
Last printed 10/11/2009 19:42:00 1

GAUSS, an introduction1

Index

1. The software...2

1.1 The software screen ...2
1.2 Writing a program..3

2. Loading data...4
2.1 Loading Ascii/text files..4
2.2 Loading Gauss files..6
2.3 Closing and saving files ...7

3. Matrix manipulations...7
3.1. Creating and deleting matrices..7
3.2. Operations on matrices ...9

4. Procedures..11
4.1. Writing and using a procedure (PROC ENDP) ..11
4.2. Some existing procedures (OLS, DSTAT) ...12

5. Looping (DO UNTIL, DO WHILE)..12
6. Branching (IF ELSE ELSEIF…)...13
7. Printing, saving and storing your results ...13

7.1. Printing (PRINT, FORMAT)..13
7.2. More on printing (PRINTFM, PRINTFMT) ..14
7.3. Saving the output of your results (OUTPUT)...15
7.4. Keeping track of time and dates..15

8. References..16

1 A.j.goujard@lse.ac.uk. Comments and suggestions to improve this first draft are more than
welcome. Please do not quote, report or diffuse.

Last printed 10/11/2009 19:42:00 2

This handout explains how to use GAUSS to program the estimators and matrices
manipulations required for the EC475 exercises. Good programming practices and
tricks to improve your programs will be provided later on. More advanced tools may
be available but this document focuses on the programming structure and “how to do
that” rather than on “why doing that” or “how to do that faster”.

1. The software

The first thing to know about GAUSS is that everything is created so as to manipulate
matrices, so do not expect to be able to visualize your data as in STATA, SAS… or to
have built in OLS routines. Thus more or less everything has to be programmed.
However GAUSS is efficient at creating users’ developed programs and fast at
running them! Moreover, contrary to pure programming languages, GAUSS as
MATLAB can directly manipulate matrices and has a lot of tools to transform them. It
also contains pre-programmed features such as numerical optimization routines that
are useful for applied econometrics.

1.1 The software screen

The basic GAUSS screen has 2 main windows2:

- command input: where you can enter your own command one by one ;
- output: where you see the results of these commands.

Eg. Typing in the command window: print "HELLO GAUSS" ;
Returns: HELLO GAUSS in the output window.

2 If you do not see them directly, try manipulating the windows’ sizes.

Open the program editor

Last printed 10/11/2009 19:42:00 3

1.2 Writing a program

In this course, we want to be able to store the program and to combine several lines of
code. So we have to create a program or code file. GAUSS has an internal program
editor that you can open by clicking on the white sheet on the left this opens a third
window3. You can immediately save your program wherever you want using the
“save” icon. A gauss program file has a .prg extension. This should look like this:

Your program should have a clear start “new ;” and an end: “end ;”. You can run
your program in (at least) 2 ways:

1/ directly from the program editor using one of the blue arrows on the top of the
screen [1]. This allows you to select only some lines of code (using run selected lines
on the top panel or by right clicking on your selected lines):

2/ from the command window [2]:
run “H:\\Antoine\\TEACH-EC475\\prog_gauss\\start_prog.prg” ; /* always more
secure to delimit the path using quotes then need \\ for path */

3 An other solution is to use any text editor you like, write your program, save it and rename it with a
.prg extension.

1

2

Last printed 10/11/2009 19:42:00 4

The output windows may also return you many error codes. For example if I try to
run:

print "HELLO GAUSS ; /* bad programming */
I obtain: (0) : error G0097 : String not closed

The first number inside the parenthesis corresponds to the line of your program where
the mistake occurs. As you can see you can and should include comments in your
gauss programs. This can be done using:

1. /* this is a comment */
2. @ this is a comment @
3. /* this is a very long

Comment */

I prefer the first one which is valid in many other statistical and econometric software.
You can type long comments on several lines as in example 3.

The GAUSS program editor also supports many keystroke shortcuts. Among those:

1. CTRL-X delete the selected text
2. CTRL-R execute the selected block of commands

It is also very helpful to use the option that displays the lines’ indices (right click
under editor’s properties).

2. Loading data
Once we know how to create a program, the second step for econometrics is to be
able to access the data. This depends on the way you have access to them. I detail
three cases: text-files, GAUSS files and creating your own matrices for simulation in
part 3. I assume that you may convert all other data formats in either a GAUSS or text
file. At LSE, this can be done in a straightforward way by STATTRANSFER which
you can find on the LSE network under programs \\ statistics \\ stattransfer9.

2.1 Loading Ascii/text files
Here I load a data set of 12 observations and 5 variables:

Bad display
of text
variable

Last printed 10/11/2009 19:42:00 5

This creates a 12*5 matrix called data (see part 3 on matrix). We could have proceed
in two steps which may be useful if we are unsure about the size or quality of our
data.

new ;
load data[]=”H:\\Antoine\\TEACH-EC475\\data\\loadin g_ex.txt” ; /* load the data
as a column vector */
print data ; /* display the small dataset loaded in the output */
data1=reshape(data,12,5) ;4
print data1 ; /* display the reshaped matrix */
print $data1[.,5] ; /* display properly the last column of names */
end ;

Rk1: data1[.,5] selects all the rows of data1 and only column 5.
Rk2: GAUSS truncates text variables to 8 characters. Eg. XXXYYYZZZ becomes
XXXYYYZZ.

A last important thing is to be able to assign variables’ names to the elements of your
created matrices. This can be done by creating a GAUSS file from the original data:

Let vnames=X1 X2 X3 X4 XNAME ; /* vnames is a variable containing var names
*/
Outname=”H:\\Antoine\\TEACH-EC475\\data\\ex1” ; /* this creates the name of
the new data set ex1 stored at the required path */
Create outfile=^outname with ^vnames,0,8 ; /* this creates and opens the data set
with outname=ex1 and variables’ names in vnames, 0 sets the # of columns to
correspond to # of var in vnames, 8 corresponds to the highest storage precision
available */
Nrows=Writer(outfile,data1) ; /* this writes the created matrix data1 into the
specified outfile and stores the number of writted rows into nrows */
Print nrows ;; print “nrows written to the data” ; /* check!! The ;; instead of ;
specifies that you want the next thing printed on the same line */

Why is this useful? Now suppose we want to see the last column of our data. A first
solution is:
print $data1[.,5] ;

This clearly depends on the way the data are stored and if you are not careful, this can
cause a large number of mistakes. So instead of using the column number (5) to index
the program, we want to use the variable name (XNAME).
print $data1[.,ixname] ; /* note the i for index before xname */

This will not work! Before we can actually do that we need to open our created
GAUSS data set ex1 as explained in the next paragraph.

4 This assumes we know both the number of observations and number of variables. If we know only
that the data has 5 variables, we could use: data1=reshape(data,nrows(data)/5,5) ; see the matrix part
of the handout for details.

Last printed 10/11/2009 19:42:00 6

2.2 Loading Gauss files
Gauss data files come in pairs (at least if you are using windows on your computer).
The two parts are:

1. .dat the matrix of the data
2. .dht the list of the names of the variables

Loading a data in GAUSS takes also two steps:

1. opening the data
2. reading the data in an appropriate matrix!

Here is an example from PS1:

new ;
CLOSEALL ; /* this closes all datasets previously opened */
filename="H:\\Antoine\\TEACH-EC475\\data\\lqdata" ;
/* the double backward slashes are needed to specify the path within the quotes */
/* creates a string macro filename */
/* the name of the storage file is lqdata */
/* gauss stores the data into 2 parts .dat=matrix, .dht=var names */
open input=^filename FOR UPDATE VARINDXI ; /* opens the dataset */
data=READR(input,ROWSF(input)) ; /* reads it into some matrix called data */
/* rowsf(input) specify we want the S observations. */
/* It can be changed for 10, 100 etc. */
vnames=getname(filename) ; /* takes the names of the variables */
end ;

Rk1: you may want to have a look at the variables’ names which are stored in a
column vector. You may ask GAUSS to print the matrix using print:
Print vnames ;
This does not give you the right answer as GAUSS does not recognize you stored
character instead of numerical data in vnames. To correct for this use:
Print $vnames ;

Rk2: the file does not look very good with capitalized and un-capitalized words but
this does not matter as GAUSS “interprets” READR in the same way as readr or even
REadR. GAUSS is not case-sensitive.

Rk3: The general syntax for OPEN is:
handle=fileName FOR mode VARINDXI offset ;
The mode is either READ, APPEND, or UPDATE. If the mode is omitted, GAUSS
defaults to READ. If READ is chosen, updating the file is not allowed. Choosing
APPEND means that data can only be appended to the file; the existing content cannot
be read. UPDATE allows reading and writing.

The offset scalar option shifts all these indexes by a scalar and so is useful if the data is
to be concatenated horizontally to another matrix or dataset. However, usually it can be
left out.

Last printed 10/11/2009 19:42:00 7

2.3 Closing and saving files

You can close a dataset using:
Close dataset ;
Close dataset1 dataset2 datasetn ;

You can save the content of a matrix into a GAUSS dataset using:
Export=saved(matrix,dataset,vnames) ;
Suppose the matrix is N*K. Then vnames has to be K*1. If dataset is null or 0, the
data set name will be temp.dat. If vnames is a null or 0, the variable names will begin
with “X” and be numbered 1 to K. The output data type is double precision. Export is
a created variabole taking value 1 if the export is successful.
Let x={1 2,2.0000001 4.00000000000000000000001} ;
Let xnames={"X1","X2"} ;
Export=saved(x,"H:\\Antoine\\TEACH-EC475\\data\\example",xnames) ;
if export==0 ;
"the export is unsuccessful" ;
else ;
"the export is successful" ;
endif ;

3. Matrix manipulations

3.1. Creating and deleting matrices
a) Fixed values matrices

A=zeros(10,3) ; /* creates a matrix of 0s 10 rows * 3 columns */
I=eye(10) ; /* creates an identity matrix 10*10 */
B=ones(5,12) ; /* creates a matrix of 1s 5 rows * 12 columns */
C=seqa(start,inc,n) ; /* creates an additive column vector sequence of increment
inc, starting at C1=start, C2=start+inc… and containing n values */
D=seqm(start,inc,n) ;/* creates a multiplicative vector sequence as seqa */

To save memory space inside a program you can clear some variables. That is set
their contents to a 0 scalar. clear B ; It may seems strange that you are not able to
delete the variables themselves. This can only be done at the start of a program using
new ; or delete all ;. Delete all ; has the same impact as writing new ; at the start of
your program. It clears every existing references. To keep tracks on things you may
want to know what are the variables you created and their characteristics. You need to
type:

Show all ; /* for all the variables */
Show/m all ; /* for all the matrices only */
Show A ; /* if interested in the var A */
Show var* ; /* for all the variables starting with var */

The user can also create a matrix using constants with the LET command:
LET x=1 2 3 4 ; /* column vector */

Last printed 10/11/2009 19:42:00 8

LET x=1,2,3,4 ; /* as before */
LET x=1 2,3,4 ; /* as before! */
LET x={1 2 3 4} ; /* row vector */
LET M={1 2, 3 4} ; /* 2*2 matrix with 1st row 1 2 */
LET M[2,3]=1 2 3 4 5 6 ; /* 2*3 matrix with 1st row 1 2 3*/
LET M[2,3]=1, 2, 3, 4, 5, 6 ; /* 2*3 matrix with 1st row 1 2 3*/
LET M[2,3]= 6 ; /* 2*3 matrix with all entries=6 */

b) “Random” matrices

N=RNDN(10,3) ; /* creates a 10*3 matrix of independent pseudo random draws of a
N(0,1) */
S=1 ; N1=RNDNS(10,3,S) ; /* creates a 10*3 matrix of independent pseudo random
draws of a N(0,1) with a given seed S=1*/
U=UNDN(10,3) ; /* creates a 10*3 matrix of independent pseudo random draws of a
Uniform (0,1) */
S=12 ; U1=UNDNS(10,3,S) ; /* creates a 10*3 matrix of independent pseudo random
draws of a Uniform (0,1) with a given seed S=12*/

Rk: the seed has to be an integer and allows you to repeat the same simulations.

Creating a vector of correlated random draws (B) from a normal random vector
N(0,V) can be done using the Cholesky decomposition of the matrix V. With S the
lower triangular matrix of the decomposition such that V = S*S’, if U is a random
vector N(0, Ik), then B=S*U has the required distribution N(0,S*Ik*S’=V). However
as GAUSS returns the upper triangular Cholesky matrix, we have to adjust so that:

LET V={1 0.99,0.99 1} ;
Sl=chol(V)' ; /* Sl is Cholesky lower triangular V1/2 in some textbooks */
print V ;
print Sl ;
Seed=101 ;
U=rndns(2,100,Seed) ;
B = Sl*U ;
G=U|B ; /* vertical concatenation for comparison */
print /* U|B */ ; /* the second series of draws B1, B2 has values of B1 very close to
B2 at each draw, while U1 and U2 are unrelated */
print G ;

Rk: Creating a GAUSS data-set from GAUSS generated matrices can be done in the
same way as converting the matrix created from a text file into a GAUSS file (see part
2.1).

Last printed 10/11/2009 19:42:00 9

3.2. Operations on matrices5
a) Referencing matrices

This works in the same way for rows and columns:
g=mat[r1:r2,c1:c2] ; /* gives you rows r1 to r2 and col c1 to c2 of the matrix mat */
g=mat[r,c1:c2] ; /* gives you row r and columns c1 to c2 of the matrix mat */
g=mat[r,c1 c2 c3] ; /* gives you row r and columns c1, c2, c3 of the matrix mat */
g=mat[.,c1:c2] ; /* gives you all the rows and columns r1 to r2 of the matrix mat */

b) Simple operations

C=A*B ; /* product */
C=A’ ; /* transpose */

Rk: Computing Z=X’X seems quite useful but GAUSS has an in built routines that is
much faster:
Z=MOMENT(X,0) ; /* returns X’X ignoring missing values (1 or 2 instead of 0
delete them) */

C=inv(A) ; /* inverse */
C=invpd(A) ; /* inverse of a pos def matrix eg. X’X */
D=diag(A) ; /* diagonal of A */
D=det(A) ; /* det of A */
D=rank(A) ; /* rank of A */
C=cols(A) ; /* cols of A */
R=rows(A) ; /* rows of A */
E=eig(A) ; /* eigenvalues of A */

Pi is pi approx. 3.1415927.
^ is exponentiation
! is factorial
% is modulo division

C=A|B ; /* vertical concatenation of A and B */
C=A~B ; /* horizontal concatenation of A and B */

C=meanc(A) ; /* returns a column vector of the column mean of A */
Rk: Maxc(), Minc(),Sumc(), stdc() and median() do the same for the related
operations.

C=A.*.B ; /* Kronecker product of A and B */
C=Vec(A) ; /* returns the column vector of the stacked columns below one another */
C=Vech(A) ; /* takes the lower triangular part of a symmetric matrix in a column
vector */
Su=Chol(V) ; /* returns the upper triangular part of the cholesky decomp V=Su’Su */

5 For a more extensive list by topics see:
http://www.timberlake.co.uk/software/gauss/400fns.pdf or the index of GAUSS help

Last printed 10/11/2009 19:42:00 10

It is also possible to sort a matrix with respect to a particular column (sortc for
numeric values or sortcc for character values) or a group of columns (sortmc). The
following illustrates the ranking of the values in GAUSS:
Let X={2 2 5 "E", . 1 6 "b", 2 1 3 "c", 3 2 7 "B", 4 3 8 "D"} ;
let mask=1 1 1 0 ; /* we define the columns of the matrix as num (1) or char (0) */
printfmt(X, mask') ; /* we print the matrix of char and num values */
X1=sortc(X,1) ; /* we sort wrt 1st column which contains numeric values */
X2=sortcc(X,4) ; /* we sort wrt 4th column which contains char. values */
printfmt(X1, mask') ; /* missing values are considered as arbitrarily small */
printfmt(X2, mask') ; /* GAUSS considers All capitalized letters as smaller as the
un capitalized ones */
let sorter=1 2 ; /* we plan to sort the matrix wrt columns 1 2 of num. values */
X3=sortmc(X,sorter) ; printfmt(X3, mask') ;
let sorter=1 -4 ; /* we plan to sort the matrix wrt columns 1 4 of num. values and
char. Values so we had a – before the 4 */
X4=sortmc(X,sorter) ; printfmt(X4, mask') ;

c) Operations element by element

C=sqrt(A) ; /* returns sqrt(aij) other functions are ln, log, exp, cos, sin */
C=A^2 ; /* returns aij^2 */
C=A./B ; /* returns aij/bij it works also with B a vector and gives a matrix aij/bi */
C=A.*B ; /* returns aij*bij it works also with B a vector and gives a matrix aij*bi */
Rk In general you can use the usual symbol but with a dot to do element by element
operation. Eg. A.^B gives aij^bij.

C=A-3 ; /* returns aij-3 */
C=A+3 ; /* returns aij+3 */
C=A*3 ; /* returns aij*3 */
C=A/3 ; /* returns aij/3 */

d) Relational and logical operators

== or EQ for equality (this is different from A=5 where A is assigned value 5)
/= or NEQ for not equal
> or GT for greater than
>= or GE for greater or equal than
< or LT for lower than
<= or LE for lower or equal than

GAUSS returns 1 if a statement is TRUE and 0 if FALSE. You can combine
statement using logical operators:

NOT Statement 1
Statement1 AND statement2
Statement1 OR statement2
Statement1 XOR statement2 (one, or the other, but not both)

Eg.
LET V={1 0.8,0.8 1} ;

Last printed 10/11/2009 19:42:00 11

LET V1={1 0.7,0.8 1} ;
C=V.==V1 ; /* this check element by element the == of the 2 matrices */
Print C ;
This returns:
 1.0000000 0.0000000
 1.0000000 1.0000000

In numerical computations, it is useful to be more tolerant on the meaning of ==.
There is always some elements of rounding. You can set yourself the comparison with
some tolerance level or use the fuzzy comparison operators of GAUSS. This
corresponds to the usual operators with a prefix F (eg EQ is now FEQ). This can also
be use for element by element comparison using the prefix DOTF (eg. DOTFEQ).

Eg.
A=1*10^(-15) ; B=1*10^(-16) ; TOL=1*10^(-15) ;
C=A==B ;
CT=A GE B-TOL AND A LE B+TOL ; /* this uses the logical operator AND !! */
_fcmptol=10^(-15) ; /* set the tolerance limit of gauss to 10^-15 this is the default
value for the fuzzy comparison operators */
CTG=FEQ(A,B) ;
Print C ;; Print CT ;; Print CTG ;
Returns :
0.00000000 1.0000000 1.0000000

4. Procedures

4.1. Writing and using a procedure (PROC ENDP)

A procedure is a sub-program which will help you doing repeated tasks inside the
same program. It has a number of inputs or arguments and can return several outputs.
A simple procedure may have only one argument. For example, we can create a
procedure that multiplies X’ by X and return the determinant of this matrix.

proc(1)=detpd(X) ; /* (1) is the number of returned outputs */
local Y ; /* note that you have to write down the local var you are using in your proc
this can be done in several steps as here or using: local Y, X ; */
local Z ;
Y=X'*X ; /* may be faster to use =MOMENT(X,0) */
Z=det(Y) ;
retp(Z) ; /* specifies the output of the proc */
endp ; /* note the syntax proc(#arg)=func() ; endp ;*/

X=ones(5,2) ; /* let’s test the process */
d0=detpd(X) ;
print "the det of X'X is" ;; print d0 ;

Returns: the det of X'X is 0.00000000
If I now define:

Last printed 10/11/2009 19:42:00 12

X=eye(2) ; d0=detpd(X) ; print "the det of X'X is" ;; print d0 ;

This returns: the det of X'X is 1.0000000
A procedure can be much more complicated having several arguments and several
outputs. The general syntax is:

PROC (# outParams) = ProcName (inParam1, inParam2,... inParamN) ;
LOCAL locVar1 ; …
LOCAL locVarN ;
…
RETP (outParam1, outParam2, ... outParamN) ;
ENDP ;

You can then have access to the results using (for example):
{o1,o2,…oN}= ProcName (inParam1, inParam2,... inParamN) ;
This allows to save the results of the procedure into matrices o1 to on that you can use
later on. You could also use:
Call ProcName (inParam1, inParam2,... inParamN) ;
Call allows procedures to be called when you do not need the return values (o1 to on).
This is especially useful if a function produces printed output (ols for example).

4.2. Some existing procedures (OLS, DSTAT)

GAUSS has a built-in OLS procedure:
{vnam,m,b,stb,var,stddev,sig,cx,rsq,res,dwstat}=ols(0,y,x) ; /* see help OLS */
And a command giving some basic descriptive statistics.
{vnam,mean,var,std,min,max,valid,mis} = dstat(dataset,vars);

5. Looping (DO UNTIL, DO WHILE)

There are two main equivalent statements:

 DO WHILE condition; DO UNTIL condition;
 doSomething; doSomething;
 ENDO; ENDO;

Eg.
X=0 ; I=0 ;
DO WHILE I LE 5 ; /* LE is used for <= // could use DO UNTIL I==5*/
X=X+I ;
I=I+1 ;
ENDO ;
Print “X=” ;; print X ;
Returns the sum of the integers from 1 to 5, 15.

Last printed 10/11/2009 19:42:00 13

6. Branching (IF ELSE ELSEIF…)

The syntax of the IF statement is:

IF condition1 ;
doSomething1 ;
ELSEIF condition2 ;
doSomething2 ;
ELSEIF condition3 ;
ELSE ;
 doSomething4 ;
ENDIF ;

An example in PS1 is to check that the explanatory variables include a constant:

LET X={1 2 3, 1 4 5, 1 6 2} ;
z=0 ;
i=1 ;
do while i<=cols(x) ;
if minc(x[.,i])==maxc(x[.,i]) ; /* check col I min= col I max */
 if minc(x[.,i])==1 ; /* check col I min= 1 */
 z=z+1 ;
 else ;
 z=z+0 ;
 endif ; /* rk we could have use AND rather than imbricate 2 ifs conditions*/
else ;
z=z+0 ;
endif ;
i=i+1 ;
endo ;
if z>0 ; print “THERE IS A CONSTANT” ;
else ; print “NO CONSTANT” ;
endif ;

7. Printing, saving and storing your results

7.1. Printing (PRINT, FORMAT)
As we have already seen we can print matrices and strings inside GAUSS output.
Print in the basis of all the printing we have done. To summarize:

print “THERE IS A CONSTANT” ;
let varnames= {“X1” “X2” “X3”} ;
print $varnames ; /* returns X1 X2 X3 */
let x=”WORD” ;
print $x ;; /* ;; means print the next output at same level */
let x2=2 ;
print x2 ; /* need separate print statements as as soon as $, the text option, is used, it
is used for the remaining part of the print statement */

Last printed 10/11/2009 19:42:00 14

print x2 $x ;

format allows to define new options to print your results, such as the precision of the
decimals. Eg.

x=6.888889999 ;
format /RD 6, 0; print x ;; /* use rd=right justified numbers 6,0= with 6 spaces for
the number and 0 for decimals */
format /RD 6, 12; print x ;;
format /RDC 6, 5; /* rdC the delimiter between numbers is a comma */ print x ;
prints: 7 6.888889999000 6.88889,

7.2. More on printing (PRINTFM, PRINTFMT)

Printfmt(x,mask) allows to print matrices containing both columns of characters
values and numerical values. Mask is a row vector of 0 (if the ith column is character)
and 1 otherwise. If X is a N*K matrix then the MASK has to be a 1*K vector.
Let x={“A” 1, “B” 2} ;
Let mask={0 1} ;
Printfmt(x,mask) ;
Returns: A 1
 B 2

Printfm(x,mask,fmt) allows you to combine this feature with more precise
definitions of the formatting of each columns. Suppose that X is a NxK matrix.
Then the Mask is a 1*K vector containing ones and zeros which is used to specify
whether the particular column is to be printed as a string (0) or numeric (1) value.
With printfm the mask can also be a NxK matrix specifying if each element of the
matrix is character or numeric.
The Fmt matrix is a Kx3 or 1x3 matrix where each row specifies the format for the
respective column of x. The fmt contains 3 pieces of information: the format string,
the width of the column (<80) and the precision (<17).
This can be best seen in an example.
Let x={"A" 1.5 0.7501221, "B" 2.35 0.60015, "C" 4.21 4.4899} ;
Then using printfmt will not help to correctly display the difference in precision in
the last two rows.
Let mask={0 1 1} ;
Printfmt(x,mask) ;
Let fmt={"-*.*s" 8 8, /* first column format */
"*.*lf " 9 2, /* second column format */
"*.*lf " 9 7} ; /* third column format */
Printfm(x,mask,fmt) ;
Returns with printfmt:
 A 1.5 0.7501221
 B 2.35 0.60015
 C 4.21 4.4899
Or with printfm:
A 1.50 0.7501221
B 2.35 0.6001500

Last printed 10/11/2009 19:42:00 15

C 4.21 4.4899000

The following example defines all the elements in the matrix and do not proceed
column by column. For example, this may be useful if the first row of the matrix
contains the columns’ names.

Let x={"VAR" "EST" "SE", "A" 1.5 0.7501221, "B" 2.3 5 0.60015, "C" 4.21
4.4899} ;
Let mask={0 0 0, 0 1 1, 0 1 1, 0 1 1} ;
Let fmt={"-*.*lg " 8 8, /* first column format */
"*.*lf " 16 3, /* second column format */
"*.*lf " 16 7} ; /* third column format */
Printfm(x,mask,fmt) ;
Returns:
VAR EST SE
A 1.500 0.7501221
B 2.350 0.6001500
C 4.210 4.4899000

7.3. Saving the output of your results (OUTPUT)

You can decide to save the results of your output in a text file. Eg.
Output file= “H:\\Antoine\\TEACH-
EC475\\prog_gauss\\gauss_outputs\\output1.txt” ON ; /* this opens the text file to
store the results */
A={1 2 3} ; print A ;
Output off ; /* this closes the text file to store the results */
Output on ; /* this reopens the last the text file used to store the results and appends
the current results to the past ones */
Output file= “H:\\Antoine\\TEACH-
EC475\\prog_gauss\\gauss_outputs\\output1.txt” on ; /* Reopens the text file with
the correct path if several output are used to store the results (on=append the new
results to past ones) */
Output file= “H:\\Antoine\\TEACH-
EC475\\prog_gauss\\gauss_outputs\\output1.txt” reset ; /* Reopens the last the
desired text file used to store the results, clears it and reuses it to store the new results
*/
Output off ; /* this closes the text file to store the results */

A useful option is the length of the displayed lines in the output if we have matrices
with a large number of columns and/or if we use a very precise format to display our
results. This can be changed using:
OUTWITDTH #char ;
The #char has to be between 2 and 256 and the default value is 80.

7.4. Keeping track of time and dates
To keep a record of the date the following variables and functions are useful:

Last printed 10/11/2009 19:42:00 16

Date ; /* 4-element column vector, in the order: year, month, day, and hundredths of
a second since midnight. */
datestrymd(date) ; /* function that returns time as yyyymmdd */
datestr(date) ; /* function that returns time as mm/dd/yy */
datestring(date) ; /* function that returns time as mm/dd/yyyy */
time; /* 4x1 numeric vector, the current time in the order: hours, minutes, seconds,
and hundredths of a second.*/
timestr(time) ; /* function that returns time as hr:mn:sc */

Now if we want to know how long take our calculations we can check how much time
different computations of Y’Y takes.
/* we define the variables */
let x=0 ;
clear y ; clear x ;
S=1 ;
y=ones(10^5,1)~RNDNS(10^5,20,S) ;

/* Method 1: using hsec */
et = hsec ; /* we record the start of the computation in hundred of seconds since
midnight */
x = y'*y;
etp = hsec ;
etq= etp- et ; /* we get an estimate of the duration of the computations */
print "time of *: (sec/100) ";; etq ;

/* Method 2: using the full date */
clear x ;
et1=date;
x = y'*y;
et2=date ;
et3 = ethsec(et1,et2) ; /* ethsec returns the # of hundreds of seconds between et1 and
et2 */
"time of *: using ETHSEC (sec/100) " ;; et2 ;

This returns:
time of *: (sec/100) 9.4000000
time of *: using ETHSEC (sec/100) 9.4000000

8. References

1. Hill C. and Lee A., 2001, Using Gauss for Econometrics, 225p.
http://pages.suddenlink.net/ladkins/pdf/GAUSS.pdf
Contains a short introduction to Gauss and a lot of examples.
2. Gauss 9.0 documentation in pdf files, in particular the User guide (470p.).
http://seldon.it.northwestern.edu/sscc/gaussdoc/

