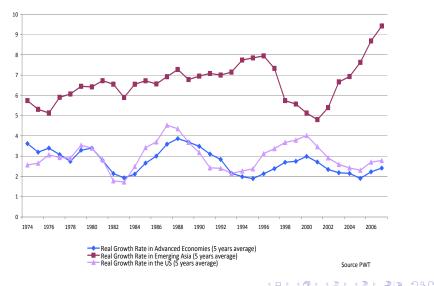
Credit Constraints and Growth in a Global Economy

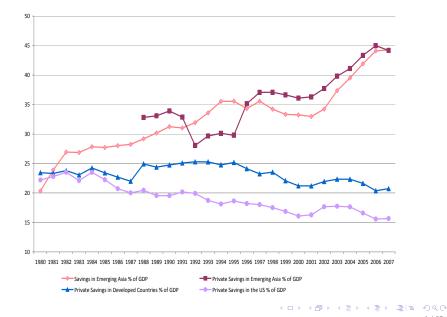
Nicolas Coeurdacier (SciencesPo & CEPR)

Stéphane Guibaud (LSE) Keyu Jin (LSE)

May 2012


◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

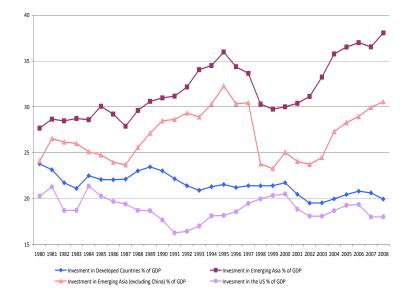
Motivation and stylized facts


- Two of the most striking trends in the past three decades:
 - Financial integration
 - Fast growth in Emerging Asia
- Accompanying trends:
 - 1. An increase in private savings rate in Emerging Asia and a fall in private savings rate in Advanced Economies
 - 2. Global imbalances, large current account surplus in Asia
 - 3. A fall in the world long-term interest rate
- Opposite of what standard open economy models predict.

Fast growth in emerging Asia

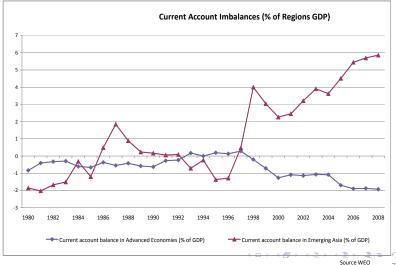
Emerging Asia and Developed Countries Growth Experience

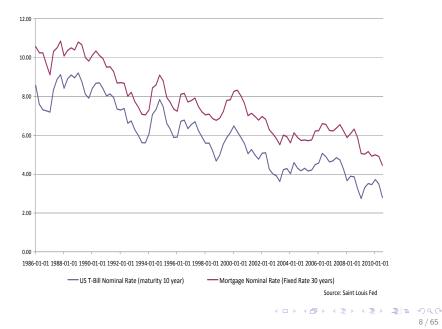
Private savings



Household savings

Households Savings Rate


Investment


6 / 65

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Global imbalances

Long-term interest rates

This paper

- Incorporates household liquidity constraints (the extent of which is asymmetric across countries) into an open economy, general equilibrium OLG model.
- Analyzes the interaction between growth and credit constraints and its impact on the global equilibrium.
- We show that fast growth in Emerging Asia can generate the key trends observed in macro data.
- Main finding: Asymmetric response of saving rates to a fall in world interest rate leads to greater dispersion in saving rates.

Main finding

- Asymmetric credit constraints translate into different weights placed on borrowers vs savers across economies.
 - More constrained economy: greater weight on the savings of the middle-aged, less weight on the (dis)savings of the young.
- A fall in world interest rate causes the young to borrow more and the middle-aged to save more (income effect).
- Different weights on borrowers vs savers lead to asymmetric responses of saving rates across countries.
 - Fall in saving rate in less constrained economy driven by the increased borrowing of the young.
 - Rise in saving rate in more constrained economy driven by the increased savings of the middle-aged.
- We provide micro evidence on saving behavior across age groups for US and China that is broadly supportive of our model predictions.

Related literature

- Allocation puzzle: Gourinchas and Jeanne (2009)
- Investment:
 - Benhima (2009), Song, Storesletten and Zilibotti (2009)
- Saving:
 - Caballero, Farhi and Gourinchas (2008)
 - Mendoza, Quadrini and Rios-Rull (2009), Jeanne and Ranciere (2006), Carroll and Jeanne (2009)
 - Corporate Saving: Benhima and Bachetta (2011), Sandri (2010)
- Closed-economy setup: Jappelli and Pagano (1994)

Model Key ingredients

- One-good model of n large open economies
- OLG structure with three-period lived agents
- = the young 'borrowers', the middle-aged 'workers and savers', the old retired.
- Borrowing constraints: the young can only borrow up to a fraction of their discounted future labor income.
- Asymmetry: tighter credit constraints in Asia
- No uncertainty.

Production

Output in country i

$$Y_t^i = \left(K_t^i\right)^{\alpha} \left(Z_t^i L_{m,t}^i\right)^{1-\alpha} = Z_t^i L_{m,t}^i (k_t^i)^{\alpha}$$

where $\mathbf{k}_{t}^{i} \equiv \frac{\kappa_{t}^{i}}{Z_{t}^{i}L_{m,t}^{i}}$ denotes the capital-effective-labor ratio.

Wages and rental rates of capital

$$w_t^i = (1 - \alpha) Z_t^i (k_t^i)^{\alpha},$$

$$r_{K,t}^i = \alpha (k_t^i)^{\alpha - 1}.$$

Given capital depreciation rate δ, the (gross) rate of return earned between periods t - 1 and t is

$$\mathbf{R}_t^i = 1 - \delta + \mathbf{r}_{K,t}^i.$$

Households

- Lifetime utility of an agent born in period t in country i $U_t^i = u(c_{v,t}^i) + \beta u(c_{m,t+1}^i) + \beta^2 u(c_{o,t+2}^i).$
- ▶ Isoelastic utility with i.e.s coefficient $\sigma \leq 1$

$$u(c) = \frac{c^{1-\frac{1}{\sigma}}-1}{1-\frac{1}{\sigma}}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Household budget constraints

An agent born in period t faces the following sequence of budget constraints:

$$\begin{array}{rcl} c_{y,t}^{i}+a_{y,t+1}^{i}&=&0,\\ c_{m,t+1}^{i}+a_{m,t+2}^{i}&=&w_{t+1}^{i}+R_{t+1}^{i}a_{y,t+1}^{i},\\ c_{o,t+2}^{i}&=&R_{t+2}^{i}a_{m,t+2}^{i}. \end{array}$$

- The old decumulate all their assets (no bequests).
- We also consider extensions with first-period income and bequest motive.

Credit constraints

Young agents can only borrow up to a fraction θⁱ of the present value of their future labor income

$$a_{y,t+1}^i \geq - heta^i rac{w_{t+1}^i}{R_{t+1}^i}$$

(lower $\theta \rightarrow$ tighter credit conditions)

Constraint binding in all i and all t requires

$$\theta^{i} < \frac{\beta^{-2\sigma}(R_{t+1}^{i})^{1-\sigma}(R_{t+2}^{i})^{1-\sigma}}{1+\beta^{-\sigma}(R_{t+2}^{i})^{1-\sigma}[1+\beta^{-\sigma}(R_{t+1}^{i})^{1-\sigma}]}, \quad \text{for all } t.$$

Household asset holdings

Binding credit constraints on the young imply:

$$a_{y,t+1}^{i} = - heta^{i} rac{w_{t+1}^{i}}{R_{t+1}^{i}} \qquad (<0).$$

FOC for the middle-aged gives:

$$a^{i}_{m,t+1} = rac{1}{1+eta^{-\sigma}(R^{i}_{t+1})^{1-\sigma}}(1- heta^{i})w^{i}_{t}.$$

▶ Aggregate asset position of generation $\gamma \in \{y, m\}$ in period t

$$A^{i}_{\gamma,t+1} \equiv L^{i}_{\gamma,t}a^{i}_{\gamma,t+1}$$

Autarky equilibrium

Capital market equilibrium:

$$K_{t+1}^i = A_{y,t+1}^i + A_{m,t+1}^i.$$

 \hookrightarrow difference equation driving the dynamics of k_t^i .

• Example for $\sigma = 1$ and $\delta = 1$:

$$k_{t+1}^{i} = \frac{1}{1+g_{t+1}^{i}} \frac{\beta}{1+\beta} \frac{\alpha(1-\alpha)(1-\theta^{i})}{\alpha+\theta^{i}(1-\alpha)} \left(k_{t}^{i}\right)^{\alpha}.$$

<ロ > < 部 > < き > < き > 毛 = うへで 18/65

Autarky steady state

Special case when $\sigma = 1$ and $\delta = 1$

 Suppose effective labor ZⁱLⁱ_m grows at constant rate gⁱ. The steady state level of kⁱ is

$$k^{i} = \left[\frac{1}{1+g^{i}}\frac{\beta}{1+\beta}\frac{\alpha(1-\alpha)\left(1-\theta^{i}\right)}{\alpha+\theta^{i}(1-\alpha)}\right]^{\frac{1}{1-\alpha}}, \qquad \frac{dk^{i}}{d\theta^{i}} < 0.$$

The autarkic rate of return in the steady-state is

$$R^{i} = (1+g^{i})rac{1+eta}{eta}rac{lpha+ heta^{i}(1-lpha)}{(1-lpha)(1- heta^{i})}.$$

 $\frac{dR^{i}}{d\theta^{i}} >$ 0, i.e., tighter constraints imply lower interest rate

Open-economy equilibrium

Equilibrium condition under financial integration:

$$\sum_{i} K_{t+1}^{i} = \sum_{i} \left(A_{y,t+1}^{i} + A_{m,t+1}^{i} \right).$$

Financial integration in period t implies

$$R_{t+1}^i = R_{t+1}, \quad \text{for all } i.$$

and

$$k_{t+1}^i = k_{t+1}$$
, for all *i*.

Integrated steady state Special case when $\sigma = 1$ and $\delta = 1$

• Steady state:
$$g^i = g$$
, and $\lambda^i \equiv \frac{Z_t^i L_{m,t}^i}{\sum\limits_j Z_t^j L_{m,t}^j}$.

World steady state interest rate:

$$R = (1+g)rac{1+eta}{eta}rac{lpha+ar{ heta}(1-lpha)}{(1-lpha)\left(1-ar{ heta}
ight)}, \qquad ar{ heta} \equiv \sum_i \lambda^i heta^i.$$

(ロ)
 (日)
 (日)

Aggregate saving rates in steady state

$$\frac{S^{i}}{Y^{i}} = -g(1-\alpha)\frac{\theta^{i}}{R} + \frac{g}{1+g}(1-\alpha)\frac{1-\theta^{i}}{1+\beta^{-\sigma}R^{1-\sigma}} + \delta k^{1-\alpha}$$

for (autarkic or integrated) steady-state values of k and R.

- Interaction between g and credit constraints is key.
 - In the absence of growth (g = 0), net saving rates are all zero.
- Under integration, saving rates differ across countries in the long run: saving rate higher in more constrained countries.
- Suppose we start from an integrated steady state and after an episode of high growth in the more constrained countries, the world reaches a new steady state. Lower $\bar{\theta} \rightarrow$ fall in R.
 - Saving rates across countries respond differently:

 $\frac{\partial^2(S/Y)}{\partial\theta\partial R} > 0 \rightarrow \text{ fall in } R \text{ leads to more dispersion in saving rates.}$

Investment

Aggregate investment in country i

$$I_t^i \equiv K_{t+1}^i - (1-\delta)K_t^i$$

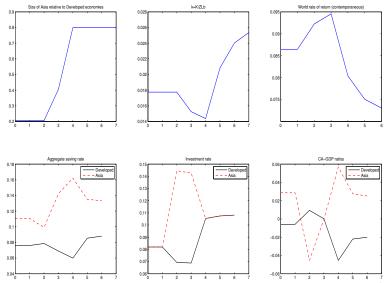
Investment rate:

$$rac{I_t^i}{Y_t^i} = rac{(1+g_{t+1}^i)k_{t+1}^i-(1-\delta)k_t^i}{(k_t^i)^lpha}.$$

• For
$$\delta = 1$$
, $\frac{I_t^i/Y_t^i}{I_t^j/Y_t^j} = \frac{1+g_{t+1}^i}{1+g_{t+1}^j}$ under integration.

Investment rates converge in the long run.

Two-country experiments

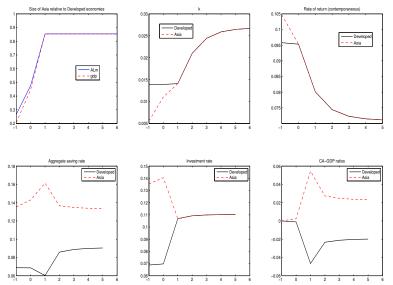

Advanced economies vs. Emerging Asia

Calibration:

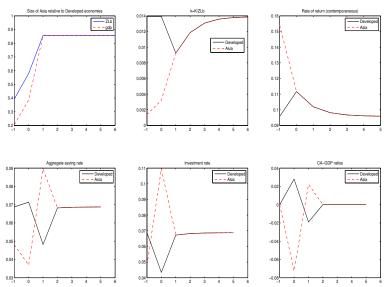
- Each period lasts 20 years.
- Technology: $\alpha = 0.28$, $\delta = 9\%$ on an annual basis.
- Preference parameters: $\beta = 0.97$ on an annual basis, $\sigma = 0.5$.
- Constraints: $\theta_H = 0.25$ (developed) and $\theta_F = 0.03$ (Asia).

- We start from an integrated steady state where Asia accounts for 18% of world output: (ZL)_F/(ZL)_H = 0.21.
- Developed countries grow at g_H = 2.5% throughout, whereas g_F = 6% for two periods (between t = 2 and t = 4).
- ► In the final steady state, Asia accounts for 45% of world output, and both countries grow at g = 2.5%.

Growth experiment

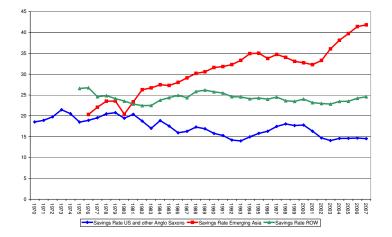


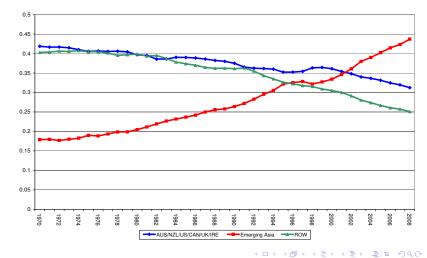
Integration & growth experiment


Timing and calibration

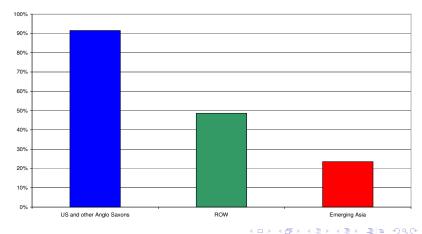
- Financial opening occurs in period 0 (= 1990).
- In initial period −1 (= 1970), advanced economies are at their own autarkic steady state, whereas Asia is capital-scarce.
- ► Assume g_H = 2.5% throughout, and Asia grows faster than advanced economies between periods -1 and 1.
- ► We choose initial values of (ZL)_F/(ZL)_H, k_F/k_H and growth path for Asia to match:
 - Asia's share of advanced economies GDP in 1970 and 2010
 - relative capital-per-efficiency unit of labor measured by Hall and Jones for 1990.

Integration & growth experiment


Role of credit constraint heterogeneity: $\theta_H = \theta_F = 0.25$

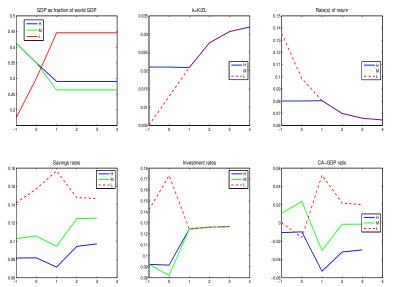

Three-country experiment

- Heterogeneity among developed countries: some large debtors (US, UK, New Zealand, Australia...) and some large creditors (Germany, Japan, Switzerland...).
- We group developed countries in the following way:
 - Group 1: US, UK, IRE, CAN, AUS, NZL
 - Group 2: Rest of developed countries
- Private savings fell mostly in the first group and stayed roughly constant in the second.
- The first group has been growing at a slightly higher rate over the period 1990-2008 (1% more on average)


Saving rates across regions

Growth differentials

Heterogeneity in household debt


Household Debt as a % of GDP

Three-country experiment: Calibration and timing

•
$$\theta_H = 0.25$$
 (US), $\theta_M = 0.125$ (Europe), $\theta_L = 0.03$ (Asia)

- ► In period -1, US and Europe (H & M) are integrated and at their steady state, whereas Asia (L) starts in autarky and is capital-scarce.
- Integration of Asia occurs at t = 0.
- Calibration to GDP data:
 - Initially, $Y_L/Y_W = 0.18$ and $Y_H/Y_W = Y_M/Y_W = 0.41$
 - ▶ US grow at 2.5% throughout
 - Asia grows faster between t = -1 and t = 1
 - Europe experiences slower growth between t = 0 and t = 1.

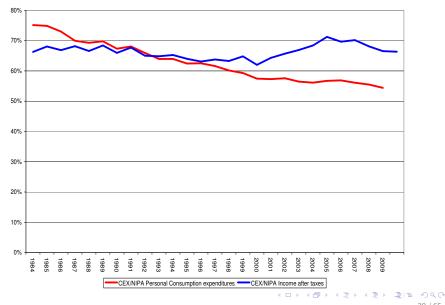
Three-country experiment: Results

Evidence at cohort level

- Our model has implications for the evolution of saving rates by age groups.
- ▶ In the two-country "integration & growth" experiment:

1. the saving rate as function of age, in level and in change, has an inverted-U shape in both Developed Economies and Emerging Asia;

2. the fall in the saving rate of the young dominates in Developed Economies, whereas the rise in the saving rate of the middle-aged dominates in Emerging Asia.

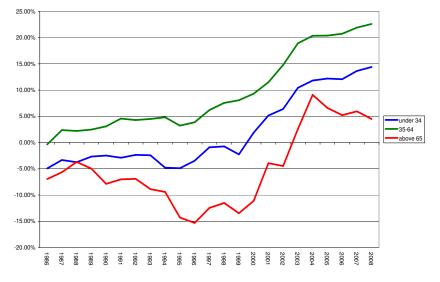

We look at cohort-level data for the US and China to see if these predictions hold.

US Evidence

- We use annual consumption and income data by age groups, over the period 1986-2008.
- Source: Consumer Expenditure Survey (CEX) from the US Bureau of Labor Statistics.
- ► Key concern: CEX data suffer from under-reporting biases.
 - Aggregate CEX consumption and income data do not match with NIPA.
 - See Slesnick (1992), Battistin (2003), Laitner and Silverman (2005), Heathcote, Perri and Violante (2010).
- Whereas income reporting bias remained roughly constant, consumption under-reporting has gotten worse over time.

CEX vs NIPA

Aggregate consumption and income



CEX vs NIPA

Aggregate saving rate

US saving rate by age groups – Unadjusted CEX

Correction method (1)

- ► Let c^{CEX}_{g,t} and y^{CEX}_{g,t} denote average consumption and income in CEX, for age group g in year t.
- ► Let C_t^D and Y_t^D denote aggregate consumption and income in dataset $D \in \{CEX, NIPA\}$.
- Adjustment to consumption:

$$\hat{c}_{g,t} = \frac{C_t^{NIPA}}{C_t^{CEX}} c_{g,t}^{CEX}$$

Adjustment to income:

$$\hat{y}_{g,t} = \frac{Y_t^{NIPA}}{Y_t^{CEX}} y_{g,t}^{CEX}$$

 Potential problem if the degree of under-reporting varies across types of goods AND the composition of the consumption basket varies across age groups.

Correction method (2) Parker et al. (2009)

- Use disaggregated consumption data for 15 sectors.
- For each type of good i, define

$$\chi_{it} = C_{it}^{NIPA} / C_{it}^{CEX}$$

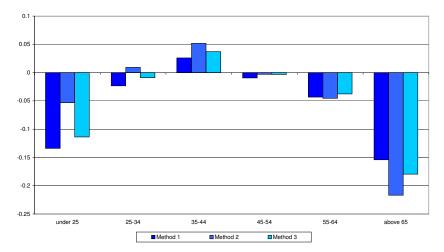
Adjust CEX consumption data to match NIPA in each sector:

$$\hat{c}_{git} = \chi_{it} c_{git}^{CEX}, \qquad \hat{c}_{g,t} = \sum_i \hat{c}_{git}$$

 Problem with health: medical expenses covered by Medicare and Medicaid included in NIPA but not in CEX, χ_{health,t} ≃ 5.
 ⇒ Very large medical expenses are imputed to the old people as "out-of-the-pocket" health expenditures constitute a high share of their consumption basket in CEX (≃ 12%).

Correction method (3)

 To address this problem and still match NIPA aggregate consumption, we use adjustment factor


$$\chi_{health,t} = \frac{\sum_{i \neq health} C_{it}^{NIPA}}{\sum_{i \neq health} C_{it}^{CEX}},$$

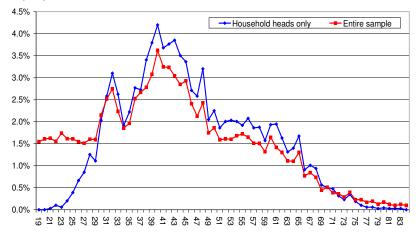
and for other sectors $j \neq health$

$$\chi_{j,t} = \frac{C_{jt}^{NIPA}}{C_{jt}^{CEX}} \left[1 + \frac{C_{health,t}^{NIPA}}{\sum\limits_{i \neq health} C_{it}^{NIPA}} - \frac{C_{health,t}^{CEX}}{\sum\limits_{i \neq health} C_{it}^{CEX}} \right].$$

 Compared to the previous method, the adjustment factor for health is reduced while other factors are slightly increased.

US Evidence

Change in households savings in the US across age groups (1988-2008)


・ロ> <回> <三> <三> <三> <□> <□>

- ► Data from CHIP (1995 and 2002) and UHS (1992-2009).
- Existing evidence goes against standard life-cycle motives and our predictions.
 - Song et al. (2010), Chamon and Prasad (2010), and Chamon, Liu and Prasad (2010).
- Argue that
 - the young have been saving more than the middle-aged in recent years;
 - the increase in Chinese saving rate is driven by the young and people above 50.

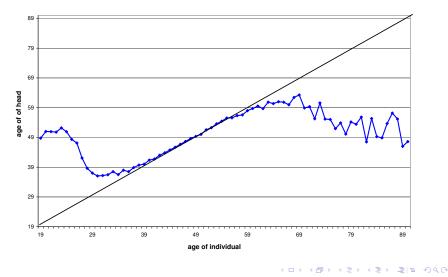
Measurement issues

- Common practice: examine savings at the household level.
- As if average saving rate of households with *head* of age x
 = average saving rate of *individuals* of age x.
- Two issues:
 - Selection bias: household heads might not be random;
 - Aggregation bias: multi-generational households.

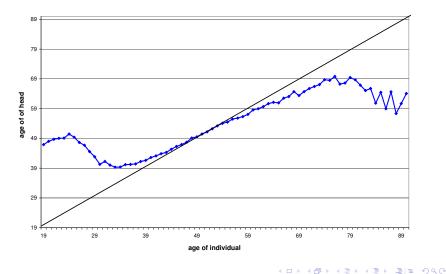
Selection bias – Age distribution (1995)

Frequency of observations

age


Selection bias – Age distribution (2009)

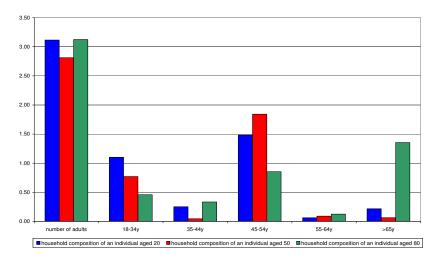
5.0% --- Household heads only --- Entire sample 4.5% 4.0% 3.5% 3.0% 2.5% 2.0% 1.5% A Constant 1.0% 0.5% 0.0%


Frequency of observations

age

Age of individual vs. age of household head (1995)

Age of individual vs. age of household head (2009)



Selection bias: Income premium by age of household head

140% 120% 100% 80% 60% 40% 20% 0% <25 26 28 30 32 58 62 66 68 70 72 74 76 46 48 50 52 54 56 64 78 >80 age

Income premium of households heads in China (in log)

Multi-generational households

Correcting for biases

- Selection bias overstates level and growth of savings of the young.
- Aggregation bias understates level and growth of savings of the middle-aged.
- Correcting for these biases brings the data more in line with our theoretical framework.
- Differences in the evolution of saving rates between US and China broadly supportive of our predictions.

Bias correction methodologies

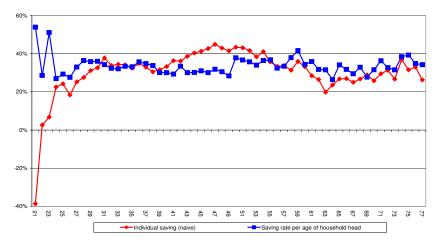
- Main issue: we have individual income but only observe expenditures at household level.
- Crude/naive approach: compute individual expenditures as total household expenditures divided by the number of adults (i.e., income earners above 18).
- Two alternative approaches to correct for biases.
 - Method 1: keep only non-multigenerational households.
 - Method 2: disaggregation method, following Chesher (1997).

Correction method 1

- Method 1: keep only non-multigenerational households to control for aggregation bias.
- To control for selection bias, we reweigh observations according to observables to match aggregate data.
 - We match the income and gender distribution by age.
- Caveat: lack of observations for very young/old, and other selection issues.

Correction method 2

- Method 2: projection method, Chesher (1997)
- The model to be estimated is


$$C_i^{hh} = \sum_{a=18}^{99} \{N_{i,a}C_{i,a}^{ind}\} + \epsilon_i.$$

Roughness-penalized estimation to insure smoothness.

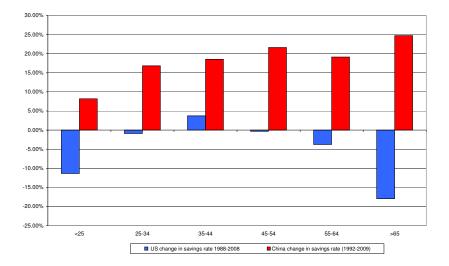
- Caveat: non-interdependence assumption.
- Improvement by adding controls for household characteristics (household income, nb adults, nb children, etc.):

$$C_i^{hh} = \exp(\gamma \cdot \mathbf{Z}_i) \left(\sum_{a=18}^{99} \{ N_{i,a} C_{i,a}^{ind} \} \right) + \epsilon_i.$$

Saving rates by age (2008)

Savings rate per age in China in 2008

Change in individual saving rates by age (1992-2009)


45% 40% 35% 30% 25% 20% 15% 10% 5% 0% <25 25-34 35-44 45-54 55-64 >65 unigen/income & gender naïve chesher

Change in savings rate across age groups in China (1992-2009)

58 / 65

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

Evolution of saving rates by age: US vs. China

Quantitative exercise

Extended setup

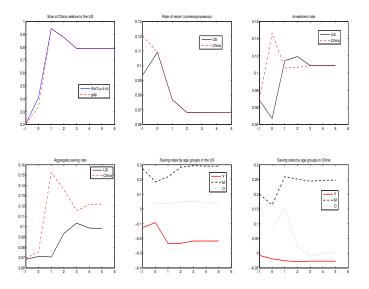
Preferences:

$$U_{t}^{i} = u(c_{y,t}^{i}) + \beta u(c_{m,t+1}^{i}) + \beta^{2} u(c_{o,t+2}^{i}) + \chi \beta^{2} u(b_{t+2}^{i}).$$

Budget constraints:

$$c_{y,t}^{i} + a_{y,t+1}^{i} = w_{y,t}^{i},$$

$$c_{m,t+1}^{i} + a_{m,t+2}^{i} = w_{m,t+1}^{i} + R_{t+1}^{i} a_{y,t+1}^{i} + \frac{b_{t+1}^{i}}{1 + g_{L,t}^{i}},$$

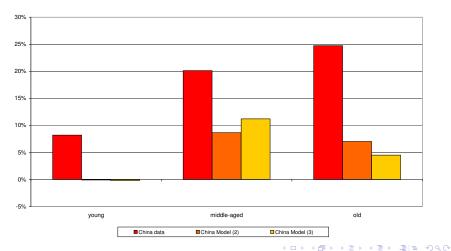

$$c_{o,t+2}^{i} + b_{t+2}^{i} = R_{t+2}^{i} a_{m,t+2}^{i}.$$

Quantitative exercise

Calibration

- Relative productivity shocks young vs. middle-aged to match life income profile in China and the US.
- Demographic shocks to match population structure in China and the US.
- θ_H and bequest motive intensity χ chosen to match levels of saving rates by age group in the US in 1990.
- ► θ_F/θ_H pinned down by ratio of household debt across US and China.
- Productivity shocks and initial capital-labor ratios calibrated as before.

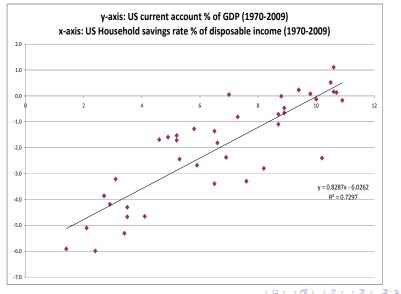
Results (1)



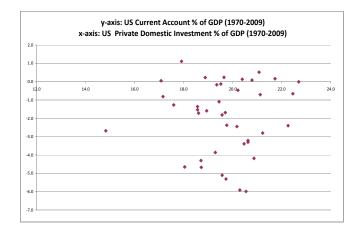
Results (2) Change in saving rates by age in the US

Change in savings rate across age groups US (1988-2008): Data versus Model

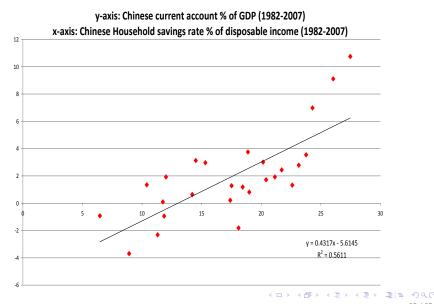
Results (3) Change in saving rates by age in China

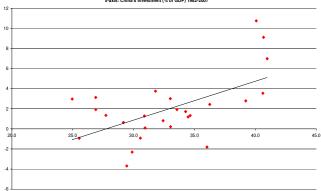

Change in savings rate across age groups China (1992-2009): Data versus Model

Conclusion

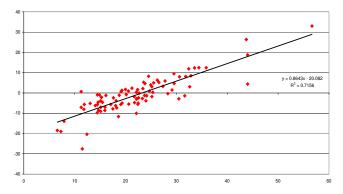

- Capital market integration of emerging countries and fast growth in these countries are two major shocks on global capital markets.
- We show how, unlike in a standard model, this can lead to: (1) a divergence in savings rate across countries, (2) current account deficits in developed countries and surpluses in Emerging Asia, (3) a fall in world interest rates.
- The key mechanism relies on differences in borrowing constraints across countries.
- Three-country experiment consistent with heterogeneity within developed countries.
- Broadly in line with micro evidence for China and US.

APPENDIX


The US experience (1)


The US experience (2)

The Chinese experience (1)



The Chinese experience (2)

y-axis: China's Current Account (% of GDP) 1982-2007 x-axis: China's Investment (% of GDP) 1982-2007

Cross-country evidence on savings as key driver of current account over recent period

y-axis: Current Account as % of GDP averaged over 1998-2007 x-axis: Savings as % of GDP averaged over 1998-2007

> <ロ> < 部> < 書> < 書> < 書) 三日 のへの 71/65

Savings

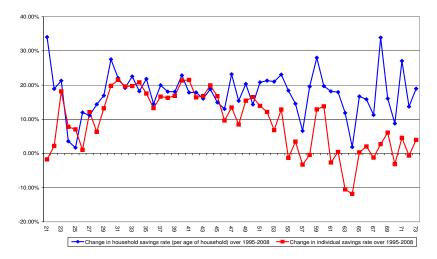
Aggregate savings:

$$S_t^i \equiv Y_t^i + (R_t-1)$$
NFA $_t^i - C_t^i.$

► Note: $Y_t^i = W_t^i + r_{K,t}K_t^i$ and $NFA_t^i = A_{y,t}^i + A_{m,t}^i - K_t^i$.

• We can write $S_t^i = S_{y,t}^i + S_{m,t}^i + S_{o,t}^i$ where

$$\begin{split} S_{y,t}^{i} &= -C_{y,t}^{i}, \\ S_{m,t}^{i} &= W_{t}^{i} + (R_{t}-1)A_{y,t}^{i} - C_{m,t}^{i}, \\ S_{o,t}^{i} &= r_{K,t}K_{t}^{i} + (R_{t}-1)(A_{m,t}^{i} - K_{t}^{i}) - C_{o,t}^{i}. \end{split}$$


Definition

$$CA_t^i \equiv NFA_{t+1}^i - NFA_t^i$$

Equivalently:

$$CA_t^i = S_t^i - I_t^i.$$

Changes in saving rates by age, 1995-2008

