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introduction

How should research / learning be conducted?
I Bayesianism: well-studied rational model of learning

In research communities, acceptance of result requires
identification, which requires an (untestable) assumption
Assumptions do not have any special role in Bayesianism
How does assumption-based learning differ from Bayesian
learning?
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Assumption-based Learning

Model where research conducted ⇐⇒ an “identifying
assumption” is sufficiently plausible & beliefs updated as if
assumption held
Rationales:
I Complexity of processing and communicating all uncertainties
I Impracticality of strict Bayesianism
I The need for consensus

Two key frictions relative to Bayesianism:
I Not all informative research conducted
I Uncertainty about assumption not incorporated in update
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Results

1 Application to stylized examples of research methodologies
2 Impossibility of (certain) research speed up
3 Sufficient condition for constant research speed
4 Characterization of limiting beliefs



Model

Fixed parameter ω = (ω1, . . . , ωn) ∈ Ω ⊂ Rn drawn once

Representative researcher wants to answer a research
question, represented by a subset Q of {1, . . . , n} that
indicates which of the fixed parameters they are trying to learn
I ωQ ≡ (ωi)i∈Q is the answer to the question

Researcher has a prior belief µ over Ω
I Independence across components of ω
I Admits probability density function (also denoted µ)

Running example, a contaminated experiment:
Fixed parameters are a true effect ω1 and a “friction” ω2
Researcher wants to know true effect: Q = {1}
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Model
Time is discrete & infinite: t = 1, 2, 3, ...

In period t:
beliefs entering period have been updated using history ht

context θt ∈ Θ is drawn (iid) and observed by researcher
latent variable ut ∈ U also drawn (iid) but not observed
Researcher decides whether to conduct research
If they conduct research, they observe statistic st ∈ S;
otherwise move on to next period with same beliefs

Beliefs over xt =
(
st, ut, θt, ω

)
have density

P (xt) = µ (ω) · pθ
(
θt
)
· pu

(
ut
)
· p
(
st|ut, θt, ω

)
For results/definitions: S,U are finite, conditional distribution of st
has full-support, & Ω,Θ are compact, convex
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Model

Running example, continued:
at is whether to conduct experiment
st ∈ R is result of experiment
No unobserved variables
θt ∈ [0, 1] is quality of experiment
Data-generating process:

st =ω1 + θtω2 + εt

I Result of experiment is true effect plus friction plus noise
I Bias from friction larger in lower quality (higher θt settings)



Model: Assumptions

An assumption is a value θ∗ of the context parameters

Definition
An assumption θ∗ is identifying w.r.t Q if for every ω, ω′ ∈ Ω:

ωQ 6= ω′Q =⇒ p (s|ω′, θ∗) 6= p (s|ω, θ∗) for some s

Interpretation: Under the assumption, repeated observation
of the statistic gives a definitive answer to the question
I Running example: θ∗ = 0 is identifying (no friction)

There may be zero, one, or many identifying assumptions;
we assume one throughout but this can be relaxed
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Model: Decision

Researcher makes the identifying assumption in period t iff

D
(
P (s, u | θt, ht) ‖ P (s, u | θ∗, ht)

)
≤ K

for some constant K > 0
I D is an f -divergence:

D(p(x) ‖ q(x)) = Eq

[
f

(
p(x)
q(x)

)]
where f strictly convex & f(1) = 0.

I In examples, D = DKL is Kullback-Leibler: f(y) = y ln y
I NB: between beliefs about both s and u

ΘR(µ′) – contexts where learning occurs given belief µ′ over Ω
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Model: Updating

If they conduct research, then they observe st and update via
Bayes’ rule given θ∗:

µ
(
ω|ht+1

)
= p

(
st|θ∗, ω

)
µ
(
ω|ht

)
p (st|θ∗, ht)

for (almost) every ω

(even if θt 6= θ∗!)

If they don’t, then they pass over the opportunity to learn

µ
(
·|ht+1

)
= µ

(
·|ht

)



Contaminated Experiment

ω = (ω1, ω2) & ωQ = ω1

st = ω1 + θtω2 + εt

εt is noise: zero mean, unit variance, & indep. of all other vars
θt ∈ [0, 1] so θ∗ = 0 is an identifying assumption

If ω1, ω2, ε
t are indep. Normals w/ means m1,m2, 0, then

θ∗ = 0 is the unique identifying assumption

Assumes the friction can be neglected

NB: under θ∗, st reveals nothing about ω2
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Contaminated Experiment

In period t given ht:
st|θt ∼ N

(
m1(ht) + θtm2, (σ1(ht))2 + (θt)2σ2

2 + 1
)

st|θ∗ ∼ N
(
m1(ht), (σ1(ht))2 + 1

)
KL Divergence of assumption equals

1
2

[(
θt
)2 σ2

2 +m2
2

1 + (σ1(ht))2 − ln
(

1 +
(
θt
)2
σ2

2
1 + (σ1(ht))2

)]

only non-constant terms are (σ1(ht))2 & θt

I DKL decreases with σ2
1(ht)

more precise beliefs =⇒ more change from θ

I DKL increases with θt, so ΘR(µ(·|ht)) = [0, θ(ht)]
more different contexts =⇒ less similar distributions



Contaminated Experiment

(σ1(ht))2 shrinks deterministically each time research occurs

=⇒ DKL increases over time for any given θ

=⇒ θ(ht) decreases over time (to some θ̄∗ > 0)

Therefore research slows down over time
(but never entirely stops)

If ω∗ is true parameter, then beliefs converge a.s. to

ω∗1 + E0
[
θt|θt ≤ θ̄∗

]
ω∗2



Result I: Impossiblity of
accelerating research

Proposition
Suppose that D

(
P
(
s, u|θt, ht

)
||P

(
s, u|θ∗, ht

))
is always

quasi-convex in θ.
If ΘR

(
µ
(
ht+1)) \ΘR

(
µ
(
ht
))
6= ∅ with positive probability

then ΘR
(
µ
(
ht
))
\ΘR

(
µ
(
ht+1)) 6= ∅ with positive probability.

If the propensity to research goes up from period t to period
t+ 1, then it might have gone down
ΘR might contract for sure but it can never expand for sure
The proof is based on the convexity of f -divergences
Similar but weaker result without quasi-convexity assumption



Proof
Let q(θ, h) = P (·|θ, h) and suppose that ∃θ1, ht, s so that

D
(
q
(
θ1, ht

)
||q
(
θ∗, ht

))
> K > D

(
q
(
θ1, ht, s

)
||q
(
θ∗, ht, s

))
There exists θ = βθ1 + (1− β)θ∗ ∈ ΘR(µ(.|ht)) so that

D
(
q
(
θ, ht

)
||q
(
θ∗, ht

))
= K,

Quasi-convexity gives that D
(
q
(
θ, ht, s

)
||q
(
θ∗, ht, s

))
< K

Also:
∑
st∈S q

(
θ, ht, st

)
(st+1)p

(
st|θ∗, ht

)
= q

(
θ∗, ht

)
(st+1)

But D is convex, so

K = D
(
q
(
θ, ht

)
||q
(
θ∗, ht

))
≤
∑
st

D
(
q
(
θ, ht, st

)
||q
(
θ∗, ht, st

))
p(st|θ∗, ht)

Hence θ ∈ ΘR(µ(.|ht)) \ΘR(µ(.|ht, s′)) for some s′



Causal Inference
ω = (ω1, ω2) = (β, σ) ∈ R2:
Causal effect of x on y & variance of potential confounder
Researcher wants to know causal effect:

ωQ = β

st = (xt, yt) ∈ R2: observed cause & effect
ut ∈ R: unobserved confounder
θt ∈ [0, 1]: strength of confounding
θ∗ = 0 is identifying assumption

Data-generating process:

xt =θtσut + εtx

yt =βxt + ut + εty



Causal Inference

xt = θtσut + εtx yt = βxt + ut + εty

εtx, ε
t
y are independent Normals & the support of Ω and the

variance of εtx, εty are chosen so that xt, yt ∼ N(0, 1)

only relevant observable is their correlation, ρ12

But ρ12 reflects both β & confounding by u
Overall strength of confounding unknown (because of σ),
so no θ > 0 can identify β

θ∗ = 0 is the unique identifying assumption

Assumes the confounding effect can be neglected

NB: under θ∗, s reveals nothing about σ



Causal Inference

xt = θtσut + εtx yt = βxt + ut + εty

εtx, ε
t
y are independent Normals & the support of Ω and the

variance of εtx, εty are chosen so that xt, yt ∼ N(0, 1)

only relevant observable is their correlation, ρ12

But ρ12 reflects both β & confounding by u
Overall strength of confounding unknown (because of σ),
so no θ > 0 can identify β

θ∗ = 0 is the unique identifying assumption

Assumes the confounding effect can be neglected

NB: under θ∗, s reveals nothing about σ



Causal Inference

xt = θtσut + εtx yt = βxt + ut + εty

εtx, ε
t
y are independent Normals & the support of Ω and the

variance of εtx, εty are chosen so that xt, yt ∼ N(0, 1)

only relevant observable is their correlation, ρ12

But ρ12 reflects both β & confounding by u
Overall strength of confounding unknown (because of σ),
so no θ > 0 can identify β

θ∗ = 0 is the unique identifying assumption

Assumes the confounding effect can be neglected

NB: under θ∗, s reveals nothing about σ



Causal Inference

DKL
(
P (s, u | θ, ht) ‖ P (s, u | θ∗, ht)

)
=
∫

ln
∫
σ

∫
β
P (u)P (x|u,θ,σ)P (y|x,u,β)dµ(β|ht)dµ(σ|ht)∫

σ

∫
β
P (u)P (x|u,θ∗,σ)P (y|x,u,β)dµ(β|ht)dµ(σ|ht)dP (s, u | θ, ht)

=
∫

ln �
��P (u)
∫
σ
P (x|u,θ,σ)dµ

(
σ��|h

t
)
((((

(((
((∫

β
P (y|x,u,β)dµ(β|ht)

��
�P (u)
∫
σ
P (x|u,θ∗,σ)dµ

(
σ��|h

t
)
((((

(((
((∫

β
P (y|x,u,β)dµ(β|ht)dP (s, u | θ��, ht)

=
∫

ln P(x|u,θt)
P (x|u,θ∗) dP (x, u)

P (x|u, θ) depends only on the constant beliefs about σ
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Causal Inference

DKL for assumption is independent of history, so propensity
to conduct research is time-invariant and positive
Research whenever θt in the interval [0, θ̄]

Given true (β∗, σ∗), beliefs converge a.s. to

β = E0
[
(θt)2σ∗2β∗ + θtσ∗σU |θt ≤ θ̄

]
+ β∗



Result II: Constant Research

Let xt =
(
st, ut, θt, ω

)
∈ Rm and N s s.t. xtNs = st

Say that data-generating process has recursive structure
G = ({1, . . . ,m} , R) if G is a directed acyclic graph (DAG)
with no edge into j for any j /∈ N s and xt has density

µ (ω) pθ
(
θt
)
pu
(
ut
) ∏
i∈Ns

p
(
sti|xtR(i)

)
where R(i) is all nodes pointing into i
Every p has some recursive structure (not unique)

𝑥

𝜃 𝑢

𝑦σ β

Time-invariant 
belief over σ 

β ⊥ σ|(𝑠, 𝑢)



Result II: Constant Research

In both examples, R(i) equals the variables on the RHS of the
equation for si

DAG G satisfies a conditional independence property if all
data-generating processes having structure G satisfy it
DAG lit gives graphical characterization of these properties

In CI Example, G satisfies β ⊥ x|(y, u) but not β ⊥ y|(x, u):

𝑥

𝜃 𝑢

𝑦σ β

Time-invariant 
belief over σ 

β ⊥ σ|(𝑠, 𝑢)



Result II: Constant Research

The set of active parameters Q∗ is the smallest set of
indexes of ω that affect the distribution of s under θ∗
I In CI Example, ωQ∗ = β = ωQ

I In CE Example, ωQ∗ = ω1 = ωQ

Say that θ and ωQ∗ are G-separable if for every i, G satisfies
si ⊥ ωQ∗ whenever it satisfies si 6⊥ θt| (s−i, u)
I any statistic that is context-dependent (conditional on the

other variables) is unaffected by the active parameters
I context and active parameters have separate observable effects
I CI Example satisfies but CE Example does not



Result II: Constant Research

Proposition
If data-generating process has a recursive structure G for which θ
and ωQ∗ are G-separable, then ΘR is constant.

Hypothesis on the structure of the distribution, not the
distribution itself
Proof uses DAG techniques to show that
under G-separability,
the only aspects of ω that determine how si varies with θ
are associated with a time-invariant belief
Application: Causal inference via IV where the identifying
assumption is that instrument is independent of confounder
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Result III: Stable beliefs

Definition
A belief µ∗ ∈ ∆(Ω) is stable given ω∗ if
Pr
(
µ
(
·|ht

)
→w∗ µ∗|ω∗

)
> 0.

Proposition
If µ∗ is stable given ω∗ and ΘR is continuous at µ∗, then
µ∗ (O) = 1 for any open O s.t.

O ⊃ argminω DKL
(
P (s|ω∗, θ ∈ ΘR (µ∗)) ‖ P (s|ω, θ∗)

)
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Result III: Stable beliefs

if µ∗ stable then it rules out parameters that do not minimize

DKL
(
P (s|ω∗, θ ∈ ΘR (µ∗))︸ ︷︷ ︸

Actual distribution of s

‖ P (s|ω, θ∗)︸ ︷︷ ︸
Predicted distribution of s given ω & θ∗

)

Here, KL divergence is a result not assumption
Distinct divergence than for plausibility
Self-referential equation / equilibrium condition
Related to Berk-Nash equilibrium (Esponda-Pouzo 2016)
Stable belief biased in most generalizations of our examples



Wrap-up

In paper:
Possibility of multiple stable beliefs
Stable beliefs far from truth even with small K
Extensions
I Choosing between structural assumptions / setting the value

of a fixed parameter; learning by “calibration”
I Choosing between research-design and structural assumptions;

“natural experiment” vs. “Heckman correction” identification
strategies for selective samples

Wishlist:
Choosing between a strong assumption (to answer an
ambitious question) and a weak assumption (to answer a
modest question)
Hierarchy of identifying assumptions


	Introduction
	model
	Contaminated Experiments

