# EC475 Problem set 6 Semiparametric Analysis of LDV Models

Antoine Goujard

10/12/09

Antoine Goujard (LSE & CEP) EC475 P

EC475 Problem set 6

- Var of interest: the propensity of a country *i* to experience repayments problems in period *t*.
- Filtered information about this propensity:
  - a censored variable if we observe the external debt level of the country;
  - a binary variable, if an indication of financial difficulties is observed or not.
- In (1) we assume that there is a latent (panel) linear model:  $y_{it}^* = x'_{it}\beta + \varepsilon_{it}$  $y_{it} = max(0, y_{it}^*) = y_{it}^* \cdot 1_{y_{it}^* > 0}$  is the observed variable.
- We disregard the panel structure of the data and assume (ε<sub>it</sub>) iid over *i* and *t*.

- Assume ε|X ~ N<sub>S</sub>(0, σ<sup>2</sup>.I<sub>S</sub>), normal, iid and homoscedastic disturbance term.
- Then we can work out the MLE estimator.

• 
$$P(y_{it} = 0|x_{it}) = P(y_{it}^* \le 0|x_{it}) = P(\varepsilon_{it}^* \le -x_{it}'\beta|x_{it}) = \Phi(\frac{-x_{it}'\beta}{\sigma})$$

• For 
$$y > 0$$
,  $f_{y_{it}|x_{it}}(y) = f_{y_{it}^*|x_{it}}(y) = \frac{1}{\sigma}\phi(\frac{y-x_{it}^*\beta}{\sigma})$ 

• Thus 
$$f_{y_{it}|x_{it}}(y) = \Phi(\frac{-x_{it}^{\prime}\beta}{\sigma}).1_{y=0} + \frac{1}{\sigma}\phi(\frac{y-x_{it}^{\prime}\beta}{\sigma}).1_{y>0}$$

• 
$$LL(\beta, \sigma) = \sum_{i,t} ln(f_{y_{it}|x_{it}}(y))$$

- This *LL* can be made strictly concave by considering a change of variables *b* = β/σ and *s* = 1/σ and we can use the usual maximization methods **NR** and **BHHH** as *LL* is C<sup>2</sup>(ℝ<sup>k+1</sup>, ℝ) in the parameters.
- The MLE estimator is based on normality and homoscedasticity. And if one of them fails, the estimator becomes inconsistent.

1 0

ヘロト ヘ回ト ヘヨト ヘヨト

- Powell (1984) proposes an alternative LAD=Least Absolute Deviations estimator.
- Powell (1984) assumes  $Med(\varepsilon_{it}|x_{it}) = 0$
- $Med(X) = inf_x \{ P(X \le x) \ge 0.5 \}.$
- Then,  $m_{\beta}(x_{it}) = Med(y_{it}^*|x_{it}) = x_{it}'\beta$ .
- And  $\beta = argmin_b E(|y_{it}^* x'_{it}b||x_{it})$ .
- Thus Powell shows that if the regressors have some minimal properties:

$$\beta = argmin_b E(|y_{it}^* - x_{it}'b|).$$

- And if  $y_{it}^*$  is observed it is natural to estimate  $\beta$  using:  $\hat{\beta} = argmin_b \frac{1}{S} \sum_{i,t} |y_{it}^* - x'_{it}b|$
- But if g() is a non-decreasing function then it can be shown that:  $\hat{\beta} = \operatorname{argmin}_{b\frac{1}{S}} \sum_{i,t} |g(y_{it}^*) - g(x'_{it}b)|$ because  $\operatorname{Med}(g(z)) = g(\operatorname{med}(z))$ .
- Here, g(z) = max(0, z), non decreasing in z.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

- Problem, due to absolute value, the objective function is not everywhere differentiable wrt *b* (*g* has a Kink at 0).
- We can not rely on the usual optimization algorithms based on derivatives, gradient and Hessian to find  $\hat{\beta}_{LAD}$ .
- clad in STATA implements Powell estimator using Buchinsky's iterative linear programming algorithm (1994).
- This does not require the computation of derivatives. As the simplex algorithm (Nelder-Mead=downhill simplex method=amoeba) that we have seen last week.
- This estimator is robust to heteroscedasticity and departure from the normal distribution.
- The usual solution to compute the ses of β<sub>LAD</sub> is the bootstrap. (Powell -1984- shows that under some conditions, the LAD estimator is consistent and AN-CAN-, but the asymptotic variance depends on the true law of ε|X).

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Descriptive statistics for two violations of MLE assumptions:

- cryhet normal but heteroscedastic error term ;
- **2** cryevd extreme value error term ( $F(u) = e^{-e^{-u/\sigma}}$ ).

| Var      | Mean  | SD    | Min   | Max    |
|----------|-------|-------|-------|--------|
| cry      | 1.801 | 1.927 | 0     | 8.497  |
| cryhet   | 1.865 | 2.15  | 0     | 13.376 |
| cryevd   | 1.604 | 2.147 | 0     | 11.808 |
| one      | 1     | 0     | 1     | 1      |
| debtlxl  | 1.004 | 0.871 | 0.052 | 8.481  |
| reslimpl | 0.302 | 0.254 | 0.009 | 1.429  |
| Ν        | 600   | 600   | 600   | 600    |

#### 4. Estimation

Censored variable, heteroscedastic case.

|           |          | cry      |          |          | cryhet   |          |
|-----------|----------|----------|----------|----------|----------|----------|
|           | OLS      | MLE      | LAD      | OLS      | MLE      | LAD      |
| Var       | Est/(se) | Est/(se) | Est/(se) | Est/(se) | Est/(se) | Est/(se) |
| debtlxl   | 0.137    | 0.235    | 0.241    | 0.174    | 0.268    | 0.235    |
|           | (0.092)  | (0.128)  | (.249)   | (0.103)  | (0.134)  | (0.140)  |
| reslimpl  | -0.648   | -0.855   | -0.750   | -0.402   | -0.665   | -0.528   |
|           | (0.315)  | (0.446)  | (0.667)  | (0.353)  | (0.462)  | (0.332)  |
| Intercept | 1.860    | 1.308    | 1.199    | 1.812    | 1.359    | 1.096    |
|           | (0.166)  | (0.234)  | (0.453)  | (0.186)  | (0.242)  | (0.239)  |

LAD's ses computed with 50 replications.

- In the ideal case (cry), the MLE point estimates are quite close to the CLAD estimates and have smaller ses. OLS slopes' estimates appear biased towards 0.
- Comparing cry and cryhet, the inconsistency of the MLE estimator does not appear obvious. Given the large ses, it is difficult to distinguish the 2 cases.

• For OLS, MLE and CLAD, the main change concerns reslimpl whose estimates shift towards 0, the other point estimates are more or less unaffected.

### Censored variable, extreme value case.

|           |          | cry      |          |          | cryevd   |          |
|-----------|----------|----------|----------|----------|----------|----------|
|           | OLS      | MLE      | LAD      | OLS      | MLE      | LAD      |
| Var       | Est/(se) | Est/(se) | Est/(se) | Est/(se) | Est/(se) | Est/(se) |
| debtlxl   | 0.137    | 0.235    | 0.241    | 0.117    | 0.300    | 0.250    |
|           | (0.092)  | (0.128)  | (.249)   | (0.103)  | (0.154)  | (0.177)  |
| reslimpl  | -0.648   | -0.855   | -0.750   | -0.680   | -1.076   | -0.995   |
|           | (0.315)  | (0.446)  | (0.667)  | (0.352)  | (0.548)  | (0.895)  |
| Intercept | 1.860    | 1.308    | 1.199    | 1.693    | 0.788    | 0.648    |
|           | (0.166)  | (0.234)  | (0.453)  | (0.185)  | (0.286)  | (0.426)  |

LAD's ses computed with 50 replications.

- Here there are much more change between the MLE on cry and cryevd.
- Except for the intercept the LAD point estimates using cryevd are close to the point estimates of cry (MLE).
- As expected, CLAD appears less sensible than MLE to the distribution assumption.

• The same types of argument apply to the binary case:

$$\mathbf{y}_{it}^* = \mathbf{x}_{it}^\prime \boldsymbol{\beta} + \varepsilon_{it}$$

$$y_{it} = 1_{y_{it}^* > 0}$$
 is the observed variable.

- The MLE is based on strong distributional assumptions, normality and homoscedasticity in the case of the probit.
- Manski (1975,1984,1988) proposes a LAD estimator in the same spirit as Powell (1984) estimator. This estimator is called the Maximum Score estimator.
- Manski (1988) assumes *Med*(ε<sub>it</sub>|x<sub>it</sub>) = 0 and other regularity conditions.
- If  $y_{it}^*$  is observed it is natural to estimate  $\beta$  using:  $\hat{\beta} = argmin_b \frac{1}{S} \sum_{i,t} |y_{it}^* - x_{it}'b|$
- Here we can define  $g(z) = 1_{z>0} = sgn(z)$  non decreasing in z.
- We get  $\hat{\beta}_{MS} = \operatorname{argmin}_{b} \frac{1}{S} \sum_{i,t} |y_{it} \mathbf{1}_{x'_{it}b > 0}|$

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト

We can rewrite:

 $\hat{\beta}_{MS} = argmax_{b:||b||=1} \sum_{i,t} (y_{it} \cdot 1_{x'_{it}b>0} + (1 - y_{it}) \cdot 1_{x'_{it}b\leq0}) \equiv S_1(b)$  $\hat{\beta}_{MS} = argmax_{b:||b||=1} \sum_{i,t} [(2 \cdot y_{it} - 1) \cdot 1_{x'_{it}b>0}] \equiv S_2(b)$ 

- *S*<sub>1</sub>(*b*) is the initial definition of the maximum score estimator (Manski, 1975, 1984).
- The objective function,  $S_1$ , is the **score**. The score is the number of correct predictions we would make if we predicted  $y_{it}$  to be 1 whenever  $x'_{it}b > 0$  and 0 otherwise.
- Maximization of the non-continuous score is (very) difficult. See Vassilis' handout 8 (p.95, 101, 108). The gradient based methods fail and the Nelder-Mead algorithm does not provide good results.
- Inference in this model is complicated. Manski (1984) proves consistency. Kim & Pollard (1990) show that the estimator has a non normal asymptotic distribution (reached at a slow rate). Abrevaya & Huang (2005) show that the usual bootstrap is not consistent in this case. Delgado et al. (2001) use sub-sampling to evaluate the distribution of the estimator.

Descriptive statistics for two violations of MLE assumptions:

- bcyhet normal but heteroscedastic error term ;
- **2** bcyevd extreme value error term ( $F(u) = e^{-e^{-u/\sigma}}$ ).

| Var      | Mean  | SD    | Min   | Max   |
|----------|-------|-------|-------|-------|
| bcy      | 0.668 | 0.471 | 0     | 1     |
| bcyhet   | 0.692 | 0.462 | 0     | 1     |
| bcyevd   | 0.635 | 0.482 | 0     | 1     |
| one      | 1     | 0     | 1     | 1     |
| debtlxl  | 1.004 | 0.871 | 0.052 | 8.481 |
| reslimpl | 0.302 | 0.254 | 0.009 | 1.429 |
| N        | 600   | 600   | 600   | 600   |

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Heteroscedastic case

|           |         | -       |        |         |         |        |
|-----------|---------|---------|--------|---------|---------|--------|
|           |         | bcy     |        |         | bcyhet  |        |
|           | Probit  | Logit   | MS     | Probit  | Logit   | MS     |
| debtlxl   | 0.247   | 0.448   | 0.143  | 0.231   | 0.440   | 0.125  |
|           | (0.077) | (0.139) |        | (0.078) | (0.145) |        |
| reslimpl  | -2.367  | -3.989  | -0.939 | -2.520  | -4.399  | -0.939 |
|           | (0.276) | (0.490) |        | (0.275) | (0.513) |        |
| Intercept | 0.935   | 1.531   | 0.312  | 1.079   | 1.802   | 0.317  |
|           | (0.130) | (0.225) |        | (0.133) | (0.236) |        |

Score maximization using STATA is difficult. optimize in mata has a Nelder-Mead algorithm. The algorithm converges but does not seem to reach the true maximum. So I used random search on the unit hyper-sphere.

#### Extreme value case

|           |         | bcy     |        |         | bcyevd  |        |
|-----------|---------|---------|--------|---------|---------|--------|
|           | Probit  | Logit   | MS     | Probit  | Logit   | MS     |
| debtlxl   | 0.247   | 0.448   | 0.143  | 0.340   | 0.593   | 0.118  |
|           | (0.077) | (0.139) |        | (0.081) | (0.143) |        |
| reslimpl  | -2.367  | -3.989  | -0.939 | -2.489  | -4.239  | -0.946 |
|           | (0.276) | (0.490) |        | (0.286) | (0.513) |        |
| Intercept | 0.935   | 1.531   | 0.312  | 0.782   | 1.293   | 0.293  |
|           | (0.130) | (0.225) |        | (0.130) | (0.223) |        |

Score maximization using STATA is difficult. optimize in mata has a Nelder-Mead algorithm. The algorithm converges but does not seem to reach the true maximum. So I used random search on the unit hyper-sphere.

- The different set of rough point estimates are not easy to compare.
- A first idea is to apply Amemiya's rule  $\hat{\beta}_L \simeq 1.6 \hat{\beta}_P$  to compare logit and probit estimates, or even better to compare only the marginal effects, but this will not work for the maximum score estimator.
- A second idea is to rescale the estimates and compare  $\hat{\beta}/||\hat{\beta}||$ .
- The key is to remember that all our binary outcomes models are identified up to a treshold and a scale parameters:

$$\mathbf{y}_i^* = \mathbf{x}_i' \beta + \varepsilon_i \text{ with } \varepsilon_i | \mathbf{x}_i \sim (\mathbf{0}, \sigma^2).$$

- $y_i = \mathbf{1}_{x'_i \beta + \varepsilon_i > \tau}$  is the observed variable.
- Then we can not estimate  $\tau$  and  $\beta_1$  the parameter for the constant:

$$\mathbf{1}_{\beta_1+x'_{i-1}\beta_{-1}+\varepsilon_i>\tau} = \mathbf{1}_{\beta_1-\tau+x'_{i-1}\beta_{-1}+\varepsilon_i>0}$$

• So we set  $\tau = 0$ , but then we can not estimate  $\beta$  and  $\sigma > 0$ :  $1_{x'_i\beta+\varepsilon_i>0} = 1_{\frac{x'_i\beta+\varepsilon_i}{\sigma}>0}$ 

So in the probit case, we set  $\sigma^2 = 1$  and in the logit case, we set  $\sigma^2 = \pi^2/3$ . In other words, from the latent model, we are only able to identify,  $\frac{\beta_1 - \tau}{\sigma}$  and  $\frac{\beta_{-1}}{\sigma}$ 

## Amemiya's rule $\hat{\beta}_L \simeq 1.6 \hat{\beta}_P$ to compare logit and probit estimates



Normal cdf, Modified logistic cdf ( $F_{\lambda}(x) = \frac{1}{1+e^{-x.\lambda}}$ ) with  $\lambda = \pi/\sqrt{3}$ , with  $\lambda = 1.6$ .

Amemiya's rule  $\hat{\beta}_L\simeq 1.6\hat{\beta}_P$ , difference between modified logistics and standard normal cdf



$$\frac{1}{1+e^{-x}\lambda} - \Phi(x)$$
 with  $\lambda = \pi/\sqrt{3}$ , with  $\lambda = 1.6$ .

< ∃ >

## Rescaled parameters' estimates $(\hat{\beta}/||\hat{\beta}||)$

|           |        | bcy    |        |        | bcyhet |        |
|-----------|--------|--------|--------|--------|--------|--------|
|           | Probit | Logit  | MS     | Probit | Logit  | MS     |
| debtlxl   | 0.097  | 0.104  | 0.138  | 0.090  | 0.094  | 0.136  |
| reslimpl  | -0.926 | -0.928 | -0.938 | -0.861 | -0.836 | -0.939 |
| intercept | 0.366  | 0.356  | 0.315  | 0.340  | 0.321  | 0.315  |
|           |        | bcy    |        |        | bcyevd |        |
|           | Probit | Logit  | MS     | Probit | Logit  | MS     |
| debtlxl   | 0.097  | 0.104  | 0.138  | 0.094  | 0.100  | 0.110  |
| reslimpl  | -0.926 | -0.928 | -0.938 | -0.900 | -0.892 | -0.947 |
| intercept | 0.366  | 0.356  | 0.315  | 0.355  | 0.342  | 0.297  |

EC475 Problem set 6