Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion

Equilibrium Securitization with Diverse Beliefs

Andrew Ellis, Michele Piccione, and Shengxing Zhang

London School of Economics

May 29, 2018

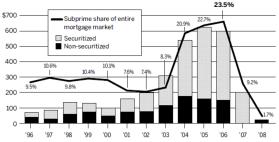
Subprime mortgage crisis

Securitization: pooling and tranching.

Senior tranche of pooled subprime mortgages thought safe Post crisis: correlation underestimated so not actually safe

Subprime Mortgage Originations

In 2006, \$600 billion of subprime loans were originated, most of which were securitized. That year, subprime lending accounted for 23.5% of all mortgage originations.



IN BILLIONS OF DOLLARS

NOTE: Percent securitized is defined as subprime securities issued divided by originations in a given year. In 2007, securities issued exceeded originations.

SOURCE: Inside Mortgage Finance

Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion
Motivatio	on				

Question:

- Why and how to securitize assets when investors have diverse beliefs?
- What are the consequences of securitization?

Approach:

• Optimal security design with heterogeneous beliefs

Introduction Model Risk Neutrality Risk Aversion Pooling Conclusion
Overview of Model

- GE model with
 - a risk free asset called cash and
 - a risky asset (later, collection of risky assets)
- Heterogeneous beliefs about asset's payoff
 - e.g. traders agree on mean but not correlation
- Intermediaries
 - purchase assets
 - issue monotone securities backed by the risky asset

Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion
Results					

- Simple graphical method to characterize securities sold
- When risk-neutral agents disagree about distribution:
 - Tranching emerges as optimal securitization
 - Traders sort amongst tranches according to
 - misperceptions of correlation
 - value of liquidity
 - Asset price rises above expected value
 - Asset price increases in amount of disagreement

- Incentive for intermediary to pool assets and then tranche the pool when traders disagree about their correlation
 - pooling creates "complexity" and increases revenue by inducing disagreement (cf Ghent et al., 2017)
- Partial equilibrium with risk aversion: very similar to risk-neutral
- General equilibrium with risk aversion:
 - when same beliefs but different tastes, no tranching and sorting
 - (without background risk)
 - Speculation vs. Risk-sharing (vs. Adverse selection)

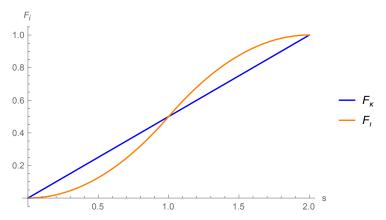
Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion
Setup					

- Two period exchange economy
- One representative intermediary (issuer)
- N types of traders of equal measure
- Assets
 - Risky asset pays s in state $s \in S \equiv [0, \overline{s}]$
 - Safe asset (cash) pays 1 in each state
- Type *i* trader:
 - belief about risky asset payoff: CDF *F_i F_i* is non-atomic, support in *S*
 - continuously differentiable, concave, and strictly increasing utility index *u_i* with first derivative bounded
 - endowment:

 e_i^c units of cash, e_i^a assets, θ_i share of the intermediary

Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion
Example:					

- *N* = 2
- Asset is bundle of two mortgages, each distributed U[0,1]
- Trader κ (blue) thinks perfectly correlated
- Trader ι (orange) thinks independent



Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion
Model					

- The intermediary issues securities backed by the risky asset
- Set of securities is

$$\mathcal{B} = \{\phi: \mathcal{S} \to \mathbb{R}_+ | \phi \text{ is increasing} \}$$

- ϕ returns $\phi(s)$ in state s
- increasing: moral hazard
- Let $\mathcal{M}(\mathcal{B})$ be set of finite, Borel measures on \mathcal{B} (positive)
- Purchases a_0 units of asset, sells $\mu_0 \in \mathcal{M}(\mathcal{B})$ securities
- Feasibility of the securities sold:

$$\int_{\mathcal{B}} \phi(s) d\mu_0 \leq sa_0$$

Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion
Model					

- Competitive markets for the asset and each security
 - Cash numeraire: $p_c = 1$
 - Price of the risky asset: p
 - Price of security ϕ : $q(\phi)$
 - $q:\mathcal{B}
 ightarrow \mathbb{R}_+$ is price function
- No short selling

Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion
lssuer's	problem				

Issuer chooses measure $\mu_0 \in \mathcal{M}(\mathcal{B})$ to maximize profit

$$\pi = \int_{\mathcal{B}} q d\mu_0 - p a_0$$

subject to

$$\int_{\mathcal{B}} \phi(s) d\mu_0 \leq {\it sa}_0 \, orall s \in S$$

and non-negativity

Introduction Model Risk Neutrality Risk Aversion Pooling Conclusion
Trader *i*'s problem

Choose cash c_i , asset a_i and security purchases $\mu_i \in \mathcal{M}(\mathcal{B})$ to maximize utility

$$\max_{a_i,\mu_i,c_i} \mathbb{E}_i \left[u_i \left(sa_i + \int_{\mathcal{B}} \phi(s) d\mu_i + c_i \right) \right],$$

subject to

$$pa_i + \int_{\mathcal{B}} qd\mu_i + c_i \leq e_i^c + pe_i^a + heta_i\pi$$

and non-negativity

• No short selling: $\mu_i \ge 0$

An **equilibrium** for the economy $(F_i, e_i^a, e_i^c, \theta_i)_{i=1}^N$ is an allocation $(a_i, c_i, \mu_i)_{i=1}^N$, π , μ_0 and price vector (p, q) so that

- The intermediary and traders solve their problems
- The allocation is feasible:

$$\sum_{i=0}^{N} a_i \leq \sum_{i=1}^{N} e_i^a
onumber \ \sum_{i=1}^{N} c_i \leq \sum_{i=1}^{N} e_i^c
onumber \ \sum_{i=1}^{N} \mu_i = \mu_0$$

Proposition

An equilibrium exists.

Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion
Security	pricing				

Start with risk neutral traders: $u_i(x) = x$ for all *i* and all *x*

• Obs. 1: constant marginal value of cash

 $V_i(w; p, q) = v_i w$ $w = pe_i^a + e_i^c + \theta_i \pi.$ $v_i : \text{trader } i\text{'s marginal return on wealth}$

- v_i is implicitly a function of p and q
 call v = (v₁,..., v_N) the "return vector"
- **Obs. 2:** equilibrium price of security ϕ ,

$$q(\phi) \geq \max_i \mathbb{E}_i \left[\frac{1}{v_i} \phi(s)
ight],$$

with equality whenever $\mu_0(\{\phi\}) > 0$

Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion
Intermed	liary's se	curitization d	ecision		

• We can write

$$\phi(s) = \int_{\mathcal{S}} \chi_{[x,\bar{s}]}(s) d\phi(x)$$

(Lebesgue-Stieltjes measure; χ_E is indicator of E)

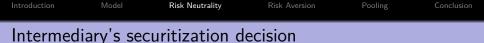
• By Fubini's Theorem, we have that

$$\mathbb{E}_i\left[\frac{1}{v_i}\phi(s)\right] = \int_S \frac{1}{v_i}\left[1 - F_i(x)\right] d\phi(x)$$

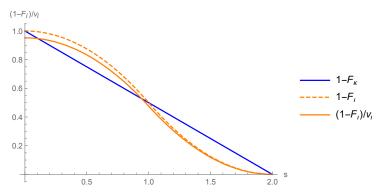
• Maximal revenue of the intermediary, as a function of v, is

$$r(v) = \int_0^{\bar{s}} \max_k v_k^{-1} \left[1 - F_k(x) \right] dx$$

per unit of asset securitized

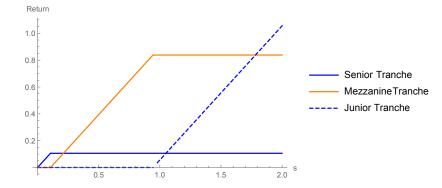


- Simple method for solving problem:
 - Plot Inverse CDFs, adjusted for value of cash
 - Ø Maximum revenue is area below upper-envelope
 - Sind tranches corresponding to upper-envelope



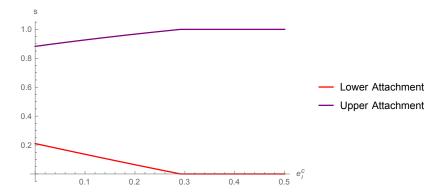
Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion
Intermed	liary's see	curitization d	ecision		

- Simple method for solving problem:
 - Plot Inverse CDFs, adjusted for rate of return
 - 2 Maximum revenue is area under upper-envelope
 - Sind tranches corresponding to upper-envelope



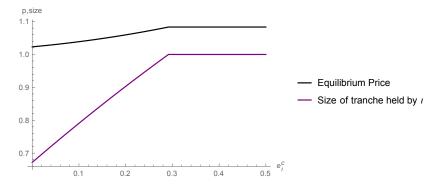
Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion
Equilibri	um				

Equilibrium with endowments $e_{\iota}^{a} = e_{\kappa}^{a} = \frac{1}{2}$, $e_{\kappa}^{c} = 1$ and $e_{\iota}^{c} > 0$:



Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion
Equilibriu	ım				

Equilibrium with endowments
$$e_{\iota}^{a} = e_{\kappa}^{a} = \frac{1}{2}$$
, $e_{\kappa}^{c} = 1$ and $e_{\iota}^{c} > 0$:



Introduction Model Risk Neutrality Risk Aversion Pooling Conclusion
Interlude: Assumption

Assumption : Finite Crossing

For distinct traders i, j and any number k > 0,

$$1-F_i(x)=k\left[1-F_j(x)\right]$$

for at most finitely many $x \in [0, \overline{s}]$

- Finite Crossing implied by any of the following (among others):
 - Strict MLRP
 - Finite (or single) Crossing of Hazard Rates
 - Each F_i analytic on $(0, \bar{s})$

Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion			
Equilibrium properties								

Proposition

With risk neutrality:

• Equilibrium utility and price are unique, $p = r(\hat{v})$

In addition, with Finite Crossing:

- equilibrium consumption is state-by-state unique and
- equilibrium supply of securities can equal a finite set of tranches
- Tranche promises cash flow of asset above a but below b
 - Security $\phi_{[a,b]}$ with $\phi_{[a,b]}(0) = 0$, slope 1 on interval [a,b], and slope 0 otherwise

Introduction Model Risk Neutrality Risk Aversion Pooling Conclusion
Equilibrium properties: tranching

With Finite Crossing, tranching and sorting equilibrium exists:

Definition

An equilibrium is a tranching and sorting equilibrium if

- only tranches are sold
- 2 each tranche is targeted at a particular trader.

proper if at least two are sold and none can be combined

Formally, there are intervals $\{[a_i, b_i] : i = 1, ..., m\}$ with $a_1 = 0$, $b_m = \overline{s}$, $a_i < b_i$, and $a_{i+1} = b_i$ such that $\hat{\mu}_0\left(\left\{\phi_{[a_i, b_i]} : i = 1, ..., m\right\}^c\right) = 0$ and $\hat{\mu}_i(\left\{\phi_{[a_j, b_j]}\right\}) > 0$ implies that $\hat{\mu}_k(\left\{\phi_{[a_j, b_j]}\right\}) = 0$ for all $k \neq i$. *Proper* if $m \ge 2$ and $\hat{\mu}_i(\left\{\phi_{[a_j, b_j]}\right\}) > 0$ implies $\hat{\mu}_i(\left\{\phi_{[a_{j+1}, b_{j+1}]}\right\}) = \hat{\mu}_i(\left\{\phi_{[a_{j-1}, b_{j-1}]}\right\}) = 0$. Introduction Model Risk Neutrality Risk Aversion Pooling Conclusion
Equilibrium properties: tranching

With Finite Crossing, tranching and sorting equilibrium exists:

Definition

An equilibrium is a tranching and sorting equilibrium if

- only tranches are sold
- 2 each tranche is targeted at a particular trader.

proper if at least two are sold and none can be combined

Formally, there are intervals $\{[a_i, b_i] : i = 1, ..., m\}$ with $a_1 = 0$, $b_m = \bar{s}, a_i < b_i$, and $a_{i+1} = b_i$ such that $\hat{\mu}_0 \left(\left\{ \phi_{[a_i, b_i]} : i = 1, ..., m \right\}^c \right) = 0$ and $\hat{\mu}_i(\{\phi_{[a_j, b_j]}\}) > 0$ implies that $\hat{\mu}_k(\{\phi_{[a_j, b_j]}\}) = 0$ for all $k \neq i$. *Proper* if $m \ge 2$ and $\hat{\mu}_i(\{\phi_{[a_j, b_j]}\}) > 0$ implies $\hat{\mu}_i(\{\phi_{[a_{j+1}, b_{j+1}]}\}) = \hat{\mu}_i(\{\phi_{[a_{j-1}, b_{j-1}]}\}) = 0$.

Equilibrium properties: prices

Proposition

With risk neutrality, if $\mathbb{E}_i[s] = m$ for i = 1, ...N, then in any equilibrium, $\hat{p} \ge m$. Under Finite Crossing, this is strict.

• Similar to Harrison-Kreps and Fostel-Geanakoplos

Introduction Model Risk Neutrality Risk Aversion Pooling Conclusion Equilibrium properties: changes in beliefs

Proposition

Let e_1^c , e_2^c be sufficiently large and $\mathbb{E}_{F_1}[s] = \mathbb{E}_{\tilde{F}_1}[s]$. With risk neutrality, replacing Trader 1's beliefs F_1 with \tilde{F}_1 **increases the equilibrium price** if and only if

$$\int_0^{ar{s}} | ilde{F}_1(x) - F_2(x)| dx \geq \int_0^{ar{s}} |F_1(x) - F_2(x)| dx.$$

- increasing disagreement increases price
- correct notion of disagreement is L₁-norm between CDFs

Proposition

Consider a tranching and sorting equilibrium where Trader i holds the senior tranche. With risk neutrality and Finite crossing: If the cash endowment of Trader i is **increases** by Δ , then Trader i's equilibrium allocation of cash **increases** by Δ

- Generically, trader who holds senior tranche also holds cash
- Misidentification of risk preference from equilibrium demand
- Intuition:
 - Difference in beliefs about low returns is small
 - Demanded rate of return alone fixes WTP for senior tranche
 - Cash gives lowest rate, so this trader also holds cash

Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion
Risk Ave	ersion				

• Trader *i* maximizes

$$\mathbb{E}_i\left[u_i\left(\mathsf{s}\mathsf{a}_i+\int_{\mathcal{B}}\phi(\mathsf{s})\mu_i(\mathsf{d}\phi)+\mathsf{c}_i
ight)
ight],$$

where utility index $u_i : \mathbb{R}_+ \to \mathbb{R}$ is

- strictly increasing
- continuously differentiable with bounded derivative
- weakly (or strictly) concave
- What do optimal securities look like?

Skip to Pooling

Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion
Security	Pricing				

- Two important endogenous variables:
 - $w(s) = (w_1(s), ..., w_2(s))$, the state-by-state wealth function
 - $v = (v_1, \ldots, v_N)$, the *return vector* (on ex ante wealth)
 - Lagrange multiplier on Budget Constraint
- For any security ϕ , we must have that

$$\int_0^{\bar{s}} u_i(w_i(s) + \epsilon \phi(s)) dF_i - v_i q(\phi) \epsilon \leq \int_0^{\bar{s}} u_i(w_i(s)) dF_i$$

for infinitessimal $\epsilon > 0$ (also $\epsilon \le 0$ if $\mu_i(\{\phi\}) > 0$)

• Dividing by ϵ and letting $\epsilon \rightarrow$ 0, we have

$$\frac{1}{v_i}\int_{\mathcal{S}}u_i'(w_i(s))\phi(s)dF_i\leq q(\phi)$$

with equality for $\hat{\mu}_{0}\text{-a.e}~\phi$

Introduction	Model	Risk Neutrality	Risk Aversion	Pooling	Conclusion
Security	Pricing				

• Rewriting:

$$q(\phi) = \frac{1}{v_i} \int_{S} u'_i(w_i(s))\phi(s)dF_i$$

= $\max_i \left\{ \frac{1}{\tilde{v}_i} \left(Cov_i \left[\phi, \frac{u'_i \circ w_i}{\mathbb{E}_i \left[u'_i \circ w_i \right]} \right] + \mathbb{E}_i \left[\phi \right] \right) \right\}$

where $\tilde{v}_i = \frac{v_i}{\mathbb{E}_i \left[u_i' \circ w_i \right]}$ is opportunity cost in terms of cash

- Incentive to take advantage of disagreement
- But blunted by desire to share risks (*Cov_i* term negative)

• Find optimal securities in similar way to before: let

$$G_i(x|w) = \int_x^{\overline{s}} u'_i(w_i(s)) dF_i(s)$$

•
$$u'_i(x) = 1$$
 implies $G_i(x|w) = 1 - F_i(x)$

• For right-continuous ϕ , use Fubini to show

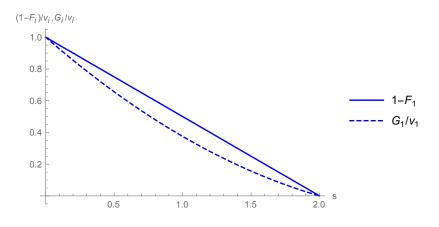
$$\int_{x\in S} u_i'(w_i(x))\phi(x)dF_i(x) = \int_{x\in S} G_i(x|w_i)d\phi(x)$$

• So for μ_0 -a.e. $\phi \in \mathcal{B}$ we must have

$$q(\phi) = \max_{k} \frac{1}{v_k} \int_{S} G_k(x|w) d\phi(x)$$

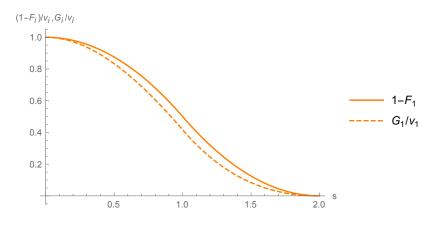
• Can solve issuer's problem as before, when we replace $v_i^{-1} [1 - F_i(x)]$ with $v_i^{-1}G_i(x)$

Intermediary's securitization decision



- $u_i(x) = x \frac{1}{8}x^2$ and $w_i(s) = 1 + s$ for i = 1, 2
- same beliefs as before

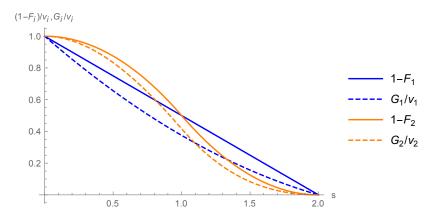
Intermediary's securitization decision



• $u_i(x) = x - \frac{1}{8}x^2$ and $w_i(s) = 1 + s$ for i = 1, 2

• same beliefs as before

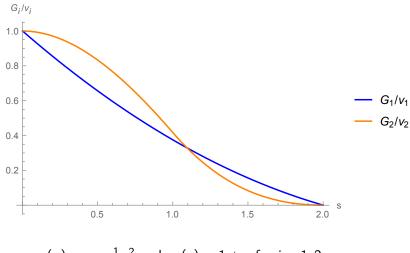
Intermediary's securitization decision



•
$$u_i(x) = x - \frac{1}{8}x^2$$
 and $w_i(s) = 1 + s$ for $i = 1, 2$

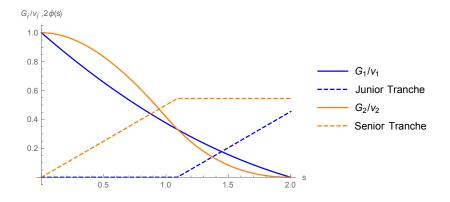
same beliefs as before

Intermediary's securitization decision



u_i(x) = x - ¹/₈x² and w_i(s) = 1 + s for i = 1, 2
same beliefs as before

Intermediary's securitization decision



- $u_i(x) = x \frac{1}{8}x^2$ and $w_i(s) = 1 + s$ for i = 1, 2
- same beliefs as before
- **NB**: Not equilibrium $-w_i(s)$ does not match up

Introduction Model Risk Neutrality Risk Aversion Pooling Conclusion
Intermediary's securitization decision

Proposition

If the equilibrium return vector is \hat{v} and state-by-state wealth is $\hat{w},$ then the issuer obtains revenue

$$\int_0^{\bar{s}} \max_k \hat{v}_k^{-1} G_k(x|\hat{w}) dx.$$

• Generalizes previous result since $G_k(x|\hat{w}) = 1 - F_k(x)$ with risk neutrality

Diverse beliefs vs diverse tastes

Proposition

For traders with strictly concave utility indices and homogeneous, full-support beliefs, no proper tranching and sorting equilibrium exists when endowments are large enough that all traders hold cash.

- Diverse tastes alone does not generate tranching
- Optimal securitization does not allocate risky tranches to those most willing to bear it

Introduction Model Risk Neutrality Risk Aversion Pooling Conclusion
Diverse beliefs vs diverse tastes

- Suppose each Trader *i* has a CARA utility with index α_i
- Equilibrium with large enough cash endowments and same beliefs:
 - Trader *i* purchases $\frac{\alpha_i^{-1}}{\sum_{k=1}^{N} \alpha_k^{-1}}$ units of the asset and no securities
 - The equilibruim asset price is

$$\hat{p} = \frac{\int_0^{\bar{s}} s \exp\left[-\left(\sum_{k=1}^N \alpha_k^{-1}\right)^{-1} s\right] dF(s)}{\int_0^{\bar{s}} \exp\left[-\left(\sum_{k=1}^N \alpha_k^{-1}\right)^{-1} s\right] dF(s)}$$

• Tranching has no value since

$$\frac{1}{v_i}G_i(x|w_i(s)) = \frac{\int_x^{\overline{s}} \exp\left[-\left(\sum_{k=1}^N \alpha_k^{-1}\right)^{-1}s\right] dF(s)}{\int_0^{\overline{s}} \exp\left[-\left(\sum_{k=1}^N \alpha_k^{-1}\right)^{-1}s\right] dF(s)}$$

Setup with two types of risky assets

- Two traders
- Two types of risky assets, with payoffs $s_1 \in S_1$ and $s_2 \in S_2$
 - e.g. mortgages, credit card debt, auto-loans
- Endowment of type *i* trader: e_i^c , e_i^1 , e_i^2
- Intermediary
 - purchases some amount of each asset
 - sells securities backed by return of entire pool

Introduction Model Risk Neutrality Risk Aversion Pooling Conclusion
Setup with two types of risky assets

- Trader *i* thinks S₁, S₂ independent with probability ρ_i; otherwise, perfectly correlated
- Each asset has same marginal density f
 - Same marginal beliefs
 - No role for securities backed by single asset
- f differentiable, log-concave and symmetric about its mean
 - Applies to the uniform, normal, logistic or truncated normal distributions

- The intermediary purchases a_0^j units of asset j
 - $h = h(a_0) \equiv \frac{a_0^1}{a_0^1 + a_0^2}$: proportion of type 1 asset in his pool
- Same set of contracts as before, but ϕ returns $\phi(s_h)$ where

$$s_h = hs_1 + (1-h)s_2$$

- Write $F^h(\cdot)$ for CDF of s_h
- Maximizes profit

$$\max_{a_{0},\mu_{0}} \left[\int_{\mathcal{B}} q_{h(a_{0})}(\phi) d\mu_{0} - p_{1}a_{0}^{1} - p_{2}a_{0}^{2} \right]$$

subject to

$$\int_{\mathcal{B}} \phi(s) d\mu_0 \leq (a_0^1 + a_0^2) s, \, orall s \in [0, ar{s}]$$

Pooling characterization

Proposition

If each e_c^i is large enough, then there exist an equilibrium where all assets are pooled and the price of both assets exceeds their mean. More formally: $\hat{a}_o^j = e_1^j + e_2^j$ for j = 1, 2,

$$\hat{h} = rac{\sum_{i=1}^{2} e_i^1}{\sum_{i=1}^{2} e_i^1 + \sum_{i=1}^{2} e_i^2} \hat{p}_1 = R(\hat{h}) + (1 - \hat{h})R'(\hat{h}) \hat{p}_2 = R(\hat{h}) - \hat{h}R'(\hat{h})$$

for $R(h) = \int_{\mathcal{S}} \max_k (1 - F_k^h(x)) dx$

- Pooling and tranching allow traders to bet on correlation
 (the correlation trade)
- Drives up asset price sell asset and use to speculate
- "complexity" causes disagreement but does not deceive traders

Introduction Model Risk Neutrality Risk Aversion Pooling Conclusion
Conclusion and Related Literature

• Collateralized loans with diverse beliefs:

Simsek (2013a), Geanakoplos and Zame (1997/2014), Geanakoplos (2001/03), Fostel and Geanakoplos (2015), Gong and Phelan (2016), Toda (2015), \dots

- Existing literature focuses on
 - a particular structure for possible securities and
 - optimists vs pessimists: first moment heterogeneity
- Optimal security design Allen and Gale (1988)
 - with diverse beliefs: Germaise (2001), Simsek (2013b), Ortner-Schmalz (2016)
 - under adverse selection: Dang, Gorton and Holmstrom (2015); DeMarzo-Duffie (1999); Fahri and Tirole (2015)
- Correlation misperception: Ellis and Piccione (2017)