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1. Optimizing globally concave function

We are interested in a counting model where for all t , Yt ∈ N
⋃
{0}.

We are assuming that the data are generated by:
Prob(Yt = y |Zt = z) = exp(−λt )

λ
y
t

y! = pθ(y |z)

With, λt = exp(α + β.z1t + γ.z2t ) = exp(z ′tθ)
Then, E(Yt |Zt ) = Var(Yt |Zt ) = λt .

We want to use MLE method.
θ̂ = argmaxθLT = argmaxθ

∏T
t=1 pθ(yt |zt )

Or, θ̂ = argmaxθLLT
With LLT =

∑T
t=1 ln(pθ(yt |zt )) =

∑T
t=1 `t

`t = −λt + yt .ln(λt )− ln(yt !)

To compute the FOCs, we need: ∂`t
∂θ′ (θ) = (yt − λt (θ)).z ′t

So, ∂LLT
∂θ′ (θ̂) =

∑T
t=1(yt − λt (θ̂)).z ′t = 0.

Contrary to OLS we find no-closed form solution for θ̂.
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1. Optimizing globally concave function

The score vector is: LLT ,θ = (∂LLT
∂θ )3×1 =

∑T
t=1(yt − λt (θ̂)).zt

Note that the Hessian is: H(θ) = ∂2LLT
∂θ∂θ′ (θ) = −

∑T
t=1 exp(z ′tθ)zt .z ′t n.d.

The log-likelihood is globally (∀θ) and strictly (no flat area) concave.

By definition of our problem, LLT ,θ(θ̂) = 0. This set of FOCs are called
the maximum likelihood equations.

We apply the Newton-Raphson algorithm to find the solution of our
non-linear optimization problem. This proceeds by iterations from a
starting value θ(0). After m steps, we get θ(m) and we define θ(m+1) by:

θ(m+1) = θ(m)− [S(m)]−1︸ ︷︷ ︸
step

.
∂LL
∂θ

(θ(m)︸ ︷︷ ︸
slope

)

Where S(m) = H(θ(m)) =
∑T

t=1
∂2`t
∂θ∂θ′ (θ

(m)) (Newton Raphson or NR).
Or, S(m) = −

∑T
t=1

∂`t
∂θ (θ(m)) ∂`t∂θ′ (θ

(m)) (Berndt-Hall-Hall-Hausman or BHHH).
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1. Optimizing globally concave function

In the GAUSS iteration loop of the file optpoiss.gcf, 4 stopping
criterions are defined:

1 c1 = maxc(abs(b − b0)); /* max |θ(m) − θ(m−1)| */
2 c2 = maxc(abs(g)); /* Slope/score (FOCs) g = LLT ,θ(θ(m−1)) */
3 c3 = abs(l − l0); /* |LLT (θ(m))− LLT (θ(m−1))| */
4 c4 = abs(gradstep) ; /* gradstep = g′.[S(m−1)]−1.g */

For each of them the level of tolerance is set to 1.e-6.
The algorithm stops at step m (ie, θ̂ = θ(m)) if one of these conditions is
satisfied or if the number of iterations is greater than 100.
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2. Sketch of Gauss algorithm

/* step 1: initial values + parameters */
maxiter= 50 ; /* our maximum number of steps */
tol= 10(−6) ; /* when we will decide that the change does
not matter */
Let theta= 0 0 0 ; /* initial values for theta 3*1 */
l= −100000000 ; /* initial value for log-likelihood */
crit= 1000 ; /* initial value of criterion that we
compare to tol to decide to stop */
ITER= 0 ; /* we initialize the ITER */

/* step 2: loop with specific stopping rules */
do until crit<tol OR ITER==maxiter ;
theta0=theta ; l0=l ; /* previous values of theta and

log-lik */

l= f1(theta) ; /* log-lik (rk. here theta=theta0) */
g= f2(theta) ; /* analytical score */
h= f3(theta) ; /* analytical hessian */
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2. Sketch of Gauss algorithm

/*step 3: iteration of the algorithm */
theta=theta0-inv(h)*g ; /* Newton Raphson iteration */
crit=abs(l-l0) ; /* criterion to stop, if we use c3 */
ITER=ITER+1 ; /* count the iterations */
endo ; /* go back to the start of the loop "do until" */

/*step 4: printing the final results */
print "number of iterations: " ;; ITER ;
print "log-likelihood: " ;; l ;
print "theta:" ;; theta’ ;
print "Score : " ;; g’ ;
print "Var-covar(theta): " ;; -1*inv(h) ;

Rk. The problem is now to write f1, f2 and f3 in Gauss matrix language.
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3. Gauss matrix notations

Suppose we store the explanatory variable into xn×k and the
dependent variable into yn×1.
f1(θ) = LLT (θ) =

∑T
t=1 `t (θ)

`t (θ) = −λt︸︷︷︸
at (θ)

+ yt .ln(λt )︸ ︷︷ ︸
bt (θ)

−ln(yt !)︸ ︷︷ ︸
ct

(ct ) is fixed wrt θ, in Gauss c=-ln(y!) ;
(at )(θ), in Gauss a=-exp(x*theta) ;
(bt )(θ), in Gauss b=(x*theta).*y ;
So the log-likelihood at θ is in Gauss l=sumc(a+b+c) ;

Similarly f2(θ) = g is in Gauss g=x’*(y-exp(x*theta)) ;

And f3(θ) = h is in Gauss h=-x’*(exp(x*theta).*x) ;
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4. Hypothesis testing

We want to test: H0 : α = γ = 0 vs H1 : α 6= 0 or γ 6= 0.

We can rewrite this test as H0 : R.θ = 0 vs H1 : R.θ 6= 0.

With R =

(
1 0 0
0 0 1

)
We know that the unconstrained estimator θ̂ is such that:√

T .(θ̂T − θ)⇒ N (0,V )

The variance V is given by: −[E( ∂2`t
∂θ∂θ′ (θ))]−1 = [E(∂`t∂θ (θ) ∂`t∂θ′ (θ))]−1

rk. This equality only holds at the true value of θ if the model is well specified (see last
slide). Failures of this = are the basis of White Information Matrix tests.

This can be estimated by V̂1 = −T .H(θ̂)−1 = −( 1
T
∑T

t=1
∂2`t
∂θ∂θ′ (θ̂))−1.

Or by V̂2 = ( 1
T
∑T

t=1
∂`t
∂θ (θ̂) ∂`t∂θ′ (θ̂))−1

Thus the asymptotic variance of the MLE estimator is estimated by:
V̂as(θ̂) = 1

T V̂1 = −H(θ̂)−1 or (
∑T

t=1
∂`t
∂θ (θ̂) ∂`t∂θ′ (θ̂))−1.
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4. Hypothesis testing

The Wald test statistic is:
W = θ̂′.R′.(R. V̂ (θ̂)

T .R′)−1.R.θ̂

The Likelihood ratio test statistic is:
LR = 2.(LLT (θ̂)− LLT (θ̂r ))

The score or Lagrange multiplier test statistic is given by:
LM = LL′T ,θ(θ̂r ).[ V̂ (θ̂r )

T ]−1.LLT ,θ(θ̂r )
ie this is one of the stopping criterion of our algorithm evaluated at the
constrained estimator (LLT ,θ(θ̂r ) is the score vector at θ̂r ).

All these statistics are⇒ χ2
2 as T increases.

Antoine Goujard (LSE & CEP) EC475 Problem set 4 9 / 22



4. Hypothesis testing

The point estimates are:

Estimates NR BHHH
α̂ 0.487 0.487
β̂ 0.897 0.897
γ̂ -0.286 -0.286
LL -420.685 -420.685
# iterations 13 39

We also obtain:
1 True Hessian (N.R.): Ŵ = 272.92 L̂R = 259.43 L̂M = 261.94
2 BHHH: Ŵ = 186.71 L̂R = 259.43 L̂M = 59.97
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5. Remarks

The points estimates are nearly the same for NR and BHHH.
The log-likelihood at θ̂ is also very similar.
The BHHH approximation is quite good.
The NR algorithm converges faster than BHHH, because it has
better theoretical properties. In particular, in well-behaved cases,
it has a quadratic rate of convergence in a nbhd of θ:
||θ(m) − θ|| ∼m→+∞ µ.||θ(m−1) − θ||2 (for some∞ > µ > 0).

The fact that the L̂M statistics are different for NR and BHHH is
not surprising. We can see (next technical slide) that the
approximation of the Hessian by the outer product of the score is
justified at the true value of θ which we estimate by θ̂. The equality
does not hold for other values of θ. In particular if the restriction is
false, θ̂r will be 6= θ.
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Appendix. Technical results

Justification for the Newton Raphson method. Under regularity
conditions, if x is in a neighborhood of θ(m):
LLT (x) '
LLT (θ(m))+LLT ,θ(θ(m))(x−θ(m))+ 1

2(x−θ(m))′H(θ(m))(x−θ(m)) := G(x)

Maximizing G(x) gives us: x∗ = θ(m) −H(θ(m))−1LLT ,θ(θ(m)).

Fisher information equality. The BHHH idea may be seen as an
approximation of the Hessian matrix. Under regularity conditions, at
the true parameter value θ0, we have:

I = −E(∂
2ln(pθ(y |z))
∂θ∂θ′ (θ0)|Z ) = E(∂ln(pθ(y |z))

∂θ (θ0).∂ln(pθ(y |z))
∂θ′ (θ0)|Z ).

The proof is based on the fact that we can rewrite (in the discrete case):

I = −
∑

y
∂2pθ(y|z)
∂θ∂θ′ (θ0) +

∑
y [
∂ln(pθ(y|z))

∂θ
(θ0).

∂ln(pθ(y|z))
∂θ′ (θ0)pθ0(y |z)]

I = −[ ∂2

∂θ∂θ′
∑

y pθ(y |z)](θ0) + E( ∂ln(pθ(y|z))
∂θ

(θ0).
∂ln(pθ(y|z))

∂θ′ (θ0)|Z )

Where the first term is 0 because, for all θ,
∑

y pθ(y |z) = 1.
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Part 2.1. MLE for censoring and truncation

Descriptive statistics (gcdpf.dta):

Var Mean Sd Min Max
y 102492.898 66874.492 20968.5 376429
yprob 0.6 0.491 0 1
ytob 111012.836 60336.461 73000 376429
k 5.810 3.389 2 10.433
l 3.908 1.619 1.998 6.032
e 5.221 3.752 0.527 17.039
ly= ln(Y ) 11.364 0.581 9.951 12.838
lytob 11.517 0.413 11.198 12.838
lk 1.554 0.677 0.693 2.345
ll 1.267 0.452 0.692 1.797
le 1.399 0.741 -0.64 2.835
# Obs. 160 160 160 160
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Part 2.1. MLE for censoring and truncation

a) Plain OLS, dependent variable, ln(Y ):

Var β̂1
ols Se

lk 0.253 (0.058)
ll 0.491 (0.087)
le 0.121 (0.053)
Intercept 10.178 (0.156)
R2 0.289
# Obs. 160

b) Probit and Logit model (1Y>73000): β̂l ' 1.6β̂p Amemiya, 1981.

Var Probit Se Logit Se 1.6β̂p

lk 0.703 (0.162) 1.177 (0.278) 1.125
ll 0.908 (0.242) 1.519 (0.415) 1.453
le 0.149 (0.147) 0.262 (0.245) 0.239
Intercept -2.149 (0.456) -3.618 (0.809) -3.438
LL -89.181 -89.153
# Obs. 160 160
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Part 2.1. MLE for censoring and truncation

c) Censored with respect to OLS, full sample:
Dependent variable, ln(Ytob) = max(ln(Y ), ln(73000))

Var β̂ols Se β̂tobit Se
lk 0.147 (0.043) 0.290 (0.069)
ll 0.331 (0.064) 0.533 (0.103)
le 0.078 (0.039) 0.109 (0.060)
Intercept 10.759 (0.115) 10.058 (0.200)
σ 0.515 (0.040)
R2 0.364
LL -114.579
# Obs. 160 160
# Y ≤ 73000 64 64

ln(Yi ) = y∗i = x ′i β + εi
But we observe: yi = ytob,i = max(ln(73000), y∗i ) and xi .
We can go back to the lecture note case (p13), using,
yi − ln(73000) = max(0, y∗i − ln(73000))
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Part 2.1. MLE for censoring and truncation

d) Truncated with respect to OLS, sample Y > 73000:

Var β̂ols Se β̂trunc Se
lk 0.065 (0.065) 0.152 (0.158)
ll 0.331 (0.096) 0.914 (0.328)
le 0.076 (0.052) 0.190 (0.131)
Intercept 11.047 (0.188) 9.483 (0.783)
σ 0.578 (0.098)
R2 0.387
LL -22.782
# Obs. 96 96

ln(Yi ) = y∗i = x ′i β + εi
But we observe: (y∗i , xi ) if and only if y∗i > ln(73000).
To use the lecture note results (p13), we can focus on: y∗i − ln(73000).
β̂ols is biased toward 0 with respect to the regression of y on x in the full
sample, β̂1

ols. β̂trunc seems to over correct this, the magnitudes of the point
estimates are larger than those in β̂1

ols (except for the intercept).
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Part 2.2. Heckman and Lee for censoring and truncation

a) 2-step estimation of the censored model:

Var β̂hl Se
Intercept -2.624 (1.993)
lk 0.534 (0.384)
ll 0.939 (0.486)
le 0.184 (0.092)
γ 1.239 (1.090)
R2 0.543
# Obs. 160

qi = yi −
c︷ ︸︸ ︷

ln(73000) = x ′i β
̂

Φ(
x′

i β−c
σ ) + γ

̂
φ(

x′
i β−c
σ ) + ζi

Rk: OLS standard errors’ estimates are incorrect. The 2nd stage OLS are not
corrected for the 1st estimation that adds a complicated estimation error:

−x ′i β[
̂

Φ(
x′

i β−c
σ )− Φ(

x′
i β−c
σ )]− γ[

̂
φ(

x′
i β−c
σ )− φ(

x′
i β−c
σ )], to the 2nd stage

disturbance term.
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Part 2.2. Heckman and Lee for censoring and truncation

b) 2-step estimation of the truncated model:

var β̂hl Se
lk 0.608 (0.281)
ll 1.026 (0.364)
le 0.176 (0.072)
γ 1.454 (0.734)
Intercept -2.975 (1.437)
R2 0.186
# Obs. 96

qi = yi − c = x ′i β + γ
̂

φ(
x′

i β−c
σ ).

̂
Φ(

x′
i β−c
σ )

−1

+ ζi

Rk: OLS standard errors’ estimates are incorrect. The 2nd stage OLS are not
corrected for the 1st estimation that adds an estimation error to the 2nd stage
disturbance term.
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Part 2.2. Heckman and Lee for censoring and truncation

c) 2-step estimation and MLE:

For both cases, β̂hl is larger than β̂mle of the corresponding model.
β̂mle are closer to our benchmark β̂1

ols on the full sample using the
true ”y∗”.
2-steps estimators are supposed to be less efficient than MLE.
Here their standard errors are in general larger than the
corresponding ones for β̂mle. However, to compare them directly
we should correct for the 1st stage estimation errors.
2-step estimators have the advantage of being more easy to
compute as they only require to find the probit point estimates and
to apply OLS. They may be useful as a starting point if the
corresponding MLE model fails to converge.
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Part 2.3. NLLS for censoring and truncation

a) NLLS, probit case

NLS Probit
Var β̂nls Se β̂p Se
Intercept -2.241 (0.525) -2.149 (0.456)
ll 0.921 (0.256) 0.908 (0.242)
lk 0.730 (0.172) 0.703 (0.162)
le 0.167 (0.144) 0.149 (0.147)
R2 0.687
LL -89.181
# Obs. 160 160

The point estimates are close (using nl in STATA).

The ses of the NLLS point estimates are slightly larger.

The MLE is the optimally weighted NLLS estimator in this case, so we
know that the standard NLLS estimator will be inefficient.
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Part 2.3. NLLS for censoring and truncation

b) NLLS, censored case

NLS TOBIT (MLE)
Var β̂nls Se β̂mle Se
Intercept -6.845 (44.323) -1.140 (0.200)
ll 1.889 (8.794) 0.533 (0.103)
lk 0.833 (3.831) 0.290 (0.069)
le 0.453 (2.080) 0.109 (0.060)
σ 2.706 (16.515) 0.515 (0.040)
R2 0.543
LL -114.579
# Obs. 160 160

qi = yi − c = x ′i βΦ(
x′

i β
σ ) + σφ(

x′
i β
σ ) + ζi

The point estimates are not close (using nl in STATA and
σ(0) = 0.5). The NLLS point estimates are very different from the
benchmark β̂1

ols.

The ses of the NLLS estimates are huge.
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Part 2.3. NLLS for censoring and truncation

c) NLLS, truncated case

NLS TRUNCATED(MLE)
Var β̂nls Se β̂mle Se
Intercept -197.157 (8648.687) -1.715 (0.098)
ll 52.018 (2256.676) 0.914 (0.328)
lk 14.563 (629.776) 0.152 (0.158)
le 13.548 (585.779) 0.190 (0.131)
σ 6.222 (137.275) 0.578 (0.098)
R2 0.690
LL -22.782
# Obs. 96 96

qi = yi − c = x ′i β + σφ(
x′

i β
σ ).Φ(

x′
i β
σ )−1 + ζi

The point estimates are not close (using nl in STATA and
σ(0) = 0.5). The NLLS point estimates are very different from the
benchmark β̂1

ols.

The ses of the NLLS estimates are huge. Convergence is slow.
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