe a family of reference-dependent preference
relations that describe the DM’s choices for each reference point.3 This model reveals
a sharp distinction between BGS and that of other models sharing similar psycho-
logical intuitions. Moreover, it provides an unexpected connection between BGS and
other behavioral models that rely on completely different psychological intuitions, as
it nests several other prominent models including Tversky and Kahneman [1991] and
Masatlioglu and Ok [2005].

In the BGS model, each reference point maps the alternatives into two regions
according to their salience, and alternatives with the same salience are evaluated con-
sistently. RPM allows for an arbitrary number of regions but maintains the hypothesis
that goods are evaluated consistently within a region. Each region has its own utility
function, and as in BGS, the context in which the decision takes place determines the
reference point, which in turn then divides the alternatives into the regions. Differences
in salience affect the DM’s trade-offs across attributes and alter her choices. Again par-
alleling BGS, the DM evaluates each object by a weighted sum of their attributes where
the weights depend on the region in which the object lies.

Despite its generality, RPM makes testable predictions and excludes certain types
of modeling choices. Of the models cited above that attempt to capture salience, only

2We provide an axiomatization of RPM in Appendix B.
3A subset of these choices can be inferred from a choice correspondence with the BGS hypothesis that
the reference point is the average using standard revealed preference argument.
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BGS is an RPM. In other words, even the most general version of BGS excludes these
models, so BGS offers a completely different method of modeling salience. Perhaps
more surprisingly, RPM reveals a connection between BGS and several other seem-
ingly unrelated models that have received a great deal of attention in economics. In
particular, it includes the constant loss aversion model of Tversky and Kahneman
[1991] (TK) and the linear status quo bias model of Masatlioglu and Ok [2005] (MO).4

The loss aversion model is one of the most influential models of behavioral economics.
MO is one of the first papers to the study status quo bias phenomenon by utilizing a
choice theoretic approach. As such, RPM can account for many phenomena that the
traditional rational model cannot, including asymmetric price elasticities, insensitivity
to bad news, endowment effects, and buying-selling price gaps, decoy and compromise
effects, and context dependent willingness to pay (Camerer [2004], Bordalo et al. [2012,
2013a,b], Crawford and Meng [2011], Ericson and Fuster [2011]).

Our results highlight trade-offs between the different modeling approaches. For
instance, BGS maintains a stronger consistency condition across reference points than
does TK, but TK, unlike BGS, satisfies Monotonicity across regions. The strong con-
sistency property is normatively appealing – as long as neither alternative’s salience
changes, their relative ranking should not change – and ideally we would like a model
that satisfies both. However, the trade-off between the two is a general property of
RPM. Any RPM that exhibits salient thinking and satisfies the strong consistency
condition violates Monotonicity. This finding does not favor one model over the other,
but makes their differences clear. If the strong consistency property is desired in an
application, then BGS could be a better fit than TK. If Monotonicity is a necessary
property, then TK would be ahead of BGS.

Our analysis is closely related to the literature which studies how a reference point
affects choices. The earliest strand of literature assumes that the reference point is ex-
ogenous (e.g. Tversky and Kahneman [1991], Munro and Sugden [2003], Sugden [2003],

4In this paper, for comparison purposes, we consider a straight-forward extension of their model in
which the reference point might be unavailable.
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Masatlioglu and Ok [2005], Sagi [2006], Salant and Rubinstein [2008], Apesteguia and
Ballester [2009], Masatlioglu and Nakajima [2013], Masatlioglu and Ok [2014], Dean,
Kıbrıs, and Masatlioglu [2017]). The second wave of this literature proposes models
where the reference point is endogenously determined (e.g. Bodner and Prelec [1994],
Kivetz, Netzer, and Srinivasan [2004], Orhun [2009], Bordalo, Gennaioli, and Shleifer
[2012], Tserenjigmid [2015]). In these models, the reference point is a function of the
contents of the choice set, and is identical for all feasible alternatives. Finally, Köszegi
and Rabin [2006], Ok, Ortoleva, and Riella [2015], Freeman [2017] and Kıbrıs et al.
[2018] study models where the endogenous reference point is determined by what the
agent chooses but is otherwise independent of the choice set.5 Among these papers
studying endogenous reference points, similar to ours, Ok, Ortoleva, and Riella [2015],
Freeman [2017], Kıbrıs, Masatlioglu, and Suleymanov [2018] and Tserenjigmid [2015]
provide behavioral characterizations for their models.

Interpreting salience as arising from differential attention to attributes, RPM has
a close relationship with the literature studying how limited attention affects decision
making. Masatlioglu et al. [2012] and Manzini and Mariotti [2014] study a DM who has
limited attention to the alternatives available. The DM maximizes a fixed preference
relation over the consideration set, a subset of the alternatives actually available. In
contrast, in RPM the DM the considers all available alternatives but maximizes a
preference relation distorted by her attention. Caplin and Dean [2015], Oliveira et al.
[2017] and Ellis [2018] study a DMwho has limited attention to information. In contrast
to RPM, attention is chosen rationally to maximize ex ante utility, rather determined
by the framing of the decision, and choice varies across states of the world. The most
related interpretation considers attributes as payoffs in a fixed state. In addition to
choices varying across states, each alternative has the same weights on each attribute,
similar to Kőszegi and Szeidl [2013].

5Maltz [2017] is the only model of which we are aware that combines an exogenous reference point
with endogenous reference-point formation.
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2. Overview of the BGS Model

BGS propose an intuitive and descriptive behavioral model based on salience; we
refer to their model as the salient thinking model or the BGS model. We begin by
providing a short summary. The DM chooses from a finite set of alternatives, and each
alternative has distinct and easily observable attributes. We follow BGS in focusing
on the two-attributes case. We let X denote the set of all possible alternatives, and
assume that X = R2

++.6

In the BGS model, the salience of an attribute depends on the value of the prod-
uct’s attribute and the reference level of that attribute.7 The average level of each
attribute serves as the reference point, which subsequently determines the salient at-
tribute for the product. More formally, let S ⊂ X be a finite budget set and A(S)k be
the average level of attribute k in S. That is, the alternative

A(S) = (A(S)1, A(S)2) =


∑
x∈S

x1

|S|
,

∑
x∈S

x2

|S|


acts as the reference point for S.

The magnitude of salience is determined by a salience function, σ := R+ ×R+ →
R+. Given a reference (r1, r2), attribute 1 is salient for good x if σ(x1, r1) > σ(x2, r2),
and attribute 2 is salient for good x if σ(x1, r1) < σ(x2, r2); we refer to such goods as
1-salient and 2-salient, respectively. That is, the salient attribute is the one that differs
the most from the reference according to the salience function. Different attributes are
salient for different goods. Observe that the salience of an object might change as the
choice set changes, since the choice set determines the reference which determines the
salience of each attribute.

6We can generalize representation results beyond two dimensions but the multi-dimension analog of
BGS is unclear.
7In the original paper, BGS illustrate their model in an environment where one attribute is desirable
(quality) and the other is undesirable (price). We provide an graphical illustration for such cases in
the Appendix.
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The salience function σ must satisfy the following properties. First, it increases in
contrast, i.e. for ε > 0 and a > b, σ(a+ ε, b) > σ(a, b) and σ(a, b− ε) > σ(a, b). Second,
it is Homogeneous of Degree Zero, i.e. for all α > 0, σ(αa, αb) = σ(a, b). Third, it is
continuous. Finally, it is symmetric: σ(a, b) = σ(b, a).

For each product, the DM puts higher importance on the salient attribute. For
example, if attribute 2 is salient for product x, then attribute 2 attracts more atten-
tion than attribute 1 and receives greater decision weight for the valuation of x. In
particular, they are represented by the function

(1) VBGS(x|r) =

 wx1 + (1− w)x2 if σ(x1, r1) > σ(x2, r2)
(1− w)x1 + wx2 if σ(x2, r2) > σ(x1, r1)

where w ∈ (0.5, 1) increases in the severity of salient thinking.8

Figure 1. Salient Thinking Model

To illustrate this model, consider the salience function proposed by BGS:

σ(xk, rk) = |xk − rk|
xk + rk

.

Based on it, the left panel in Figure 1 shows the salience of each product. The entire
product space is divided into four distinct areas by two curves which intersect at the
reference point. The areas lying the north and south of the reference point cover the
2-salient products. Similarly, 1-salient products lie east and west of the reference point.
8BGS parametrize by δ ∈ (0, 1], so their utility function is 2VBGS(x|r) for w = 1

1+δ .
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The right panel of Figure 1 incorporates indifference curves as well, holding fixed the
reference point. There are two potential sets of indifference curves, illustrated by dotted
lines. Depending on the region, one of the two is utilized to determine agent’s choice.
When attribute 1 is salient, the steeper one becomes the indifference curve since it
puts higher weight on the first attribute. Conversely, the flatter one is the indifference
curves when attribute 2 is salient. We draw three different indifference curves, where
the darker color corresponds to higher utility.

Figure 2. The choice procedure of the BGS model

We summarize the choice procedure of the BGS model. The choice context,
through the reference good, determines the salience of each product. In the main
analysis, the choice context and the reference good coincide with the choice set and
the average levels in the choice set, respectively. Given a choice problem S, the average
attribute levels A(S) becomes the reference point. Next, the reference point divides the
product space into two distinct regions according to which attribute is more salient; in
menu S, if σ(x1, A(S)1) > σ(x2, A(S)2), then the product is 1-salient. Finally, the DM
evaluates each product using the utility function corresponding to the region to which
it belongs. For example, VBGS(x|A(S)) = wx1 + (1− w)x2 since x is 1-salient.

3. A Characterization of the BGS Regions

One of the key innovations of the BGS model is the salience function. In Figure
1, we illustrated its indifference curves for a fixed reference point and a particular
specification of the salience function. However, this exercise does not reveal how the
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picture changes when one alters the underlying salience function. We begin our analysis
by exploring this aspect of the model.

Observe that while the salience function determines which attribute is salient, it
does not affect how much weight that attribute gets. Therefore, the entire effect of the
salience function is captured by the set of alternatives that have each attribute salient.
Thus we study the salience function by studying these sets for each reference point.

For this section, we directly assume that the reference good is r = (r1, r2). Since
there are two attributes, there are two types of products: 1-salient and 2-salient. We
let Rk(r) be the set of products that are k-salient for the reference point r, and treat
each as a function mapping reference points to subsets of X. We sometimes refer to
Rk(r) as the k-salient region.

Theorem 1 shows that the following properties of these functions characterize the
regions generated by a salience function. Surprisingly, it also shows that any two
salience functions generate the same regions and thus the same choices from menu.
Throughout, we adopt the usual notation that x−1 = x2 and x−2 = x1.

S0: (Basic) For any r ∈ X: R1(r)⋂R2(r) = ∅ and R1(r)⋃R2(r) is dense in X.
S1: (Moderation) For any λ ∈ [0, 1]and r ∈ X:

if x ∈ Rk(r), yk = xk, and y−k = λx−k + (1− λ)r−k, then y ∈ Rk(r).
S2: (Equal Salience) For any x, r ∈ X: if x1

r1
= x2

r2
or x1

r1
= r2

x2
, then x /∈ Rk(r) for

k = 1, 2.
S3: (Regular regions) For all r ∈ X and k = 1, 2: Rk(r) is a regular open set.9

The properties have natural interpretations. S0 says no bundle is both 1-salient
and 2-salient, and almost every bundle is either one or the other. S1 indicates that
making a bundle’s less salient attribute closer to the reference point does not change
the salience of the bundle. That is, when x and y differ only in attribute l, and y is
closer to the reference in that attribute, if x is k-salient, then so is y. S2 reads that if

9Recall that a set A is regular open if A = int(cl(A)).
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every attribute of x differs from the reference point by the same percentage, then none
of the attributes stands out. More formally, if the percentage difference between xk

and rk is the same across attributes, then x is not k-salient for any k ∈ {0, 1}. Finally,
S3 states that regions are regular open sets. That is, there is no bundle completely
surrounded by k-salient bundles that is not an k-salient bundle itself.

Theorem 1. The following are equivalent:

(i) The functions R1 and R2 satisfy S0-S3,

(ii) There exists a salience function σ s.t. x ∈ Rk(r) ⇐⇒ σ(xk, rk) > σ(x−k, r−k),

(iii) For any salience function σ, x ∈ Rk(r) ⇐⇒ σ(xk, rk) > σ(x−k, r−k).

This theorem provides a characterization for BGS’s salience function. In other
words, Theorem 1 translates the functional form assumptions on the salience function
in terms properties on the salience regions. The result implies that any specification of
the salience function leads to the same regions. Combining with our earlier observation,
it implies that Figure 1 is independent of the salience function.

4. A Foundation for Salient Thinking

This section provides a behavioral foundation for the salient thinking model. That
is, which properties of a DM’s choices allow her behavior to represented by the func-
tional form of BGS? Theorem 1 is a key building block, since it characterizes the
(unique) set of k-salient alternatives given a reference good r. Specifically, it shows
that we can write the k-salient region as

RBGS
k (r) =

{
x ∈ X : max

{
xk
rk
,
rk
xk

}
> max

{
x−k
r−k

,
r−k
x−k

}}

for k = 1, 2. Throughout this section, we drop the superscript and denote RBGS
k (r)

by simply Rk(r). BGS also hypothesize that the reference for the (finite) set S is the
average of each attribute, A(S). Thus, given a menu of alternatives S to choose from,



12

we can infer that the reference point equals A(S), and from that, the salience of each
alternative, i.e. the regions Rk(A(S)).

Let X be the set of finite and non-empty subsets of X such that S ∈ X only if
S ⊂ R1(A(S))⋃R2(A(S)). We call them menus for short. The requirement ensures
that each alternative in the choice set is either 1-salient or 2-salient given the reference
point A(S). We leave open how the DM chooses when alternatives that have no salient
attribute belong to the choice set. By leaving the choice from this small set of menus
ambiguous, we can more clearly state the properties of choice implied by the model.10

We summarize the DM’s choices by a choice correspondence c : X ⇒ X with
c(S) ⊆ S and c(S) 6= ∅ for each S ∈ X . The choice correspondence c has a salient
thinking representation if there exists w ∈ (1/2, 1) and salience function σ so that

c(S) = arg max
x∈S

VBGS(x|A(S))

for all S ∈ X . We now state several properties of c that are implied when c has
such a representation. Theorem 2, the main result of this section, shows that they
are also sufficient for the representation. To state them simply, for x, y ∈ X and
α ∈ [0, 1], let αx + (1 − α)y denotes the coordinate-by-coordinate mixture of x and
y, i.e. [αx + (1 − α)y]k = αxk + (1 − α)yk for all k ∈ {1, 2}; similarly, for S, T ⊂ X,
αS+ (1−α)T denotes the set of all alternatives αx+ (1−α)y where x ∈ S and y ∈ T .

The first postulate resembles the classical Strong Axiom of Revealed Preference
(SARP), which states that the revealed preference has no cycles. The axiom roughly
requires that the DM does not violate SARP unless the salience of one of the chosen
alternatives changes in different menus in the cycle.

Axiom 1 (Salience-SARP). For any finite sequences of pairs (xi, Si)ni=1 such that
xi ∈ c(Si), xi+1 ∈ Si, and xi+1 ∈ Rk(A(Si)) ∩ Rk(A(Si+1)) for some k ∈ {1, 2} for

10One can, of course, extend the model to account for these choices using the BGS hypothesis that these
alternatives are evaluated according to their sum. Complications arise because

[
RBGS1 (r)

⋃
RBGS2 (r)

]c
is sparse.
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every i = 1, . . . , n− 1:
if xn ∈ c(Sn), x1 ∈ Sn, and x1 ∈ Rk(A(S1))⋂Rk(A(Sn)) for some k, then x1 ∈ c(Sn).

We first illustrate in a simple two menu setting, analogous to a test case for the
Weak Axiom of Revealed Preference (WARP). Consider two menus S1 and S2 and two
chosen products x1 ∈ c(S1) and x2 ∈ c(S2) where both products have the same salient
attribute in both menus. For example, x1 is 1-salient in both menus, and x2 is 2-salient
in both menus. The observation x1 ∈ c(S1) reveals that the valuation of x1 is at least as
high as that of x2 when x1 is 1-salient and x2 is 2-salient. Since the salience of products
does not change when the menu changes from S1 to S2, their relative valuation stays
the same as well. Hence, if x2 is chosen from S2, then x1 must be chosen too. Since
neither products’ salience has changed, the DM should obey WARP for these two
menus. However, the axiom leaves open the possibility of a WARP violation when the
salience of either changes.

The axiom extends this logic to sequences of choices in much the same way that
SARP does to WARP. A finite sequence of choices, where the choice from the next
menu is available in the current one and has the same salience in both, does not lead
to a choice reversal. Since salience does not change along the sequence of choices, the
choices do not exhibit a reversal.

Salience-SARP limits the effect of unchosen alternatives. Modifying them can
alter the DM’s choice, but only insofar as changing them changes the reference point
and thus the salience of alternatives. It states that these unchosen options do not alter
the relative ranking of two alternatives, unless they change the region to which the
alternatives belong. That is, when comparing the same two alternatives in different
menus, the DM’s relative ranking does not change when neither’s salience changes.
This property greatly limits the effect of the reference point. In fact, a sufficiently
small change in the reference never leads to a preference reversal.

The next postulate states that the indifference curves are straight and parallel
lines for a given region (see Figure 1).
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Axiom 2 (Regional Linearity). For α ∈ (0, 1], take S and y such that S ⊂ Rk(A(S))
and αS + (1 − α){y} ⊂ Rk(A(αS + (1 − α){y})) for some k. Then, x ∈ c(S) if and
only if αx+ (1− α)y ∈ c(αS + (1− α){y}).

This axiom states that the choice from a linear combination of a set with a fixed
alternative is the linear combination of the choices from that set with the alternative,
provided that both the sets lie in the same region. Thus provided all alternatives have
the same salient attribute in both menus, choice obeys the usual linearity axiom. The
justification is similar to that axiom, or of independence, its analog in the risk case.
The key implication is that linearity is violated only if salience changes. It implies
separability across dimensions, and also that these dimensional utilities do not have
diminishing sensitivity.

The next axiom says that both attributes are desirable.

Axiom 3 (Regional Monotonicity). For any x, y ∈ S with x 6= y, if x ≥ y and
x, y ∈ Rk(A(S)) for some k, then y /∈ c(S).

Since both attributes are “goods” as opposed to “bads”, Monotonicity means that
if a product x contains more of some or all attributes, but no less of any, than another
product y, then x is preferred to y. The postulate requires that choice respects Mono-
tonicity for alternatives within the same salient region. However, it does not require
that this comparison holds when the goods belong to different regions, and we shall see
later that salience can distort comparisons enough to cause Monotonicity violations.

To interpret regions as reflecting salience, the indifference curves in Region 1 (at-
tribute 1 is salient) should be steeper than in Region 2 (attribute 2 is salient). The
next axiom guarantees that.

Axiom 4 (Salient Dimension Overvalued (SDO)). For x, y ∈ S ⋂S ′ with xk > yk and
y−k > x−k, if x, y ∈ Rk(A(S)), x, y ∈ R−k(A(S ′)), and y ∈ c(S), then x /∈ c(S ′).



15

This axiom requires that regions correspond to the dimension that gets the most
weight. That is, the DM is more willing to choose an alternative whose “best” attribute
is k when it is k-salient. To illustrate, consider alternatives x, y with x1 > y1 and
y2 > x2. Because x is relatively strong in attribute 1, x should benefit more than y

from a focus on it. If x is chosen over y when attribute 2 stands out for both, then this
advantage in the first dimension is so strong that even a focus on the other one does
not offset it. Hence, the DM should surely choose x over y for sure when attribute 1
stands out for it.

Because both salience and preference treat attributes symmetrically, permuting
the attributes of all objects in the same way does not change rankings. We say that
the menu S is the reflection of the menu of T if (a, b) ∈ S if and only if (b, a) ∈ T .

Axiom 5 (Reflection). For any S ∈ X , if (a, b) ∈ c(S) and T is the reflection of S,
then (b, a) ∈ c(T ).

Thus, preference “reflects” about the 45 degree line. This is a strong property.
It can be relaxed to obtain a generalization of the BGS model. The most important
feature that we use it for in the proof is to ensure that there exists a set where the
DM is indifferent between choosing an item from region 1 and one from region 2. To
see why, let x = (a, b) and y = (b, a). Then the reflection of S = {x, y} is S itself, and
Reflection implies that {x, y} = c({x, y}).

Finally, we need a continuity condition.

Axiom 6 (Regional Continuity). Let yn → y, xn → x, and x, y /∈ S. Then
i) if xn ∈ c(S ∪ {xn}) for all n, then x ∈ c(S ∪ {x}), and
ii) if z ∈ c(S ∪ {yn}) for all n, then z ∈ c(S ∪ {y})

Observe that a small enough change in y does not change A(S∪{y}) much, and so
does not change salience. So similarly, WARP and continuity should hold for “small”
changes in y, i.e. for S ′ ∈ {S∪{y′} : y′ ∈ Bε(y)}. Note that A(S∪{xn})→ A(S∪{x})
whenever xn → x and x /∈ S.
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We now state our main result.

Theorem 2. The choice correspondence c(·) satisfies Axioms 1-6 if and only if it has
a salient thinking representation.

This theorem lays out the behavioral postulates that characterize the BGS model
with endogenous reference point formation. Most importantly, it connects the (un-
observed) components of the model to observed choice behavior. The full proof of
Theorem 2 can be found in Appendix A.2. We provide an outline here. Since the refer-
ence point is endogenous, the main challenge is to elicit the agent’s preferences within
each region. We first show that this can be overcome by carefully constructing appro-
priate menus that reveal how the agent trades off attributes when choosing between
alternatives with a given salient attribute. Then we establish that preferences in each
region admits a linear utility representation by utilizing the mixture-space theorem.
In the next step, we relate preference across the regions. Finally, we show that these
properties together give exactly the BGS functional form.

4.1. Extension: Non-linear BGS. In the above, we provide a characterization for
the original salient thinking model in which indifference curves are linear within each
region. By utilizing our behavioral characterization, we now present a version of the
model where indifference curves are not necessarily linear. It is clear that to do so
we must relax the Regional Linearity axiom. We replace it with Regional Double
Cancellation axiom, an adaptation of a standard property that yields a “separable”
utility function.

Axiom 7 (Regional Double Cancellation (RDC)). For all x1, y1, z1, x2, y2, z2 ∈ R++

and k ∈ {1, 2}; if (x1, z2) ∈ c(S1), (z1, y2) ∈ S1, (z1, x2) ∈ c(S2), (y1, z2) ∈ S2,
(x1, x2), (y1, y2) ∈ S3 and Si ⊂ Rk(A(Si)) for i ∈ {1, 2, 3}, then (x1, x2) ∈ c(S3)
whenever (y1, y2) ∈ c(S3).
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RDC adapts the well-known double cancellation axioms to our setting, differing
in its requirement that the menus are all subsets of the same region. This necessary
condition for an additive representation appears in Krantz et al. [1971] and Tversky
and Kahneman [1991], among others. Ours applies only when all compared alterna-
tives belong to a given region. Replacing Regional Linearity with RDC guarantees an
additive representation within the region.

Proposition 1. The choice correspondence c(·) satisfies RDC and Axioms 1, 3, 4,
5 and 6 if and only if there exist two strictly increasing continuous utility indexes
u, v : R++ → R such that

c(S) = arg max
x∈S

 u(x1) + v(x2) if x ∈ R1(A(S))
v(x1) + u(x2) if x ∈ R2(A(S))

where u(a)− u(b) > v(a)− v(b) for any a > b > 0.

The above characterization is very similar to the one provided in Theorem 1 except
that the indifference curves are not linear. The condition on u and v echoes the logic in
the original salient thinking model, as it implies she is willing to give up more units of
attribute 2 in exchange for an additional unit of attribute 1 when the good is 1−salient.
To see why, observe that

u(a+ 1
n
)− u(a)

v(b+ 1
n
)− v(b) ≥

v(a+ 1
n
)− v(a)

u(b+ 1
n
)− u(b) .

Provided that u and v are differentiable, these tend to u′(a)/v′(b) and v′(a)/u′(b) as
n→∞. Thus, the marginal rate of substitution of attribute 2 for attribute 1 is larger
if the good is 1-salient.

4.2. Extension: Incomplete Data. The above results have to two limitations for
their applicability. First, they require a very large data set, namely that the analyst
observes the DM’s choice from almost every possible menu. Second, the analyst must
observe not only the DM’s choice from every possible menu but also the full set of
options she is willing to choose. In many cases, such rich data may not be available.
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However, the ideas behind the approach extend to cases with more limited data. In-
deed, in Appendix C we show that if one is only concerned with testing the model,
then one can do so with a sparser data set. The model is testable using appropriate,
but less elegant, modifications of the above axioms. Specifically, provided that one has
access to a data set consisting of a finite number of menus and one of the alternatives
chosen from each, we give necessary and sufficient conditions for rationalizing the DM’s
choices via the BGS model.

5. Regional Preferences

We now turn to the question of how the choices implied by the BGS model relate
to others in the literature. The regional preference model (RPM) generalizes the BGS
model to make fewer functional form assumptions. However, RPM retains many of the
other key features of BGS: the reference divides the space of alternatives into regions
and indifference curves are linear within each region. RPM nests BGS as well as the
models of Tversky and Kahneman [1991] (TK) and Masatlioglu and Ok [2005] (MO),
revealing their similar underlying structure. We analyze the behavior that specializes
RPM into BGS as well as into TK, and consider examples that distinguish the three
models.

To aid in comparison with the existing literature and to separate the effects of
reference point formation, we follow Tversky and Kahneman [1991] by taking as given
a family of reference-dependent preference relations. We continue to assume that the
space of alternatives is X = R2

++, and so for each reference point r ∈ X, the DM
maximizes a complete and transitive preference relation, denoted by %r, over X. As
usual, �r denotes strict preference and ∼r indifference. The primitive of the model is
thus a family of such preferences indexed by the set of reference points, {%r}r∈X .

The first ingredient of RPM is a mapping from the reference point r to n different
regions. These regions divide the product space according their salience. Each region
corresponds to a different saliency and changes as the reference changes. We require
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that the regions are open, non-empty sets, contain almost every alternative, meet at
the reference point, do not overlap, and vary continuously with the reference point.
Otherwise, they can have a very general structure. Formally, we impose the following
properties.

Definition 1. A vector-valued function R = (R1, R2, . . . , Rn) is a regional function if
each Rk : X → 2X satisfies the following properties:

(1) Rk(r) is a non-empty, open set, and cl(Rk(r)) is connected,
(2) ⋃nk=1Rk(r) is dense,
(3) r ∈ ⋂nk=1 bd(Rk(r)),
(4) Rk(r)

⋂
Rl(r) = ∅ for all k 6= l, and

(5) Rk(·) is continuous.11

The second ingredient is a region-dependent utility function. This allows the
consumer to value each good in a way that depends not only the product’s identity,
as in the standard neoclassical model, but also on the region to which the product
belongs. Suppose the alternative x lies in the region k when the reference is r, that is,
x ∈ Rk(r). Then, the value of x is represented by uk(x|r). To stay close to BGS, we
require that each alternative’s utility is a weighted sum of its attributes, but allow these
weights to vary with the region; formally, uk(·|r) is an affine function. We also require
that the reference point does not affect the utility trade-off within a region. In other
words, changing the reference does not alter the relative ranking of two alternatives as
long as both alternatives lie in the same region. To capture this feature, we assume
that uk(·|r) is a positive and affine transformation of uk(·|r′) for any references r and r′.
We formally define the regional preference model for a regional function R as follows.

Definition 2. The family {%r}r∈X conforms to the regional preference model (RPM)
under a regional function R if there exist n families {uk(·|r)}r∈X of strictly increasing,
affine functions, where uk(·|r) is a positive affine transformation of uk(·|r′) for every

11That is, each Rk is both upper and lower semicontinuous when viewed as a correspondence.
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r, r′ ∈ X, such that for all x ∈ Rk(r) and y ∈ Rl(r),

x %r y if and only if uk(x|r) ≥ ul(y|r).

Figure 3. The choice procedure of the RPM model

In the appendix, we provide behavioral foundations for the RPM model. Our char-
acterization relies on three main properties, of which a formal statement and discussion
is deferred. First, if two alternatives belong to the same region for two distinct refer-
ence points, then the DM ranks them the same regardless of what the reference point
is. That is, the reference may shift preferences between alternatives that belong to
different regions, but within each region the preference is independent of the reference.
Second, Monotonicity holds when comparing alternatives in the same region. This
leaves open the possibility that the usual Monotonicity property fails across regions.
Third, the DM does not violate linearity provided that the salience of alternatives does
not change. This reflects that the DM evaluates objects as a weighted sum of their
attributes.

As noted, one can easily verify that BGS, TK, and MO are all special cases of
RPM. We next discuss the behavior that specializes RPM into BGS and TK, and the
behavior that distinguishes the three. Surprisingly, a number of other papers that
study salience fail to be RPM, including Gabaix and Laibson [2006], Kőszegi and
Szeidl [2013], Bhatia and Golman [2013], Gabaix [2014], Bushong et al. [2015]. We
demonstrate this in Appendix B.1. Roughly, if they were RPM, then they would have
only a single region. But single region RPM coincides with the neoclassical model of
choice.
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5.1. Special cases of RPM. Our goal is to relate various models studied in the
literature through the lens of RPM. First, we provide an alternative characterization for
BGS in this new domain. This result first establishes the fact that BGS is a special case
of RPM. Second it identifies the additional structures imposed by the functional form
of the salient thinking model. We then introduce models of Tversky and Kahneman
[1991] and Masatlioglu and Ok [2005], and discuss an unexpected connection between
BGS and these models that rely on completely different psychological intuitions. Their
indifference curves and regions are illustrated in Figure 4.

loss-gain

loss-loss

Attr. 1
salient

Attr. 2 salient
r rr

TK MO

Attr. 2 salient

Attr. 1 salient

gain-gain

gain-loss

unambiguously 
better

Attribute 1

Attribute 2

Attribute 1 Attribute 1BGS

Attribute 2 Attribute 2

r rr

TK MO
Attribute 1 Attribute 1 Attribute 1BGS

Attribute 2 Attribute 2Attribute 2

Figure 4. Three RPM Models

BGS. BGS is the special case of RPM with two regions, where the utility function is

(2) VBGS(x|r) =

 wx1 + (1− w)x2 if x ∈ RBGS
1 (r)

(1− w)x1 + wx2 if x ∈ RBGS
2 (r)

.
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Then, this is a special case of RPM when u1(x|r) = wx1 + (1 − w)x2 and u2(x|r) =
(1− w)x1 + wx2 for any bundle x and reference r.

In addition to the particular form of regions, BGS satisfies several properties that
distinguish it from other RPMs. These properties are natural adaptations of those
shown by Theorem 2 to characterize BGS in the choice correspondence setting.12

First, changing reference point does not reverse the ranking of two products unless
it also changes their salience. This is the analog of Salience-SARP from Section 4.

Axiom (Reference Irrelevance). For any x, y, r, r′ ∈ X:
If x ∈ Rk(r)

⋂
Rk(r′) and y ∈ Rl(r)

⋂
Rl(r′), then x %r y if and only if x %r′ y.

In RPM, the reference point can influence choice through two channels: salience
and valuation. The axiom eliminates the latter. When comparing two alternatives
across different reference points, the DM’s relative ranking does not change when nei-
ther’s salience changes. This property greatly limits the effect of the reference point.
In fact, a sufficiently small change in the reference never leads to a preference reversal
between a given pair of alternatives.

The remaining two properties are the analogs of SDO and reflection from Section
4.

Axiom (Salient Dimension Overweighted∗). For any x, y, r, r′ ∈ X:
if y ∈ Rk(r)

⋂
Rk(r′), x ∈ Rk(r)

⋂
Rl(r′), x %r y and xl > xk, then x �r′ y.

Axiom (Reflection∗). For any x, y, r, r′ ∈ X:
(x1, x2) %(r1,r2) (y1, y2) if and only if (x2, x1) %(r2,r1) (y2, y1).

The salient attribute gets a higher weight in the utility. The preference “reflects”
about the 45 degree line. Their justification is very similar to their analogs’.

12While the nature of these properties is the same, they live in a different domain. Hence, to highlight
this difference, we use asterisks (∗) while we name the properties.
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These three properties, plus those of the regions collected in Theorem 1, specialize
RPM to BGS.

Theorem 3. The family {%r}r∈X has a BGS representation if and only if it con-
forms to RPM under a regional function R = (R1, R2) satisfying S0-S3, and Salient
Dimension Overweighted∗, Reference Irrelevance, and Reflection∗ all hold.

This result provides us an alternative characterization of the BGS model in this
domain. It also provides guidance for comparing it with other models in the RPM
class.

Constant Loss Aversion Model. Tversky and Kahneman [1991] provides a reference-
dependent model that extends Prospect Theory to riskless consumption bundles. Each
bundle is evaluated relative to reference point r, and losses loom larger than gains.
In the absence of losses, the DM values each product bundle with a linear utility
function, (x1 − r1) + (x2 − r2), which attaches equal weights to each attribute. If she
experiences a loss in attribute i, then she inflates the weight attached to that attribute
by λi > 0.When λi > 1, this captures the phenomenon of loss aversion. The linear
utility implies that the sensitivity to a given gain (or loss) on dimension i does not
depend on whether the reference bundle is distant or near in that dimension. There
are four different regions in the TK formulation: (i) gain in both dimensions, (ii) gain
in the first dimension and loss in the second dimension, (iii) loss in the first dimension
and gain in the second dimension, and (iv) loss in both dimensions (see Figure 4). We
model this as RGL = (R1, R2, R3, R4) where R1(r) = {x : x � r}, R2(r) = {x : x1 <

r1 and x2 > r2}, R3(r) = {x : x1 > r1 and x2 < r2}, and R4(r) = {x : x � r}; call
this the gain-loss regional function. Then the utility function is

VTK(x|r) =



(x1 − r1) + (x2 − r2) if x ∈ R1(r)
λ1(x1 − r1) + (x2 − r2) if x ∈ R2(r)
(x1 − r1) + λ2(x2 − r2) if x ∈ R3(r)
λ1(x1 − r1) + λ2(x2 − r2) if x ∈ R4(r)
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This is again clearly an RPM.

We can restate Tversky and Kahneman [1991]’s classic characterization theorem
in the language of RPM. Two new axioms apply.

Axiom (Monotonicity). For all x, y, r ∈ X: if y ≥ x and y 6= x, then y �r x.

Axiom (Double Cancellation). For all x1, y1, z1, x2, y2, z2 ∈ R+, and r ∈ X, if (x1, z2) %r
(z1, y2) and (z1, x2) %r (y1, z2), then (x1, x2) %r (y1, y2).

Monotonicity requires that if x exceeds y in every dimension, then the DM chooses
x over y for any reference point. Double Cancellation guarantees an additive structure
on preference and appears in Krantz et al. [1971] and Tversky and Kahneman [1991],
among other places.13

Theorem 5, in the appendix, shows that every regional preference satisfies versions
of Monotonicity and Double Cancellation, but only within regions. The above, more
standard versions are more demanding as they apply across regions. Theorem 5 leaves
open the possibility that RPM violates either.

Theorem 4. A family of preferences {%r}r∈X has a TK representation if and only
if it is an RPM with a gain-loss regional function that satisfies Monotonicity, Double
Cancellation and each %r is continuous.

Tversky and Kahneman [1991, p. 1053] provide an alternative axiomatic charac-
terization of the model, and our result makes heavy use of their theorem. However,
TK assume two additional properties, “Sign Dependence” and “Reference Interlock-
ing.” Both properties are implied by RPM: the analog of the former is called Weak
Reference Irrelevance in the appendix, and the latter is implied by a combination of
that property and another that we call “regional linearity”.

13Tversky and Kahneman [1991] call it simply Cancellation.
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Linear Status Quo Bias Model. In the model of Masatlioglu and Ok [2005], individuals
may experience some form of psychological discomfort when they have to abandon
their status quo option. This discomfort imposes an additional utility cost. Of course,
if an alternative is unambiguously superior to the status quo, the DM does not feel any
psychological discomfort to forgo the status quo; in such cases there will be no cost.
Formally, Q(r) is a closed set denoting the alternatives that are unambiguously superior
to the default option r (see Figure 4). If an alternative does not belong to this set,
then the DM pays a cost c(r) > 0, which may depend on the reference point, to move
away from the status quo. In this model, there are two regions: R1(r) = {x| x ∈ Q(r)}
and R2(r) = {x| x /∈ Q(r)}. For any x 6= r, we have

VMO(x|r) =

 x1 + x2 if x ∈ R1(r)
x1 + x2 − c(r) if x ∈ R2(r)

5.2. Comparison. TK, BGS, MO, and the neoclassical model all belong to RPM,
and Theorem 5 in the appendix describes the behavior that they have in common.
However, the analysis so far, as well as the functional forms of the models, leaves open
the question of what behavior distinguishes the them. To differentiate models, one
might look for examples that are consistent with one but not the other. However,
these models have rich parameter spaces, so determining whether an example is ruled
out by all possible parametrizations is difficult. Instead, we make use of Theorems 3
and 4 to derive distinct predictions.

Table 1 compares the four models in terms of Reference Irrelevance, Monotonicity
and Double Cancellation, when BGS, TK and MO do not coincide with the neoclassical
model. Only the neoclassical model satisfies all conditions; none of the other three do.
On the one hand, BGS satisfies Reference Irrelevance but violates Monotonicity. On
the other, TK maintains Monotonicity but violates Reference Irrelevance. Finally, MO
satisfies both of them.14

14Theorems 3 and 4 give the 3’s of the table for BGS and TK. It is routine to verify that MO
satisfies Monotonicity and Reference Irrelevance. We provide examples showing the other properties
are violated in Appendix A.7.
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Neoclassical BGS TK MO
RPM 3 3 3 3
Monotonicity 3 7 3 3
Reference Irrelevance 3 3 7 3
Double Cancellation 3 7 3 7

Table 1. Comparisons of Models

We provide a plausible example violating the Double Cancellation axiom, and
hence behavior inconsistent with TK. Then, we illustrate BGS can accommodate this
example even without requiring a shift in the reference point. While the example is
one simple test to distinguish BGS from TK, it is also powerful as it works for a fixed
reference point.

Example 1. Consider a consumer who visits the same wine bar regularly. The bar-
tender occasionally offers promotions. The customer prefers to pay $8 for a glass of
French Syrah rather than $2 for a glass of Australian Shiraz. At the same time, she
prefers to pay $2 for a bottle of water rather than $10 for the glass of French Syrah.
However, without any promotion in the store, she prefers paying $10 for Australian
Shiraz to paying $8 for water.

The behavior in this example is both intuitively and formally consistent with the
salient thinking model of BGS.15 Without any promotion, the consumer expects to pay
a high price for a relatively low quality selection. When choosing between Syrah or
Shiraz, the consumer focuses on the French wine’s sublime quality, and she is willing
to pay at least $6 more for it. When choosing between water and Syrah, the low price
of water stands out and she reveals that the gap between wine and water is less than
$8. However, when there is no promotion, she focuses again on the quality, and she is
willing to pay an additional $2 for even her less-preferred Australian Shiraz over water.
15Implicitly, the example reveals that the quality of French Syrah is higher than Australian Shiraz
which is in turn higher than water. The numerical value of quality assigned to each beverage is
irrelevant to the violation of Double Cancellation. For examples of qualities so that choice can be
represented by the BGS model, one can calculate that (−8, qfs) �r (−2, qas), (−2, qw) �r (−10, qfs)
and (−10, qas) �r (−8, qw) for qfs = 8, qas = 6.9, qw = 5.1, and the reference point r = ( 1

2 (−10 +
−8), 1

2 (qw + qas)) when w = 0.6.
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Notice that this explanation does not require that the reference points are different.
Since the consumer visits this bar regularly, intuitively, her reference point should be
fixed and stable.

5.3. Monotonicity and Reference Irrelevance. While Theorems 2 and 3 highlight
the fact that Monotonicity is not necessarily satisfied in RPM, it does not inform us
when it is violated, nor which features of regional preferences are responsible for the
violation. Moreover, Theorem 5 does not communicate how serious the Monotonicity
violations are in this class. For example, there may be only a small fraction of regional
preference violates Monotonicity.

The remainder of our analysis highlights a general tension between Reference Ir-
relevance and Monotonicity. Under Reference Irrelevance, ui(·|r) does not vary with
r. Salient thinking occurs when the region to which the alternative belongs alters the
trade-off between the dimensions. To capture the implications of both, we follow the
BGS model in requiring that the weights on attributes always add up to 1 and do not
vary with r. Formally, we say that an RPM ({%r}r∈X ,R) has salience utilities if it
has a representation where for each region i, there is a distinct wi ∈ (0, 1) such that
ui(x|r) = wix1 +(1−wi)x2 for all r. Intuitively, the trade-off between attributes differs
across regions, and objects with the same level of each attribute have the same eval-
uation, regardless of the region to which they belong. BGS is an example of salience
utilities where w1 = 1− w2.

Proposition 2. If ({%r}r∈X ,R) is an RPM with at least two regions that has salience
utilities, then %r violates Monotonicity for some r.

Given salience utilities, the proposition states that Monotonicity fails. This holds
no matter how one specifies the regions or the weights on utilities. Hence, there is a
clash between salient thinking and Monotonicity in RPM. This is emblematic of a more
general trade-off when salient thinking, more broadly defined, is exhibited: either the
reference point affects the agent’s valuation or the DM does not respect Monotonicity.
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5.4. Relationship between other models of salience and RPM. A number of
alternative models of salience have been proposed in the literature. Appendix B.1 de-
scribes some of their functional forms and how they differ from RPM. In this subsection,
we demonstrate that the prominent and closely related models of focusing (Kőszegi and
Szeidl [2013], KS) and relative thinking (Bushong et al. [2015], BRS) fail to be RPM.
Neither of the two features a reference point, but they do feature a consideration set
that can play the same role.16 Letting the consideration set take on that role, a KS or
BRS DM can be represented as RPM only if it reduces to the neoclassical model.

Example 2. Adapted to a linear utility index, the models of KS and BRS assume that
the DM maximizes

U(x,C) = g1(C)x1 + g2(C)x2

where C is the comparison set, fixed per decision problem, and

gi(C) = g
(

max
y∈C

yi −min
y′∈C

y′i

)
where g is a strictly monotone function.17 Fixing a consideration set C, the slopes of
the indifference curve are the same everywhere, so if the DM could be represented by
RPM, then each region would correspond to this same set of indifference curves. Under
RPM, a change in C causes the regions to change, but the indifference curves within
each do not. Therefore, a DM represented by the KS or BRS models also conforms
to RPM only if each gi(·) is constant. This implies that she is also neoclassical: the
comparison set does not affect her choice.

6. Conclusion

This paper applies the tools of decision theory to a model of behavioral economics.
Completely identifying the behavior that corresponds to the salient thinking model
helps us to understand, identify, evaluate, and test its implied behavior. This is crucial
16Indeed, one can easily adapt the RPM model to a family of preference relations indexed by an
appropriate family of subsets rather than X.
17Specifically, KS require g′(x) > 0 for all x > 0 and BRS require g′(x)x+ g(x) > 0 and g′(x) < 0 for
all x > 0.
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for this model because its functional form is rather complicated. We highlight which
aspects of the functional form should be thought of as convenient simplifications, and
which are crucial to the notion of salience. We also demonstrate new connections
between the behavior implied by the salient-thinking model of Bordalo et al. [2013b]
and that of other widely-used models relying on different psychological intuitions, such
as the loss aversion model of Tversky and Kahneman [1991].

The approaches pioneered by behavioral economics and decision theory comple-
ment each other. Both are a means to identify and to organize the implications of
economic models. The former investigates the implications of a particular model in
concrete economic problems. While it is able to highlight particularly interesting be-
haviors in important applications, it necessarily provides an incomplete picture of the
overall choice patterns across settings. Often, it leaves open the question of what par-
ticular features give rise to this behavior, and how to test the model without imposing
functional form assumptions. The latter identifies the complete behavioral implications
of the model under consideration. While it finds specific regularities that hold in all
settings and provides choice-based tests of the model, the generality may obfuscate the
interesting patterns in important economic application. We think collaboration across
these fields will continue to lead to fruitful insights into economic decision making.
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Appendix A. Omitted Proofs

To economize on space, we write xαy and SαT in lieu of αx + (1 − α)y and
αS + (1− α)T for x, y ∈ X and S, T ⊂ X throughout the appendix.

A.1. Proof of Theorem 1. First, we show (i) =⇒ (ii). Set σ(a, b) = max{a/b, b/a}.
Clearly σ is a salience function, and we show that σ generates R1 and R2. Fix r ∈ F
and set A = {x : σ(x1, r1) > σ(x2, r2)}. We show A = R1(r).

Claim A
⋂
R2(r) = ∅. If not, pick x ∈ A

⋂
R2(r). x ∈ A implies either (a)

x1/r1 > x2/r2 and x1/r1 > r2/x2 or (b) r1/x1 > x2/r2 and r1/x1 > r2/x2. If (a) and
x2 ≤ r2, then

x1/r1 > r2/x2 ≥ x2/r2 implies x1 > r1r2/x2 ≥ r1,

so there exists λ ∈ [0, 1) such that (λx1 + (1−λ)r1, x2) = (r1r2/x2, x2) = x′. If (a) and
x2 > r2, then

x1 > r1x2/r2 > r1,

so there exists λ ∈ (0, 1) such that (λx1 + (1 − λ)r1, x2) = (r1x2/r2, x2) = x′. By
Moderation and x ∈ R2(r), x′ ∈ R2(r). However, we have either x′1x′2 = r1r2 or
x′1/x

′
2 = r1/r2 so x′ /∈ R2(r) by Equal Salience, a contradiction. A similar contradiction

obtains if (b) holds.
Now, since A⋂R2(r) = ∅ and R1(r)⋃R2(r) is dense, A ⊂ cl(R1(r)). By Regular

Regions, R1(r) = int(cl(R1(r)). Since A is an open set contained in cl(R1(r)), A ⊆
R1(r). Similarly, for B = {x : σ(x1, r1) < σ(x2, r2)}, B ⊆ R2(r). But

(A
⋃
B)c = {x : x1x2 = r1r2 or x1/x2 = r1/r2},

and by Equal Salience, (A⋃B)c ⋂Rk(r) = ∅ for k = 1, 2. Thus A = R1(r) and
B = R2(r), completing the proof.

Now, we show (ii) implies (i). First, Moderation follows from ordering. Second,
Equal Salience follows from symmetry and homogeneity of degree zero. Third, Regular
Regions follows from continuity.

Finally, to see (iii) if and only if (ii), fix any salience function s. Observe s(a, b) >
s(c, d) if and only if s(a/b, 1) > s(c/d, 1) by homogeneity if and only if s(max(a/b, b/a), 1)
> s(max(c/d, d/c), 1) by symmetry if and only if max(a/b, b/a) > max(c/d, d/c) by or-
dering. Thus if one salience function generates the regions, every other salience function
does as well. �

A.2. Proof of Theorem 2. Necessity is easily verified. The proof of sufficiency pro-
ceeds as a series of claims, assuming that c satisfies Axioms 1-6.
Claim 1. For any x and y, there exists a set Sxy ∈ X such that x, y ∈ Sx,y, Sxy ⊂
R1(A(Sxy)) and each z ∈ Sxy \ {x, y} is dominated by either x or y.
Proof. Fix x, y ∈ X and define

α := 1
2 min

{
x1

x2
,
y1

y2
, x1, x2, y1, y2, 1

}
> 0.
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We are going to choose the set Sxy so that the average (A(Sxy)) is (α2, α), denoted
by r. Consider x̄ =

(
0, α− ( x2−α

x1−α2 )α2
)
, the point where the line passing through

r and x intersects the y−axis. Note that α − ( x2−α
x1−α2 )α2 is positive. Then the set

Tx̄x = {βx̄ + (1 − β)x : β ∈ (0, 1)} \ {r} is the line segment connecting x and x̄
excluding r. Now, for any z ∈ Tx̄x, either z � r or r � z. If z � r, then z ∈ R1(r)
since z1/z2 ∈ (α, x1/x2) and z1z2 > α3. If r � z, then we also have that z ∈ R1(r)
since z1/z2 ∈ (0, α) and z1z2 < α3.

We show first there exists a set Sx so that x ∈ Sx, Sx ⊂ R1(r), A(Sx) = r, and
x� z for every z ∈ Sx \x. . To see this, set β∗ so that r = β∗x̄+ (1−β∗)x. If β∗ < 1

2 ,
then clearly there exists a ∈ Tx̄x such that 1

2a+ 1
2x = r. In this case, set Sx = {a, x}.

Otherwise, pick γ ∈ (β∗, 1) and set a = γx̄ + (1 − γ)x. Define βa s.t. βaa + (1 −
βa)x = r. Since βa > β∗, there exists n > 1 such that βa ∈ [n−1

n
, n
n+1). Pick any distinct

a1, . . . , an−1 ∈ Tx̄x such that 1
n−1

∑
ai = a. If βa = n−1

n
, then set Sx = {x, a1, . . . , an−1}.

Now if βa > n−1
n

, define λ = βa(n+ 1)− (n− 1), which is greater than zero since
βa >

n−1
n
> n−1

n+1 . Since 1−βa > 1
n+1 , we have n+1−βa(n+1)−1 > 0, hence 1−λ > 0.

Take an = λa+ (1− λ)x. This belongs to Tx̄x since the weights are positive, sum to 1,
and λ = βa only if βa = n−1

n
. Call Sx = {x, a1, . . . , an}.

Repeat the above with y taking the place of x to get Sy with y ∈ Sy, A(Sy) = r,
Sy ⊂ R1(r), and y � z for every z ∈ Sy \ y. We have two sets whose average is
exactly (α2, α), so for Sxy = Sx ∪ Sy, the average is r, Sxy ⊂ R1(A(Sxy)), and for any
z ∈ Sxy \ {x, y}, either z � x or z � y. �

We now define a binary relation, which will represent preference of agent in region
1. Define

x %1 y if there exists S such that x ∈ c(S), y ∈ S, and x, y ∈ R1(A(S)).

Claim 2. %1 admits a linear utility representation.

Proof. Claim 1 implies that %1 is a complete binary relation. By Salience-SARP, it is
routine to show that %1 is transitive. We now establish that %1 is linear. To see this,
pick x, y, z and β∗ ∈ (0, 1]. Suppose that x %1 y, so we need to show that xβ∗z %1 yβ

∗z.
Define the menu Sα = Sxαzyαz and then let Sαβ = βSα + (1 − β){z} for any

α ∈ [0, 1] and β > 0, the Minkowski sum of the menus viewed as points in Rn. In
particular, β > 1 is allowed. Let O(α) = {αβ : Sαβ ⊂ R1(A(Sαβ)} if γ ∈ O(α),
then xγz, yγz ∈ Sαβ for some β and either xγz or yγz is chosen from Sαβ by Regional
Monotonicity and construction of Sxy. Moreover, O(α) is open in [0, 1] by the openness
of R1(·) and α ∈ O(α) for every α. Now, [β∗, 1] is compact and {O(α) : α ∈ [β∗, 1]} is
an open cover. Hence, there exists a finite subcover {O(α1), . . . , O(αn)}, where WLOG
α1 ≥ α2 ≥ · · · ≥ αn and no element is contained in the union of the others.

Then, 1 ∈ O(α1) and β∗ ∈ O(αn). Choose γi ∈ O(αi) ∩ O(αi+1) for i = 1, . . . , n.
Write γ0 = 1 and γn+1 = β∗, and observe that we have xγ0z %1 yγ0z. Proceed by
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recursion, given that xγiz %1 yγiz. In the menu Sαi γiαi , xγiz and yγiz are available, and
by construction of Sαi , nothing other than the two is chosen. Since they all belong to
region 1, xγiz ∈ c(Sαi γiαi ) by Salience-SARP. By Regional Linearity, xγi+1z ∈ c(Sαi γi+1

αi

)
since both γi, γi+1 ∈ O(αi). Hence, xγi+1z %1 yγi+1z. Conclude

xγn+1z = xβ∗z %1 yβ
∗z = yγn+1z.

This establishes that %1 is linear.
To establish continuity, suppose that xn %1 y for all n and xn → x. Let S =

Sxy \ {x} and observe A(S ∪ {xn})→ A(S) and xn ∈ R1(A(S ∪ {xn})) for all n large
enough. For any such n, either xn or y dominates all other bundles in the menus. Then,
only the two can be chosen, and hence xn must be since xn %1 y by Salient-SARP.
Then, Regional Continuity gives that x ∈ c(Sxy) and thus x %1 y. Similarly, if x %1 yn
for all n and yn → y then x %1 y. Hence, %1 is continuous.

Using Herstein-Milnor (1952), there exists an affine u1 : X → R that represents
%1. �

For any alternative x = (x1, x2), write x′ = (x2, x1) for its reflection.

Claim 3. For any x and k ∈ {1, 2}, there exists a subset S such that (i) both x and
its reflection are chosen; (ii) x belongs to region k; and (iii) the reflection belongs to
the other region. (i.e. x, x′ ∈ c(S), x ∈ Rk(A(S)), x′ ∈ Rl(A(S)), and k 6= l).

Proof. Write x = (a, b), and WLOG, a > b. Then x ∈ R2(A({x, x′})) and x′ ∈
R1(A({x, x′})). By reflection, x, x′ ∈ c({x, x′}). It remains to be show for x ∈ R1(A(S))
and x′ ∈ R2(A(S)). For any n, consider Sn = {x, x′} ∪ ⋃ni=1{(3−ib, 2−ib), (2−ib, 3−ib)}.
Observe A(Sn)1 = A(Sn)2, and A(Sn)1 < b for n large enough. For this n, we have
x ∈ R1(A(Sn)) and x′ ∈ R2(A(Sn)). Moreover, Sn is its own reflection, and either x or
x′ is chosen by Regional Monotonicity. Hence, by Reflection, x, x′ ∈ c(Sn). �

Define now define a utility function on X × {1, 2}, where u(x, k) represents the
value of x when x belongs to Region k. Define u(x, 1) = u1(x) and u(x, 2) = u1(x′)
where x′ is the reflection of x. Define the function k so that k(x, S) = k if and only if
x ∈ Rk(A(S)).

Claim 4. u represents c. That is, x ∈ c(S) if and only if x ∈ arg max
y∈S

u (y, k(y, S)).

Proof. Take x ∈ c(S), WLOG by reflection, assume x ∈ R1(A(S)). For all y ∈
R1(A(S)), x ∈ c(Sxy) by Salient-SARP, hence u(x, 1) ≥ u(y, 1). Now, if y ∈ R2(A(S)),
then there exists S ′ by Claim 3 with y, y′ ∈ c(S ′), y ∈ R2(A(S ′)), and y′ ∈ R1(A(S ′)).
Consider Sxy′ , recalling that x, y′ ∈ R1(A(Sxy′)) and either x ∈ c(Sxy′) or y′ ∈ c(Sxy′).
In the former case, we obtain immediately that u(x, 1) ≥ u(y′, 1) = u(y, 2). In the
latter case, using x = x1, y = x2, and y′ = x3 with S1 = S, S2 = S ′ and S3 = Sxy′ , we
obtain that x ∈ c(Sxy′) using Salient-SARP, implying that u(x, 1) ≥ u(y′, 1) = u(y, 2).
Hence, x maximizes u (y, k(y, S)) in S.
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Let x be a maximizer of u (y, k(y, S)) in S and y is chosen from S. WLOG, assume
x belongs to region 1 in S. If y ∈ R1(A(S)), u(x, 1) ≥ u(y, 1) implies x ∈ c(Sxy).
By Salient-SARP, x must be chosen from S. Now, if y ∈ R2(A(S)), then we have
u(x, 1) ≥ u(y, 2) = u(y′, 1). Then there exists S ′ by Claim 3 with y, y′ ∈ c(S ′),
y ∈ R2(A(S ′)), and y′ ∈ R1(A(S ′)). Consider Sxy′ , recalling that x, y′ ∈ R1(A(Sxy′))
and x ∈ c(Sxy′). Using x = x1, y′ = x2, and y = x3 with S1 = Sxy′ , S2 = S ′ and
S3 = S, we obtain that x ∈ c(S) using Salient-SARP. �

Regional Monotonicity and taking an appropriate affine transformation, there ex-
ists w such that u(x, 1) = wx1 + (1 − w)x2 and u(x, 2) = (1 − w)x1 + wx2. We now
show that w > 1

2 , hence the salient attribute gets higher weight in the final evaluation.
After Claim 4, we have u1(x) = wx1 + (1 − w)x2 and u2(x) = wx2 + (1 − w)x1. Pick
x, y with x1 > y1 and y2 > x2 so that wx1 + (1 − w)x2 = wy1 + (1 − w)y2. Pick x, y
with x1 > y1 and y2 > x2 so that wx1 +(1−w)x2 = wy1 +(1−w)y2. By Claim 1, there
exists S containing x, y where x, y ∈ R1(A(S)) and either x or y is chosen. But then by
Claim 4, both are chosen, x, y ∈ c(S). Let S ′ be the set as above but for region 2, and
by SDO, x is not chosen. Let ε = x1 − y1, δ = y2 − x2 so ε, δ > 0 and x = y + (ε,−δ).
Hence wε − (1 − w)δ = 0 and (1 − w)ε − (w)δ < 0, and w

1−w > ε
δ

= 1−w
w

. But this
requires w > 1

2 . �

A.3. Proof of Proposition 1. The claims establishing Theorem 2 go through, word-
for-word, except Claim 2. The proof of Claim 2 is easily adapted using standard
arguments, e.g. Theorem 2 of Chapter 6 of Krantz et al. [1971], by applying Salient-
SARP to get that%1 has an additive representation, and similarly for%2. This, coupled
with reflection, establishes that that u(x, 1) = u(x1)+v(x2) and u(x, 2) = v(x1)+u(x2)
for strictly increasing continuous utility indexes u, v : R++ → R.

We must also show that u(a)− u(b) > v(a)− v(b) for all a > b. Suppose not, and
consider some a > b where u(a) − u(b) ≤ v(a) − v(b). Let x = (a, b) and y = (b, a).
Follow Claim 1 to construct Sxy ⊂ R1(A(Sxy)). By hypothesis, u(y, 1) ≥ u(x, 1) and
y ∈ c(Sxy). Now, construct S ′xy in the same manner as Claim 1, but reversing the role of
dimensions so that S ′xy ⊂ R2(A(S ′xy)). By SDO and construction of S ′xy, {y} = c(S ′xy).
But then u(y, 2) > u(x, 2), which is incompatible with u(a)−u(b) ≤ v(a)−v(b). Hence
u(a)− u(b) > v(a)− v(b) for all a > b. �

A.4. Proof of Theorem 3. Necessity is easily verified, so we show only sufficiency.
Assume the family {%r}r∈X satisfies the axioms in Theorem 3. The next two lemmas
show these axiom imply useful properties in establishing the representation.

Lemma 1. For any r, there exists xk ∈ Rk(r) for k = 1, 2 with x1 ∼r x2.

Proof. We first show the result for r = (z, z). Let Rz
k = {x ∈ Rk(z) : x1x2 > z2},

the points in Rk(r) above the Cobb-Douglas line passing through r. Pick a ∈ Rz
1 and

b ∈ Rz
2. The result is immediate if a ∼r b. If a �r b, then by Reflection and S1-S3,

a′ �r b′ when a′ = (a2, a1) ∈ Rz
2 and b′ = (b2, b1) ∈ Rz

1. If b �r b′, then a �r b �r b′.
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Continuity of u1 and that Rz
1 is open and connected yields existence of c ∈ Rz

1(r) with
c ∼r b. Otherwise, b′ %r b, so a′ �r b′ %r b. Rz

2 is also open and connected and u2 is
also continuous, so there exists c ∈ Rz

2(r) with c ∼r b′. A similar proof holds if b �r a.
Note the above arguments are true for Rz′

k when z′ < z, since Rz′
k ⊂ Rz

k ⊂ Rk(r).
Within each Rz

k, indifference curves are linear, parallel and downward sloping. For
z′ to be close 0, the x1, x2 we find must lie on indifference curves that intersect the
boundary without leaving Rz

k. Thus for any r′, we can find y1 and y2 so that xk ∼r yk
and xk, yk ∈ Rk(r)

⋂
Rk(r′) for k = 1, 2. But then by Reference Irrelevance and

Transitivity, y1 ∼r′ y2. �

Lemma 2. There is an RPM of {%r}r∈X where for each k, uk(·|r) = uk(·|r′) for all
r, r′ ∈ X.

Proof. By taking appropriate affine transformations of the entire utility function, there
is no loss of generality in assuming u1(·|r) = u1(·|r′) for all r, r′. For contradiction,
suppose that u2(·|r) 6= u2(·|r′) for some r, r′. Let A = {α ∈ [0, 1] : u2(·|rαr′) 6= u2(·|r)}
be the set of references between r and r′ that have a different utility function for R2.
Set α∗ = supA, noting it is finite since 0 ∈ A and 1 /∈ A. Take α̂n to be a sequence in
A and αn to be a sequence in [0, 1] \ A that both approach α∗. Then, for r̂n = rα̂nr

′

and rn = rαnr
′, u2(·|rn) = u2(·|r) and u2(·|r̂n) 6= u2(·|r). Moreover, rn and r̂n have the

same limit r̂ = rα∗r′.
By Lemma 1, there exists x ∈ R1(r̂) and y ∈ R2(r̂) so that x2 ∼r̂ x1. Since

R1(r) and R2(r) are open for each r, there exists ε > 0 so that Bε(x2) ⊂ R2(r̂),
Bε(x1) ⊂ R1(r̂). By continuity of the regional function, Bε(x2) ⊆ R2(r̂n)⋂R2(rn)
and Bε(x1) ⊆ R1(r̂n)⋂R1(rn) for n large enough. For every z close enough to x2,
there exists y(z) ∈ Bε(x1) such that z ∼r̂ y(z). But then by Reference Irrelevance,
z ∼rn y(z) and z ∼r̂n y(z). Thus ui(z|rn) = u1(y(z)|rn) = u1(y(z)|r̂n) = ui(z|r̂n) for
all z close enough to xi, implying that ui(·|rn) = ui(·|r̂n), a contradiction. Conclude
ui(·|r) = ui(·|r′) for all r, r′. �

By the above lemmas, there are u1, u2 such that if x ∈ Rk(r) and y ∈ Rl(r), then
x %r y ⇐⇒ uk(x) ≥ ul(y). Now, uk(x) = akx1 + bkx2 + ck, and c1 = 0 WLOG.
Regional monotonicity implies ak, bk > 0.

Fix arbitrary r = (r1, r2) and let r′ = (r2, r1). For any distinct x, y ∈ R1(r)
such that x ∼r y, a1x1 + b1x2 = a1y1 + b1y2. By reflection and the structure of R,
we have (x2, x1), (y2, y1) ∈ R2(r′) and (x2, x1) ∼r′ (y2, y1). Hence, a2x2 + b2x1 + c2 =
a2y2 + b2y1 + c2. Then we have b2

a2
= x2−y2

y1−x1
and b1

a1
= x1−y1

y2−x2
, so there exists α > 0 such

that b2 = αa1 and a2 = αb1.
For contradiction, suppose α 6= 1. Pick (x, y) ∈ R1(1, 1) and (d, e) ∈ R2(1, 1) so

that (x, y) ∼(1,1) (d, e). Note (e, d) ∈ R1(1, 1) and (y, x) ∈ R2(1, 1). By Reflection,
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(y, x) ∼(1,1) (e, d). Then
a1x+ b1y = α[a1e+ b1d] + c2

a1e+ b1d = α[a1x+ b1y] + c2

a1e+ b1d = α[α[a1e+ b1d] + c2] + c2

a1e+ b1d = α2[a1e+ b1d] + (1 + α)c2

(1− α2)[a1e+ b1d] = (1 + α)c2

Since we can find similar indifferences for any good in a small enough neighborhood of
(d, e), this requires α = 1 and c2 = 0.

After a normalization, we have u1(x) = wx1+(1−w)x2 and u2(x) = (1−w)x1+wx1
for some w ∈ (0, 1). To conclude, we must show w > 1

2 . Pick any y > 0. Consider
the line L(y) = {x′ ∈ X : u2(x′) = u2(y, y)}. This is the line with slope −w

1−w that
intersects the 45-degree line at (y, y). For any x ∈ L(y) such that x1 > y > x2, we
can find r, r′ so that (y, y) ∈ R2(r)⋂R2(r′), (x1, x2) ∈ R2(r)⋂R1(r′). By construction
(x1, x2) ∼r (y, y), so since x1 > x2, by SDO* we have (x1, x2) �r′ (y, y) and wx1 + (1−
w)x2 > y = (1− w)x1 + wx2. Letting (x1, x2)→ (y, y) gives that w > 1

2 . �

A.5. Proof of Theorem 4. Necessity follows from the discussion above and TK’s the-
orem. To show sufficiency, we rely on TK’s theorem, which states that any monotone,
continuous family of preference relations that satisfies cancellation, sign-dependence
and reference interlocking has a TK representation. Given our assumptions, we need
to show that {%r} satisfies sign-dependence and reference interlocking.

TK say that {%r} satisfies sign-dependence if “for any x, y, r, s ∈ X, x %r y ⇐⇒
x %s y whenever x and y belong to the same quadrant with respect to r and with respect
to s, and r and s belong to the same quadrant with respect to x and with respect to y.”
This happens if and only if x ∈ RGL

k (r)⋂RGL
k (s) and y ∈ RGL

k (r)⋂RGL
k (s) for some

k ∈ {1, 2, 3, 4}. Then, this is exactly an implication of RPM, since uk(·|r) = αuk(·|s)+β
for α > 0.

TK say that {%r} satisfies reference interlocking if “for any w,w′, x, x′, y, y′, z, z′
that belong to the same quadrant with respect to r as well as with respect to s,
w1 = w′1, x1 = x′1, y1 = y′1, z1 = z′1 and x2 = z2, w2 = y2, x

′
2 = z′2, w

′
2 = y′2, if

w ∼r x, y ∼r z, and w′ ∼s x′ then y′ ∼s z′.” The assumptions on quadrants imply
that w,w′, x, x′, y, y′, z, z′ ∈ RGL

k (r)⋂RGL
l (s). By affinity there exist αk, βk, ck so that

uk(a|r) = αka1 + βka2 + ck for each a ∈ X and ul(a|s) = αla1 + βla2 + cl for each
a ∈ X. Therefore, w ∼r x implies αk(w1 − x1) = βk(x2 − w2), y ∼r z implies
αk(y1−z1) = βk(z2−y2) = βk(x2−w2) and w′ ∼s x′ implies αl(w′1−x′1) = βl(x′2−w′2).
This last equality holds if and only if αl(w1 − x1) = βl(z′2 − y′2). Now, the above
equalities imply

αl(y′1 − z′1) = αl(y1 − z1) = αl
βk
αk

(x2 − w2) = αl(w1 − x1).

Hence, αl(y′1 − z′1) = βl(z′2 − y′2) and we have y′ ∼s z′.
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A.6. Proof of Proposition 2. By Salience Utilities, drop the dependence on r and
write uk(·) instead of uk(·|r). Let Uk = {x ∈ X : uk(x) > ul(x) for all l 6= k} and
Lk = {x ∈ X : uk(x) < ul(x) for all l 6= k}, the set of alternatives whose utility is
highest and lowest, respectively, in region k. Define R−k(r) = ⋃

l 6=k Rl(r).
Lemma 3. If %r satisfies Monotonicity and z ∈ Uk

⋂
Rk(r), then R−k(r)

⋂{x : x �
z}⋂Uk = ∅.
Proof. Suppose not, so there is z ∈ Uk

⋂
Rk(r) such that A = R−k(r)

⋂{x : x �
z}⋂Uk 6= ∅. Then let yn be a sequence of points in A approaching as close as possible
to z. WLOG, yn → ȳ (since yn must eventually belong to the compact set B̄ε(z)
for some ε > 0). Then we can pick xn ∈ Rk(r)

⋂{y : y ≤ ȳ} that converges to
ȳ ∈ bd(Rk(r)).18 Noting u−k(x) = maxl 6=k ul(x) is continuous,

lim uk(xn) = uk(ȳ) > u−k(ȳ) = lim u−k(yn)
and so xn �r ym for n,m large enough, but ym ≥ xn by taking n large enough that
d(xn, ȳ)) < d(ym, ȳ). This contradicts Monotonicity. �

Lemma 4. If %r satisfies Monotonicity and r ∈ Uk, then R−k(r)
⋂{x : x� r}⋂Uk =

∅.
Proof. Follows from applying Lemma 3 to a sequence xn in Rk(r) that converges to
r. �

Lemma 5. If %r satisfies Monotonicity and z ∈ Lk
⋂
Rk(r) then R−k(r)

⋂{x : x �
z}⋂Lk = ∅.
Proof. Dual to Lemma 3. �

Lemma 6. If %r satisfies Monotonicity and r ∈ Lk, then R−k(r)
⋂{x : x� r}⋂Lk =

∅.
Proof. Follows from applying Lemma 5 to a sequence xn in Rk(r) that converges to
r. �

Since the RPM has salience utilities, there are regions k and l so that Uk = Ll =
{(x1, x2) : x2 < x1} and Ul = Lk = {(x1, x2) : x2 > x1}; wk is the largest weight on
attribute 1 and wl is the lowest. Without loss of generality, let k = 1 and l = 2.

Pick r0 ∈ X so that u1(r0) = u2(r0). Note that {x : u1(x) = u2(x)} is an upward
sloping line, and for ε > 0, u1(r0 − (0, ε)) > u2(r0 − (0, ε)) and u2(r0 + (0, ε)) >
u1(r0 + (0, ε)). Noting U1 = L2 and U2 = L1, by the Lemmas and that the regions are
dense:

cl(R1(r0 + (ε, 0))) ⊇ {x ∈ U1 : x� r0 + (ε, 0)}
cl(R2(r0 + (0, ε))) ⊇ {x ∈ U2 : x� r0 + (0, ε)}
cl(R1(r0 + (0, ε))) ⊇ {x ∈ L1 = U2 : x� r0 + (0, ε)}
cl(R2(r0 + (ε, 0))) ⊇ {x ∈ L2 = U1 : x� r0 + (ε, 0)}

18If ȳ = r, then take xn = r for all n; otherwise, d(x′, r) < d(ȳ, r) implies x′ ∈ Rk(r).
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Set A+
k = {x ∈ Uk : x � r0} and A−k = {x ∈ U1 : x � r0} for k = 1, 2. Letting ε → 0

and applying continuity of each Ri, cl(R1(r0)) ⊇ A+
1
⋃
A−2 and cl(R2(r0)) ⊇ A−1

⋃
A+

2 .
For k = 1, 2, let O+

k and O−k be open neighborhoods contained in, but not equal
to, A+

k

⋂[R1(r0)⋃R2(r0)] and A−k
⋂[R1(r0)⋃R2(r0)], respectively. For all r sufficiently

close to r0, R1(r) ⊇ O+
1
⋃
O−2 and R2(r) ⊇ O−1

⋃
O+

2 using continuity of the regional
function. Choose such an r for which u1(r) 6= u2(r) that also belongs to U1.

The set R1 = R1(r)⋃{r} is connected, R1 intersects U1 and U2 by above, and
clearly U1

⋂
U2 = ∅, so there exists z ∈ R1\ [U1

⋃
U2]. Since r ∈ U1, z ∈ R1(r) and since

R1(R) is open, there exists ε > 0 so that A = {x : z+ (ε, ε)� x� z− (ε, ε)} ⊂ R1(r).
Moreover, by Lemmas 3 and 5, we have that R2(r)⋂A′ = ∅ when

A′ =
⋃

x∈A∩L1

{y : y � x} ∪
⋃

x∈A∩U1

{y : y � x} ∪ A.

Let A∗ = A′c
⋂
U c

1 be the points above A′ and A∗ = A′c
⋂
Lc1 be the points below A′.

Note A′ is open while A∗ and A∗ are closed.
Now, A∗⋂R2(r) 6= ∅ andA∗

⋂
R2(r) 6= ∅ sinceR2(r) ⊇ O−1

⋃
O+

2 . SinceR2(r)⋃{r}
is connected, and A∗⋃A∗ ⊃ R2(r)⋃{r}, A∗⋂A∗ must be non-empty. But A∗⋂A∗ = ∅
by construction so we have a contradiction. �

A.7. Examples from Table 1. It is clear that BGS violates Monotonicity from Sec-
tion 5.3, and Example 1 shows that BGS violates cancellation. It remains to show
that TK violates Reference Irrelevance and that MO violates Cancellation. This is
established by the following two examples.

Example 3 (TK violates Reference Irrelevance). Consider a TK model with λ1 =
λ2 = 2. Then, for r = (10, 10), x = (12, 12) and y = (9, 16), y %r x since (12 − 10) +
(12−10) = 2(9−10)+(16−10). For r′ = (11, 11), x �r y since (12−11)+(12−11) >
2(9 − 11) + (16 − 11). But x ∈ RGL

1 (r)⋂RGL
1 (r′) and r ∈ RGL

2 (r)⋂RGL
2 (r′), so the

family violates Reference Irrelevance.

Example 4 (MO violates Cancellation). Let Q(r) = {x ∈ X : x1/2 + x2 > r1/2 + r2}
and c(r) = 1. Then, let x = (2, 1), y = (1, 2), z = (4, 4), and r = (0.9, 1.9). Since
(x1, z2) = (2, 4) %r (4, 2) = (z1, y2) and (z1, x2) = (4, 1) %r (1, 4) = (y1, z2) because all
four points belong to Q(r), cancellation requires that x %r y. However, x /∈ Q(r), so
y �r x, so cancellation does not hold.

Appendix B. Behavioral Characterization for RPM

We provide a set of behavioral postulates characterizing RPM. This behavior rep-
resents the key features of the model. The first postulates states that changing the
reference point does not alter the relative ranking of two alternatives as long as both
of the alternatives lie in the same region.

Axiom (Weak Reference Irrelevance). For any r, r′ ∈ X: if x, y ∈ Rk(r)
⋂
Rk(r′), then

x %r y ⇐⇒ x %r′ y.
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The next postulate states that the indifference curves are straight and parallel
lines for a given region.

Axiom (Regional Linearity∗). For any r ∈ X, α ∈ (0, 1], x, xαy, y ∈ Rk(r), and
a, aαb, b ∈ Rl(r): if x %r a and y %r b, then xαy %r aαb, strictly whenever x �r a.

For a given region, Regional Linearity is equivalent to the usual linearity axiom (a
close relative of the independence axiom) when preference is complete and transitive.

We assume that each product consists of desirable attributes. Monotonicity means
that if a product x contains more of some or all attributes, but no less of any, than
another product y, then x is preferred to y. The next postulate assumes that Mono-
tonicity is maintained within a given region and reference point.

Axiom (Regional Monotonicity*). For any r ∈ X and x, y ∈ Rk(r): if y ≥ x, then
y %r x, strictly whenever y 6= x.

The final two properties are continuity conditions. The first requires that, for a
fixed reference point r, two sequences in the same region with the same limit behave
similarly far enough along the sequence. That is, if w �r xn �r z for all large n, then
w �r yn �r z as well for all large n. The second requires that for an unbounded regions
have unbounded utilities. This is an implication of the affine increasing utility.

Axiom (Regional Continuity*). For any w, x ∈ ⋃nl=1Rl(r) and sequences (yn), (zn) ∈
Rk(r): if (yn) and (zn) have the same limit and there exists N so that both w �r yn
and yn �r x hold for all n > N , then for any w′, x′ ∈ ⋃nj=1Rl(r) with w′ �r w and
x �r x′ there exists m so that w′ �r zm and zm �r x′.

Axiom (Unbounded). For any r ∈ X: if Rki(r) is unbounded, then for any x ∈⋃n
l=1Rl(r), there exists x∗ ∈ Rk(r) so that x∗ �r x.

Our following result states that these five postulates characterize RPM.

Theorem 5. For a regional function R, ({%r}r∈X ,R) satisfies Weak Reference Irrel-
evance, Regional Linearity*, Regional Monotonicity*, Regional Continuity* and Un-
bounded if and only if {%r}r∈X conforms to RPM under R.

Proof. First, we show the regional affine representation for each reference r. Second,
we extend it across references. To save notation, until Lemma 14, we fix r and write
Rk instead of Rk(r) and % instead of %r.

Lemma 7. For each Rk, there is an affine and increasing v̂k : Rk → R so that for
x, y ∈ Rk, x % y ⇐⇒ v̂k(x) ≥ v̂k(y).

Proof. For each Rk, pick arbitrary xk ∈ Rk and εk > 0 s.t. Bεk(xk) ⊂ Rk and observe
that Bεk(xk) is a mixture space . By Regional Linearity* (RL) and Regional Continu-
ity* (RC), % satisfies the mixture space axioms when restricted to Bεk(xk), so let it
have the representation vk, normalized so that vk(xk) = 0. We now extend vk outside
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of Bεk(xk). For all x ∈ Rk, define v̂k by v̂k(x) = 1
α
vk(xαxk) for any α ∈ (0, 1] so that

xαxk ∈ Bεk(xk). To see v̂k is well defined, suppose xαxk, xβxk ∈ Bεk(xk) and (WLOG)
β < α. Then, xβxk = (xαxk)β

α
xk, and since vk is affine, 1

β
vk(xβxk) = 1

α
vk(xαxk). �

Lemma 8. If xk ∈ Rk, xl ∈ Rl, and xk ∼ xl, then there is α > 0, β ∈ R such that for
x ∈ Rk and y ∈ Rl, x % y ⇐⇒ v̂k(x) ≥ αv̂l(y) + β.
Proof. WLOG, take v̂k(xk) = 0. As above, there is εk > 0 such that B2εk(xk) ⊂ Rk.
By Regional Monotonicity* (RM) and RC , there is εl > 0 such that Bεl(xl) ⊂ Rl and
for all y ∈ Bεl(xl), x∗ = xk + εk � y � xk − εk = x∗. For any y ∈ Rl and α such that
yαxl ∈ Bεl(xl), there exists β ∈ (0, 1) such that x∗βx∗ ∼ yαxl by RC, RM, and that
% is a weak order. Let Vl(y) = α−1v̂k(x∗βx∗). This is well defined for the same reason
as above, and is also affine, increasing, and ranks alternatives in the same way as v̂l.
Thus, Vl(y) = av̂l(y) + b for a > 0 and b ∈ R.

For any x ∈ Rk and y ∈ Rl, pick α such that xαxk ∈ Bεk(xk) and yαxl ∈ Bεl(xl).
By construction, yαxl ∼ y′ when y′ ∈ Bεk(xk) and v̂k(y′) = αVl(y). Thus, xαxk % y′ ∼
yαxl holds if and only if v̂k(x) ≥ Vl(y) and x % y ⇐⇒ xαxk % yαxl by RL since
xk ∼ xl, completing the proof. �

Definition 3. A finite sequence (Q1, ..., Qm+1) with each Qi ∈ {R1, ..., Rn} is an indif-
ference sequence (IS) if there exists x1, ..., xm, y1, ..., ym with xk ∈ Qk, yk ∈ Qk+1 and
xk ∼ yk. The function v is a utility for the indifference sequence (Q1, ..., Qm) if v is affine
and increasing on each Qk and for all k, x, y ∈ Qk

⋃
Qk+1: x % y ⇐⇒ v(x) ≥ v(y).

For an indifference sequence (Q1, ..., Qm) with utility v, we label the range of
utilities as v(Qk) = (lk, uk) where lk ≤ uk. Note that we allow Qk = Ql for k 6= l.
Lemma 9. For an indifference sequence (Q1, ..., Qm), there is an affine, increasing
utility v for it.
Proof. The proof is by induction. We claim that there is a utility vk : X → R that is
utility for the IS (Q1, . . . , Qk) for any k. When k = 1 or k = 2, this is true by the above
lemmas. The induction hypothesis (IH) is that the claim is true for k = N . Consider
k = N + 1 and let vN be the utility for (Q1, . . . , QN) be index that exists by the IH. If
QN ⊆

⋃N
i=1Qi, then we are done. If not, then let αN+1, βN+1 be the scalars claimed to

exist by Lemma 8 so that v̂j = αN+1v̂l+βN+1 for Rl = QN and Rk = QN+1. Restricted
to QN , v̂l agrees with vN and is also affine, so there also exists α′, β′ so that

v̂l = α′vN + β′.

Define vN+1(x) = vN(x) if x ∈ ⋃Ni=1Qi and
vN+1 = αN+1α

′v̂N+1(·) + αN+1β
′ + βN+1

otherwise. Then, if l < N and x, y ∈ Ql
⋃
Ql+1, then we are done by the IH, since

vN+1(x) ≥ vN+1(y) ⇐⇒ vN(x) ≥ vN(y). If x, y ∈ QN
⋃
QN+1, then Lemma 8 and

construction implies the result. The claim then holds by induction.
�
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Lemma 10. Fix an indifference sequence (Q1, ..., Qn) with utility v. If xk ∈ Qk for
k = i, i+ 1, i+ 2 with xi ∼ xi+1 ∼ xi+2, then (Q1, ..., Qi, Qi+2, ..., Qn) is an indifference
sequence (after relabeling) with utility v.
Proof. The Lemma is vacuously true for any 1 or 2-element IS. Fix an IS (Q1, ..., Qn)
with n ≥ 3 and v as above, and suppose xk ∈ Qk for k = i, i + 1, i + 2 with xi ∼
xi+1 ∼ xi+2. By transitivity xi ∼ xi+2, so (Q1, ..., Qi, Qi+2, ..., Qn) is an IS; it remains
to be shown that v is a utility for it. There is an ε > 0 s.t. B = Bε(v(xi))) ⊂ (lk, uk)
for k = i, i + 1, i + 2. Let v−1(u) : B → Qi+1 be an arbitrary point in Qi+1 such that
v[v−1(u)] = u. Now, fix x ∈ Qi and y ∈ Qi+2. For α small enough, v(xαxi), v(yαxi+2) ∈
B. Then xαxi ∼ v−1(v(xαxi)) and yαxi+2 ∼ v−1(v(yαxi+2)). So

x % y ⇐⇒ xαxi % yαxi+2

⇐⇒ v−1(v(xαxi)) % v−1(v(yαxi+2))
⇐⇒ v[v−1(v(xαxi))] ≥ v[v−1(v(yαxi+2))]
⇐⇒ αv(x) + (1− α)v(xi) ≥ αv(y) + (1− α)v(xi+2)
⇐⇒ v(x) ≥ v(y)

This establishes the Lemma. �

Lemma 11. Fix an indifference sequence (Q1, ..., Qn) with utility v. If (l1, u1)⋂(ln, un) 6=
∅, then there exists i and xk ∈ Qk for k = i, i+ 1, i+ 2 with xi ∼ xi+1 ∼ xi+2.
Proof. If there is i with (li, ui)

⋂(li+2, ui+2) 6= ∅, then there is u ∈ ⋂
j=i,i+1,i+2(lj, uj)

so there exists xj ∈ Qj with v(xj) = u for j = i, i + 1, i + 2 and thus by hypothesis,
xi ∼ xi+1 ∼ xi+2. We show there exists such an i by contradiction. If li+2 > ui for all
i or li > ui+2 for all i, then (l1, u1)⋂(ln, un) = ∅, a contradiction. So there must exist
i such that [li+2 > ui and li+2 > ui+4] or [ui+2 < li and ui+2 < li+4]. In the first case,
li+2 ∈ (li+1, ui+1)⋂(li+3, ui+3); in the second, ui+2 ∈ (li+1, ui+1)⋂(li+3, ui+3). In either
case, we have a contradiction. �

Lemma 12. Fix an indifference sequence (Q1, ..., Qn) with utility v. Then for all
x, y ∈ ⋃iQi, x % y ⇐⇒ v(x) ≥ v(y).
Proof. This is clearly true if n = 1. (IH) Suppose the claim is true for any IS with
m < n elements. Fix an IS (Q1, ..., Qn) with utility v. If x /∈ Q1

⋃
Qn or y /∈ Q1

⋃
Qn,

then the claim immediately follows from the IH, and clearly holds if x, y ∈ Qi for some
i. So it suffices to consider arbitrary x ∈ Q1 and y ∈ Qn. By Lemmas 10 and 11,
if (u1, l1)⋂(ln, un) 6= ∅, we can form a shorter IS from Q1 to Qn and the claim then
follows from the IH.

There are two cases to consider: ln > u1 and un < l1. If ln > u1, then there
exists y′ ∈ Qn′ for n′ < n with v(y′) = ln. This follows from the construction of the
indifference sequence. The range of v restricted to ⋃n−1

i=1 Qi is
⋃n−1
i=1 (li, ui), which is

an open interval (l̄, ū) since (lt−1, ut−1)⋂(lt, ut) 6= ∅ for each t. Because xn−1 ∼ yn,
(ln−1, un−1)⋂(ln, un) 6= ∅. If ln /∈ (l̄, ū), then ln > ū ≥ u1 and the intersection above
must be empty. Hence, ln ∈ (l̄, ū) and we can find x ∈ Qn′ with v(x) = ln and n′ < n.
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By the IH, that (Q1, ..., Qn′) is an IS and v(y′) > v(x), y′ � x. Similarly, since
(Qn′ , ..., Qn) is an IS and v(y) > v(y′), y � y′. By transitivity, y � x and since v(y) >
ln > u1 > v(x), the claim holds. Similar arguments obtain the desired conclusion when
un < l1. �

Define the relation ∼= by x ∼= y ⇐⇒ there exists an indifference sequence
(Q1, ..., Qm) with x ∈ Q1 and y ∈ Qm. It is easy to see that ∼= is an equivalence
relation (reflexive and transitive). Let [x] denote the ∼= equivalence class of x.

Lemma 13. If y /∈ [x] and x � y, then x′ � y′ for all x′ ∈ [x] and y′ ∈ [y].

Proof. For regions Ri and Rj, either (i) there exists xi ∈ Ri and xj ∈ Rj so that
xi ∼ xj; or (ii) xi � xj for all xi ∈ Ri and xj ∈ Rj; or (iii) xj � xi for all xi ∈ Ri and
xj ∈ Rj.

To see this, we first show that for any x ∈ X and region i: the sets {y ∈ Ri : y � x}
and {y ∈ Ri : x � y} are open. Consider Ui(x) = {y ∈ Ri : y � x}. If Ui(x) is not
open, then there exists a point y0 ∈ Ui(x) and a sequence of points yn in Ri with
x % yn and yn → y0 since Ri is open. Since Ri is open, there is ε > 0 such that
y′n = y0 + ε

n
∈ Ri for all n ≥ 1. Observing that y′n � y0 � x % yn, since y′n → y0,

yn → y0 and y′n � y0 for all n, RC implies that ym � x for some m, a contradiction.
Similar arguments hold for the lower contour set.

Now, if neither (ii) nor (iii) holds, then after relabeling, there exist x ∈ Ri and
y, z ∈ Rj such that y � x � z. Let Uj(x) and Lj(x) be the strict upper and lower
contour sets of x in region j. Any point in Rj \ [Uj(x)⋃Lj(x)] is indifferent to x,
so either (i) holds or the set is empty. If empty, then Uj(x)⋃Lj(x) = Rj. Since
cl(Rj) = cl(Uj(x)⋃Lj(x)) = cl(Uj(x))⋃ cl(Lj(x)) is connected, there exists y0 ∈
cl(Uj(x))⋂ cl(Lj(x)). Then let yn ∈ Uj(x) and zn ∈ Lj(x) be such that yn, zn → y0.
Pick an ε > 0 so that Bε(x) ⊂ Ri. Then, yn � x for all n and x � x − ε/2, so there
is m such that zm � x − ε/2 by RC. By construction x % zm and if x ∼ zm we have
established (i), so assume x � zm. Note Bε(x) is connected. Let U ′ and L′ be the
Ri strict upper and lower contour sets for zm, intersected with Bε(x). They are open,
non-empty since x ∈ U ′ and x− ε/2 ∈ L′, non-intersecting subsets of Bε(x). Since they
cannot cover it, pick x′ ∈ Bε(x) \ [U ′⋃L′] and by Weak Order it must be indifferent
to zm.

Fix x, y ∈ X with y /∈ [x] and x � y, and assume x ∈ Rk. Pick any y′ ∈ [y]. By
definition, there is an IS (Q1, ..., Qm) with y′ ∈ Qm and y ∈ Q1. Let i = 1 and y1 = y.
If there exists y′′ ∈ Qi with y′′ % x, then y′′ % x � yi, so by the above arguments, we
can find z ∈ Qi with z ∼ x′ for x′ ∈ Rk. If that occurs, then (Rk, Qi, ..., Q1) is an IS
and y ∈ [x], a contradiction. Thus x � y′′ for all y′′ ∈ Qi.

Now, there exists yi+1 ∈ Qi+1 with x � yi+1 by transitivity and definition of IS.
Hence, we can apply above logic to Qi+1 as well: x � y′′ for all y′′ ∈ Qi+1. Inductively,
this extends all the way to Qm, so x � y′ in particular. Since y′ is arbitrary, this
extends to any y′ ∈ [y].
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Similar arguments show that x′ � y for any x′ ∈ [x]. Combining, x′ � y′ whenever
x′ ∈ [x] and y′ ∈ [y]. �

Let A1, ..., An be the distinct equivalence classes of ∼=. By Lemma 13, these sets
can be completely ordered by �, i.e. Ai � Aj ⇐⇒ x � y for all x ∈ Ai and y ∈ Aj.
WLOG, A1 � A2 � ... � An.

By Lemma 12, there is vi on Ai so that vi is affine and increasing on region
contained in Ai and x % y ⇐⇒ vi(x) ≥ vi(y) for all x, y ∈ Ai. By Unbounded and
Lemma 13, every unbounded region is a subset of A1, so vi(Ai) is bounded for all i > 1.
Define V (x) = v1(x) for all x ∈ A1. For x ∈ Ai with i > 1, define V (x) recursively by

V (x) = vi(x)− sup
y∈Ai

vi(y) + inf
y∈Ai−1

V (y)− 1.

Observe V (·) is a positive affine transformation of vi(·) when restricted to Ai, and if
x ∈ Ai, y ∈ Aj and i > j, then V (x) > V (y). Thus V represents % and is affine and
increasing when restricted to any given region.

Up to now, we fixed r ∈ X and constructed a representation for %r. Since r is
arbitrary, this establishes that each %r has a representation V (·|r) that is affine and
increasing on Ri(r) for i = 1, ..., n. Denoting uj(·|r) the restriction to Rj(r), we have
established the existence of an RPM if uj(·|r′) is a positive affine transformation of
uj(·|r) for any r, r′.

Lemma 14. For i = 1, ..., n and all r, r′ ∈ X, there are α > 0 and β ∈ R so that
ui(·|r′) = αui(·|r) + β.

Proof. Write u ≈ v if there are α > 0 and β ∈ R so that u = αv + β. Pick any r ∈ X
and let

E = {e ∈ X : ui(·|e) ≈ ui(·|r)}.
E is closed, since if en ∈ E and en → e ∈ X, then for any open ball B ⊂ Ri(e),
Ri(en)⋂B 6= ∅ for n large enough by lower semicontinuity of Ri. Observe B′ =
Ri(en)⋂B ⊂ Ri(en)⋂Ri(e) is a mixture space and FI plus the usual uniqueness argu-
ment for affine utility functions gives that ui(·|en) ≈ ui(·|e). Now, consider E ′ = cl(Ec).
If E ′⋂E 6= ∅, then the same argument as above with a sequence in Ec converging to
e ∈ E yields a contradiction. Hence E ′⋂E = ∅ and E ⋃E ′ = X. Since X is connected,
E ′ = ∅ and E = X. �

Thus ui(·|r) is an affine transformation of ui(·|r′) for all r, r′ ∈ X and {%r}r∈X
conforms to RPM under R. �

B.1. Other models and RPM. In this subsection, we present the functional forms
of the other models of salience we discussed (adapted to be linear, in some cases, to
aid comparability), and show that they are not RPM an so not BGS.

• Gabaix and Laibson [2006] assume that consumers choose between (−p,−p∗)
and (−p−e, 0) where (−p,−p∗) indicates purchasing an add-on while (−p−e, 0)
indicates paying an additional e to substitute away from the add-on. True utility
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is u(x, y) = x+ y. Sophisticated agents and informed myopic agents maximize
u, while uninformed myopic agents maximize uM(x, y) = x.
• Bhatia and Golman [2013] assume that the DM chooses the bundle x that
maximizes

U(x|r) = α1(r1)[V (x1)− V (r1)] + α2(r2)[V (x2)− V (r2)]
given that a reference point r, where each αi is increasing and positive.
• Gabaix [2014] assumes a rational DM would maximize u(a, w) but actually
maximizes

u (a, (w1m
∗
1, . . . , wnm

∗
n))

where

m∗ ∈ arg min
m∈[0,1]n

1
2
∑
i,j

(1−mi)Λij(1−mj) + κ
∑
i

mα
i

where Λij incorporates the “variance” in the marginal utility of dimensions i
and j. When n is large, m∗i is often zero, so (w1m

∗
1, . . . , wnm

∗
n) is a “sparse”

vector.
All of the above fail to be RPM as the indifference curves have the same slope

everywhere for a fixed reference. If they were RPM, then they would necessarily have
only a single region. Single region RPM coincides with the neoclassical model.

Appendix C. Incomplete Data and BGS

This section shows how to use Theorem 1 to test whether the BGS model explains
a DM’s behavior with only incomplete data. An incomplete data set takes the following
form:

D ⊂ {(S, x) | S ∈ X and x ∈ c(S)}
We assume that the cardinality of D is finite. The goal is to provide a simple, testable
condition under which the BGS model rationalizes the data.

The key to our approach is to follow Salience-SARP by treating alternatives with
different salience distinctly. We also rely heavily on reflection, using it to replace each
revealed comparison with one between two products that are both attribute 1-salient.
Write x′ = (x2, x1) for the reflection of x = (x1, x2). Observe that if x ∈ R1(S) and
y′ ∈ S

⋂
R2(S), then wx1 + (1 − w)x2 ≥ wy1 + (1 − w)y2. Hence, the DM’s choice

reveals that an attribute 1-salient x is revealed preferred to an attribute 1-salient y,
even though y need not belong to S (see Figure 5). We term this “revealed saliently
preferred,” and extend it to all possible combinations as follows.

Definition 4. A vector x is revealed saliently preferred to a vector y from the data set
D, written xRDy, if there exists S ∈ X so that one of the following holds:

(1) (S, x) ∈ D, x ∈ R1(A(S)) and y ∈ S ⋂R1(A(S))
(2) (S, x) ∈ D, x ∈ R1(A(S)) and y′ ∈ S ⋂R2(A(S))
(3) (S, x′) ∈ D, x ∈ R2(A(S)) and y ∈ S ⋂R1(A(S))
(4) (S, x′) ∈ D, x ∈ R2(A(S)) and y′ ∈ S ⋂R2(A(S))
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Figure 5. Revealed Saliently Preferred Relation

The axiom ensure that RD has no cycles that reveal Monotonicity violations. Let
R̄ be the transitive closure of RD, i.e. y1R̄yn only if there exist y2, . . . , yn−1 so that
y1RDy2RD . . . RDyn.

Axiom 8 (Salience GARP). For any α ∈ [0, 1] and x, y, x̂, ŷ ∈ X: if xR̄y and x̂R̄ŷ,
then either αx1 + (1− α)x̂1 ≥ αy1 + (1− α)ŷ1 or αx2 + (1− α)x̂2 ≥ αy2 + (1− α)ŷ2.

Also, RD values dimension 1 more than dimension 2.

Axiom 9 (SDO). If xRDy and x2 ≥ y2, then x2 − y2 > y1 − x1.

These two properties characterize the data sets that are rationalizable by the BGS
model.

Theorem 6. The finite data set D satisfies Salience GARP and SDO if and only if is
rationalized by the BGS model.

Proof of Theorem 6. Let A =
{
x− y : xR̄y

}
. The goal is to find a separating hyper-

plane between A and the set B = B1
⋃
B2 where B1 = {x ∈ R2 : x1 < 0 ≤ x2 & x1 ≤

−x2} and B2 = {x ∈ R2 : x1 < 0 & x2 < 0}. Note that A intersects neither B2 (by
Salience-GARP) nor B1 (by SDO). We must show that co(A) does not intersect the
interior of B.

We show that bd(co(A))⋂R−− = ∅ implies co(A)⋂R−− = ∅. Suppose not, so
bd(co(A)) does not intersect R−− but there exists ā ∈ co(A)⋂R−−. By Caratheodory’s
thoerem, ā = αa1 + βa2 + (1 − α − β)a3 for a1, a2, a3 extreme points (and so on the
boundary) of A. If ai ≥ 0 for some i, an immediate contradiction is obtained. Moreover,
if all three lie in the same quadrant, so is any convex combination of the three. Hence
WLOG it suffices to consider the case where a1

1 > 0 > a1
2 and a2

2, a
3
2 > 0 > a2

1, a
3
1.

There exists an increasing affine functionH so thatH(a1) = H(ā). IfH(a2), H(a3) >
H(ā), then H(ā) > H(ā), so WLOG, H(a2) < H(ā). Consider Q = {αa1 + (1− α)a2 :
α ∈ [0, 1]}. Since H(x) < H(ā) for x ∈ Q \ {a1} and H is increasing, Q⋂{x : x ≥ ā}
is empty. Now, Q intersects {x ∈ X : ā� x} since Q is a connected set and intersects
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both the disjoint open sets {x 6� a : x1 > ā1} and {x 6� a : x2 > ā2}. But this
contradicts our hypothesis that bd(co(A))⋂R−− = ∅.

Then, the boundary of co(A) does not intersect B2 by Salience GARP, so co(A)
does not intersect B2. Suppose co(A) intersects B1. By SDO, there are x, x′ ∈ A so
that co({x, x′})⋂B1 6= ∅. WLOG, x1 ≤ 0 ≤ x2 and x′1 ≥ 0 ≥ x′2. Consider the line
that passes through the two points. If its first dimensional intercept is positive, then
the line does not pass through B1 since x /∈ B1 by SDO. So the intercept must be
negative. But then it passes through B2, contradicting Salience-GARP.

To wrap up, use the separating hyperplane theorem to get a linear function l that
separates A from the interior of B. this passes through 0 since 0 belongs to boundary
of both sets. Also, we can take ||l||∞ = 1, and l(1, 0) = w and l(0, 1) = 1 − w, and
w ≥ 1/2 since B1 ⊂ B. Then we have constructed our representation: if (S, x) ∈ D and
x ∈ R1(A(S)), then xR̄y when y ∈ S ⋂R1(A(S)) and xR̄y′ when y ∈ S ⋂R2(A(S)).
Then, l(x−y) ≥ 0 and l(x) ≥ l(y) in the first case and l(x) ≥ l(y′) in the second place.
Similar arguments with x′ replacing x cover (S, x) ∈ D and x ∈ R2(A(S)). �


