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Refererences:

∙ Handout 8. Numerical optimization, provides a lot of examples of
numerical optimization and shows the computational costs associated
with each method for many test functions with various shapes.

∙ Train, 2009, Discrete Choice Methods with Simulation. Chapter 8,
http://elsa.berkeley.edu/books/choice2nd/Ch08_p183-204.pdf.
Train summarizes in an efficient way the main derivative based meth-
ods (Newton Raphson, Berndt-Hall-Hall-Hausman, steepest ascent and
their step-adjusted versions: Davidson-Flechter-Powell and Broyden-
Flechter-Goldfarb-Shanno). However this chapter does not have any
information on the non-derivative(=non-gradient) based methods.

∙ Cameron and Trivedi (2005), Microeconometrics Methods and Appli-
cations. Chapter 10 is brief 16p and provides an overview of the sim-
ulated annealing algorithm, but no information on the Nelder-Mead
algorithm(=downhill-simplex=amoeaba).

∙ Cameron and Trivedi (2009), Microeconometrics Using Stata. Chap-
ter 11 review the maximum likelihood estimation and optimiziation
commands in stata and its associated matrix language, mata.

Here we want to solve a maximization (or minimization) problem:
�∗ = argmax�∈ΘF (�) where F maps ℝk to ℝ.2

However, due to the particular structure of this problem there may be no
explicit/closed form solution(s) to this problem. A particular case with an
explicit solution is the least squares problem:
b∗ = argmaxb∣∣y −X.b∣∣2 where b is in ℝk and ∣∣.∣∣ is the euclidian norm in
ℝn. When rank(X) = k ≤ n the solution is unique and b∗ = (X ′X)−1X ′y.

In general optimization problems do not have explicit solutions and we have
to rely on some set of necessary/sufficient conditions to define the optimal
value. For example, when we try to maximize a Log-likelihood, the theory

1Some of you asked me to make this summary. Please let me know if you find any typo
or mistake, a.j.goujard@lse.ac.uk. Note that this is unofficial material and use at your
own risk.

2Note that in Econometrics F depends on the particular sample considered and that
�∗ will be an estimate of the true parameter value. Here I depart from the notations Fn

and �̂n that emphasize these relationships.
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tells us that �∗ has to satisfy some first order and second order conditions
(FOC and SOC), but we are often unable to write down an explicit expres-
sion G, such that: �∗ = G(y,X). If we focus on the FOCs, they define a
functional equation in �∗ that has to be solved numerically and may have
several solutions. The critical points are the zeros of the gradient vector,
ie ∂F

∂� (�∗) = 0k. However, a critical point may not be a global maximum
or even a maximum. We may reach a local maximum, a minimum or
a saddle point. If the last two cases can be ruled out using the Hessian
matrix, the first problem remains. We need to put more structure on our
initial problem. For example, if F () is globally and strictly concave our
problem should have a unique solution, which, if the function is differen-
tiable, corresponds to the FOCs.

In econometric practice, F () is often not so well-behaved and the optimized
functions have very different shapes and characteristics. As a result, the
appropriate numerical method(s) will also change. However, most methods
share the same iterative structure. They iter an initial guess about �∗, the
initial value �(0) until the value �(m) appears to satisfy some defined criteri-
ons or stopping rules. Two main features determine the efficiency of these
algorithms:

∙ The shape of the function F (). Important features are global con-
cavity, the absence of area such that F () is nearly flat 3, the fact that
you are able to differentiate F () to find analytical expression for the
gradient or the Hessian matrix.

1. If the function is not differentiable or even discontinuous4, it is not
possible to rely on local approximation of F such has in Newton-
Raphson and other derivative methods.

2. The presence of local maxima or other critical points will also
influence the convergence of the algorithms towards the global
maximum.

∙ The computational costs of the method

1. The number of iterations (m) to obtain a satisfying value �(m).

2. The number of evaluations of the objective function at each step.

3. The other functions to evaluate at each step (eg. The gradient
and the Hessian for Newton-Raphson) and the easiness to com-
pute them (do these functions have an analytical form or do we
have to rely on a numerical approximation?).

3The Rosenbrock’s function (p95 H8) is the classical example of a nearly flat function.
4This is the case for the Maximum score estimator of Manski.
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These computations may cause some practical problems. Rounding errors
and other approximations may prevent the convergence of an algorithm even
if it should converge to a global maximum 5.

In the problem sets, we have mainly seen two iterative methods(see table 1,
H8, p94): Newton Raphson (NR) and Berndt-Hall-Hall-Hausman (BHHH).
They are based on the following iterations:
�(m) = �(m−1) + S(m)

With S(m) = −H−1(�(m−1)).∂F∂� (�(m−1)) for NR.

And S(m) = [∂F∂� (�(m−1))∂F∂� (�(m−1))t]−1.∂F∂� (�(m−1)) for BHHH.
To compare the 2 methods, let’s see their requirements: (1) in terms of
functional shape F . To compute the steps we need:

∙ F , the gradient and the Hessian of F at �(m−1) for NR. Moreover,
if we want the steps, S(m), to go into a direction of improvement of
F , we need H to be full-rank and negative-semi definite (ie. negative
definite) at each iteration m and not only at the local maxima. This
will be the case for a globally strictly concave function.

∙ F , the gradient of F at �(m−1) for BHHH. Moreover, the steps always
go into a direction of improvement of F , because [∂F∂� (�(m−1))∂F∂� (�(m−1))t]
is positive definite.

Then, (2) we may be interested in the efficiency of the two methods. For
a well behaved quadratic function, NR converges in one step. Indeed, if we
have:
F (�) = a+B.� + �t.C.� with C a negative definite matrix.
Then S(1) = −1/2.C−1.(Bt + 2.C.�(0)) so:
�(0) + S(1) = −1/2.C−1.Bt + (I − C−1.C)�(0) = −1/2.C−1.Bt = �∗. This
shows that NR converges quadratically. Moreover, we expect this method
to works well if a quadratic approximation of F is accurate or if the initial
value, �(0), is in a neighborhood of �∗. However the NR method is com-
putationally intensive as it requires to compute and invert the Hessian
matrix at each step. Here, BHHH is less demanding as it requires only to
compute the gradient of F . But, BHHH can be seen as an approximation of
NR6 and this approximation can be quite bad, especially if �(0) is far from
the optimal value �∗.

Once we are able to compute the steps, we need to check that the final value
�(m) is indeed a global maximum. This may fail for both NR and BHHH.

5This is the case in PS5, question 1.b. We tried to optimize the Poisson likelihood func-
tion which is globally concave. The derivative based method, GRADX, should converge
but appears to fail for some initial values.

6The approximation is based on the information matrix identity if we are trying to
maximize a log-likelihood.
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The stopping rules (convergence test), may lead to a local critical point. It
is important to check the Hessian, try several initial values �(0) and test for
a global minimum (Veall’s test, p94 H8).
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