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Theoretical results 1

Suppose z ∼ N(µz , σ
2
z ).

* Binary case. Let Q = 1z>λ, then:
P(Q = 1) = 1− Φ(λ−µz

σz
) = p = E(Q) = 1− P(Q = 0)

var(Q) = p.(1− p).

* Truncation case. Let h(z|Z > c) be the pdf of Z at z conditional on
Z > c then:

h(z|Z > c) = φ(z−µz
σz

). 1
1−Φ( c−µz

σz
)
.1z>c

Proof: Define the CDF H(z|Z > c) = P(Z ≤ z|Z > c) and take
derivative wrt z.

E(Z |Z > c) = µz + σz .
φ( c−µz

σz
)

1−Φ( c−µz
σz

)

Proof: Use the def. of h(z|Z > c) and make the change of variable
u := z−µz

σz
.
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Theoretical results 1

* Selectivity case. Suppose :

u :=

(
Z
W

)
∼ N2

((
µz
µw

)
,

(
σ2

z σzw
σzw σ2

w

))
with σzw = ρ.σz .σw then:

∀(z,w) ∈ R2, h((z,w)|W > c) = f (z,w)
P(W>c) .1w>c .

Proof: compute P(Z ≤ z,W ≤ w |W > c) = ...

If we assume: E(Z |W ) = µz + σzw .(
w−µw
σ2

w
)

Or, E(Z |W ) = µz + ρ.σz .(
w−µw
σw

)

Then by LIE,
E(Z |W > c) = E(E(Z |W )|W > c) = µz + ρ.σz .(

E(W |W>c)−µw
σw

)
From the previous result,

E(Z |W > c) = µz + ρ.σz .
φ( c−µw

σw
)

1−Φ( c−µw
σ2

w
)
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Theoretical results 1

* The previous proof (as in the lecture notes) is based on:

E(Z |W ) = µz + σzw .(
w−µw
σ2

w
)

Rk: σzw
σ2

w
correspond to the plim of the OLS regression of Z on W. It means that

for bivariate normal the CEF is the linear projection.
Proof: Let, U = Z − (µz + σzw .(

w−µw
σ2

w
)) = Z − E∗(Z |W )

Then: (
U
W

)
=

(
−µz + σzwµw

σ2
w

0

)
+

(
1 −σzw

σ2
w

0 1

)
.

(
Z
W

)
This shows that (U,W )′ is a N2 vector with diag. covar matrix. Hence,
U is independent of W . Thus:
E(Z |W ) = E(E∗(Z |W ) + U|W ) = E∗(Z |W ) + E(U|W ) =
E∗(Z |W ) + E(U) = E∗(Z |W ).

Antoine Goujard (LSE & CEP) EC475 Problem set 3 4 / 6



Theoretical results 2

”For estimating LDV models, the GMM approach is preferable to MLE
because it only requires assumptions on the moment conditions and
not about the full distribution of the data”.

eg. The binary choice model:
y∗i = x ′i .β + εi with, εi ∼ (0,1) (latent model)
For some reason, we only observe: yi = 1y∗i >0

Then, we can assume:
1 E(yi |x i) = P(yi = 1|x i) = P(εi > −x ′i .β) = Φ(x ′i .β).

which is a GMM assumption.
2 εi |x i ∼ N(0,1) which is a MLE assumption.

Clearly, (1) only requires a correct specification for the CEF, but
(1) is already a strong assumption on the shape of the CEF. (rk, as
Yi ∈ {0,1}, (1) gives us all the moments of Yi |Xi .)
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Theoretical results 2

The two types of assumption are equivalent in this case.
In both cases, this requires a strong prior on F , the Filter function
which allows to go from the latent to the observed model.
So GMM is not really more robust in this case or in general for
LDV because it is very difficult to get the correct specification for
the CEF without knowing the underlying distribution of the error.
So both methods become unreliable when this assumption fails.
In general, even if weaker identification of β (than MLE or GMM) is
feasible, we are ultimately interested in the marginal effects:
mk = ∂P(yi =1|x i )

∂xk
= βk .φ(x ′i .β)

so identification of β is not enough! We need the correct
specification of the filter function.
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