EC475 Problem set 2 Linear panel data models

Antoine Goujard

13/11/09

EC475 Problem set 2

< ロ > < 同 > < 回 > < 回 >

- <u>Antoine</u> Goujard, a.j.goujard@lse.ac.uk ;
- Office hours: S684, Wednesday 12.30 13.30 ;
- Class webpage: http://personal.lse.ac.uk/goujard/ Under Teaching/EC475.
 - Introduction to Gauss (in progress) ;
 - Examples of codes (in Gauss and Stata).
- Useful references for STATA programming (nothing is required):
 - Baum, An Introduction to Stata Programming ;
 - 2 Cameron and Trivedi, Microeconometrics using STATA.
- Useful references for GAUSS programming:
 - http://www.aae.wisc.edu/aae637/gausscode.htm ;
 - ② Gauss user's guide (Aptech) ;

A (10) F (10)

The GPNL data file is generated using Monte-Carlo simulations $(\forall (i, t))$:

$$y_{it} = 0.5.x_{1it} - 0.3.x_{2it} + 1 + 0.7.z_{1i} - 0.2.z_{2i} + \alpha_i + \nu_{it}$$

With: $\sigma_{\alpha} = 0.5$ and $\sigma_{\nu} = 0.25$ and $E(\alpha | x_2) \neq 0$, $E(\alpha | z_2) \neq 0$. This is a balanced panel T = 4 and N = 50.

In this problem set we assume that the true specification is:

$$\mathbf{y}_{it} = \beta_1 \cdot \mathbf{x}_{1it} + \beta_2 \cdot \mathbf{x}_{2it} + \gamma_0 + \gamma_1 \cdot \mathbf{z}_{1i} + \gamma_2 \cdot \mathbf{z}_{2i} + \epsilon_{it}$$

And we use different linear panel data estimators (OLS, Fixed effects, between, one-factor GLS and Hausman-Taylor), based on different assumptions about the data generating process.

・ロト ・聞ト ・ ヨト ・ ヨト

- Plain OLS: is inconsistent because: $E((x_{1it}, x_{2it}, 1, z_{1i}, z_{2i}).\epsilon_{it}) \neq 0$ (even **A3Rsru** does not hold) (even if consistent OLS is inefficient as $\sigma_{\alpha} \neq 0$). As **A3Rmi** do not hold, we do not have unbiasedness.
- Fixed effects/Within: consistent for (β₁, β₂) not efficient. The transformed model is:

$$\mathbf{y}_{it} - \overline{\mathbf{y}}_{i.} = \beta_1 \cdot \underbrace{(\mathbf{x}_{1it} - \overline{\mathbf{x}}_{1i.})}_{\widetilde{\mathbf{x}}_{1i}} + \beta_2 \cdot \underbrace{(\mathbf{x}_{2it} - \overline{\mathbf{x}}_{2i.})}_{\widetilde{\mathbf{x}}_{2i}} + \nu_{it} - \overline{\nu}_{i.}$$

Here $E(\nu_{it} - \overline{\nu}_{i.} | \tilde{x}_1, \tilde{x}_2) = 0$ so we have also unbiasedness.

• GLS is not feasible. We use FGLS estimating in a first step σ_{α} , σ_{ν} to estimate: $\hat{\lambda}_i = 1 - \sqrt{\frac{\hat{\sigma}_{\nu}^2}{T_i \cdot \hat{\sigma}_{\alpha}^2 + \hat{\sigma}_{\nu}^2}}$ and λ_i demean the variables at the individual level. The new error term is:

$$\zeta_{it} = \epsilon_{it} - \lambda_i . \overline{\epsilon}_{i.} = (1 - \lambda_i) . \alpha_i + \nu_{it} - \lambda_i . \overline{\nu}_{i.}$$

• GLS (continued): ζ_{it} is homoskedastic and serially uncorrelated:

$$\operatorname{var}(\zeta_{it}) = (1 - \lambda_i)^2 \sigma_{\alpha}^2 + \operatorname{var}(\nu_{it} - \lambda_i \cdot \overline{\nu}_{i.}) + 0$$

As α_i and ν_{it} are independently generated.

$$\operatorname{var}(\zeta_{it}) = \dots + \sigma_{\nu}^2 + \lambda_i^2 \cdot \sigma_{\nu}^2 \cdot 1/T_i + 2\operatorname{cov}(\nu_{it}, -\lambda_i \cdot \nu_{it} \cdot 1/T_i)$$

Thus, $var(\zeta_{it}) = \sigma_{\nu}^2$. Moreover, $cov(\zeta_{it}, \zeta_{it'}) = 0$, if $t \neq t'$. So the transformed regression satisfies **A4**, and the GLS estimator should be consistent if $E(\alpha_i + \nu_{it}|x, z) = 0$ (not the case here) and efficient (if the one factor model is true). • Hausman and Taylor (1981):

$$y_{it} = \beta_1 \cdot x_{1it} + \beta_2 \cdot x_{2it} + \underbrace{\gamma_0 + \gamma_1 \cdot z_{1i} + \gamma_2 \cdot z_{2i}}_{d_i} + \epsilon_{it}$$

We assume x_2 and z_2 may be correlated with α_i and apply the 2 step- estimator:

- **1** Run **FE**, get $\hat{\beta}_{fe}$ (consistent) and compute $\hat{d}_i = \bar{y}_{i.} \bar{x}_{i.}\hat{\beta}_{fe}$
- 2 Use **2SLS** on : $\hat{d}_i = \gamma_0 + \gamma_1 \cdot z_{1i} + \gamma_2 \cdot z_{2i} + v_i$ where v_i is a new error term and where we instrument z_{2i} by \bar{x}_{1i} .
- Rk1: By def., the new error term is:

$$\mathbf{v}_{i} = \bar{\epsilon}_{i.} - \bar{\mathbf{x}}_{i.} \cdot \left(\underbrace{\hat{\beta}_{fe} - \beta}_{=o_{p}(1)} \right)$$

- **Rk2:** Need more variables x_1 than z_2 .
- Rk3: STATA xthtaylor implements a one step version of this estimator (more efficient), using IVs: x_{1it}, x_{2it} x
 {2i}, z{1i}, x
 _{1i}.

VAR	OLS	GLS	BET	FE	HTAY	TRUE
ONE	1.1053	1.0998	1.1087		1.0576	1
X1	0.5206	0.5321	0.4963	0.5340	0.5340	0.5
X2	-0.3628	-0.3364	-0.3693	-0.3288	-0.3288	-0.3
Z1	0.5157	0.5172	0.5120		1.0414	0.7
Z2	-0.0321	-0.0429	-0.0251		-0.3774	-0.2

Hausman specification tests:

```
**** QUAD FORM GLS/FE: 1.1267458

**** PVALUE (> \chi_2^2): 0.56928568

**** QUAD FORM GLS/BETW: 1.1557304

**** PVALUE (> \chi_2^2): 0.56109492

**** QUAD FORM FE/BETW: 1.1566248

**** PVALUE (> \chi_2^2): 0.56084405

**** QUAD FORM OLS/GLS: 8.2343601

**** PVALUE (> \chi_2^2): 0.14378380
```

(二回)) (二回)) (二回))

•
$$H_0: E(\alpha|x,z) = 0 \text{ vs } H_1: E(\alpha|x,z) \neq 0.$$

• The 1st three tests should be = (Baltagi, 4.3 or Hausman-Taylor, 1981). An "intuition" for that is that under H_0 all estimators are consistent and thus we expect the quadratic form to be close to 0. Under $H_1 = H_a$, only *FE* is consistent, so the intuition for the test GLS/FE is clear. But it is possible to write the GLS estimator as a (matrix) weighted average of the FE estimator and the between estimator. So the *plim* of *GLS* – *BET* and the *plim* of *FE* – *BET* will be \neq 0 under H_1 .

This fact gives us some power to test H_0 .

Here, none of our 3 tests allows to reject H₀. They have Low power.

< 同 ト < 三 ト < 三 ト

- Not clear how to interpret OLS vs GLS. If H₀: E(α|x, z) = 0 is true both OLS and GLS are consistent and GLS is more efficient if σ²_α ≠ 0. Under H₁ = H_a both estimators are inconsistent. Thus the test results are difficult to interpret because it can still be the case that under H₁: (β̂_{GLS}, γ̂_{GLS}) ≃ (β̂_{OLS}, γ̂_{OLS}) or that:
 (*) plim(β̂_{GLS}, γ̂_{GLS}) = plim(β̂_{OLS}, γ̂_{OLS})
 Hence under H₀, the difference between the 2 estimators should be close to 0 but this may also be the case under H₁. So the power of the test is impossible to evaluate and could be = 0 if (*) is true under H₁ (as it is already true under H₀).
- Computing a Hausman test for HT vs GLS would require to correct the var-covar of the HT estimator.