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Abstract. This paper models an agent who has a limited capacity to pay attention to
information and thus conditions her actions on a coarsening of the available information.
An optimally inattentive agent chooses both her coarsening and her actions by maximization
of an underlying subjective expected utility preference relation, net of a cognitive cost of
attention. The main result axiomatically characterizes the conditional choices of actions by
an agent that are necessary and sufficient for her behavior to be seen as if it is the result
of optimal inattention. Observing these choices permits unique identification of the agent’s
utility index, the information to which she pays attention, her attention cost and her prior
whenever information is costly.

1. Introduction

Individuals often appear not to pay attention to all available information. As argued by
Simon (1971), “a wealth of information creates a poverty of attention, and a need to allo-
cate that attention efficiently.”1 This has motivated the application of models incorporating
limited attention to economic settings, where it is found that inattention has significant
consequences.2

This paper develops an axiomatic model of an agent who responds optimally to her limited
attention, with the aim of clarifying its implications for observable choice behavior and
providing a choice-theoretic justification for it. An optimally inattentive agent associates a
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cost of paying attention to each information partition, and she chooses both her partition and
her actions conditional on it by maximizing expected utility net of this cost. I axiomatically
characterize the conditional choices of actions by a decision maker (DM) that are necessary
and sufficient for her behavior to be seen as if it results from optimal inattention.

I take as primitive an objective state space and a rich set of choice data, namely the DM’s
choices from each feasible set of acts and conditional on each state of the world.3 I propose
six natural properties of these choices, each of which weakens or is equivalent to one of the
axioms that characterize a fully attentive, subjective expected utility DM. The key axiom,
Independence of Never Relevant Acts (INRA), requires that if two choice problems differ
only because the second lacks an act that the DM never chooses when she faces the first,
then she makes the same choices from each of the problems. The main theoretical results
(Theorems 1 and 2) show that these axioms characterize a DM who pays attention to a
partition Q that maximizes∑

E∈Q
π(E) max

f∈B

ˆ
u ◦ fdπ(·|E)− γ(Q)

when she faces the choice problem B, where u is a utility index, π is a probability measure,
and γ is an attention cost function.

The range of behavior studied permits identification of the DM’s tastes, beliefs, and atten-
tion costs, as well as the information to which she pays attention (which I call her subjective
information). The challenge for identification stems from the modeler’s inability to observe
subjective information directly. This causes the DM to violate many of the properties that
permit identification in other models, including the Weak Axiom of Revealed Preference
(WARP). Nevertheless, I show that the DM’s subjective information can be inferred from
her choice behavior. Building on this insight, Theorem 3 shows that u, π, γ, and the agent’s
subjective information are all uniquely identified from choice data alone, whenever the like-
lihoods of all events are decision-relevant.

My analysis also distinguishes two special cases that have been studied in applied settings
but are observationally equivalent within any fixed choice problem. A DM has a fixed atten-
tion representation if she always pays attention to the same information, regardless of the
problem faced. A DM has a constrained attention representation if she has a constraint that
limits the information to which she can pay attention, and she chooses her coarsening opti-
mally within this constraint. Corollaries 1 and 2 characterize the three models in terms of
the permitted violations of the Independence Axiom. Specifically, the fixed attention model
never violates the Independence Axiom, and the constrained attention model never violates
the Independence Axiom only when one of two mixed choice problems is a singleton.

3This data is typically used in dynamic decision-theoretic models and extends that considered by the papers
cited in Footnote 2; Sections 2.3 and 6 elaborate further.
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Table 1. Conditional choices

γ µ φ

c({g,m, f}|·) {m} {m} {f}
c({g,m}|·) {g} {m} {m}

A third, particularly important, special case arises when the information available to the
DM is known. This is the standard, fully attentive, subjective expected utility model (hence-
forth the full attention model). As a corollary of my results, I provide a novel characterization
of the full attention model. Corollary 3 shows that the key behavioral distinction between a
fully attentive DM and an optimally inattentive DM is that the former satisfies a standard
property of models of choice under uncertainty known as Consequentialism while the latter
need not.

I now offer an example to illustrate my setting, how I achieve identification, and what
behavior rules out optimal inattention. Consider a benevolent doctor who treats patients
suffering from a given disease. Glaxo, Merck, and Pfizer all produce pharmaceuticals that
treat the disease, but the doctor knows that one of the three drugs will be strictly more
effective than the other two. The one that works best for each patient is initially unknown,
but the doctor can, in principle, determine it; for instance, by constructing a very detailed
medical history. Uncertainty is modeled by the state space Ω = {γ, µ, φ}.4 The state
indicates whether the most effective drug is produced by Glaxo (γ), by Merck (µ), or by
Pfizer (φ), and the doctor has access to information that distinguishes which state obtains.

Suppose there are two patients who are identical except that they have different insurance
plans: one’s covers all three drugs, and the other’s does not cover Pfizer’s drug. Each patient
is a choice problem, in which prescribing a drug corresponds to choosing an act (g, m, and
f represent prescribing the drugs produced by Glaxo, Merck, and Pfizer respectively). The
drug prescribed to each patient conditional on each state of the world is given by a conditional
choice correspondence, a family of choice correspondences indexed by the state of the world.
Table 1 lists the conditional choices of a doctor when facing {g,m, f} (the problem associated
with unrestricted insurance) and {g,m} (the problem associated with restricted insurance).

Although the doctor’s choices violate WARP in state γ – she chooses g but not m from
{g,m} and chooses m but not g from {g,m, f} – the choices allow inference about her
tastes, beliefs, and information. Her WARP violation reveals that the doctor is unable or
unwilling to distinguish between all states. If she did, then her choice in state γ from {g,m}
would reveal that she strictly prefers to prescribe Glaxo’s drug rather than to prescribe
Merck’s drug. Therefore, if Glaxo’s drug is available in the larger problem and it is the most

4That the state space allows only perfect determination of which drug is appropriate is for illustrative
purposes only. A more realistic problem would contain many more states but would fit within the scope of
my formal analysis.
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effective, then she should not prescribe Merck’s. But because she chooses to prescribe the
latter when facing {g,m, f} in state γ, she must not pay full attention. Additionally, the
doctor’s choices reveal the information to which she pays attention. When facing {g,m},
she chooses differently conditional on γ than she does conditional on either µ or φ, so her
subjective information must be at least as fine as {{γ}, {µ, φ}}. Similarly, her subjective
information must be at least as fine as {{φ}, {γ, µ}} when facing {g,m, f}. Therefore, the
doctor chooses as if she knows the answer to the question “Is Glaxo’s drug the most effective?”
when facing {g,m} and “Is Pfizer’s drug the most effective?” when facing {g,m, f}.5 With
her subjective information known, her choices reveal her conditional preferences, which can
then be aggregated to reveal her underlying unconditional preferences.

Theorems 1 and 2 show that a set of properties characterizes a doctor whose choices can
be seen as if they result from optimal inattention. INRA, the key axiom in both results,
requires that if a drug never prescribed to a patient is dropped from the insurance of a
second, then the doctor prescribes the same drug to both patients in each state. The only
drug never prescribed to the patient with good insurance is g, so the doctor’s choices do not
violate INRA, nor any of the other axioms. Thus, they do not rule out optimal inattention.
Indeed, these choices are consistent with the following story. The doctor, perhaps in a rush
or constrained by the insurance company, only has time to pay attention to results of a single
test. Merck’s drug is always moderately effective, and prescribing either of the other two
leads to either a good outcome or a very bad one, depending on whether or not it is the
most effective. If it is more likely that Pfizer’s drug is best, then the doctor should attend
to the test for state φ when treating the good-insurance patient and prescribe Pfizer’s drug
in that state. She would like to follow the same strategy for the bad-insurance patient, but
she cannot prescribe it. Instead, she tests for the effectiveness of Glaxo’s drug.

However, not all choices are compatible with optimal inattention. Consider a second doctor
who chooses according to c′(·), where c′(·) is the same as c(·) except c′({g,m, f}|φ) = {m}.
The second doctor cannot have an optimal inattention representation, as c′(·) violates INRA
– Pfizer’s drug is never chosen for the patient with good insurance, yet removing it affects her
choice. To see this more directly, observe that the second doctor chooses Merck’s drug when
the patient has good insurance, regardless of the state of the world. As above, the doctor’s
choices reveal that she knows whether Glaxo’s drug is the most effective when facing {g,m},
so her choice of g in state γ reveals that she strictly prefers prescribing it to prescribing
Merck’s in that state. However, this implies that her choices from the smaller problem

5While she may have paid attention to finer information, it resulted in the same choices. See Section 5.1.
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yield a better outcome in every state of the world than those from the larger problem, an
impossibility if her subjective information is optimal when facing both problems.6

INRA is perhaps best viewed as a normative rather than a descriptive axiom.7 That is,
given that the doctor finds attention costly, what properties should her choices satisfy if
they are to be consistent but take into account costs? WARP fails the latter desideratum, as
obeying WARP requires that she always pay attention to the same information. Her choices,
while coherent, would not take into account costs. The doctor can safely adopt INRA and
make coherent choices. For the above choices, consistency requires that she makes the same
choices from {m, f} as from {g,m, f}. Otherwise, two distinct sets of choices are each
revealed better than the other, as is the case for the choices described by c′ above. However,
consistency does not require that she choose m in state γ from {g,m} because the benefits of
the subjective information at {g,m, f} have changed. This consistency is exactly the content
of INRA.

This paper contributes to a developing literature that studies choice when the information
processed is unobserved. In particular, related papers by Caplin and Dean (2015) and de
Olivera et al. (2016) study related models of inattention in a stochastic conditional choice
framework and a preference over menus framework, respectively. The three papers are
complementary: Caplin and Dean (2015) focus on deriving implications that are easily tested
in a lab rather than identification and interpretation of the parameters, while de Olivera
et al. (2016) focus on ex-ante preference over menus rather than ex-post choice of acts. The
relationship between the three papers is further developed in Section 7, as well as that with
the literature studying decision making with a fixed but unobserved information structure,
e.g. Dillenberger et al. (2014) or Lu (2016).

The remainder of the paper proceeds as follows. Section 2 presents the model in detail.
In Section 3, I formally introduce the six axioms that characterize the model. Section
4 contains the main results. Theorems 1 and 2 show that these axioms characterize an
optimally inattentive DM’s choices. It also contains characterizations of the fully attentive
model, the fixed attention model, and the constrained attention model. In Section 5, I
study the uniqueness properties of the model and interpret changes in parameters in terms
of changes in the DM’s behavior. Theorem 3 provides a uniqueness result, and Theorems 4
and 5 provide behavioral meaning to changes in the attention cost function. Section 6 shows
how to infer the conditional choice correspondence from ex ante choice of menu. Section
7 concludes by discussing the relationship with the literature. Proofs are collected in the
appendices.

6Technically, indifference between the subjective information partitions must be ruled ruled out by other
choices. One set of choices that rules out indifference is c′({m, f}|γ) = {f}, c′({m, f}|φ) = c′({m, f}|µ) =
{m}, c′({g, f}|γ) = {g}, and c′({g, f}|φ) = c′({g, f}|µ) = {f}.
7I thank an anonymous referee for discussion of this interpretation.
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2. Setup and Model

2.1. Setup. I adopt the following version of the classic Anscombe and Aumann (1963)
setting. Uncertainty is captured by a finite set of states Ω. Consequences are elements of a
separable metric space, Z. Let the set X consist of all finite-support probability measures
on Z, endowed with the weak* topology. Objects of choice are acts functions f : Ω → X.
Let F be the set of all acts, endowed with the topology of uniform convergence.

The DM chooses from a compact set of acts, i.e. her choice problem is a non-empty,
compact subset of F . Let K(F) be the set of all choice problems.8 Endow K(F) with the
topology generated by the Hausdorff metric, d(·), generated by a compatible metric on F .

Prior to making a choice, the DM observes (but may not pay attention to) the realization
of information that perfectly reveals the state of the world.9 As choice may depend on the
realization of Ω, I follow the literature in taking the DM’s behavior conditional on each state
as a primitive.10 Motivated by the noted violations of WARP, I take a conditional choice
correspondence c(·) as my primitive. The DM is willing to choose any of the acts in c(B|ω)
from the problem B when the state is ω. Formally, c(·) is a function c : K(F)×Ω→ K(F)
with c(B|ω) ⊂ B for all B ∈ K(F) and all ω ∈ Ω.11

I adopt the following notation throughout. Let P be the set of partitions of Ω, denoting
Q(ω) for the cell of Q ∈ P containing ω. For any Q,Q′ ∈ P, write Q � Q′ if Q is finer
than Q′. Identify X with the subset of acts that do not depend on the state, i.e. x ∈ X

corresponds to the act x ∈ F such that x(ω) = x ∀ω ∈ Ω. For any α ∈ [0, 1] and any two
f, g ∈ F let αf + (1− α)g ∈ F be the state-wise mixture of f and g, i.e. the act taking the
value αf(ω) + (1−α)g(ω) in state ω, with the usual mixture operation on lotteries. For any
A,B ∈ K(F) and α ∈ [0, 1], let αA+ (1−α)B equal {αa+ (1−α)b : a ∈ A, b ∈ B}. For an
event E and two acts f, g, identify fEg with the act so that fEg(ω) = f(ω) if ω ∈ E and
fEg(ω) = g(ω) if ω /∈ E.

2.2. Model. Definition 1 formalizes what it means for a conditional choice correspondence to
have an optimal inattention representation. First, the DM chooses her subjective information
optimally, i.e. it gives at least as high expected utility net of attention cost as any other
partition (Equation (1)). Second, her choice maximizes expected utility conditional on the
realized cell of her subjective information (Equation (2)).

8The results remain true as stated if one studies choice from finite rather than compact subsets.
9Alternatively, one could explicitly model information P as a partition of Ω, with minor changes in results.
10Section 2.3 provides citations and remarks on observability.
11This conditional choice correspondence can be represented by a family of conditional preference relations
if and only if it satisfies WARP in every state (see Section 4.1 for formal definition).



FOUNDATIONS FOR OPTIMAL INATTENTION 7

Definition 1. The conditional choice correspondence c(·) has an optimal inattention repre-
sentation if there exists (u, π, γ, P̂ ) so that

(1) P̂ (B) ∈ arg max
Q∈P

[
∑
E∈Q

π(E) max
f∈B

ˆ
u ◦ fdπ(·|E)− γ(Q)]

and

(2) c(B|ω) = arg max
f∈B

ˆ
u ◦ fdπ(·|P̂ (B)(ω))

for every choice problem B and state ω, where

• u : X → R is unbounded, continuous, and affine,
• π : 2Ω → [0, 1] is a full-support probability measure,
• γ : P→ R+

⋃{∞} satisfies γ({Ω}) = 0 and Q� R =⇒ γ(Q) ≥ γ(R), and
• P̂ : K(F)→ P.

The collection (u, π, γ, P̂ ) is said to represent c(·).

The utility index u and prior π have familiar interpretations. Neither varies with the
problem, so an optimally inattentive DM has stable tastes and beliefs. The attention cost
function γ maps each partition to an extended real number representing the cost that the
agent incurs if she pays attention to that partition. Many examples exist in the literature;
for instance, Simon (1971) suggests cost proportional to processing time and Sims (2003)
argues for cost proportional to Shannon entropy. If Q contains strictly more information
than R, i.e. Q � R, then Q costs at least as much as R, i.e. γ(Q) ≥ γ(R). Depending on
the problem, the DM may have different subjective information, given by the attention rule
P̂ (·). That is, P̂ (B) is her subjective information when facing the problem B.

Another special case is a DM who always pay attention to the same information, regardless
of the problem faced. I say that such a DM has fixed attention, and that c(·) has fixed
attention representation if there is a partition Q so that

c(B|ω) = arg max
f∈B

ˆ
u ◦ fdπ(·|Q(ω))

for every B and ω. This model corresponds to the special case where γ(Q) = 0, any R

strictly finer than Q has γ(R) =∞, and P̂ (B) = Q for every problem B.
A final special case is a DM with constrained attention. Such a DM has an attention

constraint rather than a cost function, i.e. she can costlessly pay attention to one of several
partitions but no others. Such a DM decides to which information she pays attention but not
how much attention she should pay. Formally, c(·) has a constrained attention representation
if γ(Q) = 0 or γ(Q) =∞ for every Q ∈ P.
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In addition to the above, one can specialize γ to admit other instances in the literature.
For instance, γ(Q) may be proportional to to the number of elements in Q (as in Rubinstein
(1993)) or to the mutual information between Q and P (similar to Sims (2003)).12

2.3. Remarks. This subsection discusses issues regarding the model’s interpretation.

2.3.1. Consideration and costly information acquisition. An optimally inattentive DM con-
siders all available acts. In contrast, Masatlioglu et al. (2012) (or in a stochastic setting,
Manzini and Mariotti (2014)) study an agent who does not pay attention to the entire set of
available actions. Although both models are motivated by the same underlying mechanism,
neither nests the other: there are choices compatible with optimal inattention but not inat-
tention to alternatives and vice versa. While DMs conforming to either model may violate
WARP, the reason for such violations is different.13

Interpreting the representation as inattention requires that perfect information is freely
available to the DM. If this assumption is dropped, the model can be reinterpreted as costly,
optimal and unobserved information acquisition. In an information acquisition problem, the
cost of information is external, e.g. technological, rather than internal, e.g. psychological.
Van Zandt (1996) considers this model in a related setting, assuming that choice observed
in only a single state, and shows the model has no testable implications. It is also similar
to costly contemplation, e.g. Ergin and Sarver (2010). In such a model, the states are
subjective and correspond to the DM’s taste for the various consequences; the information
available plays no role.14

2.3.2. Information. In the model, all information is partitional, including the DM’s subjec-
tive information. Partitional information is flexible, analytically convenient and conforms
with the traditional approach in information economics.15 However, partitional information
does require certain modeling tradeoffs, which are explored in this subsection.

In a choice theoretic context, the state space consists of only payoff relevant states by
construction. With partitional information, each signal must correspond to at least one
state, so expanding the set of signals necessarily expands the set of states. Hence, enlarging
12The mutual information is a measure of the information provided about the realization of one random
variable by another. It corresponds to the reduction in entropy and is used by the rational inattention
literature.
13In Masatlioglu et al. (2012), removing unchosen alternatives may affect the options considered by the DM;
in this paper, removing alternatives not chosen in a given state may alter the information processed.
14While not explicitly modeled, the interpretation suggests fixed “true” tastes and thus deterministic choice.
15Indeed, the traditional interpretation of the state space is that each ω ∈ Ω contains a complete description
of the world. With such a state space, the restriction to an information partition is without loss; for instance,
Aumann (1976) writes, “Included within the full description of a state ω is the manner in which information
is imparted.” Expanding the set of states in this way may require an undesirable expansion of the set of acts
available to the DM. Theorem 2, which shows the necessity of my axioms, applies even if not all acts are
available.
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the state space also entails enlarging the space of acts and enriching the choice data on which
the model is based.16

Since signals must be perfectly correlated with the state, stochastic conditional choices are
ruled out. As a consequence, fixing a state space necessarily fixes the possible information
structures. Thus, modeling information as a partition is especially appropriate when the
payoff relevant states are a close approximation of the information available to the DM. This
is likely to be satisfied in an environment wherein the information to which the DM can pay
attention is sparse, such as in an experiment where the information available to subjects is
carefully controlled. An experimenter can, at least in principle, offer subjects acts that vary
in an arbitrary fashion with the realized signal, and the subject cannot, much as she would
like to, acquire information not provided to her. For instance, in an experiment with exactly
two states, the subject may prefer to pay attention to a less costly information structure with
two signals, the first of which occurs with probability p ∈ (0, 1) in state 1 and probability
0 in state 2, rather than a partitional one that distinguishes the states perfectly, but if no
such information is provided by the experimenter, then she is forced to choose between the
two possible partitional structures.

2.3.3. Timing. While time does not play a formal role in the model, the behavior is inter-
preted as resulting from a dynamic process. To understand dynamic behavior, I follow the
literature by taking choices in distinct states of the world as observable. For instance, Epstein
and Schneider (2003), Maccheroni et al. (2006b), Klibanoff et al. (2009), Ghirardato (2002),
and Ortoleva (2012) all take a family of complete and transitive preference relations indexed
by either every state-time pair or every event. This data corresponds to that typically con-
sidered in applications, as an agent chooses (either deterministically or stochastically) from
a single feasible set conditional on each state in each of the papers cited in Footnote 2. For
reasons familiar from static decision theory, choice in an isolated situation reveals little about
underlying behavior without additional assumptions, so the primitive expands this data in
the natural way. Section 6 shows the data can be obtained from ex ante preference over
menus under a consistency assumption.

2.3.4. Infinite regress. The optimal inattention model may be subject to the infinite regress
critique, e.g. Lipman (1991). Namely, “to what does the agent pay attention when deciding
to what she pays attention when deciding...?” By taking her conditional choice correspon-
dence, rather than the model, as primitive, my approach bypasses this critique. According
to Theorems 1 and 2, if c(·) has certain properties, then the DM acts “as if” she has an
optimal inattention representation. If an infinite regress occurs and the agent fails to carry
out the maximization above, then she violates my axioms.
16As standard, one need not have all acts available to falsify any of the axioms. Of course, choices from any
(finite) subset of acts are needed to establish sufficiency.
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3. Foundations

I impose six axioms, Independence of Never Relevant Acts (INRA), Attention Constrained
Independence (ACI), Monotonicity, Subjective Consequentialism (SC), Continuity, and Un-
boundedness. Each relaxes or is equivalent to one of the axioms that characterize the stan-
dard subjective expected utility model with an unbounded utility index.17 The quantifier
“for all f, g, h ∈ F , A,B ∈ K(F), ω ∈ Ω and α ∈ (0, 1]” is suppressed throughout.

A DM satisfies WARP, sometimes referred to as Independence of Irrelevant Acts, if A ⊂ B

and c(B|ω)⋂A 6= ∅ imply that c(A|ω) = c(B|ω)⋂A. If an inattentive DM’s choices from
problems A and B are conditioned on the same subjective information, then her choice in
each state maximizes the same conditional preference relation, so these choices do not violate
WARP. Therefore, if she violates it, then her choices from A and B must be conditioned on
different subjective information. The first axiom, Independence of Never Relevant Acts or
INRA, gives one situation where the DM should not violate WARP.

Axiom 1 (INRA). If A ⊂ B and c(B|ω′)⋂A 6= ∅ for every ω′ ∈ Ω, then

c(A|ω) = c(B|ω)
⋂
A.

In the example, INRA says that if two patients differ only in that one’s plan drops the drug
h but the doctor never prescribes h to the patient with better insurance, then she prescribes
the same drug to both patients. To interpret the axiom, consider a problem B and a “never
relevant” act f (i.e. {f} 6= c(B|ω′) for all ω′), and let A = B\{f}.18 Suppose that her choices
from B are conditioned on the subjective information Q. Because she never chooses only f
from B, the benefit of paying attention to Q when facing A is the same as it is when facing
B. If Q is optimal when facing B, then Q is still optimal when facing A. Therefore, the DM
should have the same subjective information when facing B as when facing A, so her choices
from A and B should not violate WARP. More generally, the statement c(B|ω′)⋂A 6= ∅ for
every state ω′ implies that the entire set of acts that are in B but not in A is “never relevant”
and removing them would not decrease the benefit of her subjective information when facing
B. As above, if her subjective information is optimal when facing B, then it is still optimal
when facing A. Consequently, the DM’s choices from A and B should not violate WARP.19

17Specifically, INRA relaxes weak order, ACI relaxes Independence, SC relaxes Consequentialism, Continuity
relaxes its counterpart, and both Monotonicity and Unboundedness hold in both models.
18Whenever B is finite, INRA is equivalent to “if c(B|ω′) 6= {f} for all ω′, then c(B|ω)\{f} = c(B\{f}|ω).”
19INRA can be illustrated by the choices in the introduction. Let A = {g,m} and B = {g,m, f}. The doctor
does not violate the axiom because she chooses only f when facing {g,m, f} in state φ, i.e. c(B|φ)

⋂
A =

∅. The second doctor, whose choices are represented by c′(·) and who cannot be represented as optimal
inattention, violates the axiom because she never chooses f when facing {g,m, f}, regardless of the state of
the world, i.e. m ∈ A and c(B|ω) = {m} for any ω ∈ {γ, µ, φ} but c(A|γ) 6= c(B|γ)

⋂
A.
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In the present context, a DM satisfies Independence if

g ∈ c(A|ω) and f ∈ c(B|ω) ⇐⇒ αg + (1− α)f ∈ c(αA+ (1− α)B|ω).

That is, if the DM chooses g over each h in A and f over each h′ in B, then she chooses
αg + (1− α)f over each αh+ (1− α)h′ in αA+ (1− α)B.20 If an optimally inattentive DM
pays attention to the same information when facing the problems A, B and αA+ (1− α)B,
then her choice in each state maximizes the same conditional preference relation. Because
her conditional preferences are expected utility, her choices do not violate Independence.
This implies that whenever the DM violates this property for A, B and αA + (1 − α)B,
she must not pay attention to the same information when facing all three problems. The
second axiom, Attention Constrained Independence or ACI, gives one situation where the
DM should not violate Independence.

Axiom 2 (ACI). If αg + (1− α)f ∈ c(α{g}+ (1− α)B|ω),
then αh+ (1− α)f ∈ c(α{h}+ (1− α)B|ω).

In the example, this says that if there is a state-independent chance α that the patient
will take some drug h regardless of what the doctor actually prescribes, then her choice of
prescription is unaffected by the identity of h. However, it leaves open the possibility that
the magnitude of α affects what the doctor prescribes. For instance, if α is close to 1, then
the probability that the patient follows the doctor’s advice is very small, so the doctor may
pay attention to less costly information than when the patient follows her advice for sure,
i.e. where α = 0.

To interpret the axiom, fix problems B, {g}, and {h}. Because {g} and {h} are singletons,
the DM makes the same choice from either no matter what her subjective information is.
Therefore, the difference between the benefits of any two subjective information partitions
is the same for the problem α{g} + (1 − α)B as it is for the problem α{h} + (1 − α)B.
Intuitively, one can think of α{g} + (1 − α)B (α{h} + (1 − α)B) as choosing from B then
flipping a coin and getting one’s choice if the coin comes up heads and otherwise receiving
g (h), where the DM must choose her subjective information before observing the outcome
of the coin-flip. Information only has value if the coin comes up heads, and conditional on
heads, a given partition has the same value in either problem. Since the probability of heads
is the same in either case, if paying attention to Q is optimal when facing α{g}+ (1− α)B,
then paying attention to Q is also optimal when facing α{h}+ (1− α)B. Consequently, an
optimally inattentive DM conditions her choices on the same subjective information when
facing α{g}+ (1− α)B as she does when facing α{h}+ (1− α)B. Because her conditional
preferences satisfy Independence, she chooses the mixture of f with g from α{g}+ (1−α)B
20This follows from the standard formulation of Independence for a binary relation: f � g ⇐⇒ αf + (1−
α)h � αg + (1− α)h.
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if and only if she chooses the mixture of f with h from α{h} + (1 − α)B. Mathematically,
it ensures consistency between the DM’s choices in problems B and B′, when the utility of
each act in B′ results from applying the same translation to each act in B.

The next axiom adapts the standard Monotonicity axiom to the present setting. To state
the axiom concisely, for any x, y ∈ X, say that x is revealed preferred to y, denoted x �R y,
if there exists a state ω so that x ∈ c({x, y}|ω), and x is revealed strictly preferred to y,
denoted x �R y, if x �R y and not y �R x.21 If tastes are state-independent, then x is
revealed preferred to y only if the DM regards x as a better consequence than y.

Axiom 3 (Monotonicity). If f, g ∈ B and f(ω′) �R g(ω′) for every ω′ ∈ Ω, then g ∈
c(B|ω) =⇒ f ∈ c(B|ω); if in addition f(ω) �R g(ω), then g /∈ c(B|ω).

In the example, this says that if one drug gives a better consequence in every state than
another, then the DM never prescribes the inferior drug. To interpret the axiom, consider
acts f and g so that f yields a better consequence than g in every state of the world. Even if
the DM received information revealing that the state on which g gives the best consequence
would occur for sure, she would still be willing to choose f over g. Consequently, she never
chooses only g when f is available. In addition, if f yields a strictly better consequence
than g in state ω, then the DM does not choose g in that state. Thus, an inattentive DM
will never pick a dominated act. Monotonicity also implies state-independent tastes: if she
chooses x over y in state ω, then she also chooses x over y in state ω′.

The next axiom, Subjective Consequentialism or SC, requires that choice between any two
acts is unaffected by their outcomes in states that the DM knows did not occur. It weakens
the standard property known as Consequentialism; see Section 4.1.

Axiom 4 (SC). If f(ω) = g(ω) and for all ω′ 6= ω either f(ω′) = g(ω′) or c(B|ω′) 6= c(B|ω),
then f ∈ c(B|ω) ⇐⇒ g ∈ c(B|ω) whenever f, g ∈ B.

To interpret SC, fix B, f , and g as above, and suppose that the DM faces the problem B

and that the realized state is ω. Whenever ω and ω′ are in the same cell of her subjective
information when facing B, the DM’s choices in those states maximize the same conditional
preference relation, so c(B|ω) = c(B|ω′). Therefore if c(B|ω′) 6= c(B|ω), then ω and ω′ must
be in different cells of her subjective information. By hypothesis, either f and g give the
same consequence in state ω′ or ω′ is in a different cell of the DM’s subjective information
than ω. In state ω, the DM knows that she receives the same consequence regardless of
whether she chooses f or g, so she chooses f if and only if she chooses g.

The final two axioms are technical conditions. The first ensures the continuity of the
underlying preference relation, and the second ensures unboundedness of the utility index.
Complicating the statement of the first is that the DM’s choices from different problems may
21Note that �R is a binary relation over X rather than F .
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be conditioned on different information. Consequently, her choices may appear discontinuous
to the modeler.22 The axiom must take into account that the underlying preference is revealed
by choices that are not conditioned on the same subjective information. To state the axiom,
I need one preliminary definition.

Definition 2. The acts in A are indirectly selected over the acts in B, written A IS B,
if there are problems B1, ..., Bn ∈ K(F) so that B1 = A and Bn = B and for each i ∈
{1, ..., n− 1} and every ω, c(Bi+1|ω)⋂Bi 6= ∅.

Suppose that the DM faces B and chooses an act in A regardless of the state of the world.
Since her choices from B are available in A, her set of choices from A is selected over her
choices from B. Moreover, if she chooses an act from B in every state of the world when
facing C, then her set of choices from B is selected over any choices in C. Since the acts in
A are selected over the acts in B that are in turn selected over the acts in C, the acts in A
are indirectly selected over the acts in C.

INRA suggests that the DM’s set of choices from problem A is better than her set of choices
from problem B whenever she chooses an act in A when facing B conditional on every state
of the world. This direct ranking can be extended to indirect comparisons as well using
AIS B. Because this indirect ranking compares more sets of choices, indirect selections are
important for characterizing optimal inattention. Continuity ensures a minimal consistency
between the limits of indirect comparisons and the direct comparisons.

Axiom 5 (Continuity).
(1) For any {Bn}∞n=1 ⊆ K(F) and {fn}∞n=1 ⊆ F , if Bn → B, fn → f , fn ∈ c(Bn|ω), and

for c(B|ω′) 6= c(B|ω) ⇐⇒ c(Bn|ω′) 6= c(Bn|ω) for every n and ω′, then f ∈ c(B|ω).
(2) For any x, y ∈ X and f, g1, ..., gn ∈ F such that y �R x, x ∈ c({f, x}|ω′) for

all ω′, and f /∈ c({f, x}|ω′′) for some ω′′: if {gi} IS {x} for i = 1, ..., n, then
for any α1, ..., αn ∈ [0, 1] with ∑n

i=1 αi = 1, there exists ε > 0 and ω∗ such that∑
αigi(ω∗) �R εy + (1− ε)f(ω∗).

Both parts of the require continuity only in places where attention is fixed. In the first
part, the information that DM has in state ω remains fixed. In the second part, when
choosing from {f, g}, the DM chooses f in each state of the world, so paying attention to
information has no value when facing either {f, g}, {f}, or {g}. Observe that the axiom is
implied by combining WARP, Independence, and upper-hemicontinuity.
22The key issue is that the DM may be indifferent between paying attention to two partitions, and the
modeler only observes her choices conditional on one of them. Consequently, the choices from the limit of a
sequence of problems may be conditioned on different information than those along the sequences. Consider
a sequence of choice problems Bn with limit B. If the DM pays attention to Q when facing every Bn, then
paying attention to Q is optimal when facing B. However, another partition, say R, may also be optimal
when facing B. If the DM pays attention to R when facing B, and Q(ω) 6= R(ω), then her choice in state ω
typically fails upper-hemicontinuity.
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The first condition is simply a restriction of upper-hemicontinuity. It requires that if
attention converges for a sequence of choice problems, then the DM’s sequence of choices
from those problems also converges.

The second part of the axiom ensures continuity of the DM’s revealed ex ante preference.
To interpret it, fix f , gi, x and y as in the statement.23 The DM reveals that y is strictly
better than x, which is in turn strictly better than f . Continuity of her ex ante ranking
implies she should also strictly prefer x to εy + (1 − ε)f when ε is small enough. Now,
{gi} IS {x} reveals that gi has at least as much value as x, and thus also at least as much
as εy + (1− ε)f . Therefore, gi should yield at least as good an outcome as εy + (1− ε)f in
some state. As the DM has an expected utility ex ante preference, this must also hold for
any mixture between g1, ..., gn.

The final axiom guarantees that the utility index is unbounded.

Axiom 6 (Unboundedness). There exist x, y ∈ X with x �R y such that for any β ∈ (0, 1)
there exist z∗, z∗ ∈ X with βz∗ + (1− β)y �R x and y �R βz∗ + (1− β)x.

This condition is equivalent to the range of u(·) equals R. Versions appear in other
work, e.g. Kopylov (2001), Maccheroni et al. (2006a) and de Olivera et al. (2016). Unlike in
Maccheroni et al. (2006a) but as in Kopylov (2001) or de Olivera et al. (2016), Unboundedness
plays a role in the sufficiency part of my proof. To understand the axiom, assume an
affine utility representation over X, u(·).24 The lottery βz∗ + (1 − β)y �R x if and only if
βu(z∗)+(1−β)u(y) > u(x), and y �R βz∗+(1−β)x if and only if u(y) > βu(z∗)+(1−β)u(x).
Since u(x) > u(y), as β goes to zero both u(z∗) and −u(z∗) must approach infinity.

4. Characterization

I can now state the main result: if the DM’s choices satisfy the six axioms above, then
she acts as if she has optimal inattention.

Theorem 1. If c(·) satisfies INRA, ACI, Monotonicity, SC, Continuity, and Unbounded-
ness, then c(·) has an optimal inattention representation.

Theorem 1 shows that the above axioms are sufficient for the DM to have an optimal
inattention representation. The key idea of the proof is to map the agent’s choices onto a
different domain where they behave better. In particular, I consider the space of “plans.” A
23There is a natural trade-off between the type of independence and continuity; strengthening one allows
weakening the other. By assuming Strong ACI (below) or requiring that for any x, there exists ε > 0
so that c(B|·) is constant when d(B, {x}) < ε, one only needs the conclusion of Continuity (2) to hold
when n = 1. That is, instead assume “For any x, y ∈ X and f, g ∈ F where y �R x, x ∈ c({f, x}|ω′)
for all ω′, and f /∈ c({f, x}|ω′′) for some ω′′: if {g} IS {x}, then there exists ε > 0 and ω∗ such that
g(ω∗) �R εy + (1− ε)f(ω∗).” However, both restrict the cost function; see Corollaries 2 and 4.
24INRA, ACI, Monotonicity, and Continuity guarantee the existence of such a representation; see Lemma 1.
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plan F maps each state to an act, with the interpretation that if the DM chooses F , then she
plans to choose the act F (ω) in state ω. Each set of conditional choices from a given problem
defines a plan. In the introductory example, the doctor chooses the plan “pick f in state φ,
otherwise pick m” from {g,m, f} and chooses the plan “pick g in state γ, otherwise pick m”
from {g,m}. Although choice in a given state may violate WARP, INRA guarantees that her
choice of plan maximizes a preference relation. For instance, the choices above reveal that
the doctor prefers the former plan over the latter one. Given the other axioms, this relation
can be taken to be well behaved enough to have a representation similar to Equation (1).
To complete the proof, I show that choosing a plan corresponds to choosing her subjective
information.25

Necessity is more complicated because of tie-breaking. That is, what happens when two
or more partitions are optimal for the same choice problem? INRA and ACI impose some
restrictions on how these ties are broken, and if the DM breaks these ties non-systematically,
then she may violate the two axioms.26 The axioms are necessary if conditions on tie-breaking
are imposed when defining the model, such as requiring that ties are broken according to a
linear order. Nevertheless, Theorem 2 shows that the set of problems for which an optimally
inattentive DM fails to satisfy either INRA or ACI is non-generic even without any such
conditions.

Theorem 2. If c(·) has an optimal inattention representation, then c(·) satisfies Monotonic-
ity, SC, Continuity and Unboundedness. Moreover, there is a conditional choice correspon-
dence c′(·) satisfying INRA, ACI, Monotonicity, SC, Continuity, and Unboundedness as well
as an open, dense K ⊂ K(F) so that

(i) c(·) and c′(·) are represented by (u, π, γ, P̂ ) and (u, π, γ, Q̂), respectively, and
(ii) c(B|ω) = c′(B|ω) for every ω ∈ Ω and B ∈ K.

Theorem 2 implies that INRA and ACI are generically necessary. This is because the set
of problems for which ties can occur is “small.” Consequently, INRA and ACI capture the
economic content of optimal inattention. Though not strictly necessary, for any given prior,
utility index and attention cost, there are always attention rules that satisfy INRA and ACI.
The characterization is tight; for each of the axioms, I provide counter-examples satisfying
all the others in the Supplemental Appendix.
25Optimal inattention admits foundations if preference over plans is a primitive; see the Supplementary
Appendix. Observing the DM’s choice of plan is more convenient because it requires observing a single ex-
ante choice rather than choices in each state of the world. It has also been used in applications (for instance,
(Gul et al., 2017)). However, this has some significant drawbacks in terms of observability, interpretation,
and connection to the objects of economic interest. Moreover, if the DM follows through with her choice of
plan, then her final conditional choices of acts satisfy my axioms.
26A similar issue exists for random expected utility (Gul and Pesendorfer (2006)) with a finite state space.
If ties are broken using a “regular” random expected utility function, then choices satisfy linearity, but if
ties are broken differently, then linearity may fail.
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4.1. Special cases. The axioms allow a clearer picture of how the model relates to others in
terms of behavior. To better understand these connections, I characterize the three special
cases of optimal inattention introduced in Section 2.2.

For a given choice problem, all conditional choices by any optimally inattentive DM can be
replicated by a DM that conforms to either of the first two, the fixed attention model and the
constrained attention model.27 However, varying the problem allows the three models to be
distinguished. Corollary 1 shows a DM with fixed attention must satisfy independence, and
Corollary 2 shows a DM with constrained attention may violate independence but satisfies
a stronger version of ACI. Taken together, the results show that the patterns of violations
of independence distinguish the three models.

Corollary 1. If c(·) satisfies the axioms of Theorem 1, then c(·) satisfies Independence if
and only if c(·) satisfies WARP if and only if c(·) has a fixed attention representation.

It immediately follows that WARP and Independence are equivalent for an optimally
inattentive DM. The intuition behind Corollary 1 is that an optimally inattentive DM’s
choices from A and B violate Independence or WARP only if her subjective information
differs at A, B or αA+(1−α)B. If her subjective information never changes, then she never
violates either condition. Consequently, she has fixed attention if she satisfies either WARP
or Independence.

The key property that differentiates constrained attention from costly attention is Strong
ACI, which c(·) satisfies if for any ω ∈ Ω, α ∈ (0, 1], B ∈ K(F), and f, g ∈ F ,

αg + (1− α)f ∈ c(α{g}+ (1− α)B|ω) ⇐⇒ f ∈ c(B|ω).

ACI requires that when a problem is mixed with a singleton, the DM’s choice is independent
of the identity of the singleton. Strong ACI requires that in addition to being independent
of the identity of the singleton, it is also independent of the magnitude of the weight given
to that singleton. In particular, the DM’s choice from B is the same whether she faces B
for sure or she faces it with very small probability and gets g otherwise. Strengthening ACI
to Strong ACI characterizes a DM with constrained attention.

Corollary 2. If c(·) satisfies INRA, Strong ACI, Monotonicity, SC, Continuity, and Un-
boundedness, then c(·) has a constrained attention representation. Moreover, the axioms are
generically necessary, in the same sense as Theorem 2.

The final special case I turn to is the full attention model, the standard model of dynamic
choice. In these models, an information partition (or a filtration) is taken as given. For the
27Fix an optimally inattentive DM with cost γ and a problem B. Let Q = P̂ (B). Consider a fixed
attention DM who always pays attention to Q and a constrained attention DM with constraint given by
{Q′ : γ(Q′) ≤ γ(Q)}. All three DMs make the same choices in every state when facing B.
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remainder of this section only, I assume that there is an information partition P and that for
each B, c(B|·) is P -measurable, i.e. she never distinguishes between two states that P does
not. A DM has a full attention representation if she has a fixed attention representation
with attention fixed at Q.

An optimally attentive DM has a full attention representation if and only if she satisfies
the standard Consequentialism axiom. This property, adapted to my context, states that
if f(ω) = g(ω) and f(ω′) = g(ω′) for all ω′ ∈ P (ω), then f ∈ c(B|ω) ⇐⇒ g ∈ c(B|ω)
whenever f, g ∈ B. It has a standard interpretation: if f and g are identical in every
objectively possible state, then she chooses one if and only if she chooses the other. Note
Consequentialism implies SC.

Corollary 3. c(·) satisfies Consequentialism in addition to INRA, ACI, Monotonicity, Con-
tinuity and Unboundedness if and only if c(·) has a full attention representation.

Corollary 3 provides a novel characterization of the standard subjective expected utility
model. If the DM satisfies Consequentialism and the optimal inattention axioms, then the
DMmust also satisfy WARP, Independence and the other expected utility axioms. Moreover,
violations of Consequentialism behaviorally distinguish an optimally inattentive DM from a
fully attentive DM, as the former need only satisfy Subjective Consequentialism. Intuitively,
Consequentialism requires that the DM respects the objective information structure. For
an optimally inattentive DM, this implies that she processes all information and chooses
the act that maximizes expected utility. Since Consequentialism implies Subjective Conse-
quentialism, c(·) has an optimal inattention representation and must have a full attention
representation.

5. Identification and Comparative Behavior

5.1. Identification. To interpret a model, it is important to understand how precisely the
parameters are identified, i.e. what are the uniqueness properties of the representation. Even
though the modeler does not directly observe ex-ante preference, subjective information, or
attention cost, Theorem 3 shows the utility index, attention cost, subjective information and
beliefs are suitably unique, when every non-trivial partition has a positive cost, i.e. γ(P ) > 0
for all P 6= {Ω}. This assumption rules out particular cases where the likelihood of certain
events does not affect the DM’s choices.28 In the Supplementary Appendix, I give a full
characterization of all representations consistent with choices even when this condition is
violated.

First, I provide a behavioral characterization of positive cost of information.
28For one case, consider a fully attentive DM. Because the modeler observes only ex-post choice, any prior
represents the agent’s choices: her choice in state ω is the act with the best outcome in state ω, and the
prior plays no role in her decision.
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Corollary 4. If c has an optimal inattention representation (u, π, γ, P̂ ) , then γ(P ) > 0 for
all P 6= {Ω} if and only if for any x ∈ X, there exists ε > 0 so that c(B|·) is constant for
any B ∈ K(F) with d(B, {x}) < ε.

Before stating Theorem 3, I introduce the following normalization: an attention rule is
canonical if no strictly coarser attention rule also represents choice. For instance, if B
contains only constant acts, then P̂ (B) could in principal be any partition with zero cost,
but a canonical rule requires that P̂ (B) = {Ω}. Such a normalization is unnecessary if each
strictly finer partition has a strictly higher cost.

Theorem 3. If (u, π, γ, P̂ ) and (u′, π′, γ′, Q̂) represent c(·) and γ(P ) > 0 for all P 6= {Ω}:
(1) π = π′,
(2) Q̂(B) = P̂ (B) for all B ∈ K(F) whenever P̂ and Q̂ are canonical, and
(3) there exist α > 0 and β ∈ R so that u′(x) = αu(x) + β and γ′(Q) = αγ(Q) for all

x ∈ X and Q ∈ P.

Theorem 3 establishes that an optimally inattentive DM’s utility index, attention rule,
attention cost and prior are unique, as long as all information is costly. To see how choices
identify tastes, note that information is irrelevant for choosing constant acts. Consequently,
the DM acts as an expected utility maximizer when facing a problem containing only lotteries,
and identification of the utility index is a standard exercise.

The canonical attention rule is the partition

(3) P̂ (B) = {{ω′ : c(B|ω′) = c(B|ω)} : ω ∈ Ω}.

The DM’s subjective information when facing B must be at least as fine as the above. If not,
then the information to which she pays attention does not distinguish two states on which she
makes different conditional choices. Although she may pay attention to a partition strictly
finer than it, she makes the same conditional choices on at least two cells if she does, so this
partition also represents her choices.

To see how choices identify the cost of attention, consider first an optimally inattentive
DM who can only pay attention to either Q or {Ω}. Define a choice problem B that consists
of bets on each element of Q with stakes x and y as well as one sure option z, so that
u(x) > u(z) > u(y). If y is a sufficiently undesirable consequence, then the DM strictly
prefers to pay attention to Q rather than {Ω} whenever u(x)− γ(Q) > u(z)− γ({Ω}), and
she does not choose z only if she pays attention to Q. One can then identify γ(Q)− γ({Ω})
by finding the smallest x for which the DM does not choose z; this identifies γ(Q) uniquely
because γ({Ω}) = 0. When the DM may pay attention to more partitions, the above
identification procedure generalizes, but it must take into account that the DM may opt to
pay attention to a third partition. There exist partitions Q1, Q2, ..., Qn with Q1 = {Ω} and
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Qn = Q for which similar choice problems allow determination of γ(Qi) − γ(Qi−1). Since
γ(Q1) = 0, the sum of these cost differences equals γ(Q).

5.2. Comparative Attention. In this section, I develop two notions of what it means for
one DM to be more attentive than another, and interpret these behaviors in terms of the
model’s parameters. First, DM1 pays more attention than DM2 if for every choice problem
B, DM2 distinguishes ω from ω′ when facing B only if DM1 also distinguishes ω from ω′

when facing B. Second, DM1 has a higher capacity for attention than DM2 if for any choice
problem B, there is a second choice problem B′ so that DM2 distinguishes ω and ω′ when
facing B if and only if DM1 also distinguishes ω and ω′ when facing B′. The first condition
implies that DM1’s marginal cost of attention is lower than DM2’s, and the second condition
implies that any partition that is feasible for DM2 is also feasible for DM1.

Definition 3. c1(·) pays more attention than c2(·) if for every B ∈ K(F) that has a unique
optimal partition for c1 and all ω, ω′ ∈ Ω, c2(B|ω) 6= c2(B|ω′) =⇒ c1(B|ω) 6= c1(B|ω′).29

To interpret the definition, consider DM1 and DM2 with conditional choice correspon-
dences given by c1(·) and c2(·), and suppose that c1(·) pays more attention c2(·). Because
c(B|ω′) 6= c(B|ω) only if the DM’s subjective information distinguishes ω from ω′, whenever
DM2’s subjective information distinguishes ω and ω′, so does DM1’s. Consequently, DM1
pays attention to finer information than DM2 does, no matter which choice problem they
face.

Assuming DM1 and DM2 conform to the optimal inattention model with the same ex-ante
preference, if c1 pays more attention than c2, then DM1 receives a higher expected utility
than DM2 when facing every choice problem. In fact, it is necessary and sufficient for the
above whenever any two partitions in the support of either γ1 or γ2 can be compared by the
“finer than” relation. Such DMs chooses how precision their subjective information should
be. Theorem 4 characterizes this behavioral property in terms of the representation for the
case where the two DMs have the same ex-ante preference and any two partitions in the
support of either γ1 or γ2 can be compared by the “finer than” relation.

Theorem 4. If (u, π, γ1, P̂1) represents c1(·), (u, π, γ2, P̂2) represents c2(·), and either Q� R

or R � Q for any Q,R ∈ supp(γ1)⋃ supp(γ2), then c1(·) pays more attention than c2(·) if
and only if Q� R =⇒ γ1(Q)− γ1(R) ≤ γ2(Q)− γ2(R).

Theorem 4 says that DM1 pays more attention than DM2 if and only if her marginal
cost of attention is lower. Intuitively, each DM refines her information until the marginal
29From behavior, B has a unique optimal partition i there exists an ε > 0 so that

c(B|ω) 6= c(B|ω′) ⇐⇒ c(B′|ω) 6= c(B′|ω′)
for all B′ with d(B,B′) < ε.
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cost exceeds the marginal benefit. Whenever DM2 evaluates the marginal benefit of more
information as lower than the marginal cost, DM1 does so as well. Because the two DMs
have the same ex-ante preference, they also have the same marginal benefit and thus DM1
must have a lower marginal cost of paying attention to finer information.

It should be noted that under the assumptions of Theorem 4, if c1 pays more attention
than c2, then γ1(Q) ≤ γ2(Q) for all Q. However, the converse is false. While γ1(Q) ≤ γ2(Q)
for all Q implies that DM1’s net ex-ante utility is larger than DM2’s net ex-ante utility for
every problem, it does not admit a natural comparison in terms of the two DMs’ conditional
choices. In fact, a DM with a lower cost of attention sometimes selects coarser subjective
information than one with a higher cost of attention.30

The second comparison considers two DM’s capacities for attention.

Definition 4. c1(·) has a higher capacity for attention than c2(·) if for any B, there exists a
B′ so that for all ω, ω′ ∈ Ω, c2(B|ω) 6= c2(B|ω′) ⇐⇒ c1(B′|ω) 6= c1(B′|ω′).

To interpret the definition, consider DM1 and DM2 with conditional choice correspon-
dences given by c1(·) and c2(·), and suppose that c1(·) has a higher capacity for attention
than c2(·). For any problem B, there exists a B′ so that DM2 distinguishes ω and ω′ when
facing B if and only if DM1 distinguishes ω from ω′ when facing B′. Therefore, DM1 must
have the ability to pay attention to the information to which DM2 paid attention. Theorem
5 shows that for any two optimally inattentive DMs, this comparison is equivalent to the
support of DM2’s cost function being contained in the support of DM1’s cost function.

Theorem 5. If (u1, π1, γ1, P̂1) represents c1(·) and (u2, π2, γ2, P̂2) represents c2(·), then c1(·)
has a higher capacity for attention than c2(·) if and only if supp(γ1) ⊂ supp(γ2).

Note that supp(γi) is the set of partitions to which the DM may choose to pay attention.
Theorem 5 thus formalizes that supp(γi) reflects the DM’s capacity for attention. Unlike
Theorem 4, the hypothesis of the result does not require that u1 or π1 are related to u2 or
π2 in any way. The behavioral comparison does not require identical ex-ante preference to
be meaningful.

6. Observing Conditional Choice

Our goal in the section is to establish that ex ante data is often sufficient to elicit ex
post conditional choices. While conditional choices are often used in applications, they are
notoriously difficult to observe. To do so often requires seeing choice from the same menu
in the same setting multiple times or by multiple identical individuals, along with auxiliary
30Consider three equally likley states 1, 2, 3, and for Q = {{1}, {2, 3}}, R = {{1}, {2}, {3}}, γ1({Ω}) =
γ2({Ω}) = 0, γ1(Q) = 4, γ1(R) = 8, γ2(Q) = 7 and γ2(R) = 9 (both have infinite cost for all other
partitions). One can easily construct an example where DM 1 pays less attention than DM 2.
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assumptions regarding independence. Indeed, when a decision is not repeated, how a given
individual would choose in unrealized states cannot be observed. Ex ante choices, however,
are often easy to observe.

When conditional choices are unobservable, the best one can do is assume consistency
between ex ante and ex post choice and elicit the former from ex ante behavior. Roughly,
consistency requires that her ex ante choice of menu reflects what she actually chooses ex
post. While such an assumption is not necessarily a desirable property of a model of bounded
rationality (Spiegler, 2010), it overcomes limitations in observability. This section formalizes
the needed assumption and shows how to infer conditional choices from the DM’s ex ante
choice of a menu of acts.

One well-known parallel in the literature is dynamic choice under expected utility (Savage,
1954; Ghirardato, 2002). It considers a DM who chooses an act after learning that the realized
state lies in the event E ⊂ Ω; formally, her ex ante choice maximizes �, while her ex post
choice maximizes �E. The two are related via Dynamic Consistency (DC): f �E g if and
only if fEg � g. Observe that DC can only be tested with both ex ante and ex post choice
data. If one is nevertheless willing to assume DC, then the DM’s behavior ex post behavior
can be predicted even if one only observes �. Specifically, one elicits that f �E g whenever
the DM expresses that fEg � g.31 The resulting family of preference relations, jointly with
the observed ex ante relation �, satisfies DC.

I proceed along similar lines to elicit an optimally inattentive DM’s conditional choices.
The DM ex ante maximize a preference % over menus and ex post chooses according to a
conditional choice correspondence c. I propose a consistency condition that relates % to c.
As is the case for DC, one cannot directly test the required consistency condition from ex
ante data alone. If one is nevertheless willing to assume consistency, Theorem 6 shows that
the choices of an optimally inattentive DM can be elicited from %.32

Formally, the DM has a complete and transitive binary relation % on K(F), with �
denoting strict preference and ∼ denoting indifference. Her ex ante choice of menu maximizes
this preference relation. Our main goal in this section is to elicit the DM’s conditional choice
correspondence from %, not provide a representation theorem; for an elegant representation
theorem in this framework, see de Olivera et al. (2016).

Conditional choices are elicited as follows. For any menu B and state ω, let

Bω =
{
xB{ω}g : g ∈ B

}
for any xB ∈ X such that {f(ω′)} � {xB} for all f ∈ B and ω′ ∈ Ω.

31This is well-defined provided that � satisfies Completeness, Transitivity and Savage’s P2.
32The Supplemental Appendix gives assumptions on % alone that allow elicitation of a conditional choice
correspondence that is consistent with %.
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Definition 5. The DM’s anticipated choice from the menu B in the state ω is the set

cA(B|ω) =
{
f ∈ B : {f}

⋃
Bω ∼ B

}
.

For an intuition, observe that the menu Bω contains only acts that give a lower payoff in
state ω than anything in B. Thus, she is strictly worse off when facing Bω than when facing
B. If she anticipates choosing f in state ω, then she can nevertheless get the same outcome
in every state when facing Bω

⋃{f} as when facing B, so she should express Bω
⋃{f} ∼ B.

When she does not anticipate choosing f , she gets a worse outcome in state ω from Bω
⋃{f}

than from B, so she expresses B � Bω
⋃{f}. Therefore, she expresses Bω

⋃{f} ∼ B only if
she anticipates choosing f from B in state ω.

For this to be meaningful, the ex ante preference must reflect her ex post choices. I
propose the following relationship between the preference relation % and the conditional
choice correspondence c(·).

Definition 6. The pair (%, c) is consistent when for any A,B ∈ K(F), if c(B|ω′)⋂A 6= ∅
for each ω′ ∈ Ω, then A % B; if, in addition, there exists ω∗ such that c(A|ω∗)⋂B = ∅ and

c(A|ω) 6= c(A|ω′) ⇐⇒ c(B|ω) 6= c(B|ω′)

for every ω, ω′ ∈ Ω, then A � B.

For an intuition, suppose that the DM always chooses an act in A when facing B. When
facing A, she can replicate her choice from B, state-by-state, or perhaps make better choices.
If she correctly anticipates this, then she should weakly prefer the menu A to the menu B.
Moreover, if some of the acts she chooses from A are not available in B and her choices from
B require the same information to make as those from A, then she is strictly better off with
A than with B.33

Theorem 6. If (%, c) is consistent and c(·) has an Optimal Inattention Representation, then
there exists an open, dense K ⊂ K(F) such that for each B ∈ K and all ω,

cA(B|ω) = c(B|ω).

Theorem 6 provides conditions under which anticipated choice agrees with actual choice
from almost every menu. Moreover, the definition of cA(·) depends only on ex ante preference.
Thus, an optimally inattentive DM’s conditional choices can be inferred from her ex ante
preference over menus via cA(·), as long as one is willing to take consistency as given.

The set K contains the menus with unique optimal information partitions to which DM
anticipates paying attenion. In the remaining menus, one can only identify a set of potential
choices, all of which are equally good. This identification relies on similar ideas, but must
33This second condition accounts for “ties” in the optimal information. If A has a unique optimal partition,
then the second clause can be replaced with c(A|ω∗)

⋂
B = ∅ for some ω∗ ∈ Ω implies A � B.
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be formalized differently. See the Supplementary Appendix for details, including how to use
anticipated choices to construct a representation of %.

7. Discussion

In this paper, I have axiomatically characterized the properties of conditional choices that
are necessary and sufficient for the DM to act as if she has optimal inattention. These axioms
provide a choice-theoretic justification for the theory that agents respond to their limited
attention optimally. The optimal inattention model is a versatile model with interesting
implications: Dow (1991), Rubinstein (1993), Gul et al. (2017), and Saint-Paul (2011) all
consider consumers who conform exactly to the optimal inattention model.

Van Zandt (1996) studies choice behavior under hidden information acquisition, which
is readily reinterpreted as inattention. He provides a negative result with a sparser set of
primitives, namely that the model has no testable implications. Specifically, he takes as
given any choice correspondence on a finite collection of alternatives. He shows that one can
construct a state space, utility function, and an information acquisition problem so that in
a fixed state, the resulting best alternatives equal the choice correspondence. At the cost
of taking a richer set of primitives, I not only derive testable implications but also achieve
substantial uniqueness.

de Olivera et al. (2016) study rational inattention as revealed by a DM’s ex-ante preference
over menus of acts.34 The representation of preference is similar to my own, but the prim-
itives are very different. The DM chooses a menu in the anticipation that she will receive
information and can choose what information to process at some cost. These approaches are
complementary and highlight different aspects of the problem. To illustrate the distinction,
consider a consumption-savings problem where the agent faces two choices: first, an ex-ante
choice of how much to save and second, an ex-post choice of what to consume, and in be-
tween she receives information about her consumption options. The approach of de Olivera
et al. (2016) imposes properties over the savings decision and infers, via the representation,
what she will consume in each state. In contrast, the present paper takes as primitive her
state-by-sate consumption and infers what she would choose to save. Some axioms are simi-
lar; for instance, their Weak Singleton Independence axiom is very similar to ACI. However,
some of the key axioms have no analogs. For instance, their “Aversion to Randomization”
axiom plays a central role in their characterization but has no analog in mine, just as INRA
plays a central role in my characterization but has no analog in theirs.

Caplin and Dean (2015) develop a related framework for testing rational inattention. Their
work is also complementary to the present paper, in that it is better designed for testing
in the laboratory but does not achieve as precise identification. As in this paper, they

34Ergin and Sarver (2010) can also be interpreted in this way, but it is not their focus.
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study conditional choice, but choice is stochastic and the DM’s prior and utility index are
also primitives. The conditions that characterize the model are very different, namely two
inequalities that relate the agent’s choices, utility, prior, and inferred attention.

Another recent literature studies choice with fixed but unobserved information. Dillen-
berger et al. (2014) study the ex-ante preference over menus of acts who has or anticipates
receiving information before making her choice from the menu. Lu (2016) studies the un-
conditional distribution of choices from a menu of acts when the DM acquires fixed but
unobserved information. As in this paper, the information must be inferred from choice
data, but the information is fixed. Consequently, the models are most closely related to the
fixed attention special case, but neither focuses on interpreting this behavior as inattention.

By way of conclusion, I compare the optimal inattention model with some non-axiomatic
models of inattention that have been considered by the literature. The most prominent
example is the rational inattention model, due to Sims (1998, 2003). In this model, the con-
straint on attention takes the form of restricting the mutual information, i.e. the reduction in
entropy, between actions and the state of the world.35 The interpretation that fits best with
the framework of the present paper is that the agent has access to arbitrarily precise, and
arbitrarily imprecise, signals about the state of the world on which she conditions her action,
and but the modeler does not observe the realization of this information. If the information
in the economy were explicitly modeled and the possible signals incorporated within the
state space, then conditional choices are deterministic and the interpretation fits within my
model. Another interpretation is that the agent has perfect information but her perception
of this information is stochastic and by exerting effort can decreases the randomness of her
perception. This second interpretation cannot be accommodated within my framework.

Mankiw and Reis (2002) introduce the sticky information model.36 It postulates that
agents update their information infrequently, and when they update, they obtain perfect
information. If, as in Reis (2006), the agent chooses whether to update at a cost, this model
is the special case of optimal inattention in a static setting. Specifically, the cost of the
information the agent had in the previous period is zero and the costs of all other partitions
are equal but positive. If, as in Mankiw and Reis (2002), updating is exogenous, then the
model is a special case of fixed attention in a static setting, given a realization of the update
process. However, the key interest of this line of research is in a dynamic, not static, setting.

Gabaix (2014) introduces the sparse max model and shows it has interesting implications
for consumer theory. The realized true parameter in sparse max plays the same role as the

35Recently, Matejka and McKay (2015) have studied this model’s implications in the context of discrete
choices. Their focus is on solving the model in a discrete setting, and in the course of analysis, they provide
testable implications in terms of choices from a suitably rich feasible set of actions.
36This formalization is based on Gabaix and Laibson (2001) which can be interpreted similarly, though they
do not focus on interpreting their stickiness as information.
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true state in optimal inattention. Rather than choosing a coarser information partition, the
agent chooses a sparse parametrization of the model. Unlike optimal inattention, the choice
of the sparse parametrization is only approximately optimal in the sparse max, making the
model very tractable. Both agents then make the optimal choice given the realization of the
subjective information or sparse parameter.

Appendix A. Proofs

A.1. Proofs from Section 4.

A.1.1. Sketch for Proof of Theorem 1: Before turning to the details, I provide a detailed
sketch of the arguments that will be used to establish sufficiency of the axioms for the
representation. The full proof can be found in the next subsection. I focus, for this subsection
only, on the case where Ω = {ω1, ω2}.

The goal will be to map conditional choices into a preference relation that has the noted
representation. The preference is constructed over “plans”, or mappings from states to acts
representing what the DM will do in each state. The key to doing so is INRA, which ensures
that we can define such a preference in a way that makes sense.

As a preliminary step, there exists an expected utility representation for choice over lot-
teries, with an unbounded utility index u.

Given two states, one can write the plan to choose fi ∈ F in state ωi as (f1, f2) or as F with
F (ωi) = fi. The elicitation of preference over plans is based on the idea that if f ∈ c(B|ω1)
and g ∈ c(B|ω2), then the plan (f, g) is preferred to any plan (h1, h2) with h1, h2 ∈ B. INRA
implies that this preference is well-defined and actually captures the choices of the DM: given
the choices above, if f, g, h1, h2 ∈ B′, then (h1, h2) is not chosen from B′. INRA alone is
enough to define such a preference, and the remainder of the proof shows the other axioms
imply that it has enough regularity properties to represent as optimal inattention.

Because I do not directly observe preference over plans, some plans are never chosen from
any menu. For instance, if u(f1(ω)) ≥ u(f2(ω)) for all ω, then (f1, f2) is never chosen from
any problem. For any plan F , I construct a stand-in plan F̄ that is chosen from {F̄ (1), F̄ (2)}
and will be chosen from {F̄ (1), F̄ (2)}⋃B whenever F is chosen from B (Lemma 4). Roughly,
F̄ (ω) differs from F (ω) by decreasing its payoff in the states where it would not be not chosen.
INRA and Monotonicity ensure that adding these modified acts to the menu do not change
the DM’s choices, and SC ensures that F̄ (ω) is chosen whenever F (ω) is. As a consequence,
only the realized outcomes from a plan and the information used to implement it matter for
preference, i.e. the vector (u(f1(1)), u(f2(2))) and the algebra σ((f1, f2)) suffice for ranking
(f1, f2).
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I further extend the preference via sequences similar to those used in the strong axiom of
revealed preference (the relation IS from the text) and also using plans chosen from “nearby”
menus (the closure of IS, denoted ĪS). I denote the resulting relation �.

While � is typically incomplete, the axioms imply it has useful regularity properties.
INRA, Monotonicity, and ACI imply that � is transitive (Lemma 6). ACI implies that �
satisfies “translation invariance”: for any acts f, g and plans F,G, if αF + (1 − α)(f, f) �
αG + (1 − α)(f, f), then αF + (1 − α)(g, g) � αG + (1 − α)(g, g) (Lemma 7). Intuitively,
this means that if the utility of two plans is shifted by the same amount in each state,
then the DM does not reverse her preference. Finally, Continuity, along with the above two
properties, allows me to show that, restricted to constant plans, there is a probability measure
that represents choice in the following sense: if (f, f) � (g, g), then

´
u ◦ fdπ ≥

´
u ◦ gdπ

(Lemma 9).
Since � may be incomplete, I directly use the above properties to construct the cost

function (Lemma 10). Incompleteness rules out taking the cost function equal to the concave
conjugate. To find the cost of the partition Q, I compute the expected utility, according to
u and π, of the outcomes given by the worst plan requiring Q to implement that is preferred
to the lottery that gives zero utility for sure. If no such plan exists, then the cost of paying
attention to Q is infinite. To conclude, I use Continuity and INRA to establish that the
representation of plans maps back into choices.

A.1.2. Proof of Theorem 1: First, I introduce some notation. Let K(X) be the set
of compact, non-empty subsets of X, noting that K(X) ⊂ K(F). Let Σ be the set of
all subsets of Ω. For any f, g ∈ F and any event E ⊂ Ω, let fEg ∈ F be such that
fEg(ω) = f(ω) if ω ∈ E and fEg(ω) = g(ω) if ω /∈ E. Let FΩ be the set of functions
from Ω to F ; recall σ({Ei}i∈I) is the smallest σ−algebra containing {Ei}i∈J and σ(f) is the
smallest σ−algebra by which f is measurable. I refer to elements of FΩ as “plans” with
the interpretation that the DM plans to choose F (ω) in state ω. I denote elements of X by
x, y, z , elements of F by f, g, h and elements of FΩ by F,G,H and elements of K(F) by
A,B,C. With usual abuse of notation, identify F with the subset of FΩ that does not vary
with the state, so X ⊂ F ⊂ FΩ. Define mixtures between elements of FΩ state-by-state, so
[αF + (1− α)G](ω) = αF (ω) + (1− α)G(ω).

The proof proceeds as a sequence of Lemmas.

Lemma 1. There exists an affine, continuous, unbounded u : X → R so that for any
B ∈ K(X), x ∈ c(B|ω) ⇐⇒ u(x) ≥ u(y) for all y ∈ B.

Proof. Observe that by definition, x �R y if and only if x(ω′) �R y(ω′) for all ω′. First,
for any B ∈ K(X), c(B|ω′) = max�R B for all ω′: by Monotonicity if y ∈ c(B|ω) and
x �R y, then x ∈ c(B|ω), and if x �R y, then y /∈ c(B|ω). Second, c(·) satisfies WARP
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when restricted to X. Now, fix any A ⊂ B ∈ K(X). By the claim, c(B|ω)⋂A 6= ∅ ⇐⇒
c(B|ω′)⋂A 6= ∅. So if c(B|ω)⋂A 6= ∅, c(B|ω)⋂A = c(A|ω) by INRA. Conclude �R is
complete and transitive.

The weak order �R satisfies the remaining axioms of Herstein and Milnor (1953); continu-
ity follows from Continuity. Denoting the symmetric part of �R by ∼R, it remains to show
that a ∼R a′ ⇐⇒ 1

2a + 1
2b ∼

R 1
2a
′ + 1

2b. If not, then there exist a, a′, b with a ∼R a′ and
1
2a + 1

2b �
R 1

2a
′ + 1

2b. By ACI, a = 1
2a + 1

2a �
R 1

2a
′ + 1

2a and 1
2a + 1

2a
′ �R 1

2a
′ + 1

2a
′ = a′.

Transitivity gives a contradiction, and similar arguments yield the converse. By Unbound-
edness, �R is non-degenerate. Therefore, �R also satisfies the assumptions of (Grandmont,
1972, Thm 2). Therefore an affine, continuous u : X → R exists. Because of the argu-
ment that follows the statement of Unboundedness in the main text of the paper, u must be
unbounded. �

For any B ∈ K(F), let P̂ (B) be the partition defined by Equation (3).

Lemma 2. For any B ∈ K(F), all f, h ∈ B and act g such that u ◦ f ≥ u ◦ g, h ∈
c(B|ω) ⇐⇒ h ∈ C(B ⋃{g}|ω); moreover, if f ∈ c(B|ω) and u(h(ω′)) = u(f(ω′)) for all
ω′ ∈ P̂ (ω), then h ∈ c(B|ω).

Proof. Let f ∈ B and suppose u◦f ≥ u◦g. Then f(ω) is revealed preferred to g(ω) for all ω.
By monotonicity, g ∈ c(B ⋃{g}|ω′) implies f ∈ c(B ⋃{g}|ω′). Therefore, c(B ⋃{g}|ω′)⋂B 6=
∅ for all ω. Hence c(B|ω′) = c(B ⋃{g}|ω′)⋂B.

For the second part, fix any f ∈ c(B|ω) and h ∈ B with u(h(ω′)) = u(f(ω′)) for all
ω′ ∈ P̂ (B)(ω). Consider g ∈ F such that g(ω′) = h(ω′) for all ω′ for all ω′ ∈ P̂ (B)(ω)
and g(ω′) = f(ω′) otherwise. Then, u ◦ f ≥ u ◦ g, and applying the first part gives that
f ∈ c(B ⋃{g}|ω). By Monotonicity, g ∈ c(B ⋃{g}|ω), and by SC, h ∈ c(B ⋃{g}|ω). By
INRA, h ∈ c(B|ω). �

Define ĉ : K(F) � FΩ by F ∈ ĉ(B) if and only if both F (ω) ∈ c(B|ω) for every ω and
σ(F ) ⊂ σ(P̂ (B)). Since σ(P̂ (B)) ⊂ σ(P ), any σ(P̂ (B))-measurable selection from c(B|·) is
in FΩ. Measurability ensures that every plan in ĉ(B) requires no more information to follow
than P̂ (B) and maintains indifference between f, g ∈ c(B|ω). For any F ∈ FΩ, let Im(F )
be the image F , i.e. Im(F ) = {F (ω) : ω ∈ Ω}. By INRA, if F ∈ ĉ(B) then F ∈ ĉ(Im(F ));
I sometimes write ImF instead of Im(F ).

Define P∗ = {P̂ (B) : B ∈ K(F)}, the set of partitions to which the DM sometimes attends.
For the act g, we construct a plan gQ that is chosen from Im(gQ), the DM pays attention
to Q when facing Im(gQ), and she gets an outcome yielding a utility of 1

2u(g(ω)) + 1
2u(0) in

the state 0. One can adjust g to mimic the outcome, state-by-state, of choosing any plan
that requires paying attention to Q.



FOUNDATIONS FOR OPTIMAL INATTENTION 28

Lemma 3. For each Q ∈ P∗, there exists x ∈ X, BQ = {fω : ω ∈ Ω} ⊂ F with fω = fω′

whenever ω′ ∈ Q(ω) such that:
(i) u

(
1
2fω + 1

2x
)

(ω′) = 0 for all ω′ ∈ Q(ω), and
(ii) {1

2fω + 1
2x} = c(1

2BQ + 1
2x|ω) for all ω.

Then, for any g ∈ F , {1
2fω + 1

2g} = c(1
2BQ + 1

2g|ω) for all ω. Call the resulting plan gQ.

Proof. Pick any Q ∈ P∗ and B such that P̂ (B) = Q. By Lemma 2, INRA and SC, it is
without loss to assume that c(B|ω) is a singleton, so for each ω, there exists gω so that
{gω} = c(B|ω). Let u(x) = 0 and define an act f ′ω so that u (f ′ω(ω′)) = 4u (gω(ω′)), and
observe that u ◦ [1

2

[
1
2f
′
ω + 1

2x
]

+ 1
2x] = u ◦ gω. Set B′Q = {1

2f
′
ω + 1

2x : ω ∈ Ω} and then by
Lemma 2 and INRA,

gω′ ∈ c(B|ω) ⇐⇒ 1
2

[1
2f
′
ω + 1

2x
]

+ 1
2x ∈ c

(1
2B
′
Q + 1

2x|ω
)
.

Let h be an act such that u(h(ω′)) = −4u(gω′(ω′)). For fω = 1
2f
′
ω + 1

2h, BQ = {fω : ω ∈ Ω}
has the desired properties, since ACI gives that

1
2fω + 1

2x = 1
2

[1
2f
′
ω + 1

2h
]

+ 1
2x ∈ c

(1
2BQ + 1

2x|ω
)

⇐⇒ 1
2

[1
2f
′
ω + 1

2x
]

+ 1
2x ∈ c

(1
2B
′
Q + 1

2x|ω
)

and u(fω(ω)) = 0 for all ω. The final statement follows by using ACI to replace x with g. �

Now, let
H =

⋃
Q∈P∗
{F ∈ FΩ : F is σ(Q)−measurable}.

For any F ∈ H, let F̄ = gQ for the Q ∈ P∗ such that σ(Q) = σ(F ) and an act g such that
u(g(ω)) = 2u(F (ω)(ω)) for all ω.37 Thus, F̄ ∈ ĉ(Im(F̄ )), u(F̄ (ω)(ω)) = u(F (ω)(ω)) for all
ω, and σ(F̄ ) = σ(Q). The next lemma shows that when F is chosen from Im(F ), then the
plan F̄ is indifferent to the plan F .

Lemma 4. If F ∈ ĉ(Im(F )), then Im(F̄ ) IS Im(F ) and Im(F ) IS Im(F̄ ).

Proof. Suppose F ∈ ĉ(Im(F )) and that P̂ (Im(F )) = Q. Let x be the element of {f(ω) :
ω ∈ Ω, f ∈ Im(F )⋃ Im(F̄ )} that minimizes u(·). Let F ∗x ∈ H be such that

F ∗x (ω)(ω′) =

 F (ω)(ω′) if ω′ ∈ Q(ω)
x if ω′ /∈ Q(ω)

.

Note that F̄ ∈ ĉ(Im(F̄ )), so the first part of Lemma 2 implies that F̄ ∈ ĉ(Im(F̄ )⋃ Im(F ∗x )).
Moreover, P̂ (Im(F̄ )⋃ Im(F ∗x )) � P̂ (Im(F̄ )). By the second part of Lemma 2, F ∗x ∈
37By Lemma 2, whenever u ◦ g1 = u ◦ g2, 1

2BQ + 1
2gi IS

1
2BQ + 1

2gj for any i, j ∈ {1, 2}.
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ĉ(Im(F̄ )⋃ Im(F ∗x )) and F ∗x , F ∈ ĉ(Im(F )⋃ Im(F ∗x )). Hence

Im(F̄ ) IS Im(F ) IS Im(F̄ ),

completing the proof. �

Let ĪS be the sequential closure of IS, that is A ĪS B if and only if there exists An →
A, Bn → B, and An IS Bn for all n. Let � be defined by F � G if and only if either
Im(F̄ ) ĪS Im(Ḡ) or G /∈ H. � relates to choice as follows.

Lemma 5. Suppose F ∈ ĉ(B). If Im(G) ⊂ B, then F � G.

Proof. If G /∈ H, then F � G. Otherwise, by Lemma 2, F ∈ ĉ(B ⋃{Ḡ}) so Im(F ) IS {Ḡ}.
Since F̄ IS F , F̄ IS Ḡ, so F � G. �

The remainder of the proof collects properties of � and then proves a representation
theorem. The following Corollary of Lemma 4 shows that knowing the utility of the outcome
given by a plan and the information required to follow it suffices for preference.

Corollary 5. For F,G ∈ H: if u (F (ω)(ω)) = u (G(ω)(ω)) for all ω ∈ Ω and σ(F ) = σ(G),
then F ∼ G.

Proof. Define F ∗x as in Lemma 4 for u(x) < min{u(f(ω)) : f ∈ Im(F̄ )⋃ Im(Ḡ), ω ∈ Ω}.
Then, the arguments in the Lemma show Im(H) IS Im(F ∗x ) IS Im(H ′) for H,H ′ ∈ {F̄ , Ḡ},
since H ′′ ∈ ĉ(Im(H ′′)) for each H ′′ ∈ {F̄ , Ḡ}. The conclusion follows immediately. �

Lemma 6. � is a preorder.

Proof. Reflexivity is trivial. To see � is transitive, fix any finite A,B,C ∈ K(F). Suppose
A ĪS B and B ĪS C, so there are sequences An, Bn, B

′
n, Cn converging to A,B,B,C respec-

tively with An IS Bn and B′n IS Cn for all n. Pick 0, (−2), 2 ∈ X such that u(0) = 0, u(−2) =
−2 and u(2) = 2. Pick x̄, x ∈ X so that u(x̄) = max{2u(f(ω)) : ω ∈ Ω, f ∈ A⋃C}+ 1 and
u(x) = min{2u(f(ω)) : ω ∈ Ω, f ∈ A⋃C} − 1. For any f ∈ F with 1

2u(x) ≤ u ◦ f ≤ 1
2u(x̄),

let f ∗ ∈ F be so that f ∗(ω) ∈ co{x̄, x} and 1
2f
∗(ω) + 1

20 ∼ f(ω).
Because u(·) is continuous, A,B,C are finite, and each act in A

⋃
B
⋃
C is simple, for

every ε > 0 there exists Nε such that

max
f∈D

min
fn∈Dn

max
ω∈Ω

u(fn(ω))− u(f(ω)) < ε

for all n > Nε and for D = A,B,C. WLOG (by taking a subsequence), N( 1
n

) = n. Now,
consider the sequence Dn

1 , ..., D
n
m that reveals An IS Bn. By Monotonicity and Lemma 2,

instead consider 1
2D̂

n
1 + 1

20, ..., 1
2D̂

n
m + 1

20, where each D̂n
i contains acts with exactly twice

the utility of the acts in Dn
i . Similarly, consider 1

2Ê
n
1 + 1

20, ..., 1
2Ê

n
k + 1

20 instead of En
1 , ..., E

n
k

that reveals B′n IS Cn. Note that in either sequence, one can replace 0 with another x ∈ X
and shift the utility up or down by 1

2u(x) via ACI.
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Now, define
A′n(α) = {(1− α)f + α

2 f
∗ + α

2 (2) : f ∈ An}

and
C ′n(α) = {(1− α)f + α

2 f
∗ + α

2 (−2) : f ∈ An}.

Note u([(1 − α)f + α
2 f
∗ + α

2 (2)](ω)) = u(f(ω)) + α. By ACI Lemma 2, f ∈ c(An|ω) if and
only if (1− α)f + α

2 f
∗ + α

2 (2) ∈ c(A′n(α)|ω). Similarly for C ′n.
For ε ∈ [−2, 2], let ε correspond to the mixture between −2 and 2 that yields u(ε) =

ε. Applying ACI successively to each 1
2D̂

n
i + 1

2(0) and 1
2D̂

n
i+1 + 1

2(0) shows that 1
2D̂

n
1 +

1
2( 2

n+1) IS 1
2D̂

n
m+ 1

2( 2
n+1) and by Monotonicity and INRA, A′n( 1

n
) IS 1

2D̂
n
1 + 1

2( 2
n+1). Similarly,

1
2E

n
1 + 1

2( −2
n+1) IS 1

2E
n
k + 1

2( −2
n+1) and 1

2E
n
k + 1

2( −2
n+1) IS C ′n( 1

n
). Moreover, by Lemma 2,

1
2D̂

n
m + 1

2( 2
2n) IS 1

2E
n
1 + 1

2(−2
n

). Since IS is transitive, A′n( 1
n
) IS C ′n( 1

n
) and thus since

A′n( 1
n
)→ A and C ′n( 1

n
)→ C, conclude that A ĪS C.

To see that � is a preorder, pick any F,G,H ∈ H so that F � G � H. Note
Im(F̄ ), Im(Ḡ), Im(H̄) are finite and apply the above. Conclude F � H. The result is
trivial if one of F,G,H does not belong H. �

Recall that if f ∈ F and F ∈ FΩ, then αF+(1−α)f is the plan that gives αF (ω)+(1−α)f
in state ω.

Lemma 7. For any F,G ∈ FΩ and any f, g ∈ F :
if αF + (1− α)f � αG+ (1− α)f , then αF + (1− α)g � αG+ (1− α)g.

Proof. I show first that for any finite A,B ∈ K(F),

αA+ (1− α){g} IS αB + (1− α){g} =⇒ αA+ (1− α){h} IS αB + (1− α){h}.

If αA + (1 − α){g} IS αB + (1 − α){g}, then there exists a sequence C1, ..., Cm so that
C1 = αA + (1 − α){g} and Cm = αB + (1 − α){g} satisfying c(Ci|ω) ⊆ Ci−1 for all ω and
i > 1. By Lemma 1, for every h there exists ĥ so that u(ĥ(ω)) = 1

α
u(f(ω)) − 1−α

α
u(g(ω)).

Therefore, u ◦ [αh̄+ (1− α)g] = u ◦ h].
Consider Ci and Ĉi = {ĥ : h ∈ Ci} for i > 1, with Ĉ1 = {ĥ : h ∈ ⋃

ω c(C2|ω). Since
ĉ(C2) ∈ C1, f ∈ c(C1|ω) implies f ∈ c(C1

⋃
Ĉ1|ω) by Lemma 2. For i > 1, Lemma 2 gives

c(Ci|ω) = c(Ci
⋃
Ĉi|ω)⋂Ci and c(Ĉi|ω) = c(Ĉi

⋃
Ci|ω)⋂ Ĉi; moreover, Monotonicity and

Lemma 1 give that h ∈ c(Ci
⋃
C̄i|ω) ⇐⇒ ĥ ∈ c(Ci

⋃
Ĉi|ω). Hence h ∈ c(Ci|ω) ⇐⇒ ĥ ∈

c(Ĉi|ω).
Now, D1 = C1, D2 = Ĉ1, ..., Dn+1 = Ĉn, Dn+2 = Cn satisfy c(Di|ω) ⊂ Di−1 for all ω

and i > 1. Moreover, each Di can be written as αD′i + (1 − α){g}. ACI implies that
αf + (1−α)g ∈ c(αD′i + (1−α){g}|ω) if and only if αf + (1−α)h ∈ c(αD′i + (1−α){h}|ω).
Therefore, αA+ (1− α){h} IS αB + (1− α){h}.
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Now, if αA + (1 − α){g} IS αB + (1 − α){g}, there is a sequence An and Bn of choice
problems so that An → αA+(1−α){g}, Bn → αB+(1−α){g}, and An IS Bn. By Lemmas 1
and 2, it is without loss of generality to take An = αA′n+(1−α){g} and Bn = αB′n+(1−α){g}
where A′n → A and B′n → B. By the above, αA′n + (1−α){g} IS αB′n + (1−α){g} implies
αA′n + (1 − α){h} IS αB′n + (1 − α){h}, and since A′n → A and B′n → B, αA + (1 −
α){h} IS αB + (1− α){h}.

Pick any plans F,G and acts f, g with αF+(1−α)f � αG+(1−α)f with σ(F ) = σ(Q) and
σ(G) = σ(Q). Recall Im(αF + (1− α)f) = 1

2BQ+ 1
2f
∗ and Im(αG+ (1− α)f) = 1

2BR+ 1
2g
∗

for some f ∗, g∗ ∈ F , and that both are finite. By unbounded, there exist f ′, g′, f̂ ∈ F so
that u ◦ f ∗ = u ◦

[
αf ′ + (1− α)f̂

]
, u ◦ g∗ = u ◦

[
αg′ + (1− α)f̂

]
and u ◦ f̂ = 2u ◦ f . By

Corollary 5,
1
2BQ + 1

2
[
αf ′ + (1− α)f̂

]
ĪS

1
2BQ + 1

2f
∗

and
1
2BR + 1

2g
∗ ĪS

1
2BR + 1

2
[
αg′ + (1− α)f̂

]
.

Now, αF + (1− α)f � αG+ (1− α)f and Lemma 6 imply that
1
2BQ + 1

2
[
αf ′ + (1− α)f̂

]
ĪS

1
2BR + 1

2
[
αg′ + (1− α)f̂

]
.

Let ĝ ∈ F be so that u ◦ ĝ = 2u ◦ g. By above,
1
2BQ + 1

2 [αf ′ + (1− α)ĝ] ĪS 1
2BR + 1

2 [αg′ + (1− α)ĝ] ,

and by Corollary 5,

Im(αF + (1− α)g) ĪS 1
2BQ + 1

2[αf ′ + (1− α)ĝ]

and
1
2BR + 1

2[αg′ + (1− α)ĝ] ĪS Im(αG+ (1− α)g).

Applying Lemma 6 gives implies that

Im(αF + (1− α)g) ĪS Im(αG+ (1− α)g),

so αF + (1− α)g � αG+ (1− α)g. �

Corollary 5 and Lemma 7 imply the following useful observation.

Corollary 6. For any φ ∈ RΩ and any F,G ∈ FΩ: if F � G, then F + φ � G+ φ for any
F +φ,G+φ ∈ FΩ such that u((F +φ)(ω)(ω)) = u(F (ω)(ω))+φ(ω) and u((G+φ)(ω)(ω)) =
u(G(ω)(ω)) + φ(ω), σ(F ) = σ(F + φ) and σ(G) = σ(G+ φ).

The next two lemmas establish existence of the underlying probability measure π.

Lemma 8. If {x} ĪS {f}, then there exist fn → f such that {x} IS {fn}.
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Proof. Le y ∈ X be such that u(y) = u(x)− 1 and g ∈ F such that u(gn(ω)) = 2u(f(ω))−
u(y) + 1 for all ω. Define xn = n−1

n
x + 1

n
y, f ′n = n−2

n
f(ω) + 1

n
(gn(ω)) + 1

n
y, noting that

xn → x, f ′n → f , and u(xn) = u(x)− 1
n
and u(f ′n) = u(f(ω)) + 1

n
. Since u is continuous and

f is simple, for every n there exists a δn > 0 such that d(z′, z) < δn implies |u(z′)−u(z)| < 1
n

for z ∈ {x}⋃{f(ω) : ω ∈ Ω}. Since {f} ĪS {x}, there are Am → {x} and Bm → {f} such
that Bm IS Am. Then for every n there exists an Mn such that m > Mn implies d(b, x) < δn

and d(a, f) < δn. In particular, m > Mn implies u(xn) < u(a(ω)) and u(b(ω)) < u(f ′n(ω))
for all b ∈ Bm, a ∈ Am and ω ∈ Ω. By Lemma 2, {f ′n} IS {xn} for all n. But then defining
f ′′n = n−2

n−1f + 1
n−1(gn) and fn = n−1

n
f ′′n + 1

n
x, {n−1

n
f ′′n + 1

n
y} IS {n−1

n
x+ 1

n
y} by Lemma 2. But

then using ACI, {n−1
n
f ′′n+ 1

n
x} IS {n−1

n
x+ 1

n
x} = {x}. Defining fn = n−1

n
f ′′n+ 1

n
x, {fn} IS {x}

for all n and fn → f . �

Lemma 9. There is a full-support probability measure π so that for any f, g ∈ F , if f � g,
then

´
u ◦ fdπ ≥

´
u ◦ gdπ.

Proof. Let 0 be the act with u(0)(ω) = 0 for all ω. Define

K = {u ◦ f : f � 0, f ∈ F}.

Let K∗ = c̄o(K), the convex closure of K, and define f R g on F by f R g ⇐⇒ u◦f−u◦g ∈
K∗, with RI the symmetric and RS the assymetric parts. It is easy to verify that R is
reflexive, transitive, monotonic, and suitably continuous. By e.g. Gilboa et al. (2010), there
exists a weak* closed and convex set Π of probability measures on Ω so that fRg if and only
if
´
u ◦ fdπ̂ ≥

´
u ◦ gdπ̂ for all π̂ ∈ Π. By Lemma 7, f � g implies fRg.

Now, adapt the argument of Dubra et al. (2004) to show the existence of a π such that
fR(RS)g =⇒

´
u ◦ fdπ ≥ (>)

´
u ◦ gdπ. The probability measures on Ω are separable

and metrizable by Theorem 15.12 of Aliprantis and Border (2006) (henceforth, AB). Let
{πi : i ∈ N} be a countable dense subset of Π, and define π = ∑ 1

2iπi. Then if fRg, then´
u◦fdπi ≥

´
u◦gdπi for all i, so

´
u◦fdπ ≥

´
u◦gdπ. If fRSg, then

´
u◦fdπ̂ ≥

´
u◦gdπ̂ all

π̂ ∈ Π without equality for at least one π̂. By continuity of the integral and that {πi : i ∈ N}
is dense, there exists j ∈ N such that

´
u◦ fdπj >

´
u◦ gdπj and thus

´
u◦ fdπ >

´
u◦ gdπ.

The measure π has full support if and only if xE0RS0 for any arbitrary x > 0 and E ∈ P .
Suppose not. By Monotonicity, xE0R0, so when θ = −(xE0), it must holds that θR0.
Let f and y be any acts such that u ◦ f = θ and u(y) = 1. Note f /∈ c({0, f}|ω) when
ω ∈ E by Monotonicity, and that 0 ∈ c({0, f}|ω) and y revealed strictly preferred to f(ω)
for all ω. By Continuity (ii), there exists ε > 0 such that for all f1, ..., fm and α1, ..., αm

with fi IS 0, ∑αiu ◦ fi(ω′) > [εy + (1 − ε)θ](ω′) for some ω′. Now, if θR0, then θ ∈ K∗

and for every n, there is a θn ∈ co(K) such that max |θn(ω) − θ| < 1
n
. Picking n such that

1
n
< minω[(εy + (1 − ε)θ)(ω) − θ(ω)], there are fn1 , ..., fnmn

∈ K (and thus slightly abusing
notation, also in F) and αn1 , ..., αnmn

∈ [0, 1] with {fni } IS {0} and
∑
αni u ◦ fni = θn. But by



FOUNDATIONS FOR OPTIMAL INATTENTION 33

the above, there is ω′ such that θn(ω′) = ∑
αiu ◦ fi(ω′) > [εy + (1 − ε)θ](ω′) > θn(ω′), a

contradiction. Thus xE0RS0 and π(E) > 0. �

The next lemma establishes existence of the cost function. For any F ∈ F , let F ∗ ∈ F be
such that F ∗(ω) = F (ω)(ω) for all ω ∈ Ω.

Lemma 10. There is a cost function γ : P → R̄+ so that F � G implies that V (F ) =´
u ◦ F ∗dπ − γ(P̂ (ImF̄ )) ≥

´
u ◦G∗dπ − γ(P̂ (ImḠ)) = V (G).

Proof. Label 0 ∈ X a lottery with u(0) = 0. For Q,R ∈ P, let MQ,R = {f ∈ F : fQ � 0R};
recall fQ is defined before Lemma 4. Define

γ(Q) = inf
φ∈MQ,{Ω}

ˆ
φdπ

(as is standard, the infimum of the empty set is taken to be ∞) and let

V (F ) =
ˆ
u ◦ F ∗dπ − γ(P̂ (ImF̄ )).

The Lemma is true if F � G implies V (F ) ≥ V (G).
I claim infg∈MQ,R

´
u ◦ gdπ ≥ γ(Q) − γ(R) when γ(Q) < ∞. If γ(R) = ∞, this is

trivial, so assume MR,{Ω} 6= ∅. Let ĝn = 1
2g

n + 1
20 be a sequence in MR,{Ω} so that

´
u ◦ ĝndπ

approaches γ(R), and let ĥn = 1
2h

n+ 1
20 be a sequence inMQ,R so that

´
u◦ ĥndπ approaches

inff∈MQ,R

´
u ◦ dπ. By definition, Lemma 7 and Monotonicity,

[ĥn]Q � 0R and [ĝn]R � 0{Ω}.

Let gn∗ be an act so that u ◦ gn∗ = −u ◦ gn. By Lemmas 2 and 7

[ĝn]R � 0{Ω}

⇐⇒ [12g
n + 1

20]R ∼
1
2[gn]R + 1

20 � 1
20{Ω} + 1

20

⇐⇒ 0R ∼ [12g
n + 1

2g
n
∗ ]R ∼

1
2[gn]R + 1

2g
n
∗ �

1
20{Ω} + 1

2g
n
∗ ∼

1
2[gn∗ ]{Ω} + 1

20

and using Transitivity in addition to the two lemmas,
1
2[hn]Q + 1

20 ∼ [12h
n + 1

20]Q �
1
2[gn∗ ]{Ω} + 1

20

⇐⇒ 1
2[hn]Q + 1

2g
n � 1

2[gn∗ ]{Ω} + 1
2g

n

⇐⇒ [12h
n + 1

2g
n]Q � 0{Ω}.

Since u ◦ [1
2h

n + 1
2g

n] = [u ◦ ĝn + u ◦ ĥn], we have

γ(Q) = inf
f∈MQ,{Ω}

ˆ
u ◦ fdπ ≤

ˆ
[u ◦ ĝn + u ◦ ĥn]dπ.
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As n→∞, the right hand side goes to inff∈MQ,R

´
u ◦ fdπ + γ(R), proving the claim.

To complete the proof, fix any arbitrary F,G ∈ FΩ so that F � G, and let Q = P̂ (ImF̄ )
and R = P̂ (ImḠ). If G /∈ H, then the conclusion follows trivially. Otherwise, by Lemma 4,
there are acts f, g so that u ◦ f = 2u ◦ F ∗ and u ◦ g = 2u ◦G∗ and

[12f + 1
20]Q ∼ F � G ∼ [12g + 1

20]R.

As above,
[12f + 1

20]Q ∼
1
2[f ]Q + 1

20 � 1
2[g]R + 1

20 ∼ [12g + 1
20]R.

Let g∗ be any act so that u ◦ g∗ = −u ◦ g. By Lemmas 2 and 7,
1
2[f ]Q + 1

2g∗ �
1
2[g]R + 1

2g∗ ∼ 0R

Hence, 1
2f + 1

2g∗ ∈MQ,R; observe u ◦ [1
2f + 1

2g∗] = u ◦ F ∗ − u ◦G∗ and soˆ
u ◦ F ∗dπ −

ˆ
u ◦G∗dπ ≥ inf

f∈MQ,R

ˆ
u ◦ fdπ ≥ γ(Q)− γ(R)

implying ˆ
u ◦ F ∗dπ − γ(P̂ (ImF̄ )) ≥

ˆ
u ◦G∗dπ − γ(P̂ (ImḠ)),

or equivalently V (F ) ≥ V (G). �

Lemma 11. For any Q,R ∈ P: if R � Q, then γ(R) ≥ γ(Q), and if Q � P and Q 6= P ,
then γ(Q) =∞.

Proof. The first implication follows from Lemma 2. In particular, for u(x) sufficiently low,
0Q(ω)x ∈ c(B|ω) for all ω when B = {0Q(ω)x, 0R(ω)x : ω ∈ Ω}, so V (0Q) ≥ V (0R),
equivalently

0− γ(Q) ≥ 0− γ(R),

completing the proof. The second implication follows from noting that if Q� P and Q 6= P ,
then MQ,{Ω} = ∅. Since the infimum of the empty set is ∞, it follows that γ(Q) =∞. �

Lemmas 5 and 10 give that

P̂ (B) ∈ arg max
Q∈P∗

∑
E′∈Q

π(E ′) max
f∈B

ˆ
u ◦ fdπ(·|E ′)− γ(Q).

It remains to show that choices agree with the preference over plans.

Lemma 12. c(B|ω) = arg maxf∈B
´
u ◦ fdπ(·|P̂ (B)(ω)).

Proof. Fix ω ∈ Ω, B ∈ K(F), and E = P̂ (B)(ω).
I show first that c(B|ω) ⊂ arg maxf∈B

´
u ◦ fdπ(·|E). Suppose f ∈ c(B|ω) and set

F ∈ ĉ(B) so that F (ω) = f for all ω ∈ E. By Lemma 5, F � G for all G so that Im(G) ⊂ B.
If f /∈ arg maxg∈B

´
u◦gdπ(·|E) 3 f ′, then the plan G defined so that G(ω) = f ′ for all ω ∈ E
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and G(ω) = F (ω) for all ω /∈ E has V (G) > V (F ), contradicting Lemma 10. Therefore,
f ∈ arg maxg∈B

´
u ◦ gdπ(·|E), and consequently c(B|ω) ⊂ arg maxf∈B

´
u ◦ fdπ(·|E).

I now show that arg maxf∈B
´
u ◦ fdπ(·|E) ⊂ c(B|ω). Pick any F ∈ ĉ(B) and g ∈

arg maxh∈B
´
u ◦ hdπ(·|E). Set x ∈ X so that

u(x) < −u(x∗)− V (F )
minω′ π(ω′)

where x∗ ∈ arg maxy∈{f(ω):f∈B,ω∈Ω} u(y), and define F̂ , Ĝ ∈ FΩ by F̂ (ω′) = F (ω′)Ex for
all ω′ and Ĝ(ω′) = F (ω′)Ex for all ω′ /∈ E and Ĝ(ω′) = gEx for all ω′ ∈ E. Consider
B′ = B

⋃
Im(F̂ )⋃ Im(Ĝ) and B′′ = Im(F̂ )⋃ Im(Ĝ). Subjective Consequentialism and

Monotonicity imply F̂ ∈ ĉ(B′). By INRA, F̂ ∈ ĉ(B′′).
Let f ′ = F (ω)Ex. Define ĝ ∈ F such that u ◦ ĝ = u ◦ g + 1, and

Bn = (B′′\{f ′, gEx})
⋃
{ 1
n
ĝ + n− 1

n
gEx}

for every n ∈ N. Let Gn(ω′) = F̂ (ω′)E(ω′)x for all ω /∈ E and Gn(ω′) = 1
n
ĝ+ n−1

n
gEx for all

ω′ ∈ E. By Lemmas 5 and 10, V (G) ≥ V (F ′) for all F ′ so that {F ′} ⊂ B. Hence V (Gn) >
V (F ′) for all F ′ 6= Gn so that {F ′} ⊂ Bn. Note V (F̂ ) = V (Ĝ) = V (F ), and if H(ω′) ∈ B′′

for all ω′ and P̂ (ImH̄) 6� P̂ (B), then V (H) < V (F ); to see why, note H(ω′) = x for all
ω′ ∈ E ′ ∈ P and u(H(ω′′)) < u(x∗), so V (H) < u(x∗) + π(E ′)u(x) < u(x∗)− u(x∗) + V (F ).

By Lemmas 5 and 10, Gn ∈ ĉ(Bn) and 1
n
ĝ + n−1

n
gEx ∈ c(Bn|ω) for every n. By construc-

tion, P̂ (Bn) = P̂ (B′′) for all n. Since 1
n
ĝ + n−1

n
gEx ∈ c(Bn|ω) and 1

n
ĝ + n−1

n
gEx → gEx,

it follows from Continuity that gEx ∈ c(B′′|ω). By INRA, c(B′′|ω) = c(B′|ω)⋂B′′. Since
u ◦ g ≥ u ◦ gEx, gEx ∈ c(B′|ω) =⇒ g ∈ c(B′|ω) by Monotonicity. By INRA, c(B′|ω) =
c(B′|ω)⋂B, so g ∈ c(B|ω). Therefore, arg maxf∈B

´
u ◦ fdπ(·|E) ⊂ c(B|ω), completing the

proof. �

Lemma 12 completes the proof.

A.1.3. Proof of Theorem 2: Suppose c(·) is represented by (u(·), π(·), γ(·), P̂ (·)); WLOG,
take P̂ (·) to be canonical. First, I show monotonicity. Observe x �R y if and only if
u(x) ≥ u(y). Now, suppose f(ω′) �R g(ω′) for every ω′. Then u ◦ f ≥ u ◦ g. Consequently,
for any E ⊆ Ω,

´
u ◦ fdπ(·|E) ≥

´
u ◦ gdπ(·|E). Therefore, if g ∈ c(B|ω) and f ∈ B, then

f ∈ c(B|ω). If in addition f(ω) �R g(ω), then since π(ω) > 0,
´
u ◦ fdπ(·|P̂ (B)(ω)) >´

u ◦ gdπ(·|P̂ (B)(ω)) so g /∈ c(B|ω). Unboundedness follows from the argument following
the statement of the axiom.

Turn to SC. Fix B and consider P̂ (B). Note that c(B|ω′) 6= c(B|ω) implies ω′ /∈ P̂ (B)(ω).
If f(ω) = g(ω) and ω′ 6= ω implies either f(ω′) = g(ω′) or c(B|ω′) 6= c(B|ω), then f(ω′) =
g(ω′) for all ω′ ∈ P̂ (B)(ω). Therefore,

´
u ◦ fdπ(·|P̂ (B)(ω)) =

´
u ◦ gdπ(·|P̂ (B)(ω)), so

f ∈ c(B|ω) ⇐⇒ g ∈ c(B|ω).
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Now, to see continuity (i), let Bn → B and fn → f be as above. Note that E =
P̂ (Bn)(ω) = P̂ (B)(ω) for all n. By the Theorem of the Maximum, arg maxf∈B′

´
u◦fdπ(·|E)

is upper hemi-continuous as a function of B′. Since fn is in each argmax and fn → f ,
f ∈ c(B|ω).

To see continuity (ii), define V (·) and ĉ(·) as in the proof of Theorem 1 and fix any x, y, f
as in the hypothesis, noting this requires u(y), u(x) > V (f). Pick any ε ∈ (0, 1) such that

u(x) > εu(y) + (1− ε)V (f) = V (εy + (1− ε)f).

If {fi} IS {x}, then V (fi) ≥ V (x). If this holds for all i, then V (∑αifi) > V (εy+ (1− ε)f),
an impossibility if u(εy + (1− ε)f(ω)) ≥ u(∑αifi(ω)) for all ω.

For the second part, begin by defining a function W : K(F)× P→ R by

(4) W (B|Q) =
∑
E∈Q

π(E) max
f∈B

ˆ
u ◦ fdπ(·|E)− γ(Q).

With this formulation, P̂ (B) ∈ arg maxQ∈P∗W (B|Q) for all B. By the maximum theorem,
W (B|·) is continuous and arg maxW (B|·) is upper-hemi continuous.

Define K by
K = {B ∈ K(F) : # arg max

Q∈P
W (B|·) = 1}.

I proceed by showing that cl(K) = K(F) and then that K is open.

Lemma 13. cl(K) = K(F)

Proof. Pick any B ∈ K(F) and any ε > 0. Take Q ∈ arg maxQ∈PW (B, ·) so that no
Q′ ∈ arg maxQ∈PW (B|·) is strictly finer than Q. Label Q = {E1, ..., En} and pick f1, ..., fn

so that fi ∈ c(B|ω) for some ω ∈ Ei. Define f ∗ so that

f ∗(ω) = fi(ω)

whenever ω ∈ Ei and f ∗∗ so that u(f ∗∗(ω)) = u(f ∗(ω)) + k for some k > 0.
Now, define f iα for every α ∈ [0, 1] by f iα = (αfi + (1− α)f ∗∗)Eifi for every i ∈ {1, ..., n}.

For α close enough to 1, d(f iα, fi) < ε. Therefore, for α∗ sufficiently high, d(B′, B) < ε where

B′ = B
⋃
{f iα∗}ni=1.

By construction, W (B′|Q) > W (B′|Q′) for all Q′ ∈ P so that Q′ 6= Q. Therefore, B′ ∈ K.
Since B and ε are arbitrary, there is such a B′ ∈ K arbitrarily close to any B ∈ K(F). In

particular, for every n, one can find Bn ∈ K so that d(Bn, B) < 1
n
. The sequence Bn → B.

Therefore, cl(K) = K(F). �

Lemma 14. K is open.

Proof. Let Kc = K(F)\K. K is open if and only if Kc is closed. Because K(F) is a metric
space and thus first countable, it is sufficient to only show sequentially closed.
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Pick (Bn)∞n=1 ⊂ Kc and suppose that Bn → B. Let (Q1
n, Q

2
n) be two distinct elements in

arg maxR∈P∗W (Bn|R). There exists a subsequence nk where (Q1
nk
, Q2

nk
) = (Q1, Q2) for all

k because P∗ is finite. By the Theorem of the Maximum, Q1, Q2 ∈ arg maxQ∈P∗ V (Q,B).
Conclude that B ∈ Kc, so Kc is closed and K is open. �

Let > be an arbitrary linear order on P and set

Q̂(B) = max
>

arg max
Q∈P

W (B|Q)

for every B ∈ K(F). Define the conditional choice correspondence c′(·) by

c′(B|ω) = arg max
f∈B

ˆ
u ◦ fdπ(·|Q̂(B)(ω))

for every B ∈ K(F). Clearly c′(·) has an optimal inattention representation and for every
B ∈ K, c′(B|ω) = c(B|ω) for every ω ∈ Ω.

Lemma 15. c′(·) satisfies ACI.

Proof. Fix any B ∈ K(F), f, g, h ∈ F , and ω ∈ Ω. Suppose αf + (1 − α)g ∈ c(αB + (1 −
α){g}|ω) and let B′ = αB + (1− α){g}. Note that W (αB + (1− α){g}, Q) equals

=
∑
E∈Q

π(E) max
f ′∈B′

ˆ
u ◦ f ′dπ(·|E)− γ(Q)

=
∑
E∈Q

π(E)[max
f∈B

ˆ
[αu ◦ f + (1− α)u ◦ g]dπ(·|E)]− γ(Q)

= α
∑
E∈Q

π(E) max
f∈B

ˆ
u ◦ fdπ(·|E) + (1− α)

ˆ
u ◦ gdπ − γ(Q).

Similarly, W (αB + (1− α){h}, Q) equals

α
∑
E∈Q

π(E) max
f∈B

ˆ
u ◦ fdπ(·|E) + (1− α)

ˆ
u ◦ hdπ − γ(Q).

Therefore,
Q̂(αB + (1− α){g}) = Q̂(αB + (1− α){h}),

so clearly ACI holds and the proof is complete. �

Lemma 16. c′(·) satisfies INRA.

Proof. Suppose that A ⊂ B and c′(B|ω)⋂A 6= ∅ for all ω. Note that

arg max
Q∈P

W (A,Q) ⊂ arg max
Q∈P

W (B|Q)

since
W (A, Q̂(B)) = W (B|Q̂(B)) ≥ W (B|Q′) ≥ W (A,Q′)
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for all Q′ ∈ P. By construction of c′(·), Q̂(B) > Q′ for all Q′ ∈ arg maxQ∈PW (B|Q).
Therefore, Q̂(B) > Q′ for all Q′ ∈ arg maxQ∈PW (A|Q). Conclude that Q̂(A) = Q̂(B),
implying c′(B|ω)⋂A = c′(A|ω). �

These lemmas complete the proof.

A.1.4. Proof of Corollary 1: I show that Independence implies fixed attention and that
WARP implies independence. That fixed attention implies WARP and Indepedendence is
trivial.

Suppose Independence, which implies ACI. Then c(·) has an costly attention represen-
tation (u, π, γ, P̂ ), where P̂ (B) is canonical. Let Q be coarsest common refinement of
{P̂ (B)}B∈K(F). Pick any B and any ω. There is a finite collection {B1, ..., Bn} ⊂ K(F)
so that [⋂ni=1 P̂ (Bi)(ω)] = Q(ω) and c(Bi|ω) 6= c(Bj|ω) for all i 6= j. Set B∗ = ∏n

i=1
1
n
Bi and

note that P̂ (B∗)(ω) = Q(ω) by Independence.
It follows that

c(B∗|ω) = arg max
f∈B∗

ˆ
u ◦ fdπ(·|Q(ω)).

Independence implies that c(1
2B
∗+ 1

2B|ω) = 1
2c(B

∗|ω)+ 1
2c(B|ω), and since Q is the coarsest

common refinement of {P̂ (B)}B∈K(F) and P̂ (B∗)(ω) = Q(ω), Q(ω) = P̂ (1
2B
∗ + 1

2B)(ω).
Therefore, c(1

2B
∗ + 1

2B|ω) equals

arg max
f∈ 1

2B
∗+ 1

2B

ˆ
u ◦ fdπ(·|Q(ω))

= 1
2 arg max

f∈B∗

ˆ
u ◦ fdπ(·|Q(ω)) + 1

2 arg max
f∈B

ˆ
u ◦ fdπ(·|Q(ω))

= 1
2c(B

∗|ω) + 1
2 arg max

f∈B

ˆ
u ◦ fdπ(·|Q(ω)),

which requires that c(B|ω) = arg maxf∈B
´
u ◦ fdπ(·|Q(ω)). Since B and ω were chosen

arbitrarily, this holds for all B and all ω.
Suppose WARP, which implies INRA. Theorem 1 implies that c(·) has a representation

(u, π, γ, P̂ ). Take arbitrary α ∈ (0, 1), B, A, ω, f ∈ c(B|ω), g ∈ c(A|ω), and αf ′+(1−α)g′ ∈
c(αB+(1−α)A|ω). Given WARP, ACI, Monotonicity and Continuity, there is an subjective
expected utility preference relation �ω so that �ω rationalizes c(·|ω) (using the Mixture
Space Theorem). Then f �ω h for all h ∈ B and g �ω h for all h ∈ A. Therefore
αf + (1 − α)g �ω h for all h ∈ αB + (1 − α)A, so αf + (1 − α)g ∈ c(αB + (1 − α)A|ω).
Moreover, f ′ �ω h for all h ∈ B; if not, there exists h′ ∈ B so that h′ � f ′, which would
imply αh′+(1−α)g′ �ω αf ′+(1−α)g′, contradicting that �ω rationalizes c(·|ω). Similarly,
g′ �ω h for all h ∈ A. Therefore f ′ ∈ c(B|ω) and g′ ∈ c(A|ω). Conclude independence holds,
completing the proof.
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A.1.5. Proof of Corollary 2: Strong ACI implies ACI, so by Theorem 1, c(·) has a costly
attention representation (u, π, γ, P̂ ). Choose any Q ∈ support(γ). For some x, y ∈ X

where u(x) > u(y), the problem B = {xEy : E ∈ Q} is such that P̂ (B) = Q (otherwise,
Q /∈ support(γ)). By strong ACI, P̂ (B) = P̂ (αB + (1− α){x}) for all α ∈ (0, 1]. For W as
in Eq. (4),

W (αB + (1− α){x}|{Ω})→α→0 u(x)

and that
W (αB + (1− α){x}|Q)→α→0 u(x)− γ(Q).

Because W (αB + (1 − α){x}|Q) ≥ W (αB + (1 − α){x}|{Ω}) for all α ∈ (0, 1], γ(Q) = 0.
Since Q is arbitrary, γ(Q) = 0 for all Q ∈ support(γ).

Necessity follows from Theorem 2 and trivially adapting Lemma 15, completing the proof.

A.1.6. Proof of Corollary 3: Pick any B, any ω, and any g ∈ c(B|ω). Because γ(P ) = 0
and γ(Q) <∞ =⇒ P � Q, g ∈ arg maxf∈B

´
u ◦ fdπ(·|P (ω)). Define B′ = B

⋃{gP (ω)x},
where x ∈ X satisfies u(x) < u(g(ω)) for all ω. By Lemma 2, g ∈ c(B′|ω). By Consequen-
tialism, gP (ω)x ∈ c(B′|ω), since c(B′|ω) = arg maxf∈B′

´
u ◦ fdπ(·|P̂ (B′)(ω)), P̂ (B′)(ω) =

P (ω). By INRA,

c(B|ω) = c(B′|ω)
⋂
B = c(B′|ω)\{gP (ω)x}

= arg max
f∈B

ˆ
u ◦ fdπ(·|P (ω)).

Hence P̂ (B)(ω) = P (ω). Since B and ω are arbitrary, conclude P̂ (B)(ω) = P (ω) for every
B and every ω, completing the proof.

A.2. Proofs from Section 5.1.

A.2.1. Proof of Corollary 4. For necessity, fix x and pick ε such that |u(y) − u(x)| <
minP 6={Ω} γ(P ). Observe that if d(B, {x}) < ε, then the maximum utility expected from any
partition is less than minP 6={Ω} γ(P ) +u(x), and so the DM finds it optimal to pay attention
to {Ω}.

Conversely, suppose not: γ(Q) = 0 and Q 6= {Ω}. Pick x, y ∈ X with u(y) > u(x).
Pick E ∈ Q and let Bn = {( 1

n
y + n−1

n
x)Ex, xE( 1

n
y + n−1

n
x)}. Note Bn → {x}, that Q

is optimal for each, that any other optimal partition is finer than {E,Ec}, and that thus
c(Bn|ω) 6= c(Bn|ω′) for each n when ω ∈ E and ω′ ∈ Ec, a contradiction, completing the
proof.

A.2.2. Proof of Theorem 3: Suppose (ui, πi, γi, P̂i) represent c for i = 1, 2. It is standard
to show u2(x) = αu1(x) + β. The proof that P̂1 = P̂2 is in the text.

I begin by showing that π1 = π2 ≡ π. Since γ(P ) > 0 for all P , fix x and ε so that
d(x, y) < ε implies |u(y)− u(x)| < 1

3 min γ(P ). Consider y, z ∈ X with d(y, x) + d(z, x) < ε
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and u1(y) > u1(z). For any E ⊆ Ω, observe P̂ ({yEz, αy + (1 − α)z}) = {Ω} for all
α ∈ [0, 1]. A simple continuity argument shows that for some α, {yEz, αy + (1 − α)z} =
c({yEz, αy+(1−α)z}|ω) for all ω. Thus αuj(y)+(1−α)uj(z) = πj(E)uj(y)+(1−πj(E))uj(z)
for j = 1, 2 so π1(E) = π2(E). Since E is arbitrary, π1 = π2.

Now, I show that γ1 = αγ2. Let

Vj(B,Q′) =
∑
E∈Q′

π(E) max
f∈B

ˆ
uj ◦ fdπ(·|E)

for j = 1, 2, noting V2(B,Q′) = αV1(B,Q′) + β. Pick any Q with γ1(Q) < ∞. Define y(x)
for all x such that u1(y(x)) = −u1(x)+maxR∈P∗ γ1(R)+1

minπ(ω) . Identify x ∈ R with consequence that
gives u1(x) = x. Let x0 = 0, Q0 = {Ω}, and

Bx = {0}
⋃
{xEy(x) : E ∈ Q}.

By construction, xEy(x) is chosen from Bx if and only if P̂ (Bx)(ω) ⊆ Q(ω). Hence, if
R 6� Q, then for some ρ ∈ [0, 1), Vj(Bx, R) = ρuj(x) < uj(x) = Vj(Bx, Q). Therefore, there
exists an x̄ so that P̂ (Bx) = Q for all x > x̄. For i ≥ 1 and as long as Qi 6= Q, define xi
and Qi recursively by xi = supx{P̂ (Bx) = Qi−1} for all ω, Qi an arbitrary limit point of
P̂ (Bi

xi+ 1
n

), and

(5) Ei = {ω : Qi(ω) ⊆ Q(ω)}.

Let I be the number of iterations to get to Q, i.e. QI = Q.
For j = 1, 2 and R ∈ P, Vj(Bx, Qi) = π(Ei)uj(x). This is continuous in x. Since P̂ (Bx) is

optimal and Vj continuous in x, Vj(Bxi
, Qi)− Vj(Bxi

, Qi+1) = γj(Qi)− γj
(Qi+1). Therefore,

I−1∑
i=0

[γ2(Qi)− γ2(Qi+1)] =
I−1∑
i=0

[V2(Bxi
, Qi)− V2(Bxi

, Qi+1)]

=
I−1∑
i=0

α[V1(Bxi
, Qi)− V1(Bxi

, Qi+1)]

=
I−1∑
i=0

α[γ1(Qi)− γ1(Qi+1)].

Since ∑I−1
i=0 γj(Qi)− γj

(Qi+1) = γj(Q0)− γj(QI) = −γj(Q), one has γ1(Q) = αγ2(Q). Since
Q was arbitrary, γ1 = αγ2, completing the proof.

A.2.3. Proof of Theorem 4: Note that c1(·) pays more attention than c2(·) iff P̃c1(B)�
P̃c2(B) for every B so that the optimal partition for c1 is unique. Suppose Q � R =⇒
γ1(Q) − γ1(R) ≤ γ2(Q) − γ2(R) for all Q,R. If c1 does not pay more attention than c2,
then there is B with a unique c1-optimal partition so that P̃c1(B) 6� P̃c2(B); since both are
comparable by �, it must be that P̃c2(B)� P̃c1(B). Letting V (B,Q′) be as in the proof of
Theorem 3, V (B, P̃c1(B)) ≤ V (B, P̃c2(B)). Since P̃c1(B) is the unique c1-optimal partition,
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it must be that

V (B, P̃c1(B))− γ1(P̃c1(B)) > V (B, P̃c2(B))− γ1(P̃c2(B))

⇐⇒ V (B, P̃c1(B))− V (B, P̃c2(B)) > γ1(P̃c1(B))− γ1(P̃c2(B))

≥ γ2(P̃c1(B))− γ2(P̃c2(B)).

In particular, it must be the case that paying attention to P̃c1(B) is strictly better for DM2
when she faces B, a contradiction.

Suppose c1 pays more attention than c2. Label supp(γ1) = {R0, ..., Rn} so that Ri � Ri−1

for all i and for convenience label X so that u(x) = x for all x ∈ X. Pick i ≥ 1. For any
x ∈ R+, define

Bi
x = {xEz(x)|E ∈ Ri\Ri−1}

⋃
{0Ez(x)|E ∈ Ri−1},

where u(x) = x and z(x) = −γ(Ri−1)
minπ(ω) , and Ei = ⋃{E ∈ Ri\Ri−1}. When facing Bi

x, it is
either optimal pay attention Ri or to Ri−1 for either c1 or c2. In fact, cj pays attention to
Ri only if γj(Ri)−γj(Ri−1)

π(Ei) ≥ x and to Ri−1 only if γj(Ri)−γj(Ri−1)
π(Ei) ≤ x. Picking x∗ so that

x∗ = γ1(Ri)− γ(Ri−1)
π(Ei)

,

DM1 is exactly indifferent between paying attention to Ri and Ri−1. In particular, taking
xn = x∗ + 1

n
for every n ∈ N,

P̃c1(Bi
xn

) = Ri

for all n, and this optimum is unique for all n. Moreover P̃c2(Bi
xn

) ∈ {Ri, Ri−1} also. As n
goes to zero, conclude that

γ2(Ri)− γ2(Ri−1) ≥ γ1(Ri)− γ1(Ri−1).

Since i is arbitrary, this holds for all i. To compare Ri and Rj with j less than i, note that

γk(Ri)− γk(Rj) =
i∑

j′=j+1
γk(Rj′)− γk(Rj′−1).

Since each term in the sum is smaller when k = 1 than when k = 2, Therefore, whenever
Q� R, γ1(Q)− γ1(R) ≤ γ2(Q)− γ2(R), completing the proof.

A.2.4. Proof of Theorem 5: Note that c1(·) has a higher capacity for attention than c2(·)
iff for any B, there exists a B′ so that P̃c1(B′) = P̃c2(B). Suppose c1 has a higher capacity for
attention than c2. If supp(γ2) * supp(γ1), take Q ∈ supp(γ2)\supp(γ1). Since Q /∈ supp(γ1),
there is no R ∈ supp(γ1) so that R � Q. Therefore, P̃c1(B) 6= Q for every B. However,
by taking x, y ∈ X so that u2(y) < − γ(Q)

minπ(ω) and u2(x) = 0, P̃c2({xEy : E ∈ Q}) = Q. To
see this, note that paying attention to Q yields −γ(Q). Paying attention to any partition
coarser than Q yields strictly less than −γ(Q) because she must choose y with probability
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no smaller than min π(ω). Paying attention to any partition finer than Q results in the
same choices as paying attention to Q. Moreover, if she pays attention Q, then she makes a
different choice on each cell of Q.

Now, suppose supp(γ2) ⊂ supp(γ1). As above, for any Q in the support γi one can
construct a set of bets so that ci pays attention to Q when she faces it. Therefore, for every
Q ∈ supp(γi), there is a problem so that P̃ci

(B) = Q. Therefore, if P̃c2(B) = Q, then there
is a B′ so that P̃c2(B) = Q, completing the proof.

A.2.5. Proof of Theorem 6. The set K consists of the choice problems for which the
optimal information partition is unique. From Theorem 2, this set is open and dense.
Pick any B ∈ K and let Q = arg maxW (B|P ) where W is defined in Eq. (4). Fix ω

and suppose first that f ∈ c(B|ω). Then Q = arg maxW (Bω
⋃{f}|P ), and similarly for

arg maxW (Bω
⋃
B|P ). Moreover, it is easy to see B ∼ B

⋃
Bω ∼ Bω

⋃{f}. By transitivity,
B ∼ Bω

⋃{f}, so f ∈ cA(B|ω).
Now, suppose that f /∈ c(B|ω). Pick g ∈ c(B|ω) and define g′ so that g′(ω′) equals g(ω′) for

ω′ 6= ω and equals (1−ε)g(ω)+εxB for ε > 0 small enough thatQ = arg maxW ((Bω
⋃{f, g′}|P )

and g′ ∈ c(Bω
⋃{f, g′}|ω).38 Observe that the DM finds Q the unique optimal partition

when facing B, B ⋃Bω, Bω
⋃{f, g, g′} and Bω

⋃{f, g′}. By Consistency, B ∼ B
⋃
Bω

and B
⋃
Bω ∼ Bω

⋃{f, g}. Since g(ω) �R g′(ω) for all ω, adding it does not change her
choices. Thus Bω

⋃{f, g} ∼ Bω
⋃{f, g, g′}. Now, since ε is small enough, she pays atten-

tion to Q when facing Bω
⋃{f, g′}, and thus, Bω

⋃{f, g, g′} � Bω
⋃{f, g′}. By Consistency,

Bω
⋃{g′, f} % Bω

⋃{f}. By transitivity, B � Bω
⋃{f} and thus f /∈ cA(B|ω), completing

the proof.
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