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1. Censoring problem

@ Var of interest: the propensity of a country i to experience
repayments problems in period t.
@ Filtered information about this propensity:
@ a censored variable if we observe the external debt level of the
country;
@ abinary variable, if an indication of financial difficulties is observed
or not.
@ In (1) we assume that there is a latent (panel) linear model:
Vi = //2/8 +Eit
yir = max(0, y3) = yi.1y:>0 is the observed variable.
@ We disregard the panel structure of the data and assume (&) iid
over jand t.
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2. Tobit model

@ Assume ¢|X ~ Ns(0, 02.1s), normal, iid and homoscedastic
disturbance term.

@ Then we can work out the MLE estimator.
o Pyi = Olxi) = P(yj < Olxi) = P(c}; < —x}81x¢) = o(—27)

@ Fory >0, fy,x,(¥) = fep (¥) = 2o(X—217)

@ Thus £, (y) = &( U”ﬁ) 10+ ¢( "ﬁ) Ty>o

© LL(B, o) = 22i ¢ In(ty,1x.(¥))

@ This LL can be made strictly concave by considering a change of
variables b = /0 and s = 1/0 and we can use the usual
maximization methods NR and BHHH as LL is C?>(R*t! R) in the
parameters.

@ The MLE estimator is based on normality and homoscedasticity.
And if one of them fails, the estimator becomes inconsistent.
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3. Powell LAD 1984

@ Powell (1984) proposes an alternative LAD=Least Absolute
Deviations estimator.

@ Powell (1984) assumes Med(=y|xi) =0

@ Med(X) = infy{P(X < x) > 0.5}.

@ Then, mg(x;t) = Med(yj;|xi) = X},

@ And g = argminyE(|y;; — x;;b||Xit).

@ Thus Powell shows that if the regressors have some minimal
properties:
B = argminyE(|y; — x;bl).

@ And if y; is observed it is natural to estimate 3 using:
B = argminyg 3.1y — xibl

@ Butif g() is a non-decreasing function then it can be shown that:

B = argminy§ 3, ,19(v;) — 9(xib)|
because Med(g(z)) = g(med(z)).

@ Here, g(z) = max(0, z), non decreasing in z.
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3. Powell LAD 1984

@ Problem, due to absolute value, the objective function is not
everywhere differentiable wrt b (g has a Kink at 0).

@ We can not rely on the usual optimization algorithms based on
derivatives, gradient and Hessian to find S5, 4p.

@ cladin STATA implements Powell estimator using Buchinsky’s
iterative linear programming algorithm (1994).

@ This does not require the computation of derivatives. As the
simplex algorithm (Nelder-Mead=downhill simplex
method=amoeba) that we have seen last week.

@ This estimator is robust to heteroscedasticity and departure from
the normal distribution.

@ The usual solution to compute the ses of 3; 4p is the bootstrap.
(Powell -1984- shows that under some conditions, the LAD
estimator is consistent and AN-CAN-, but the asymptotic variance
depends on the true law of ¢| X).
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4. Estimation

Descriptive statistics for two violations of MLE assumptions:

@ cryhet normal but heteroscedastic error term ;

@ cryevd extreme value error term (F(u) = e=¢ "),

Var Mean SD Min Max
cry 1.801 1.927 0 8.497
cryhet 1.865 2.15 0 13.376
cryevd 1.604 2.147 0 11.808
one 1 0 1 1

debtlxl  1.004 0.871 0.052 8.481
reslimpl 0.302 0.254 0.009 1.429
N 600 600 600 600
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4. Estimation

Censored variable, heteroscedastic case.

cry cryhet
OLS MLE LAD OoLS MLE LAD
Var Est/(se) Est/(se) Est/(se) | Est/(se) Est/(se) Est/(se)
debtlxl 0.137 0.235 0.241 0.174 0.268 0.235

(0.092) (0.128)  (.249) | (0.103) (0.134)  (0.140)
reslimpl ~ -0.648 -0.855 -0.750 | -0.402 -0.665  -0.528
(0.315)  (0.446) (0.667) | (0.353) (0.462) (0.332)
Intercept ~ 1.860  1.308  1.199 | 1.812  1.359  1.096
(0.166) (0.234) (0.453) | (0.186) (0.242) (0.239)

LAD’s ses computed with 50 replications.

@ Inthe ideal case (cry), the MLE point estimates are quite close to the
CLAD estimates and have smaller ses. OLS slopes’ estimates appear
biased towards 0.

@ Comparing cry and cryhet, the inconsistency of the MLE estimator
does not appear obvious. Given the large ses, it is difficult to distinguish
the 2 cases.
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4. Estimation

@ For OLS, MLE and CLAD, the main change concerns reslimpl whose
estimates shift towards 0, the other point estimates are more or less
unaffected.
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4. Estimation

Censored variable, extreme value case.

cry cryevd
OLS MLE LAD OLS MLE LAD
Var Est/(se) Est/(se) Est/(se) | Est/(se) Est/(se) Est/(se)
debtlxl 0.137 0.235 0.241 0.117 0.300 0.250

(0.092) (0.128)  (.249) | (0.103) (0.154) (0.177)
reslimpl ~ -0.648 -0.855 -0.750 | -0.680 -1.076  -0.995
(0.315)  (0.446) (0.667) | (0.352) (0.548) (0.895)
Intercept ~ 1.860  1.308  1.199 | 1.693  0.788  0.648
(0.166) (0.234) (0.453) | (0.185) (0.286) (0.426)

LAD’s ses computed with 50 replications.

@ Here there are much more change between the MLE on cry and
cryevd.

@ Except for the intercept the LAD point estimates using cryevd are
close to the point estimates of cry (MLE).

@ As expected, CLAD appears less sensible than MLE to the distribution
assumption.
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@ The same types of argument apply to the binary case:
Vi = XiP + ei
Yit = 1yz>0 is the observed variable.

@ The MLE is based on strong distributional assumptions, normality
and homoscedasticity in the case of the probit.

@ Manski (1975,1984,1988) proposes a LAD estimator in the same
spirit as Powell (1984) estimator. This estimator is called the
Maximum Score estimator.

@ Manski (1988) assumes Med(c;|xi;) = 0 and other regularity
conditions.

o If y; is observed it is natural to estimate /3 using:

B = argmin,§ 3",y — Xjbl
@ Here we can define g(z) = 1,-0 = sgn(z) non decreasing in z.
© We get Sus = argmin, g > ¢ [Yir — 1x650|
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@ We can rewrite:
Bus = argmaxp, pjj—1 > Vit 1xip50 + (1 = Yir)-Txrp<o) = S1(b)
Bus = argmaxy, =1 >, [(2.yir - 1)-1xb>0] = S2(b)

@ Si(b) is the initial definition of the maximum score estimator
(Manski, 1975, 1984).

@ The objective function, Sy, is the score. The score is the number
of correct predictions we would make if we predicted y;; to be 1
whenever x;b > 0 and 0 otherwise.

@ Maximization of the non-continuous score is (very) difficult. See
Vassilis” handout 8 (p.95, 101, 108). The gradient based methods
fail and the Nelder-Mead algorithm does not provide good results.

@ Inference in this model is complicated. Manski (1984) proves consistency. Kim &
Pollard (1990) show that the estimator has a non normal asymptotic distribution
(reached at a slow rate). Abrevaya & Huang (2005) show that the usual
bootstrap is not consistent in this case. Delgado et al. (2001) use sub-sampling
to evaluate the distribution of the estimator.
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6. Estimation in the binary case

Descriptive statistics for two violations of MLE assumptions:

@ bcyhet normal but heteroscedastic error term ;
@ bcyevd extreme value error term (F(u) = e~ "),

Var Mean SD Min Max
bcy 0.668 0.471 0 1
bcyhet 0.692 0.462 0 1
bcyevd 0.635 0.482 0 1
one 1 0 1 1
debtlxl  1.004 0.871 0.052 8.481
reslimpl 0.302 0.254 0.009 1.429
N 600 600 600 600
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6. Estimation in the binary case

Heteroscedastic case

bcy bcyhet

Probit Logit MS | Probit Logit MS

debtlixl 0.247 0.448 0.143 0.231 0.440 0.125
(0.077) (0.139) (0.078) (0.145)

reslimpl  -2.367 -3.989 -0.939 | -2.520 -4.399 -0.939
(0.276) (0.490) (0.275) (0.513)

Intercept 0.935 1.531 0.312 1.079 1.802 0.317
(0.130) (0.225) (0.133) (0.236)

Score maximization using STATA is difficult. optimize in mata has a Nelder-Mead
algorithm. The algorithm converges but does not seem to reach the true maximum.
So | used random search on the unit hyper-sphere.
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6. Estimation in the binary case

Extreme value case

bcy bcyevd

Probit Logit MS | Probit Logit MS

debtlxI 0.247 0.448 0.143 | 0.340 0.593 0.118
(0.077) (0.139) (0.081) (0.143)

reslimpl  -2.367 -3.989 -0.939 | -2.489 -4.239 -0.946
(0.276) (0.490) (0.286) (0.513)

Intercept 0935 1.531 0.312| 0.782 1.293 0.293
(0.130) (0.225) (0.130) (0.223)

Score maximization using STATA is difficult. optimize in mata has a Nelder-Mead
algorithm. The algorithm converges but does not seem to reach the true maximum.
So | used random search on the unit hyper-sphere.
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7. Comparing the point estimates

@ The different set of rough point estimates are not easy to compare.

o Afirstidea is to apply Amemiya’s rule 3, ~ 1.63p to compare logit
and probit estimates, or even better to compare only the marginal
effects, but this will not work for the maximum score estimator.

@ A second idea is to rescale the estimates and compare /3/]|3|.

@ The key is to remember that all our binary outcomes models are
identified up to a treshold and a scale parameters:
yi =X/ +e; with ¢j|x; ~ (0, 0?).
yi = 1X/5+€,.>T is the observed variable.

@ Then we can not estimate = and 1 the parameter for the constant:
1g, +X_Bortei>T = 1g, —T+X_1B-1+ei>0

@ So we set 7 = 0, but then we can not estimate 8 and o > 0:
1x,’,8+a,->0 - 1@%)
So in the probit case, we set o2 = 1 and in the logit case, we set
0? = 72/3. In other words, from the latent model, we are only able
to identify, 5= and =
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7. Comparing the point estimates

Amemiya’s rule 3, ~ 1.63p to compare logit and probit estimates

1

Normal cdf, Modified logistic cdf (Fx(x) = 155) with X = 7/v/3, with X = 1.6.
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7. Comparing the point estimates

Amemiya’s rule 3; ~ 1.63p, difference between modified logistics and
standard normal cdf

0.024

0.014

-0.014

— &(x) with A\ = 7/+/3, with A = 1.6.

1
1+e—XxA
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7. Comparing the point estimates

Rescaled parameters’ estimates (3/|3]|)

bcy bcyhet
Probit  Logit MS | Probit  Logit MS
debtlxI 0.097 0.104 0.138 | 0.090 0.094 0.136
reslimpl  -0.926 -0.928 -0.938 | -0.861 -0.836 -0.939
intercept 0.366 0.356 0.315 | 0.340 0.321 0.315
bcy bcyevd
Probit Logit MS | Probit Logit MS
debtlx! 0.097 0.104 0.138 | 0.094 0.100 0.110
reslimpl  -0.926 -0.928 -0.938 | -0.900 -0.892 -0.947
intercept 0.366 0.356 0.315 | 0.355 0.342 0.297
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