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1. Censoring problem

Var of interest: the propensity of a country i to experience
repayments problems in period t .
Filtered information about this propensity:

1 a censored variable if we observe the external debt level of the
country;

2 a binary variable, if an indication of financial difficulties is observed
or not.

In (1) we assume that there is a latent (panel) linear model:
y∗it = x ′it� + "it
yit = max(0, y∗it ) = y∗it .1y∗it >0 is the observed variable.
We disregard the panel structure of the data and assume ("it ) iid
over i and t .
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2. Tobit model

Assume "∣X ∼ NS(0, �2.IS), normal, iid and homoscedastic
disturbance term.
Then we can work out the MLE estimator.
P(yit = 0∣xit ) = P(y∗it ≤ 0∣xit ) = P("∗it ≤ −x ′it�∣xit ) = Φ(

−x ′it�
� )

For y > 0, fyit ∣xit
(y) = fy∗it ∣xit

(y) = 1
��(

y−x ′it�
� )

Thus fyit ∣xit
(y) = Φ(

−x ′it�
� ).1y=0 + 1

��(
y−x ′it�
� ).1y>0

LL(�, �) =
∑

i,t ln(fyit ∣xit
(y))

This LL can be made strictly concave by considering a change of
variables b = �/� and s = 1/� and we can use the usual
maximization methods NR and BHHH as LL is C2(ℝk+1,ℝ) in the
parameters.
The MLE estimator is based on normality and homoscedasticity.
And if one of them fails, the estimator becomes inconsistent.
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3. Powell LAD 1984

Powell (1984) proposes an alternative LAD=Least Absolute
Deviations estimator.
Powell (1984) assumes Med("it ∣xit ) = 0
Med(X ) = infx{P(X ≤ x) ≥ 0.5}.
Then, m�(xit ) = Med(y∗it ∣xit ) = x ′it�.
And � = argminbE(∣y∗it − x ′itb∣∣xit ).
Thus Powell shows that if the regressors have some minimal
properties:
� = argminbE(∣y∗it − x ′itb∣).
And if y∗it is observed it is natural to estimate � using:
�̂ = argminb

1
S
∑

i,t ∣y∗it − x ′itb∣
But if g() is a non-decreasing function then it can be shown that:
�̂ = argminb

1
S
∑

i,t ∣g(y∗it )− g(x ′itb)∣
because Med(g(z)) = g(med(z)).
Here, g(z) = max(0, z), non decreasing in z.
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3. Powell LAD 1984

Problem, due to absolute value, the objective function is not
everywhere differentiable wrt b (g has a Kink at 0).
We can not rely on the usual optimization algorithms based on
derivatives, gradient and Hessian to find �̂LAD.
clad in STATA implements Powell estimator using Buchinsky’s
iterative linear programming algorithm (1994).
This does not require the computation of derivatives. As the
simplex algorithm (Nelder-Mead=downhill simplex
method=amoeba) that we have seen last week.
This estimator is robust to heteroscedasticity and departure from
the normal distribution.
The usual solution to compute the ses of �̂LAD is the bootstrap.
(Powell -1984- shows that under some conditions, the LAD
estimator is consistent and AN-CAN-, but the asymptotic variance
depends on the true law of "∣X ).
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4. Estimation

Descriptive statistics for two violations of MLE assumptions:

1 cryhet normal but heteroscedastic error term ;
2 cryevd extreme value error term (F (u) = e−e−u/�

).

Var Mean SD Min Max
cry 1.801 1.927 0 8.497
cryhet 1.865 2.15 0 13.376
cryevd 1.604 2.147 0 11.808
one 1 0 1 1
debtlxl 1.004 0.871 0.052 8.481
reslimpl 0.302 0.254 0.009 1.429
N 600 600 600 600
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4. Estimation

Censored variable, heteroscedastic case.

cry cryhet
OLS MLE LAD OLS MLE LAD

Var Est/(se) Est/(se) Est/(se) Est/(se) Est/(se) Est/(se)
debtlxl 0.137 0.235 0.241 0.174 0.268 0.235

(0.092) (0.128) (.249) (0.103) (0.134) (0.140)
reslimpl -0.648 -0.855 -0.750 -0.402 -0.665 -0.528

(0.315) (0.446) (0.667) (0.353) (0.462) (0.332)
Intercept 1.860 1.308 1.199 1.812 1.359 1.096

(0.166) (0.234) (0.453) (0.186) (0.242) (0.239)

LAD’s ses computed with 50 replications.

In the ideal case (cry), the MLE point estimates are quite close to the
CLAD estimates and have smaller ses. OLS slopes’ estimates appear
biased towards 0.

Comparing cry and cryhet, the inconsistency of the MLE estimator
does not appear obvious. Given the large ses, it is difficult to distinguish
the 2 cases.
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4. Estimation

For OLS, MLE and CLAD, the main change concerns reslimpl whose
estimates shift towards 0, the other point estimates are more or less
unaffected.
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4. Estimation

Censored variable, extreme value case.

cry cryevd
OLS MLE LAD OLS MLE LAD

Var Est/(se) Est/(se) Est/(se) Est/(se) Est/(se) Est/(se)
debtlxl 0.137 0.235 0.241 0.117 0.300 0.250

(0.092) (0.128) (.249) (0.103) (0.154) (0.177)
reslimpl -0.648 -0.855 -0.750 -0.680 -1.076 -0.995

(0.315) (0.446) (0.667) (0.352) (0.548) (0.895)
Intercept 1.860 1.308 1.199 1.693 0.788 0.648

(0.166) (0.234) (0.453) (0.185) (0.286) (0.426)

LAD’s ses computed with 50 replications.

Here there are much more change between the MLE on cry and
cryevd.

Except for the intercept the LAD point estimates using cryevd are
close to the point estimates of cry (MLE).

As expected, CLAD appears less sensible than MLE to the distribution
assumption.
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5. Binary case

The same types of argument apply to the binary case:
y∗it = x ′it� + "it
yit = 1y∗it >0 is the observed variable.
The MLE is based on strong distributional assumptions, normality
and homoscedasticity in the case of the probit.
Manski (1975,1984,1988) proposes a LAD estimator in the same
spirit as Powell (1984) estimator. This estimator is called the
Maximum Score estimator.
Manski (1988) assumes Med("it ∣xit ) = 0 and other regularity
conditions.
If y∗it is observed it is natural to estimate � using:
�̂ = argminb

1
S
∑

i,t ∣y∗it − x ′itb∣
Here we can define g(z) = 1z>0 = sgn(z) non decreasing in z.
We get �̂MS = argminb

1
S
∑

i,t ∣yit − 1x ′it b>0∣
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5. Binary case

We can rewrite:
�̂MS = argmaxb:∣∣b∣∣=1

∑
i,t (yit .1x ′it b>0 + (1− yit ).1x ′it b≤0) ≡ S1(b)

�̂MS = argmaxb:∣∣b∣∣=1
∑

i,t [(2.yit − 1).1x ′it b>0] ≡ S2(b)

S1(b) is the initial definition of the maximum score estimator
(Manski, 1975, 1984).
The objective function, S1, is the score. The score is the number
of correct predictions we would make if we predicted yit to be 1
whenever x ′itb > 0 and 0 otherwise.
Maximization of the non-continuous score is (very) difficult. See
Vassilis’ handout 8 (p.95, 101, 108). The gradient based methods
fail and the Nelder-Mead algorithm does not provide good results.
Inference in this model is complicated. Manski (1984) proves consistency. Kim &
Pollard (1990) show that the estimator has a non normal asymptotic distribution
(reached at a slow rate). Abrevaya & Huang (2005) show that the usual
bootstrap is not consistent in this case. Delgado et al. (2001) use sub-sampling
to evaluate the distribution of the estimator.
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6. Estimation in the binary case

Descriptive statistics for two violations of MLE assumptions:

1 bcyhet normal but heteroscedastic error term ;
2 bcyevd extreme value error term (F (u) = e−e−u/�

).

Var Mean SD Min Max
bcy 0.668 0.471 0 1
bcyhet 0.692 0.462 0 1
bcyevd 0.635 0.482 0 1
one 1 0 1 1
debtlxl 1.004 0.871 0.052 8.481
reslimpl 0.302 0.254 0.009 1.429
N 600 600 600 600
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6. Estimation in the binary case

Heteroscedastic case

bcy bcyhet
Probit Logit MS Probit Logit MS

debtlxl 0.247 0.448 0.143 0.231 0.440 0.125
(0.077) (0.139) (0.078) (0.145)

reslimpl -2.367 -3.989 -0.939 -2.520 -4.399 -0.939
(0.276) (0.490) (0.275) (0.513)

Intercept 0.935 1.531 0.312 1.079 1.802 0.317
(0.130) (0.225) (0.133) (0.236)

Score maximization using STATA is difficult. optimize in mata has a Nelder-Mead
algorithm. The algorithm converges but does not seem to reach the true maximum.
So I used random search on the unit hyper-sphere.
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6. Estimation in the binary case

Extreme value case

bcy bcyevd
Probit Logit MS Probit Logit MS

debtlxl 0.247 0.448 0.143 0.340 0.593 0.118
(0.077) (0.139) (0.081) (0.143)

reslimpl -2.367 -3.989 -0.939 -2.489 -4.239 -0.946
(0.276) (0.490) (0.286) (0.513)

Intercept 0.935 1.531 0.312 0.782 1.293 0.293
(0.130) (0.225) (0.130) (0.223)

Score maximization using STATA is difficult. optimize in mata has a Nelder-Mead
algorithm. The algorithm converges but does not seem to reach the true maximum.
So I used random search on the unit hyper-sphere.
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7. Comparing the point estimates

The different set of rough point estimates are not easy to compare.
A first idea is to apply Amemiya’s rule �̂L ≃ 1.6�̂P to compare logit
and probit estimates, or even better to compare only the marginal
effects, but this will not work for the maximum score estimator.
A second idea is to rescale the estimates and compare �̂/∣∣�̂∣∣.
The key is to remember that all our binary outcomes models are
identified up to a treshold and a scale parameters:
y∗i = x ′i � + "i with "i ∣xi ∼ (0, �2).
yi = 1x ′i �+"i>� is the observed variable.
Then we can not estimate � and �1 the parameter for the constant:
1�1+x ′i−1�−1+"i>� = 1�1−�+x ′i−1�−1+"i>0

So we set � = 0, but then we can not estimate � and � > 0:
1x ′i �+"i>0 = 1 x′i �+"i

�
>0

So in the probit case, we set �2 = 1 and in the logit case, we set
�2 = �2/3. In other words, from the latent model, we are only able
to identify, �1−�

� and �−1
�
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7. Comparing the point estimates

Amemiya’s rule �̂L ≃ 1.6�̂P to compare logit and probit estimates

Normal cdf, Modified logistic cdf (F�(x) = 1
1+e−x.� ) with � = �/

√
3, with � = 1.6.
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7. Comparing the point estimates

Amemiya’s rule �̂L ≃ 1.6�̂P , difference between modified logistics and
standard normal cdf

1
1+e−x.� − Φ(x) with � = �/

√
3, with � = 1.6.
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7. Comparing the point estimates

Rescaled parameters’ estimates (�̂/∣∣�̂∣∣)

bcy bcyhet
Probit Logit MS Probit Logit MS

debtlxl 0.097 0.104 0.138 0.090 0.094 0.136
reslimpl -0.926 -0.928 -0.938 -0.861 -0.836 -0.939
intercept 0.366 0.356 0.315 0.340 0.321 0.315

bcy bcyevd
Probit Logit MS Probit Logit MS

debtlxl 0.097 0.104 0.138 0.094 0.100 0.110
reslimpl -0.926 -0.928 -0.938 -0.900 -0.892 -0.947
intercept 0.366 0.356 0.315 0.355 0.342 0.297
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