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Abstract

Performance pay increases productivity but also earnings inequality. Can it widen
the gender gap because women are less responsive? We provide answers by aggregat-
ing evidence from existing experiments on performance pay that have both male and
female subjects, regardless of whether they test for gender differences. We develop a
Bayesian hierarchical model (BHM) that allows us to estimate both the average effect
and the heterogeneity across studies. We find that the gender response difference is
close to zero and heterogeneity across studies is small. We also find that the average
effect of performance pay is positive, increasing output by 0.28 standard deviations.
The data are thus strongly supportive of agency theory for men and women alike.
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1 Introduction

After almost a century of steady growth in female labor force participation the earnings gap

between men and women remains large, especially for top earners (Manning and Swaffield,

2008; Bertrand et al., 2010). At the same time, performance pay, a cornerstone of good man-

agement practices (Bloom and Van Reenen, 2010; Bloom et al., 2012), has spread widely,

fostering inequality: recent estimates suggest that it accounts for most of the recent top-end

growth in wage dispersion in the US (Lemieux et al., 2009).

To the extent that women are less responsive to performance pay, its increase in popu-

larity might have contributed to increasing the earnings gap. Women may respond less to

incentive pay for a number of cultural and psychological reason. For instance, laboratory

evidence indicates that women are more risk averse (Croson and Gneezy, 2009); thus, faced

with performance pay, they might take actions that reduce the variance but also the mean

of performance. This effect can be reinforced by differences in confidence Bertrand et al.

(2010) or the ability to work under pressure (Azmat et al., Forthcoming).

This paper tests whether women are less responsive to performance pay using a large,

hitherto unexplored collection of laboratory and field experiments that identify the response

to performance pay, regardless of whether the studies themselves tested for gender differ-

ences. The goal of this paper is to aggregate this evidence and assess whether a clear gender

pattern emerges.

We develop a Bayesian hierarchical model to estimate both the average gender differ-

ences as well as their heterogeneity across studies. This approach has two advantages. First,

it leverages existing data to provide evidence on a new question while avoiding the pitfalls

of ex post subgroup analysis. Second, the model uses the data itself to estimate the degree

to which each study is informative about a common phenomenon versus its own context-

specific effect; thus it allows us to quantify the extent to which the findings of one study are

informative for another.

Agency theory makes precise that the response to performance pay affects the individ-

uals’ effort on the job, their expected earnings and, through this, selection into jobs. Thus

if women respond less to performance pay they may also sort into jobs that do not offer
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performance pay.1 Here we focus on the effort effect both because this drives the selection

effect and because experiments on selection are rare. Importantly, agents in our sample are

not selected on their responsiveness to performance pay because experiments are done in

settings that offered no performance pay when agents signed up for the job. That is, this is

the population where we should be most likely to find gender differences, if these exist.

To proceed we first identify a set of studies on performance pay and collate the data. To

maximize the number of studies while ensuring quality and replicability of our aggregation

process, we include only field and lab experiments published in peer-reviewed economics

journals or a selected set of discussion paper series. To capture the parameters of interest,

namely responses to performance pay in the workplace by men and women, we further

require that (i) agents exert real and costly effort; (ii) performance is measured at the indi-

vidual level; and (iii) the study includes at least two pay treatments, one of which is unam-

biguously more high-powered than the other (meaning that the marginal effect on pay of an

increase in performance is always larger). We identified 37 studies satisfying the inclusion

criteria and either obtained the published data or contacted the authors. After eliminating

studies without gender variation or available data and those for which the authors did not

reply, our final sample comprises data from 18 studies involving over 9,000 subjects.

The Bayesian hierarchical model (BHM) posits that the observed estimate (η̂s) in a

given study s is distributed normally conditional on certain parameters, most importantly

ηs, the true average treatment effect in study s. These parameters are in turn distributed

conditional on hyperparameters η and τ2
η , which determine the mean and variance of study-

level, average treatment effects in the population of potential studies. The BHM allows us

to estimate both the average response by men and women as well as the heterogeneity of

these responses across contexts.

Since different studies measure performance in different units, for comparability we

rescale all outcomes in terms of each study’s standard deviation of unincentivized perfor-

mance, σ . Our main finding is that the estimated distribution of gender-incentive coefficient

has a mean that is close to zero (+0.07σ )—implying women are slightly more responsive to

1For instance, Card et al. (2016) show that selection into firms that pay lower wage premia explains 15% of
the gender earnings gap in Portugal.
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financial incentives—with relatively little variance (0.13σ ) across studies. That is, women

and men respond similarly to different variants of performance pay across a wide range of

contexts. This implies that, if we were to run a new experiment, we would expect men

and women to respond to steeper incentives in a similar manner, and we would be quite

confident in this expectation.

The model also allows us to estimate the common response to performance pay. Agency

theory predicts this to be positive but psychological responses, such as intrinsic motivation

crowding-out, might generate negative responses. The evidence favors agency theory as

we find that the mean response to performance pay is positive and large (+0.28σ ). Not

surprisingly, given the diversity of contexts and of treatments, the estimated heterogeneity is

also quite large. The heterogeneity, however, affects primarily the magnitude rather than the

sign of the effect. The probability that the true effect of incentives is negative in a population

split evenly between men and women is approximately 6%. In most of these cases, the effect

would be indistinguishable from zero. Replicating the existing set of studies, we would

expect to obtain a negative significant effect of incentives, significant at the 5%-level, in

fewer than 1 out of 100 cases.

Finally, the model highlights the key insight, made previously by Efron and Morris

(1977) and Rubin (1981), that the best estimate for the true effect in any particular context

may not be the mean estimate of an internally valid study in that very same context. An

internally-valid study provides an unbiased estimate of the treatment effect in that study.

However, this object differs from the expected treatment effect if the study were repeated

later or in a different location. To the extent the studies are estimating a common effect,

results from the other n−1 studies should be combined with our estimates from a particular

study to inform our beliefs about the true effect in that study. The BHM makes this updating

process transparent.

Our contribution to the literature is twofold. The first is substantive. We contribute

to the literature on gender earnings gaps (Altonji and Blank, 1999; Olivetti and Petrongolo,

2016; Azmat and Ferrer, forthcoming; Bertrand et al., 2010; Goldin, 2014) by ruling out one

possible cause of the gap: women do not respond differently to performance pay. If there

are indeed differences in risk aversion or other behavioral parameters, these are not strong
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enough to generate systematic differences in the response to incentives. Of course there are

differences in the response of men and women in specific contexts, but such differences are

not rationalizable as a manifestation of a consistent gender pattern.

The second contribution is methodological: we demonstrate how BHMs can harness the

recent explosion in the number of field and laboratory experiments to answer new questions

with existing data. While BHMs have been used for decades to aggregate information from

multiple studies in other disciplines (see Rubin 1981 for an early example and Gelman et

al. (2004) for the textbook exposition), they have only recently begun to gain popularity

in economics. Hsiang, Burke and Miguel (2013; 2015) analyzes the link between climate

change and conflict; Vivalt (2015) examines generalizability across a wide range of impact

evaluations; and Meager (2015) looks carefully at the impact of microcredit.

The Bayesian approach allows to distill a common lesson from studies in diverse con-

texts; this is essential in economics where studies typically differ in terms of participants,

interventions and outcomes and where this has fueled debate about what we learn from ex-

periments (Deaton, 2010; Banerjee and Duflo, 2009; Rodrik, 2010; Pritchett and Sandefur,

2015; Allcott, 2015).2 We show that, in addition to aggregate answers to a given question,

these methods can be used to ask new questions, in particular, to explore dimensions of

heterogeneity that individual studies cannot either because they lack statistical power or

because it was not part of their original stated goals.3

The rest of this paper is organized as follows. Section 2 reviews gender differences on

personality traits that determine the response to incentives. Section 3 discusses study selec-

tion, Section 4 presents the methodology, and Section 5 the results. Section 6 concludes.

2In contrast, within the medical literature the Cochrane Handbook (2011) states that aggregating evidence
“should only be considered when a group of studies is sufficiently homogeneous in terms of participants,
interventions and outcomes.” The Cochrane Handbook forms the basis for conducting and reporting systematic
reviews as set forth by Cochrane, a group of 37,000 medical research professionals formed to systematically
organize and evaluate medical randomized trials.

3Specifying ex-ante the subgroup or subgroups along which heterogeneity will be analyzed and defining
clear inclusion criteria for studies alleviates the cherry-picking concerns that normally plague ex post subgroup
analysis. See Casey et al. (2012) and Olken (2015). We see this as a natural complement to the work of Athey
and Imbens (2015) and Dwork et al. (2015), which address this issue at the study-level.
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2 Foundations of the gender performance pay gap

Underpinning our research question is an extensive experimental literature that documents

systematic differences in psychological traits between men and women. Bertrand (2011)

and Azmat and Petrongolo (2014) review this literature in detail, highlighting the lack of

evidence on the impact of these differences on labor market outcomes. Importantly for

this paper, moral hazard theory would predict that three of the four traits that are found to

broadly differ by gender—risk aversion, overconfidence and altruism—directly affect the

expected utility of effort and thus should affect the response to performance pay. The fourth

trait, attitudes towards competition, also affects the response to incentives but only if these

have tournament structure, which will later motivate us to separate these from the rest.

The consensus on risk attitudes is that women appear to be more risk averse than

men. This result has emerged in many laboratory experiments (see reviews by Croson and

Gneezy, 2009; Eckel and Grossman, 2008; and Charness and Gneezy, 2012) and in rarer

surveys of the general population such as Dohmen et al. (2011). Risk attitudes play an im-

portant role in determining how individuals respond to pay for performance because, in the

presence of production shocks, linking pay to performance transfers some of the produc-

tion risk from the employer to the employee. Risk-averse employees will be more willing

to take actions that reduce both the mean and the variance of performance, and hence of

pay. For instance, in most jobs that offer performance pay, performance is measured by

quality-adjusted quantity per unit of time. Working faster increases the expected quantity

but also the probability of mistakes, thus increasing the variance of pay. Moreover, even if

working harder does not increase the probability of mistakes, higher performance pay mag-

nifies whatever variance was already present. How employees value this trade-off depends

on their risk attitudes. In particular, risk averse individuals will suffer a bigger utility loss

from the increase in variance and hence will be less likely to respond by increasing effort.4

To the extent that women are more risk averse than men, they will respond less to increases

4This is true in a model where, for instance, y= εx, where: y is observed performance, x is the agent’s effort,
and ε is a productivity shock that is unknown to the agent at the time he or she selects effort (ε is a random
variable that can only take non-negative values). Then, an agent with constant absolute risk aversion parameter
γ with maximize bE[ε]x−γb2Var[ε]x2−c(x), where b is the power of the contract and c(.) is the cost of effort.
It is easy to see that an increase in γ will cause a decrease in the equilibrium value of effort x.
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in incentive power.

Overconfidence is the second trait over which men and women seem to differ, with

women being less confident than men (Croson and Gneezy, 2009; Reuben et al., 2012).

Overconfidence affects the response to incentives because agents rationally choose to try

different strategies to improve their performance only if the expected return exceeds the

cost, and the expected return depends on their own assessment of their probability of suc-

cess. Underconfident individuals will underestimate this probability and hence will be less

likely to improve their performance in response to performance pay.

Third, a large body of experimental research, reviewed in Croson and Gneezy (2009)

and Eckel and Grossman (2008), tests whether women are more altruistic than men. Over-

all, evidence from dictator game experiments (for example, Bolton and Katok, 1995; Eckel

and Grossman, 1998, and Andreoni and Vesterlund, 2001) suggests that women give away

more than men, which can be interpreted as women being more altruistic, that is putting a

larger weight on the utility of the other, typically anonymous, subject.

Differences in altruism affect the response to incentives because they determine perfor-

mance when no incentives are offered. In particular, if women are more likely to internalize

the effect of their effort on the welfare of the employer then their effort levels will be higher

under fixed wages and the response to performance pay weaker.

Last but not least, a number of papers have shown that women are less responsive to

competition Croson and Gneezy (2009) although this might reflect differences in overcon-

fidence and risk aversion because men and women seem to respond equally to competition

when individuals know their relative ability Bertrand (2011).

Taken together, the experimental differences in risk aversion, overconfidence, altruism

and competitive attitudes all pull in the same direction, making women potentially less

responsive to performance pay.In this paper we test whether this is indeed the case in a

variety of jobs and contexts.
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3 Methodology

3.1 Study selection.

The first step in building evidence from multiple studies is to establish the inclusion criteria

for study selection. We focus on studies that evaluate the effect of performance pay on out-

put either in the workplace or a comparable lab environment. As discussed above, different

effects by gender might instigate a response also on the selection margin. If women expect

to respond less and hence earn less under performance pay, they might avoid jobs with per-

formance pay. Here we focus on the response to incentives both because it is the cause of

this selection response and because selection experiments are rare.

We begin by tackling the issue of quality control. In this respect, our guiding principle

is to minimize the use of subjective judgments. To this purpose, we use the established

quality screening of the publication process and restrict our sample to articles published

in refereed journals or the working paper series of one of the main research associations

(CEPR, IZA, NBER). We thus refrain from the practice, common in other fields, to rank

research output by quality and weight it accordingly.

For the same reason, we refrain from judging which studies successfully identify causal

effects by focusing exclusively on papers that use experimental variation, either in the lab

or in the field, in the exposure to performance pay. Our choice does not imply that credible

results can only be obtained by randomizing incentives treatments. Rather we choose papers

that use a common source of variation, orthogonal to the potential outcomes of interest, to

avoid subjective judgments on the credibility of alternative identification strategies. Finally,

as experimental analyses of incentives have started only recently, we restrict our search to

papers published between 1990 and 2012, when this study began.

The second set of criteria aims to select studies that can be informative of gender dif-

ferences in the response to incentives in the workplace. For this reason, we only include

studies where there are at least two treatments that differ in the power of monetary incen-

tive pay and can be ranked according to their power. This criterion excludes studies that

compare different forms of incentives, e.g., piece rates vs. tournaments, that cannot be un-

ambiguously ranked. It also excludes studies that use non-monetary performance rewards,
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such as recognition, as these cannot be easily compared.

To ensure that the setting is informative of workplace behavior, we restrict our sample

to studies where subjects choose effort that is (i) real and (ii) produces output. Criterion

(i) excludes all experiments that use hypothetical effort—for instance, those that require

subjects to choose from a list of numbers that represent effort. Criterion (ii) excludes all

experiments that aim to affect behavior outside the workplace, for instance those that pay

people to stop smoking, to go to the gym, etc.

Finally, we only include studies with no externalities in production, that is, we exclude

all forms of team production and team incentives. The rationale for this latter criterion is

that team work might generate different responses due to gender differences in competitive-

ness or cooperation, hence bringing in a radically different mechanism. Table 1 summarizes

our selection criteria.

We search Econlit, Google Scholar, and the working paper series of CEPR, IZA and

NBER for the following combinations of keywords “incentive, productivity, experiment”,

“incentive, effort, experiment”, “performance, pay, experiment” as well as “incentives”,

“performance”, “pay”, “effort”, and “productivity”. The search yields 169 papers, of which

37 passed the inclusion criteria. Of these, 16 either had their data available on line or

the authors shared the data with us. Among the rest, 14 were not usable either because

the authors no longer had the data or because they did not record gender, and 7 sent us

regression results but not the underlying data.5 Of the 16 papers, two report two experiments

and these are included separately as they meet the inclusion criteria individually.

Table 2 summarizes the 18 experiments we use for the analysis. For each study, we

focus on the specification with the cleanest test of workplace financial incentives meeting

our selection criteria. In most cases, this is the paper’s primary specification; however, in

some cases this may be preliminary rounds of an experiment where the comparison between

high- and low-powered incentives is most direct. The table describes the included specifi-

cations for each experiment. In all but 4, approximately half of the subjects are women. In

aggregate, the studies report on the behavior of 9,968 unique subject, of which 50.1% were

5Because our aggregation method requires the full variance-covariance matrix of any estimation and nor-
malized outcome measures, we do not include these studies in our main results.
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women. The pool of studies is equally split between field and lab experiments. As the table

makes clear, there is a fair amount of heterogeneity in the size of the subject pool, the exact

type of performance pay used, and the context. This diversity across studies is essential if

we are to identify a truly universal pattern in the response to workplace financial incentives.

However, it also brings to the fore the main challenge that our methodology will need to

address: how to distill a common lesson from diverse experimental contexts. We turn to

this next.

3.2 Descriptive model of performance

In order to estimate the relative effect of financial incentives on the productivity of women

versus men, we begin with a descriptive model of the performance of individual i on a

productive task in experiment or study s ∈ {1, . . . ,S} :

yis = αs +βsGis + γsTis +ηsGis×Tis + εis, (1)

where Gis is an indicator that is equal to 1 if subject i in experiment s is a woman and Tis

is an indicator that is equal to 1 if subject i in experiment s receives the higher powered

treatment. For instance, if one group is paid fixed wages and the other piece rates, we

set Tis = 1 for the piece rate group. Note that equation (1) is the non-parametric cell-

means regression with respect to gender and incentives. That is, αs equals the average

productivity of unincentivized men in experiment s; αs+βs equals the average productivity

of unincentivized women; etc. Our primary parameter of interest is ηs, which captures the

differential effect of incentives on women relative to men in study s. Under the null that

women and men respond equivalently to incentives, ηs equals zero.

Our aim is to understand generalizable differences in the response to incentives, and

doing so entails aggregating across disparate studies. Real outcomes in the included studies

range from teacher attendance in Kenya to mazes solved in an experimental lab in Israel

and condoms sold in Zambia. As such it is necessary to normalize the outcome measure

across tasks. We do so by converting the outcome variable in each study to its standardized

value, ỹis = (yis− ȳs)/σ̂s, where ȳs is the sample mean for men in the control group and σ̂s

10



is the sample standard deviation, again for men in the control group.

For each study we then estimate the vector of parameters, θs = (β̃s, γ̃s, η̃s)
′, following

specification in equation (1) on the transformed data:

ỹis = α̃s + β̃sGis + γ̃sTis + η̃sGis×Tis + f (Xis)+ ε̃is, (2)

where f (Xis) are study-specific controls. We aim to replicate each study’s preferred speci-

fication, only adding the gender-incentive interaction term where necessary.6 The vector of

parameter estimates, θ̂s, and the associated covariance matrix, Σ̂s, for each study form the

inputs in the Bayesian hierarchical model as described below.

As a robustness check, we also consider an alternative formulation in which we estimate

a common specification for each study, excluding covariates. Where multiple observations

are available for each individual, we collapse the data to subject-treatment-level means, and

estimate equation 1. In both cases, we implement the estimation using the error structure

assumed in the original paper, e.g., clustering at the session level.

3.3 The Bayesian Hierarchical Model

To motivate the Bayesian hierarchical model that we estimate, it is useful to consider to

alternative approaches to aggregating empirical evidence. The pooling model (in statistics,

often referred to as the classical fixed-effects model) assumes that each individual study is

estimating a common effect, η . That is, observed differences in study results are solely due

to idiosyncratic variation and not differences in the sample population, type of incentive, or

outcomes studied. This model has the following form:

η̂S ∼ N[η ,σ2
s ] s = 1, . . . ,S. (3)

This approach is quite common and easy to estimate by what is often referred to as the

inverse-variance method. The estimate of the common effect η is given by the precision-

6For the two studies that employed panel data (Bandiera et al, 2005 and Fehr & Goette, 2007), we collapse
the data to the individual level in order to estimate the main gender effect and associated elements of the
covariance matrices. This has little effect on the estimates of incentive and incentive-gender effects, and all
results are robust to excluding these studies.
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weighted average of the individual study effects,

η̂
Pool = ∑wPool

s ηs/∑wPool
s , (4)

where the weight wPool
s = σ̂−2

s is the precision of our estimate for η̂S. In the presence of

cross-study heterogeneity, the estimated variance of η̂Pool will be too small.

In contrast, the random-effects model assumes that each observed study result, η̂S, is

estimating its own study-specific effect, ηS. These study-specific ηS’s are in turn distributed

around a common population mean, η . The random-effects model thus explicitly allows

for variation in the true treatment effect across studies as well as within-study idiosyncratic

variation. The model has the following form:

η̂s ∼ N[ηS,σ
2
s ] s = 1, . . . ,S (5)

ηs ∼ N[η ,τ2].

We can decompose the difference between study-level parameter estimates, η̂s, and the

population mean, η , into two components. First, there is statistical variation in the local

parameter estimate, η̂s−ηs, that is, the difference between our the estimated and true ef-

fects in that particular context. This would include both the idiosyncratic variation in our

estimates as well as any potential bias. Second, there are context-specific factors, ηs−η ,

that would include variation across studies in the types of incentives, sample populations,

study characteristics, and implementation.

The estimate of η is again the weighted average of the individual study effects as in (4);

however, the weights are now given by wRE
i = (vi + τ2)−1, where τ2 is an estimate of the

between-study variance:

η̂
RE = ∑wRE

s ηs/∑wRE
s . (6)

The random-effects model reduces the relative weight on more precise studies and reduces

the effective precision for all studies. It thus generates more conservative estimates for the

variance of the estimate of the common effect, η . However, while classical random effects

explicitly accounts for potential heterogeneity across studies, it treats τ2 as a constant once
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estimated rather than a random variable. In ignoring this level of uncertainty, akin to the

generated regressors problem (Pagan, 1984), it underestimates cross-study heterogeneity

(Rubin, 1981).

The Bayesian hierarchical model mirrors the classical approach in (5), but treats the

hyperparameters, η and τ2 , themselves as random variables :7

η̂s ∼ N[ηS,σ
2
s ] s = 1, . . . ,S (7)

ηs ∼ N[η ,τ2]

η ∼ [−,−]

τ
2 ∼ [−,−],

where [−,−] indicates a prior distribution that must be specified.

The first line of (7) is uncontroversial and proceeds immediately from the assumption

of each study’s internal validity and the fact that sample sizes are sufficiently large that

the central limit theorem justifies using the normal distribution. The assumption of known

variances is also reasonable. Given the sample sizes of the included studies, the study-level

parameter variances are precisely estimated and modeling the uncertainty would add little

to the analysis.

The second line embodies a critical assumption: the parameters (η1, . . . ,ηs), the study-

level effects, are themselves normally distributed in the population with mean η and vari-

ance τ2. It is perhaps unreasonable to assume that studies were place at random, with

contexts chosen from a large population with approximately normally distributed effects.

Previously, the normality assumption for study-level effects was required for analytical

tractability (Stein et al., 1956; James and Stein, 1961; Efron and Morris, 1971); however,

modern estimation techniques have freed us from that necessity. We begin by estimating

7Since at least Lindley (1971) and Lindley and Smith (1972), this structure, sometimes called a one-way
normal random-effects model with known data variance, has been commonly employed in hierarchical model-
ing, at least in part owing to its analytical tractability. This means we have no prior knowledge with which to
distinguish η j from ηk,∀ j 6= k. For example, before seeing the data, there is no reason to believe that the effect
size in study j should be larger than the effect size in study k. The assumption that the study-specific effects,
ηS, are i.i.d. is implied by a stronger underlying assumption that the S values of yi are exchangeable, i.e., the
joint probability density of the data, p(y1, . . . ,yS) is invariant to permutations of the indices. If in addition to the
data we have access to additional information that would allow us to distinguish the studies a priori, then our
model can be expanded to include this information so the model is exchangeable in the data and the covariates.
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the normal-normal model as a convenient starting point. We then test the appropriateness of

this assumption. As described in Section 4.4, the data conform quite well to the normality

assumption. Although studies were not selected at random, the net effect of differences in

location, incentives, subject pools and other study characteristics can be characterized quite

well by the hierarchical model we estimate and the normal distribution. That is, the study-

level results are distributed as if the studies were “placed at random”, with the true effects

in each context distributed approximately normal around a population mean. Nevertheless,

we check the robustness of our results to alternative distribution assumptions; Section 4.4

describes the results. Despite the accuracy of the model we estimate, it remains important

to note that our results are best interpreted as the distribution of incentive effects from the

population of contexts in which economists have been willing to run experiments. The

extent to which these settings are representative of the broader population points to further

questions regarding the placement of experiments and the representativeness of empirical

work more generally (see, for example, Cartwright and Deaton, 2016 and Allcott, 2015).

The key assumption required for us to estimate the joint probability model is exchange-

ability. Technically, this means that the joint distribution of (η1, ...,ηS) is invariant to per-

mutations of the indexes (1, . . . ,S). It allows us to write the joint distribution of the ηs’s as

i.i.d. given hyperparameters η and τ that also have prior distributions. Intuitively, it means

there is no information, other than the data, y, to distinguish one study from other. For

example, before seeing the results from the studies, there is no reason to believe that the

results from, say, experiment 1 should be larger than those in experiment 2 or more similar

to those in 3 than in 4.

In practice, this assumption is less restrictive than it appears and can easily be relaxed

with partial or conditional exchangeability. If there were study-level characteristics that we

thought were informative about the parameters of interest, we could group data together

with an additional level of hierarchy (e.g., grouping field and lab experiments separately) or

add additional variables to the analysis (e.g., estimating a three-parameter model that allows

for correlation across the parameters or including study date or location as covariates). If

there is information available that distinguishes one study from another, it can be included

in the data.
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Finally, lines 3 and 4 of equation (7) indicate some prior distribution for the hyperpa-

rameters. For both, we will focus on non-informative (reference) priors, motivated by the

notion that the information we have about the response to incentives is contained in the

data themselves. As with the normality assumption, we can easily test the robustness of our

choice of priors, which we discuss further in Section 4.4.

The univariate model provides a clear setting to demonstrate the intuitive appeal of the

Bayesian hierarchical model. The pooling model described in (3) above is a natural refer-

ence point for thinking about analyzing data across studies. It assumes that each individual

study is estimating a common effect, η . Observed differences in parameter estimates arise

only due to idiosyncratic experimental variation.

This model performs well when parameter estimates across studies are similar. Figure

1a illustrates the posterior distribution of η that would be generated by two similar signals

and an uninformative prior: η̂1 = −0.50(1.00); η̂2 = 0.50(1.00). The mean of this poste-

rior is the precision-weighted mean of the signals, and the posterior precision is the sum

of the precision in the signals: η̂
post
pool = 0.00(0.71). While this posterior and, in particu-

lar, its increasing precision appear plausible when studies are relatively homogeneous, the

implications of the pooling model are less reasonable in the presence of heterogeneity.

Figure 1b again illustrates the posterior distribution of η that would be generated by

two signals with the same precision as before, but now the means of the two signals differ

substantially: η̂1 = −2.00(1.00); η̂2 = 2.00(1.00). In this case, the pooling model gener-

ates the identical posterior distribution. This is unrealistic. Note that the posterior for the

population hyperparameter has little overlap with the sampling distributions of either study

estimate. Our natural intuition would be to conclude that the two studies in Figure 1b are

measuring different effects.

The Bayesian hierarchical model not only captures this intuition but quantifies the cross-

study heterogeneity. Figures 1c and 1d display the BHM’s posterior estimates for the pop-

ulation parameter, η , based on the same signals as shown in 1a and 1b, respectively. When

the signals are similar, as in 1c, the posterior distribution η is similar to that generated by

the pooling model. In fact, in this example, they are identical: η̂
post
BHM = 0.00(0.71). The

BHM explicitly allows for the possibility of heterogeneity in the true effect across studies,
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but when estimate of cross-study variation is zero, as it is here, the BHM recovers the pool-

ing model. However, when cross-study heterogeneity is large, as in 1d, the BHM rejects the

pooling model, and the posterior distribution on the population quantifies the variation we

observe across studies: η̂
post
BHM = 0.00(2.00).

A simple but unappealing alternative to using the BHM in the presence of cross-study

heterogeneity would be to disregard any commonality and treat each study as an estimate of

its own unique, context-specific parameter. This would be equivalent to fixing τ2 in (7) at ∞.

In essence, there is no population parameter. While this avoids the troubling implications

of the pooling model, it comes at the cost of precluding any attempt to discern universal

patterns in fundamental economic questions such as the response to incentives.

By allowing for intermediate degrees of pooling, the BHM makes it possible to aggre-

gate evidence across similar but not necessarily identical studies. One uses the data itself

to quantify both the degree to which studies are estimating a common parameter and our

uncertainty about this variation. One can also incorporate beliefs about the degree of het-

erogeneity across studies—for example, confidence but not certainty that a set of studies

is estimating a common effect—in the form of the prior distribution of τ . Aggregating

evidence with the BHM also provides a foundation for the inductive exploration into the

sources of heterogeneity, that is, to what extent can characteristics at the level of the study

or the individual participants explain the variation in parameter estimates.

The core of our analysis focuses on the Bayesian hierarchical model for the full pa-

rameter vector, θ = (β ,γ,η), which will allow us to explore heterogeneity across studies

along the dimension of potentially correlated parameters. For example, the gender-incentive

interaction may be increasing in the size of the main incentive effect or in the relative per-

formance of women vs. men. The structure again parallels those above:

θ̂s ∼ N[θS,Σs] s = 1, . . . ,S (8)

θs ∼ N[θ ,Σ],
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where

Σ =


τ2

β
τβγ τβη

τβγ τ2
γ τγη

τβη τγη τ2
η

 .
We use the following priors for the hyperparameters:

θ ∼ N[0, 1002] (9)

Σ ∼ diag(σ) Ω diag(σ)

σk ∼ Cauchy(0,2.5), for k ∈ {β ,γ ,η} and σk > 0

Ω ∼ LKJcorr(2)

where Ω is a correlation matrix and σ is the vector of coefficient scales (Gelman, 2006;

Lewandowski et al., 2009). The vector of parameter estimates, θ̂s = (θ̂s, γ̂s, η̂s), from each

study and the associated estimated covariance matrix, Σ̂s, are the key inputs in the hierar-

chical model on which we focus.

3.4 Estimation

Our estimation of the Bayesian hierarchical models follows closely the procedures de-

scribed in Gelman and Hill (2007) and Gelman et al. (2004). For clarity of exposition, we

describe the univariate model, which extends immediately to the full multivariate model.

Following (7) above, we assume that the site-specific effects, ηs, are drawn from a normal

distribution with hyperparameters (η ,τ):

p(η1, . . . ,ηS|η ,τ2) =
S

∏
s=1

N(ηs|η ,τ2).
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Applying Bayes Rule, the posterior of the study effects and hyperparameters conditional on

the observed effects can be expressed as:8

p({ηi}S
i=1 ,η ,τ2|y) = p(τ2|y)p(η |τ2,y)p({ηi}S

i=1|η ,τ2,y).

It is relatively straightforward to characterize this distribution, even for extensions to

multiple parameters, using Markov Chain Monte Carlo (MCMC) methods to sample iter-

atively from the component distributions. Intuitively, in each step k, we first simulate τ(k)

from its distribution and then calculate p(τ2|y), where y is our data,
{

η̂i, σ̂ j
}S

i=1. Using this

draw of τ(k) we then sample p(η |τ2,y) from the normal distribution to obtain η(k). This

is then used to sample p({ηi}S
i=1|η ,τ2,y), generating each η

(k)
j independently. We update

parameters subject to an acceptance rule and then repeat.

In practice, this is easily accomplished using the RStan package for the programming

language R. We use the default HMC/NUTS sampler for Stan, which employs the Hamil-

tonian Monte Carlo algorithm (Betancourt and Girolami, 2015) with path lengths set adap-

tively using the no-U-turn sampler (NUTS; Hoffman and Gelman, 2014). Inference relies

on the assumption that for large enough k, the simulated distribution of
{
{ηi}S

i=1 ,η ,τ2
}(k)

is close to the target distribution p({ηi}S
i=1 ,η ,τ2|y). We initialize four independent chains

for the sampler with random draws from the prior density. We then let each chain run

for 14,500 iterations, discarding the first 2,000 simulations as warm-up. These parallel

chains are then tested for mixing—the between-chain and within-chain variances should be

equal—and stationarity.

After confirming that the chains are well behaved, we combine them to generate the

simulated posterior distributions for both the hyperparameters, η and τ2, as well as the true

study-level effects, {ηi}S
i=1. In addition to calculating standard measures such as means and

posterior intervals (the Bayesian analog to classical confidence intervals), we can also use

these simulated distributions to test any other functions of the parameters that may be of in-

terest. The bulk of our analysis focuses on the simulated marginal posterior distributions of

8The marginal posterior of the hyperparameters is typically written as p(η ,τ2|y) ∝

p(η ,τ2)∏
S
s=1 N(η̂S|η ,σ2

s + τ2) , however for the normal-normal model we can simplify by integrating
over η leaving p(η ,τ2|y) = p(η |τ2,y)p(τ2|y). See Gelman et al. (2004) for details.
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these parameters. We define ysim as the simulated parameters that could have been observed

if the studies in our sample were replicated and the parameter estimates were distributed

according to our specified probability model.

Note that the simulated posterior is a joint distribution over not only the population

hyperparameters, that is, the average effect of monetary incentives and its dispersion, but

also each study-level effect. That is, our beliefs about the effect of incentives in any given

setting are based not only on the results obtained in that setting but on the results in the

other n−1 similar settings.

This insight—the seeming paradox that in the presence of other information the best

(i.e., lowest mean squared error) estimate of the true effect in any particular context may

not be simply mean estimate of an internally valid study in that very same context—is first

attributed to Stein (Efron and Morris, 1977). Intuitively, this is the same process most of

us engage in when evaluating new empirical evidence. When presented with the estimates

from a carefully executed experiment, we shrink (or pool) our beliefs about what would hap-

pen if the exact same experiment were re-run in the same context. The degree of shrinkage

is based on the precision of the estimates and our beliefs about how similar the particular

study is to others in the population. The Bayesian hierarchical model serves to make that

process transparent and precise.

3.5 Pooling metrics

A natural question to ask when synthesizing findings from comparable studies is should we

believe that each is contributing to a common answer regarding the effect in the population

(τ2 = 0) or should we treat each study as a stand-alone answer to a distinct question (τ2→

∞). Models that explicitly recognize and quantify heterogeneity allow for a potentially more

realistic intermediate answer.

It may be intuitive to think about the degree of pooling in terms of effective sample size.

That is, when estimating the population hyperparameters, do we have 60,892 observations

or 18? Or, in the extreme case of no pooling, is the notion of a population mean not well

defined, leaving us with effectively no observations with which to estimate it?

A range of pooling diagnostics and metrics have been developed to quantify the degree
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of commonality across studies. If each study is estimating a common effect, then pooling

the data across studies will produce a better estimate for the parameter in each experiment

(Rubin, 1981). The classical test of the hypothesis that the studies are all estimating a

common effect yields a χ2-statistic ∑
S
s=1{(η̂s− η̂FE)2/σ̂2

s }, which is distributed with S−1

degrees of freedom.

However, pooling need not be an all or nothing proposition. Our estimates of τ2 and the

observed σ̂ks can be combined to give some sense of the extent to which observed effects

are site-specific versus representing a common effect. First, note that we can characterize

the mean of the Bayesian posterior as a shrinkage estimator:

η̂
Post
s = (1−λs)η̂k +λsη , (10)

where λs ∈ [0,1] can be thought of as a pooling factor that represents the degree to which

the estimates are pooled towards the estimated population mean (η) rather than based on

their observed value.9 When τ2 is large relative to σ2
s , λs will be close to zero. This

corresponds to the no pooling case in which our estimate for the effect in study s will be

largely determined by its own separate estimate. Intuitively, when λs is small there is little

a study in one context can tell us about the expected effect in another. In contrast, if τ2 is

small relative to σ2
s , λs will be close to 1 and the appropriate estimate will be close to the

population mean irrespective of the site-specific estimate. The pooling model corresponds

to τ2 = 0.

Box and Tiao (1973) show that in the single parameter model when η and τ2 are known,

equation (10) characterizes the analytical mean of η̂s with λs =
σ2

i
σ2

i +τ2 . This suggests two

alternative study-level pooling statistics: λ 1
s =

σ̂2
i

σ̂2
i +τ̂2 , that is, the pooling metric calculated

from the posterior means of the error terms, and λ 2
s =

η̂POST
k −η̂k
η−η̂k

, which directly measures the

extent to which the posterior mean of the study-level effect is determined by the posterior

mean of the population effect. Note that in the multivariate model, λ 2
s is not restricted to

the interval [0,1]. Correlation with other parameters makes it possible that the true effect in

9It is more common in the statistics literature to see this formulation expressed in terms of a shrinkage factor
equal to 1−λs. Since we are primarily interested in the extent to which study-level results can be thought of
as providing information about a population mean, we find it more natural to follow Gelman and Pardoe and
focus on the degree of pooling.
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a study is outside the interval between the observed effect and the population mean.10

Gelman and Pardoe (2006) generalize this idea to develop a common pooling factor

that summarizes the extent to which estimates at each level of a hierarchical model a pooled

together based on level-specific factors rather than based on lower level or study-specific

estimates. In the case of our two-level model, they define the pooling factor as

λ = 1−
V K

s=1E(εs)

E(V K
s=1εs)

, (11)

where E represents the posterior mean, V is the finite sample variance operator (i.e., V n
i=1 =

1
n−1(xi− x̄)2), and εs = ηs−η . They suggest that the value of 0.5 provides a clear reference

point. If λ < 0.5 there is more information at the study level than at the population level.

At the extreme of λ = 0, there is no pooling and the broader population contributes no in-

formation to the true effect in a particular setting. When λ > 0.5, there is more information

at the population-level, with local estimates being fully pulled toward the population mean

at the extreme of λ = 1.

Finally, we can look directly at the marginal posterior density of the variance hyperpa-

rameter, p(τ|y). This is useful in that study-level posterior means can easily be calculated

as functions of τ and the posterior uncertainty about τ and ηs displayed visually.

4 Results

4.1 The response to incentives for men and women

Table 3 summarizes the posterior distribution of the hyperparameters (γ , η , and β , and

the corresponding elements of τ). That is, given the available data and our specified (un-

informative) prior beliefs, it describes the population distribution of (i) men’s response to

incentives, (ii) the gender difference in response to incentives and (iii) the gender differ-

ence in unincentivized productivity as well as the estimated standard deviation of each of

these parameters. As described in Section 3.2, the data are standardized so the unit of mea-

10For example, suppose we observe a strong negative correlation between β and η , implying that women are
relatively more responsive to incentives in settings when women’s unincentivized performance is comparatively
less. All else equal, when evaluating incentives for a task when women are at a comparative disadvantage, we
will tend to have a higher posterior belief for the gender difference in the response to incentives.
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sure for the parameters is the standard deviation of productivity for unincentivized men in

each setting. For each parameter we report both the BHM and the pooling estimate for

comparison.

The table shows that we cannot reject the null that men and women respond equally.

The median and mean of the gender-incentive interaction hyperparameter, η , are 0.069

and 0.066, with a 95%-interval of [−0.026, 0.176]. The sign of the estimate is positive,

suggesting that, contrary to the implications of gender differences in risk aversion and over-

confidence, women respond slightly more to incentives than men do. The pooling estimate

is of similar magnitude, with a mean of 0.052 (s.e.: 0.020). Recall that the difference be-

tween the two estimates is that the pooling model assumes no heterogeneity across studies

while the BHM allows for heterogeneity and estimates it. Figure 5 shows that the estimated

cross-study heterogeneity is relatively low (median τ = .121). Moreover, there is significant

mass in the posterior distribution on τη ≈ 0, which rationalizes the similarity of the BHM

and pooling estimates.

Despite significant variation in context, including task, location, and the structure of

pay for performance, the differences between men and women in the response to incentives

appear to be relatively consistent and consistently close to zero across contexts. This implies

that these studies have external validity, that is knowing that the gender differential is zero

implies that the next, hypothetical study is also very likely to find a zero effect.

Despite this similarity across studies, assuming away heterogeneity for the pooling

model, leads to standard errors on η̂ that are approximately one-third those of the more

conservative BHM. More importantly, the low estimates of cross-study heterogeneity im-

ply that the estimated gender response difference in study n is highly predictive of the same

in study n+1.

Having established that women and men respond similarly, we are interested in assess-

ing whether they both respond positively, as predicted by agency theory, or negatively, as

predicted by crowding-out. Because our estimate of gender differences is essentially zero,

we will focus on the distribution of γ , the estimated effect of incentives on male subjects.

Increasing the power of incentives leads men to increase productivity by about one-fourth

of one standard deviation. As shown in Table 3, the median and mean for the posterior
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estimate of γ are 0.277 and 0.275, with a 95%-interval of [0.131, 0.431]. This is consistent

with the main prediction of agency theory and casts doubt on the practical relevance of

crowd-out. We note that the pooling estimate is much smaller, with a mean of 0.097 (s.e.:

0.016), or roughly the 3rd percentile of the BHM estimate. In line with this, the middle

panel of Figure 5 shows a substantial amount of heterogeneity across studies. The median

estimate of τγ is 0.268 and there is no mass on values less than 0.10. These results explain

the difference between the BHM and pooling estimates of γ. Indeed, we can easily reject

the pooling hypothesis.

That the magnitudes of the incentive effect are heterogeneous is to be expected because

the different studies use different incentive schemes in different contexts; more studies with

the same incentive scheme are needed to assess whether there is indeed a common response

across contexts. Despite studies in different contexts estimating incentive effects of very

different magnitudes, incentives unambiguously increase productivity across the sample.

A key advantage of our method is that the findings can be used to predict the response

to incentives in a potential new study (γS+1 and ηS+1). Figure 6 does so by combining the

estimates of γ and η to generative a predictive distribution for men and women. As shown

in the figure, if we were to run another study drawn from the same population of potential

studies and knowing nothing more about the contextual details, we would expect incentives

to increase performance for men by an average of 0.28σ (with an interquartile range from

0.23σ to 0.32σ ) and for women by an average of 0.34σ (with an interquartile range from

0.29σ to 0.40σ ). Comparing the two distributions, the median of the posterior predictive

distribution for women is at the 82nd percentile for men.

We expect the true, context-specific gender difference in the response to incentives to

be negative and at least half as large as the estimated mean effect for men (ηS+1 <−0.14)

in about 5% of studies and less than the mean effect for men in only 7 out of 1000 studies.

Alternatively, one could think about what would happen if we could simply rerun the 18

experiments included in this study, maintaining all the design features including sample

size. Then, we would expect to find a negative and statistically significant (at the 5%-level)

gender difference in 3.7% of the replications and a positive and statistically significant

difference in 12.6%. In other words, 84% of replications would not be able to statistically
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distinguish the responses of women and men. In contrast, the probability that the true

effect of incentives is negative in a population split evenly between men and women is

6.3%. In most of these cases, the effect would be indistinguishable from zero. Replicating

the existing set of studies, we would expect to obtain a negative and significant incentives

coefficient (γ̂s) in fewer than 1 out of 100 cases.

For completeness, Table 3 also reports the estimates of β , that is the productivity differ-

ence between men and women in the absence of incentives. On average in the population

of experimental settings, women are somewhat less productive. The median and mean es-

timates for β are −0.082 and −0.083. Not surprisingly, given the diversity of contexts

covered by the sample studies, the distribution is quite spread out. The 95%-interval spans

[−0.246, 0.071], and the median for τβ is 0.29.

Consistent with the posterior estimates for each of the τ parameters, the pooling metrics

(Table 4) demonstrate significant commonality across studies for the gender-incentive inter-

action term (η). The common pooling factor of 0.684 means that with respect to any given

study, there is relatively more information at the population level, that is, from the other

n− 1 studies, than from the individual study itself. The average variance pooling factor

across the studies is 0.394, suggesting that along this dimension the studies in our sample

have reasonably high external validity. Results in one context have a substantial influence

on our beliefs in another.

In contrast, the results for the incentive (γ) and gender (β ) main effects exhibit more

local-level than population-level information. The common pooling factors are 0.234 and

0.254, respectively, suggesting that while each experiment informs and is informed by be-

liefs about the population mean, most of the information about these effects must come

from the context itself.

This is perhaps not surprising. The studies in our sample exhibit tremendous variation

in both the type of task and the form of incentives. What is, however, surprising is that men

and women respond similarly to financial workplace incentives across such a diverse set of

contexts.
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4.2 Cross-correlations

The fact that cross-study heterogeneity of men’s response to incentives γ is large raises the

possibility that gender differences in responsiveness might depend on the strength of incen-

tives. For instance, men and women might have similar responses when incentives are weak

but men might respond more when incentives are strong. To assess whether this is indeed

the case, we estimate the correlation between γ and η . If any gender differences in respon-

siveness are large when incentives matter more, we would expect a positive correlation.

Figure 7 displays the correlations and bivariate scatter plots for each pairwise combina-

tion of the three regression parameters as drawn from the posterior predictive distribution.

The estimated correlation between η and γ is -0.123, suggesting that when incentives are

most effective for men (large γ) the difference between men and women is smallest. The

figure also illustrates that the estimated average difference is always positive albeit small.

A similar test can be implemented with respect to β , the gender productivity gap. To

the extent that this reflects gender differences in intrinsic motivation for the task at hand

we expect incentives to be more effective for women when they are less motivated to start

with. Figure 7 provides support for this hypothesis: η is large and positive when β is large

and negative. Thus, when women perform worse than men with low powered incentives, an

increase in incentive power closes the gap. This implies that, at least to some extent, gender

differences in productivity may reflect different tastes rather than insurmountable gaps due,

e.g., to differences in physical strength.

Finally, the bottom panel of Figure 7 shows the correlation between β , the gender pro-

ductivity gap, and γ, men’s responsiveness to incentives. There is no discernible relation-

ship between the gender specificity of a task and the effect of financial incentives for men.

4.3 Posteriors

The Bayesian hierarchical model provides a precise and transparent method to incorporate

data from other studies into our beliefs regarding the true effect in a particular setting. As

noted above, the best (i.e., lowest mean squared error) estimate for the true effect in a

particular context is typically not equal to the mean estimate of a single, internally valid
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study in that context. Figures 2, 3, and 4 compare the posterior predicted distributions for

each of the main parameters, γ,η ,β , to the original estimates from the studies themselves.

The posterior estimates are pulled towards the population mean to the extent the studies

appear to be estimating a common parameter, as tempered by the precision of the study-

specific, internally valid estimate and other available information such as the estimates of

covarying parameters. The common and predictable pattern is that the posteriors mostly lies

in between the original estimate and the hyperparameter estimate. What is most surprising

is that some of the gaps, that is, the degree of pooling, are quite large. This is most evident

for the incentive-gender interaction (η), where the common pooling factor is large and some

of the study-level estimates quite imprecise. However, there are still substantial differences

between the posterior and the site-specific estimates for the other parameters in several

studies.

Take, for example, the estimated effect of incentives in Bandiera et al (2005). As shown

in Figure 3, the parameter estimate in this study is large, +0.87σ , and with a t-statistic

of 5.33 significantly different from zero at any conventional level. However, the estimates

are substantially larger than the mean in all but one of the other studies. With a standard

error of 0.16σ there remains quite a bit of uncertainty as to the magnitude of the effect

even though one can say with near certainty that the effect is positive and economically

significant. The mean of the posterior distribution for γs is +0.70σ , still a very large effect

but pulled substantially towards to population mean of +0.28σ . The degree of pooling

depends primarily on the uncertainty of the local parameter estimate and the estimated

distribution of the population hyperparameter (γ,τγ ).

Figure 8 demonstrates the relationship between the estimated standard deviation of the

hyperparameter (τη ) and the posterior mean of ηS, the study-specific effect. Here, we return

to the gender-incentive interaction term, our primary outcome of interest. The upper half of

the figure plots the posterior distribution of ηs for each study conditional on τη . If τη were

0, each study would be estimating a common effect and the posterior for each ηs would be

equal to our posterior estimate of the population mean. As τη increases, the extent to which

the posterior for any study is pooled toward the population mean diminishes, and as τη →∞

the posterior for each study tends towards the site-specific estimate.
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Figure 8 shows that the posterior estimates for each ηs diverge rapidly as τη increases.

For values of τη above 0.5 the posteriors for each study are very close to the site-specific

estimate. The lower half of Figure 8 overlays the posterior distribution of τη , which has a

mean estimate of 0.132. The substantial degree of observed pooling can be seen in at the

corresponding level of τ in the upper half of the figure.

4.4 Model Checking

After computing the posterior distribution of all parameters, it is essential to assess the

fit of our model to the observed data. Using the posterior distributions, we can test how

well the predictions of our model fit observed but unmodeled features of the data. It is, of

course, possible alternative probability models could also fit our data but generate different

posterior predictions. Therefore, we will also test the sensitivity of our posterior predictions

to alternative assumptions. Our aim is not so much to accept or reject the model, but to

understand the limits of its applicability.

The key idea behind posterior predictive checking is that data replicated under our es-

timated model should look similar to the observed data (Gelman et al., 2004). We can

construct test statistics, T , from any function of the data and then calculate the Bayesian

p-value for each of these statistics:

p = Pr
(
T (ysim,θ)≥ T (y,θ |y)

)
.

These p-values can be directly interpreted as the probability that the test statistic in the

posterior distribution, ysim, is larger than in the observed data. Thus, p-values near 0 or 1

indicate that the statistic observed in the data would be unlikely to be seen in simulations

based on our specified probability model.

Figure 9 plots the observed order statistic for each of the model parameters against the

mean from the simulated posterior distribution. Table 5 reports the associated p-values.

In the case of the gender-incentive interaction term, the posterior predictive distribution

matches the observed data very well, including at the extremes. Similarly, the symmetry test

statistics for the observed data closely match those from the simulated posterior. Although
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the settings for the included studies were certainly not chosen at random from the population

of possible study sites, our hierarchical model that treats the study-level parameters as if

they were normally distributed around a population mean does a remarkably good job of

capturing important features of the data. The model performs reasonably well for the gender

(β ) and incentive (γ) parameters as well. Across all 18 order statistics, the minimum tail

probabilities are 0.039 and 0.095, respectively.

In addition to directly evaluating the order statistics, we also test for asymmetry in the

center of the distribution by constructing T (y,θ) =
∣∣θ(15)−θ

∣∣− ∣∣θ(2)−θ
∣∣ for each of the

parameters. The 2nd and 15th order statistics represent approximately the 10th and 90th

percentiles of the distribution. For a symmetric distribution, this test quantity should be

distributed around zero.11 Figure 10 presents these results. There is some skewness in the

observed data, leftwards for β and η and rightwards for γ , such that the normal distribution

does not fully capture the asymmetry in the center of the distribution. In the case of the

gender-incentive interaction term (η), this is only present at the particular points in the

distribution we selected for the test. None of the departures from normality are significant.

5 Discussion

Performance pay is at the core of agency theory and management practices. Not surpris-

ingly, given this popularity with theorists and practitioners, its effectiveness has been tested

in several lab and field experiments. In this paper we propose a methodology to aggregate

this evidence to test whether performance pay increases performance to the same extent

for men and women. The answer provides evidence on whether differential responses to

performance pay might underpin some of the gender earnings gap.

The results vindicate agency theory: across a variety of contexts and for a variety of

incentive designs, we find that performance pay increases performance for men and women

alike. To the extent that women differ in risk aversion, confidence, cooperation these differ-

ences are not strong enough to generate different responses. The question that remains open

is why women avoid sorting into organizations with a strong performance pay component

11For the observed data, each draw of the test statistic is calculated from the observed order statistics, which
are fixed throughout, and draws from the posterior distribution of the relevant hyperparameter.
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if their response does not differ. A likely explanation is that these organizations have other

traits, e.g., a culture of long hours, that are not attractive to women (Bertrand et al., 2010;

Goldin, 2014).

The results also illustrate the usefulness of Bayesian hierarchical models as a tool to

build evidence from existing studies. BHMs are especially well suited to aggregate evidence

in economics because economists run experiments in different contexts and BHMs allow

to estimate the level of heterogeneity. This, in turn, is useful to assess external validity as

aggregating studies by means of a BHM allows researchers to quantify the extent to which

existing studies are informative about an hypothetical next study. In addition, building

evidence from existing studies allows researchers to test for heterogeneity across subgroups

for which which individual studies might be underpowered and to capitalize on the recent

explosion in evidence from field and laboratory experiments to answer new questions with

existing data.

While we believe that this methodology is very promising, it faces several hurdles be-

cause of the way economists classify their studies and present their results. The data avail-

ability requirement recently imposed by many journals is a first step in the right direction

but this should be accompanied by the requirement to report a common set of statistics such

as means and standard deviations in treatment and control groups and the requirement to

state the main specification upfront.12

A limitation that the BHM cannot overcome is that, by definition, it can only aggregate

evidence from settings where experiments where run. This is particularly relevant for field

experiments where partners would not normally allow researchers to test interventions they

have a strong prior on. For instance, organizations are generally reluctant to test whether

pay-off equivalent rewards and punishments have the same effect. A more disturbing selec-

tion comes from the researchers themselves both in terms of where to run experiments and

which results to publish. As we have demonstrated above, subgroup analysis that is not the

goal of the experiments is less prone to these biases.

Despite these challenges, we see BHMs as a powerful tool to build on existing knowl-

12Some of our sample studies did, others reported pooled means and standard deviations, others reported
none.
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edge and giving directions on which is the most useful experiment to run next. Most im-

portantly it is a powerful tool to test the relevance of theory across different settings.
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Figure 1: Examples of Aggregation Models
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Figure 1a: Pooling Model
Low variation across studies
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Figure 1b: Pooling Model
 High variation across studies
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Figure 1c: Bayesian Hierarchical Model
Low variation across studies
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Figure 1d: Bayesian Hierarchical Model
High variation across studies

Note: Dashed lines represent distribution of study−level parameter estimates. Solid lines represent posterior
distribution of population parameter, assuming uninformative prior. See Section 3.3 for discussion.



Figure 2: Original & Posterior Estimates for β (Gender)
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Note: Outcome variable for each study is standardized based on control group mean and standard deviation. Vertical
line indicates median estimate, box indicates 50%−interval and line indicates 95%−interval. Fixed effects model
calculated using the metafor package for R (Viechtbauer, 2010). Bayesian Hierarchical model implemented in Rstan.



Figure 3: Original & Posterior Estimates for γ (Incentives)
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Note: Outcome variable for each study is standardized based on control group mean and standard deviation. Vertical
line indicates median estimate, box indicates 50%−interval and line indicates 95%−interval. Fixed effects model
calculated using the metafor package for R (Viechtbauer, 2010). Bayesian Hierarchical model implemented in Rstan.



Figure 4: Original & Posterior Estimates for η (Incentives x Gender)
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line indicates median estimate, box indicates 50%−interval and line indicates 95%−interval. Fixed effects model
calculated using the metafor package for R (Viechtbauer, 2010). Bayesian Hierarchical model implemented in Rstan.



Figure 5: Posterior Distribution of τ (Hyperparameter Variance)
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Figure 6: Predictive distribution by gender
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Figure 7: Bivariate Correlations of Hyperparameters
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Figure 8: Posterior Mean of η s (gender x incentives) conditional on τ η
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Figure 9: Posterior Predictive Checks, order statistics
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Figure 10: Posterior Predictive Checks, skewness
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Figure 11: Incentive x Gender Effect and Study Type
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Criterion    Requirement

Quality control - Papers published in peer reviewed journals or 

renowned working paper series

Comparable identification - Variation in incentive power generated randomly 

(either lab or field)

- Only monetary performance rewards 

Workplace relevance - At least two treatments that can be ranked 

according to their power

- Real, costly effort

- Higher effort leads to higher output

Confounding mechanisms - No externalities

- No self-selection according to incentives

TABLE 1: Selection Criteria



TABLE 2A: Summary of Included Studies

Study Share Women  F
ie

ld
 

 L
ab

 T
ou

rn
am

en
t

Number of Subjects

Angrist & Lavy (2009): The Effects of High Stakes School Achievement 

Awards: Evidence from a Randomized Trial
 3,821 48.7% x - -

Angrist et al (2009): Incentives And Services For College Achievement: 

Evidence From A Randomized Trial
 1,255 58.1% x - -

Ariely et al (2009): Doing Good or Doing Well? Image Motivation and 

Monetary Incentives in Behaving Prosocially
 82 50.0% - x -

Ashraf et al (2012): No Margin, No Mission? A Field Experiment on 

Incentives for Pro-Social Tasks
 401 53.4% x - -

Bandiera et al (2005): Social Preferences and the Response to Incentives: 

Evidence from Personnel Data
 142 53.5% x - -

 147  Lab 40.8% - x -

 208  Field 15.4% x - -

Carpenter et al (2010): Tournaments and Office Politics: Evidence from 

a Real Effort Experiment
 111 54.1% - x x

Dickinson & Villeval (2008): Does Monitoring Decrease Work Effort? 

The Complementarity between Agency and Crowding-out Theories
 91 50.5% - x -

Dohmen & Falk (2011): Performance Pay and Multi-Dimensional 

Sorting: Productivity, Preferences and Gender
 359 50.4% - x -

Engström et al (2012): Vacancy Referrals, Job Search, and the Duration 

of Unemployment: A Randomized Experiment
 1,581 52.4% x - -

Fehr & Goette (2007): Do Workers Work More if Wages Are High? 

Evidence from a Randomized Field Experiment
 111 13.5% x - -

Freeman & Gelber (2010): Prize Structure and Information in 

Tournaments: Experimental Evidence
 234 60.3% - x x

Gill & Prowse (2012): A Structural Analysis of Disappointment 

Aversion in a Real Effort Competition
 590 55.9% - x x

Glewwe at al (2010): Teacher Incentives  349 19.2% x - x

Hossain & List (2012): The Behavioralist Visits the Factory: Increasing 

Productivity Using Simple Framing Manipulations
 249 78.7% x - -

 107  IQ 47.7% - x -

 130  Counting 50.8% - x -

Totals  9,968 50.1% 9 9 4

Boly (2011): On the incentive effects of monitoring: evidence from the 

lab and the field

Pokorny (2008): Pay—but do not pay too much: An experimental study 

on the impact of incentives
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Mean s.e. 2.5% 25% 50% 75% 97.5%

Gender x Incentives

   h (effect hyperparameter)

      BHM 0.069 0.051 -0.026 0.036 0.066 0.099 0.176

      Pooling (FE) 0.052 0.020 0.013 0.038 0.052 0.065 0.091

   th (variance hyperparameter)

      BHM 0.126 0.060 0.021 0.085 0.121 0.162 0.257

      Pooling (FE)
1 - -     - -     - -     - -     - -     - -     - -     

Incentives

   g (effect hyperparameter)

      BHM 0.277 0.075 0.131 0.227 0.275 0.324 0.431

      Pooling (FE) 0.097 0.016 0.065 0.086 0.097 0.108 0.129

   tg (variance hyperparameter)

      BHM 0.277 0.072 0.161 0.226 0.268 0.318 0.442

      Pooling (FE)
1 - -     - -     - -     - -     - -     - -     - -     

Gender

   b (effect hyperparameter)

      BHM -0.083 0.081 -0.246 -0.134 -0.082 -0.030 0.071

      Pooling (FE) -0.039 0.026 -0.090 -0.056 -0.039 -0.021 0.012

   tb (variance hyperparameter)

      BHM 0.293 0.070 0.182 0.243 0.284 0.333 0.453

      Pooling (FE)
1 - -     - -     - -     - -     - -     - -     - -     

TABLE 3: Summary of Hyperparameter Estimates

Quantiles

Hyperparameter estimates from Bayesian hierarchical model based on empirical distribution from posterior 

simulations. Fixed effects estimates calculate theoretical quantiles from estimated mean and standard error in 

pooling (classical fixed-effects) model. See Section 3 for details. 
1
Note that pooling model assumes variance 

hyperparameter (t) is zero, i.e., true study-level effects are everywhere identical



Common pooling factor

By study Variance Shrinkage Variance Shrinkage Variance Shrinkage

Ariely et al (2009) 0.491 0.323 0.340 0.313 0.316 0.300

Bandiera et al (2005) 0.254 0.151 0.279 0.279 0.120 0.108

Fehr & Goette (2007) 0.477 0.644 0.205 -0.126 0.259 0.305

Pokorny.1 (2008) 0.497 0.956 0.376 0.858 0.361 0.725

Pokorny.2 (2008) 0.480 0.015 0.302 0.250 0.285 0.196

Freeman & Gelber (2010) 0.517 1.227 0.296 0.414 0.299 -0.488

Angrist et al (2009) 0.321 0.757 0.146 0.243 0.108 0.203

Dohmen & Falk (2011) 0.299 1.220 0.121 0.108 0.142 0.085

Engström et al (2012) 0.328 0.406 0.126 -0.247 0.120 0.175

Dickinson & Villeval (2008) 0.151 -0.411 0.086 0.018 0.269 0.501

Glewwe at al (2010) 0.512 0.766 0.214 -0.330 0.217 0.410

Angrist & Lavy (2009) 0.356 0.755 0.202 0.319 0.113 -0.109

Boly.1 (2011) 0.378 0.691 0.182 0.291 0.165 0.215

Boly.2 (2011) 0.443 0.754 0.157 -0.271 0.196 -0.870

Gill & Prowse (2012) 0.463 0.826 0.228 1.033 0.218 0.579

Hossain & List (2012) 0.334 0.355 0.136 -2.033 0.129 0.098

TABLE 4: Pooling Metrics

See Section 3.5 for discussion of pooling factor calculations.

h (Gender x Incentives) g (Incentives) b (Gender)

0.684 0.234 0.254



h (Gender x 

Incentives) g (Incentives)

b

 (Gender)

Order Statistic

Min 0.501 0.293 0.695

q(2) 0.833 0.381 0.868

q(3) 0.416 0.656 0.807

q(4) 0.600 0.865 0.637

q(5) 0.627 0.830 0.790

q(6) 0.492 0.895 0.716

q(7) 0.334 0.959 0.811

q(8) 0.279 0.895 0.822

q(9) 0.333 0.877 0.917

q(10) 0.117 0.755 0.487

q(11) 0.223 0.766 0.365

q(12) 0.232 0.441 0.512

q(13) 0.169 0.682 0.359

q(14) 0.251 0.412 0.130

q(15) 0.434 0.205 0.235

q(16) 0.579 0.077 0.461

q(17) 0.238 0.210 0.669

Max 0.520 0.321 0.429

See Section 4.5 for discussion of Bayesian p-values for posterior predictive 

model checking. These p-values can be directly interpreted as the probability that 

the test statistic in the simulated posterior distribution is larger than that in the 

observed data. p-values near either 0 or 1 indicate that the observed data would 

be unlikely to be seen in simulations based on our specified probability 

distribution.

p-value

TABLE 5: Posterior Predictive Checks, Order Statistics



Figure A1: Posterior Estimates for Incentives x Gender 
Original & Common Specifications
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Source: Original specification    Bayesian posterior, Original Spec. Bayesian posterior, Common Spec.

Note: Outcome variable for each study is standardized based on control group mean and standard deviation. Vertical
line indicates median estimate, box indicates 50%−interval and line indicates 95%−interval. Fixed effects model
calculated using the metafor package for R (Viechtbauer, 2010). Bayesian Hierarchical model implemented in Rstan.
See Section 3.2 for details.


