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Course Outline 

This course is run over 5 weeks during this time it is not possible to cover everything – it never is with a program as large and as 

flexible as Stata. Therefore, I shall endeavour to take you from a position of complete novice (some having never seen the 

program before), to a position from which you are confident users who, through practice, can become intermediate and onto 

expert users. 

In order to help you, the course is based around practical examples – these examples use macro data but have no economic 

meaning to them. They are simply there to show you how the program works. There will be some optional exercises, for which 

data is provided on my website – http://personal.lse.ac.uk/lembcke. These are to be completed in your own time, there should be 

some time at the end of each meeting where you can play around with Stata yourself and ask specific questions. 

The course will follow the layout of this handout and the plan is to cover the following topics.  

Week Time/Place Activity 

Week 1 We, 17:30 – 19:30 (S169) Getting started with Stata 

Week 2 We, 17:30 – 19:30 (S169) Database Manipulation and graphs 

Week 3 We, 17:30 – 19:30 (S169) Regression and post-regression analysis 

Week 4 We, 17:30 – 19:30 (S169) Advanced estimation methods in Stata 

Week 5 We, 17:30 – 19:30 (S169) Programming in Stata 

I am very flexible about the actual classes, and I am happy to move at the pace desired by the participants. But if there is anything 

specific that you wish you to ask me, or material that you would like to see covered in greater detail, I am happy to accommodate 

these requests. 

http://personal.lse.ac.uk/lembcke


Getting to Know Stata and Getting Started  

Why Stata? 

There are lots of people who use Stata for their applied econometrics work. But there are also numerous people who use other 

packages (SPSS, Eviews or Microfit for those getting started, RATS/CATS for the time series specialists, or R, Matlab, Gauss, or 

Fortran for the really hardcore). So the first question that you should ask yourself is why should I use Stata?  

Stata is an integrated statistical analysis packaged designed for research professionals. The official website is 

http://www.stata.com/. Its main strengths are handling and manipulating large data sets (e.g. millions of observations!), and it has 

ever-growing capabilities for handling panel and time-series regression analysis. The most recent version is Stata 10 and with 

each version there are improvements in computing speed, capabilities and functionality. It now also has pretty flexible graphics 

capabilities. It is also constantly being updated or advanced by users with a specific need – this means that even if a particular 

regression approach is not a standard feature, you can usually find someone on the web who has written a programme to carry-out 

the analysis and this is easily integrated with your own software.  

What Stata looks like 

The Stata package is located on a software server and can be started by either going through the Start menu (Start – Programs – 

Statistics – Stata10) or by double clicking on wsestata.exe in the W:\Stata10 folder. The current version is Stata 10.  

 

There are 4 different packages available: Stata MP (multi-processor) which is the most powerful, Stata SE (special edition), 

Intercooled STATA and Small STATA. The main difference between these versions is the maximum number of variables, 

regressors and observations that can be handled (see http://www.stata.com/order/options-e.html#difference-sm for details). The 

LSE is currently running the SE-version, version 10.  

Stata is a command-driven package. Although the newest versions also have pull-down menus from which different commands 

can be chosen, the best way to learn Stata is still by typing in the commands. This has the advantage of making the switch to 

programming much easier which will be necessary for any serious econometric work. However, sometimes the exact syntax of a 

command is hard to get right –in these cases, I often use the menu-commands to do it once and then copy the syntax that appears. 

http://www.stata.com/
http://www.stata.com/order/options-e.html#difference-sm


Variables

Do/Ado - Files

Command window

Interactive (Menus)

Output

Save/Export

Stata
Mata
User written

Functions

Stata

MatricesMacrosVariables

Data

Stata: dta
Excel: xls, csv
Ascii: csv, dat, txt
etc…

Text: string
Numbers:  integer

double
byte

global 
local
tempvar/name/file

matrix
vector
scalar

You can enter commands in either of three ways:  
- Interactively: you click through the menu on top of the screen 

- Manually: you type the first command in the command window and execute it, then the next, and so on.  

- Do-file: type up a list of commands in a “do-file”, essentially a computer programme, and execute the do-file.  

The vast majority of your work should use do-files. If you have a long list of commands, executing a do-file once is a lot quicker 

than executing several commands one after another. Furthermore, the do-file is a permanent record of all your commands and the 

order in which you ran them. This is useful if you need to “tweak” things or correct mistakes – instead of inputting all the 

commands again one after another, just amend the do-file and re-run it. Working interactively is useful for “I wonder what 

happens if …?” situations. When you find out what happens, you can then add the appropriate command to your do-file. To start 

with we’ll work interactively, and once you get the hang of that we will move on to do-files.  

Data in Stata 

Stata is a versatile program that can read several different types of data. Mainly files in its own dta format, but also raw data saved 

in plain text format (ASCII format). Every program you use (i.e. Excel or other statistical packages) will allow you to export your 

data in some kind of ASCII file. So you should be able to load all data into Stata.  

When you enter the data in Stata it will be in the form of variables. Variables are organized as column vectors with individual 

observations in each row. They can hold numeric data as well as strings. Each row is associated with one observation, that is the 

5th row in each variable holds the information of the 5th individual, country, firm or whatever information you data entails. 

Information in Stata is usually and most efficiently stored in variables. But in some cases it might be easier to use other forms of 

storage. The other two forms of storage you might find useful are matrices and macros. Matrices have rows and columns that are 

not associated with any observations. You can for example store an estimated coefficient vector as a k × 1 matrix (i.e. a column 

vector) or the variance matrix which is k × k. Matrices use more memory then variables and the size of matrices is limited 11,000 

(800 in Stata/IC), but your memory will probably run out before you hit that limit. You should therefore use matrices sparingly.  

The third option you have is to use macros. Macros are in Stata what variables are in other programming languages, i.e. named 

containers for information of any kind. Macros come in two different flavours, local or temporary and global. Global macros stay 

in the system and once set, can be accessed by all your commands. Local macros and temporary objects are only created within a 

certain environment and only exist within that environment. If you use a local macro in a do-file it, you can only use it for code 

within that do-file.  



Getting help 

Stata is a command driven language – there are over 500 different commands and each has a particular syntax required to get any 

various options. Learning these commands is a time-consuming process but it is not hard. At the end of each class notes I shall try 

to list the commands that we have covered but there is no way we will cover all of them in this short introductory course. Luckily 

though, Stata has a fantastic options for getting help. In fact, most of your learning to use Stata will take the form of self-teaching 

by using manuals, the web, colleagues and Stata’s own help function.  

Manuals 

The Stata manuals are available in MA – many people have them on their desks. The User Manual provides an overall view on 

using Stata. There are also a number of Reference Volumes, which are basically encyclopaedias of all the different commands and 

all you ever needed to know about each one. If you want to find information on a particular command or a particular econometric 

technique, you should first look up the index at the back of any manual to find which volumes have the relevant information. 

Finally, there is a separate Graphics Manual, panel data manual (cross-sectional time-series) and one on survey data. 

Stata’s in-built help and website 

Stata also has an abbreviated version of its manuals built-in. Click on Help, then Contents. Stata’s website has a very useful FAQ 

section at http://www.stata.com/support/faqs/. Both the in-built help and the FAQs can be simultaneously searched from within 

Stata itself (see menu Help>Search). Stata’s website also has a list of helpful links at http://www.stata.com/links/resources1.html. 

The web 

As with everything nowadays, the web is a great place to look to resolve problems. There are numerous chat-rooms about Stata 

commands, and plenty of authors put new programmes on their websites. Google should help you here. 

Colleagues 

The other place where you can learn a lot is from speaking to colleagues who are more familiar with Stata functions than you are 

– the LSE is littered with people who spend large parts of their days typing different commands into Stata, you should make use 

of them if you get really stuck. 

http://www.stata.com/support/faqs/
http://www.stata.com/links/resources1.html


Directories and folders 

Like Dos, Linux, Unix and Windows, Stata can organise files in a tree-style directory with different folders. You should use this 

to organise your work in order to make it easier to find things at a later date. For example, create a folder “data” to hold all the 

datasets you use, sub-folders for each dataset, and so on. You can use some Dos and Linux/Unix commands in Stata, including: 

. cd “H:\ECStata”  - change directory to “H:\ECStata”  

. mkdir “FirstSession”  - creates a new directory within the current one (here, H:\ECStata)  

. dir  - list contents of directory or folder (you can also use the linux/unix command: ls) 

Note, Stata is case sensitive, so it will not recognise the command CD or Cd. Also, quotes are only needed if the directory or 

folder name has spaces in it – “h:\temp\first folder” – but it’s a good habit to use them all the time.  

Another aspect you want to consider is whether you use absolute or relative file paths when working with Stata. Absolute file 

paths include the complete address of a file or folder. The cd command in the previous example is followed by an absolute path. 

The relative file path on the other hand gives the location of a file or folder relative to the folder that you are currently working in. 

In the previous example mkdir is followed by a relative path. We could have equivalently typed:  

. mkdir “H:\ECStata\FirstSession” 

Using relative paths is advantageous if you are working on different computers (i.e. your PC at home and a library PC or a 

server). This is important when you work on a larger or co-authored project, a topic we will come back to when considering 

project management. Also note that while Windows and Dos use a backslash “\” to separate folders, Linux and Unix use a slash 

“/”. This will give you trouble if you work with Stata on a server (ARC at the LSE). Since Windows is able to understand a slash 

as a separator, I suggest that you use slashes instead of backslashes when working with relative paths. 

. mkdir “/FirstSession/Data” - create a directory “Data” in the folder H:\ECStata\FirstSession 

Reading data into Stata 

When you read data into Stata what happens is that Stata puts a copy of the data into the memory (RAM) of your PC. All changes 

you make to the data are only temporary, i.e. they will be lost once you close Stata, unless you save the data. Since all analysis is 

contacted within the limitations of the memory, this is usually the bottle neck when working with large data sets. There are 

different ways of reading or entering data into Stata: 

use 

If your data is in Stata format, then simply read it in as follows: 

. use "H:\ECStata\G7 less Germany pwt 90-2000.dta", clear  

The clear option will clear the revised dataset currently in memory before opening the other one.  

Or if you changed the directory already, the command can exclude the directory mapping: 

. use "G7 less Germany pwt 90-2000.dta", clear 

insheet  

If your data is originally in Excel or some other format, you need to prepare the data before reading it directly into Stata. You 

need to save the data in the other package (e.g. Excel) as either a csv (comma separated values ASCII text) or txt (tab-delimited 

ASCII text) file. There are some ground-rules to be followed when saving a csv- or txt-file for reading into Stata: 

- The first line in the spreadsheet should have the variable names, e.g. series/code/name, and the second line onwards should 

have the data. If the top row of the file contains a title then delete this row before saving. 

- Any extra lines below the data or to the right of the data (e.g. footnotes) will also be read in by Stata, so make sure that only 

the data itself is in the spreadsheet before saving. If necessary, select all the bottom rows and/or right-hand columns and 

delete them. 

- The variable names cannot begin with a number. If the file is laid out with years (e.g. 1980, 1985, 1990, 1995) on the top 

line, then Stata will run into problems. In such instances you can for example, place an underscore in front of each number 

(e.g. select the row and use the spreadsheet package’s “find and replace” tools): 1980 becomes _1980 and so on. 

- Make sure there are no commas in the data as it will confuse Stata about where rows and columns start and finish (again, use 



“find and replace” to delete any commas before saving – you can select the entire worksheet in Excel by clicking on the 

empty box in the top-left corner, just above 1 and to the left of A). 

- Some notations for missing values can confuse Stata, e.g. it will read double dots (..) or hyphens (-) as text. Use find & 

replace to replace such symbols with single dots (.) or simply to delete them altogether.  

Once the csv- or txt-file is saved, you then read it into Stata using the command: 

. insheet using "H:\ECStata\G7 less Germany pwt 90-2000.txt", clear 

Note that if we had already changed to H:\ECStata using the cd command, we could simply type: 

. insheet using "G7 less Germany pwt 90-2000.txt", clear 

There are a few useful options for the insheet command (“options” in Stata are additional features of standard commands, usually 

appended after the command and separated by a comma – we will see many more of these). The first option is clear which 

you can use if you want to insheet a new file while there is still data in memory: 

. insheet using "H:\ECStata\G7 less Germany pwt 90-2000.txt", clear  

Alternatively, you could first erase the data in memory using the command clear and then insheet as before. 

The second option, names, tells Stata that the file you insheet contains the variable names in the first row. Normally, Stata should 

recognise this itself but sometimes it simply doesn’t – in these cases names forces Stata to use the first line in your data for 

variable names: 

. insheet using "F:\Stata classes\G7 less Germany pwt 90-2000.txt", names clear  

Finally, the option delimiter(“char”) tells Stata which delimiter is used in the data you want to insheet. Stata’s insheet 

automatically recognises tab- and comma-delimited data but sometimes different delimiters are used in datasets (such as “;”): 

. insheet using “h:\wdi-sample.txt”, delimiter(“;”) 

infix 

While comma separated or tab delimited data is very common today, older data is often saved in a fixed ASCII format. The data 

cannot be read directly but a codebook is necessary that explains how the data is stored. An example for data that is stored this 

way is the U.S. National Health Interview Survey (NHIS).  The first two lines of one of the 1986 wave look like this: 

10861096028901    05 011  1  02130103000000000000000000001 

10861096028902    05 011  1  02140103000000000000000000001 

The codebook (usually a pdf or txt file) that accompanies the data tells you that the first 2 numbers code the record type, the 

following 2 numbers are the survey year (here 1986), the fifth number is the quarter (here the first quarter) of the interview and so 

on. 

To read this type of data into Stata we need to use the infix command and provide Stata with the information from the 

codebook.  

. infix rectype 1-2 year 3-4 quarter 5 […] using “H:\ECStata\NHIS1986.dat”, clear 

Since there are a lot of files it my be more convenient to save the codebook information in a separate file, a so called “dictionary 

file”. The file would look like this: 

infix dictionary using NHIS1986.dat { 

 rectype 1-2 

 year 3-4 

 quarter 5 

 […] 

} 

After setting up this file we would save it as NHIS1986.dct and use it in the infix command. Note that we used a relative path in 

the dictionary file, i.e. by not stating a file path for NHIS1986.dat we assume that the raw data is located in the same directory as 

the dictionary file. With the dictionary file we do not need to refer to the data directly anymore: 

. infix using “H:\ECStata\NHIS1986.dct”, clear 



Since setting up dictionary files is a lot of work, we are lucky that for the NHIS there exists already a dictionary file that can be 

read with SAS (a program similar to Stata). After reading the data into SAS and saving it we can use a tool called Stat/Transfer to 

convert the file into the Stata data format. 

Stat/Transfer program 

This is a separate package that can be used to convert a variety of different file-types into other formats, e.g. SAS or Excel into 

Stata or vice versa. You should take great care to examine the converted data thoroughly to ensure it was converted properly.  

It is used in a very user-friendly way (see screen shot below) and is useful for changing data between lots of different packages 

and format.  

 

Manual typing or copy-and-paste  

If you can open the data in Excel, you can usually copy and paste the data into the Stata data editor. All you need to do is select 

the columns in Excel; copy them; open the Stata data editor; and paste. This works usually quite well but entails certain pitfalls. 

The data format might not turn out to be correct, missing values might not be accounted for properly and in some cases language 

issues might arise (in some countries a comma rather than a decimal point is used).  

Manually typing in the data is the tedious last resort – if the data is not available in electronic format, you may have to type it in 

manually. Start the Stata program and use the edit command – this brings up a spreadsheet-like where you can enter new data or 

edit existing data.  

This can be done directly by typing the variables into the window, or indirectly using the input command. 



Variable and data types  

Indicator or data variables 

You can see the contents of a data file using the browse or edit command. The underlying numbers are stored in “data 

variables”, e.g. the cgdp variable contains national income data and the pop variable contains population data. To know what 

each data-point refers to, you also need at least one “indicator variable”, in our case countryisocode (or country) and year tell us 

what country and year each particular gdp and population figure refers to. The data might then look as follows: 

country countryisocode year pop cgdp openc 

Canada CAN 1990 27700.9 19653.69 51.87665 

France FRA 1990 58026.1 17402.55 43.46339 

Italy ITA 1990 56719.2 16817.21 39.44491 

Japan JPN 1990 123540 19431.34 19.81217 

United Kingdom GBR 1990 57561 15930.71 50.62695 

United States USA 1990 249981 23004.95 20.61974 

This layout ensures that each data-point is on a different row, which is necessary to make Stata commands work properly.  

Numeric or string data 

Stata stores or formats data in either of two ways – numeric or string. Numeric will store numbers while string will store text (it 

can also be used to store numbers, but you will not be able to perform numerical analysis on those numbers).  

Numeric storage can be a bit complicated. Underneath its Windows platform, Stata, like any computer program, stores numbers in 

binary format using 1’s and 0’s. Binary numbers tend to take up a lot of space, so Stata will try to store the data in a more compact 

format. The different formats or storage types are:  

byte : integer between -127 and 100 e.g. dummy variable   

int : integer between -32,767 and 32,740 e.g. year variable  

long : integer between -2,147,483,647 and 2,147,483,620 e.g. population data  

float : real number with about 8 digits of accuracy e.g. production output data  

double : real number with about 16 digits of accuracy  

The Stata default is “float”, and this is accurate enough for most work. However, for critical work you should make sure that your 

data is “double”. Note, making all your numerical variables “double” can be used as an insurance policy against inaccuracy, but 

with large data-files this strategy can make the file very unwieldy – it can take up lots of hard-disk space and can slow down the 

running of Stata. Also, if space is at a premium, you should store integer variables as “byte” or “int”, where appropriate.  

The largest 27 numbers of each numeric format are reserved for missing values. For byte the standard missing value is 101, which 

will be represented by a dot (.) in Stata. Later when we evaluate logic expressions we need to account for this. 

String is arguably more straightforward – any variable can be designated as a string variable and can contain up to 244 characters, 

e.g. the variable name contains the names of the different countries. Sometimes, you might want to store numeric variables as 

strings, too. For example, your dataset might contain an indicator variable id which takes on 9-digit values. If id were stored in 

float format (which is accurate up to only 8 digits), you may encounter situations where different id codes are rounded to the 

same amount. Since we do not perform any calculations on id we could just as well store it in string format and avoid such 

problems.  

To preserve space, only store a variable with the minimum string necessary – so the longest named name is “United Kingdom” 

with 14 letters (including the space). A quick way to store variables in their most efficient format is to use the compress 

command – this goes through every observation of a variable and decides the least space-consuming format without sacrificing 

the current level of accuracy in the data.  

. compress  

Missing values  

Missing numeric observations are denoted by a single dot (.), missing string observations are denoted by blank double quotes 

(“”). For programming purposes different types of missing values can be defined (up to 27) but this will rarely matter in applied 

work. 



Examining the data  

It is a good idea to examine your data when you first read it into Stata – you should check that all the variables and observations 

are there and in the correct format. 

List  

As we have seen, the browse and edit commands start a pop-up window in which you can examine the raw data. You can 

also examine it within the results window using the list command – although listing the entire dataset is only feasible if it is 

small. If the dataset is large, you can use some options to make list more useable. For example, list just some of the variables:  

. list country* year year pop 

     +--------------------------------------------+ 

     |        country   countr~e   year       pop | 

     |--------------------------------------------| 

  1. |         Canada        CAN   1990   27700.9 | 

  2. |         France        FRA   1990   58026.1 | 

  3. |          Italy        ITA   1990   56719.2 | 

  4. |          Japan        JPN   1990    123540 | 

  5. | United Kingdom        GBR   1990     57561 | 

     |--------------------------------------------| 

  6. |  United States        USA   1990    249981 | 

  7. |         Canada        CAN   1991   28030.9 | 

  8. |         France        FRA   1991   58315.8 | 

  9. |          Italy        ITA   1991   56750.7 | 

 10. |          Japan        JPN   1991    123920 | 

     |--------------------------------------------|  

The star after “country” works as a place holder and tells Stata to include all variables that start with “country”. 

Alternatively we could focus on all variables but list only a limited number of observations. For example the observation 45 to 49:   

. list in 45/49 

Or both:  

. list country countryisocode year pop in 45/49 

     +--------------------------------------------+ 

     |        country   countr~e   year       pop | 

     |--------------------------------------------| 

 45. |          Italy        ITA   1997   57512.2 | 

 46. |          Japan        JPN   1997    126166 | 

 47. | United Kingdom        GBR   1997     59014 | 

 48. |  United States        USA   1997    268087 | 

 49. |         Canada        CAN   1998     30248 | 

     |--------------------------------------------| 

Subsetting the data (if and in qualifiers) 

In the previous section we used the “in” qualifier. The qualifier ensures that commands apply only to a certain subset of the data. 

The “in” qualifier is followed by a range of observations. 

. list in 45/49 

. list in 50/l 

. list in -10/l 

The first command lists observations 45 to 49, the second the observations from 50 until the last observation (lower case l) and the 

last command lists the last ten observations. 

A second way of subsetting the data is the “if” qualifier (more on this later on). The qualifier is followed by an expression that 

evaluates either to “true” or “false” (i.e. 1 or 0). We could for example list only the observations for 1997: 

. list if year == 1997 

 



Browse/Edit 

We have already seen that browse starts a pop-up window in which you can examine the raw data. Most of the time we only 

want to view a few variables at a time however, especially in large datasets with a large number of variables. In such cases, 

simply list the variables you want to examine after browse: 

. browse name year pop 

The difference with edit is that this allows you to manually change the dataset. 

Assert  

With large datasets, it often is impossible to check every single observation using list or browse. Stata has a number of 

additional commands to examine data which are described in the following. A first useful command is assert which verifies 

whether a certain statement is true or false. For example, you might want to check whether all population (pop) values are 

positive as they should be: 

. assert pop>0 

. assert pop<0 

If the statement is true, assert does not yield any output on the screen. If it is false, assert gives an error message and the 

number of contradictions. 

Describe  

This reports some basic information about the dataset and its variables (size, number of variables and observations, storage types 

of variables etc.). 

. describe 

Note that you can use the describe command for a file that hasn’t yet been read into Stata:  

. describe using “H:\wdi-sample.dta”  

Codebook  

This provides extra information on the variables, such as summary statistics of numerics, example data-points of strings, and so 

on. Codebook without a list of variables will give information on all variables in the dataset.  

. codebook country 

Summarize  

This provides summary statistics, such as means, standard deviations, and so on.  

. summarize 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

     country |         0 

countryiso~e |         0 

        year |        66        1995     3.18651       1990       2000 

         pop |        66    98797.46    79609.33    27700.9     275423 

        cgdp |        66    22293.23    4122.682   15930.71   35618.67 

-------------+-------------------------------------------------------- 

       openc |        66    42.54479    18.64472   15.91972   86.80463 

       csave |        66    24.31195    5.469772    16.2536   37.80159 

          ki |        66    23.52645    4.634476   17.00269   35.12778 

     grgdpch |        66    1.582974    1.858131  -3.981008   5.172524  

Note that code and name are string variables with no numbers, so no summary statistics are reported for them. Also, year is a 

numeric, so it has summary statistics. Additional information about the distribution of the variable can be obtained using the 

detail option:  

. summarize, detail 



Tabulate  

This is a versatile command that can be used, for example, to produce a frequency table of one variable or a cross-tab of two 

variables.  

. tab name 

          Name |      Freq.     Percent        Cum. 

---------------+----------------------------------- 

        Canada |         10       14.29       14.29 

        France |         10       14.29       28.57 

       Germany |         10       14.29       42.86 

         Italy |         10       14.29       57.14 

         Japan |         10       14.29       71.43 

United Kingdom |         10       14.29       85.71 

 United States |         10       14.29      100.00 

---------------+----------------------------------- 

         Total |         70      100.00 

We can use the tabulate command combined with the sum(varname) option to gain a quick idea of the descriptive statistics 

of certain subgroups. For example the average population of all G7 countries (except Germany) in all years: 

. tab year, sum(pop) 

            |           Summary of POP 

       year |        Mean   Std. Dev.       Freq. 

------------+------------------------------------ 

       1990 |   95588.034   81969.389           6 

       1991 |     96250.4   82904.603           6 

       1992 |   96930.667   83847.404           6 

       1993 |    97603.95   84778.438           6 

       1994 |   98222.017   85639.914           6 

       1995 |   98872.683   86510.583           6 

       1996 |   99462.834    87354.77           6 

       1997 |   100083.63   88256.404           6 

       1998 |   100676.85   89128.951           6 

       1999 |   101246.45   89981.306           6 

       2000 |   101834.58   90824.442           6 

------------+------------------------------------ 

      Total |   98797.464   79609.332          66 

There are also options to get the row, column and cell percentages as well as chi-square and other statistics – check the Stata 

manuals or on-line help for more information.  

Inspect  

This is another way to eyeball the distribution of a variable, including as it does a mini-histogram. Also useful for identifying 

outliers or unusual values, or for spotting non-integers in a variable that should only contain integers.  

. inspect cgdp 

 

cgdp:                                          Number of Observations 

-------                                                            Non- 

                                               Total   Integers    Integers 

|      #                        Negative           -         -          - 

|  #   #                        Zero               -         -          - 

|  #   #                        Positive          66         -         66 

|  #   #                                       -----     -----      ----- 

|  #   #   #                    Total             66         -         66 

|  #   #   #   .   .            Missing            - 

+----------------------                        ----- 

15930.71       35618.67                           66 

  (66 unique values)  

  



Graph  

Stata has very comprehensive graphics capabilities (type “help graph” for more details). You can graph a simple histogram with 

the command:  

. graph twoway histogram cgdp 

Or a two-way scatterplot using:  

. graph twoway scatter cgdp pop 

While graphs in Stata 9 and Stata 10 have the advantage of looking quite fancy, they are also very slow. Often, you just want to 

visualise data without actually using the output in a paper or presentation. In this case, it is useful to switch to version 7 graphics 

which are much faster: 

. graph7 cgdp pop 

Saving the dataset  

The command is simply save:  

. save "H:\ECStata\G7 less Germany pwt 90-2000.dta", replace 

The replace option overwrites any previous version of the file in the directory you try saving to. If you want to keep an old 

version as back-up, you should save under a different name, such as “new_G7”. Note that the only way to alter the original file 

permanently is to save the revised dataset. Thus, if you make some changes but then decide you want to restart, just re-open the 

original file. 

Preserve and restore  

If you are going to make some revisions but are unsure of whether or not you will keep them, then you have two options. First, 

you can save the current version, make the revisions, and if you decide not to keep them, just re-open the saved version. Second, 

you can use the preserve and restore commands; preserve will take a “photocopy” of the dataset as it stands and if you 

want to revert back to that copy later on, just type restore.  



Keeping track of things  

Stata has a number of tools to help you keep track of what work you did to datasets, what’s in the datasets, and so on.  

Do-files and log-files  

Instead of typing commands one-by-one interactively, you can type them all in one go within a do-file and simply run the do-file 

once. The results of each command can be recorded in a log-file for review when the do-file is finished running.  

Do-files can be written in any text editor, such as Word or Notepad. Stata also has its own editor built in – click the icon along the 

top of the screen with the pad-and-pencil logo (although it looks like an envelope to me). Most do-files follow the following 

format:  

clear  
cd “c:\projects\project1\”  
capture log close  
log using class.log, replace  
set more off  
set memory 100m  

 

LIST OF COMMANDS  
 

log close  

To explain the different commands:  

clear – clears any data currently in Stata’s memory. If you try opening a datafile when one is already open, you get the error 

message: no; data in memory would be lost  

cd c:\projects\project1\ - sets the default directory where Stata will look for any files you try to open and save any 

files you try to save. So, if you type use wdi-sample.dta, Stata will look for it in this folder. If, during the session, you 

want to access a different directory, then just type out its destination in full, e.g. use “c:\data\production.dta” 

will look for the file in the c:\data folder. Note again that if you use spaces in file or directory names, you must include 

the file path in inverted commas. 

capture log close – closes any log-files that you might have accidentally left open. If there were no log-file actually 

open, then the command log close on its own would stop the do-file running and give the error message: no log 

file open. Using capture tells Stata to ignore any error messages and keep going.  

log using class1.log, replace – starts a log-file of all the results. The replace option overwrites any log file of 

the same name, so if you re-run an updated do-file again the old log-file will be replaced with the updated results. If, instead, 

you want to add the new log-file to the end of previous versions, then use the append option.  

set more off – when there are a lot of results in the results window, Stata pauses the do-file to give you a chance to review 

each page on-screen and you have to press a key to get more. This command tells Stata to run the entire do-file without 

pausing. You can then review the results in the log file.  

set memory 100m – Stata’s default memory may not be big enough to handle large datafiles. Trying to open a file that is too 

large returns a long error message beginning: no room to add more observations. You can adjust the memory 

size to suit. First check the size of the file using the describe command (remember that you can use describe for a file 

that hasn’t yet been read into Stata). This reports the size of the file in bytes. Then set memory just a bit bigger. Note, setting 

it too large can take the PC’s memory away from other applications and slow the computer down, so only set it as large as 

necessary. For example, describe using “c:\data\WDI-sampe.dta” reports the size of the file to be 2,730 

bytes, so set memory 1m should be sufficient.  

log close – closes the log file.  

It is good practice to keep extensive notes within your do-file so that when you look back over it you know what you were trying 

to achieve with each command or set of commands. You can insert comments in two different ways:  

//  

Stata will ignore a line if it starts with two consecutive slashes (or with an asterisk *), so you can type whatever you like on that 

line. Note, comments are also useful for getting Stata to temporarily ignore commands – if you decide later to re-insert the 

command into your do-file, just delete the slashes or the asterisk.  

/* */  

You can place notes after a command by inserting it inside these pseudo-parentheses, for example:  



. use “c:\data\WDI-sample.dta”, clear /* opens 1998 production data */  

These pseudo-parentheses are also useful for temporarily blocking a whole set of commands – place /* at the beginning of the 

first command, */ at the end of the last, and Stata will just skip over them all.  

Labels  

You can put labels on datasets, variables or values – this helps to make it clear exactly what the dataset contains.  

A dataset label of up to 80 characters can be used to tell you the data source, it’s coverage, and so on. This label will then appear 

when you describe the dataset. For example, try the following:  

. label data " Data from Penn World Tables 6.1" 

. describe 

Variable names tend to be short – you can use up to 32 characters, but for ease of use it’s best to stick to about 8 or 10 as a 

maximum. This can give rise to confusion about what the variable actually represents – what exactly is gdp and in what units is 

it measured? Which is where variable labels, with a capacity of 80 characters, come in.  

. label variable cgdp "GDP per capita in constant international dollars" 

 

It can also be helpful to label different values. Imagine countries were coded as numbers (which is the case in many datasets). In 

this case, a tabulation may be confusing – what country does 1 represent, or 2 or 3?  

. tabulate code 

 

       code |      Freq.     Percent        Cum. 

------------+----------------------------------- 

          1 |         10       33.33       33.33 

          2 |         10       33.33       66.67 

          3 |         10       33.33      100.00 

------------+----------------------------------- 

      Total |         30      100.00 

It might be better to label exactly what each value represents. This is achieved by first “defining” a label (giving it a name and 

specifying the mapping), then associating that label with a variable. This means that the same label can be associated with several 

variables – useful if there are several “yes/no/maybe” variables, for example. The label name itself can be up to 32 characters long 

(e.g. countrycode), and each value label must be no more than 80 characters long (e.g. “France” or “Italy”).  

. label define countrycode 1 "Canada" 2 "Germany" 3 "France"  

. label values code countrycode  

Now, the tabulation should make more sense:  

. tabulate code 

 

       code |      Freq.     Percent        Cum. 

------------+----------------------------------- 

     Canada |         10       33.33       33.33 

    Germany |         10       33.33       66.67 

     France |         10       33.33      100.00 

------------+----------------------------------- 

      Total |         30      100.00 

see what each code represents, use codebook or:  

. label list countrycode 

countrycode: 

           1 Canada 

           2 Germany 

           3 France 



Notes  

You can also add Post-it notes to your dataset or to individual variables to, for example, remind you of the source of the data, or to 

remind you of work you did or intend to do on a variable.  

. note: data from PWT 

. note cgdp: This is per capita variable 

You can also time-stamp these notes:  

. note cgdp: TS need to add Germany to complete the G7 

Review your notes by simply typing notes:  

. notes  
 

_dta: 

  1.  data from PWT 

 

cgdp: 

  1.  This is per capita variable 

  2.  15 Feb 2006 13:01 need to add Germany to complete the G7 

Stata will also tell you that there are notes when you use describe:  

. describe 

You can also delete notes. To drop all notes attached to a variable:  

. note drop cgdp  

To drop just one in particular:  

. note drop cgdp in 2  

Review  

One final tool for keeping track is reviewing a list of previous commands. To see the last four, for example:  

. #review 4  

This is especially useful if you are working in interactive mode on a “what happens if…”. When you are happy with the sequence 

of commands you’ve tried, you can review, then cut and paste into your do-file.  

  



Some shortcuts for working with Stata  

 Most commands can be abbreviated, which saves some typing. For example: summarize to sum, tabulate to 

tab, save to sa. The abbreviations are denoted by the underlined part of the command in Stata help or the Stata 

manuals.  
 You can also abbreviate variable names when typing. This should be used with caution, as Stata may choose a 

variable different to the one you intended. For example, suppose you have a dataset with the variables pop, 

popurban and poprural. If you want summary statistics for popurban, the command sum pop will actually 

give statistics for the pop variable. An alternative is to type in part of the variable name and then hit the tabulator 

key. Stata will fill in the rest of the variable name until ambiguity arises. In this example typing in po and hitting the 

tabulator key results in Stata putting in pop, typing in popr and hitting the tab key will give poprural. 

 Stata’s default file type is .dta, so you don’t need to type that when opening or saving Stata files: 

sa “G7 less Germany pwt 90-2000” is the same as sa “G7 less Germany pwt 90-2000.dta” 

 You can save retyping commands or variable names by clicking on them in the review and variable windows – they 

will then appear in the command window. You can also cycle back and forth through previous commands using the 

PageUp and PageDown keys on your keyboard. Similarly, variable names can be easily entered by clicking on them in 

the Variables Window (bottom-left of the screen).  
 Over time, you will find yourself using the same commands or the same sequence of commands again and again, e.g. 

the list of commands at the beginning of a log-file. Save these in a “common commands” text file from which you can 

cut and paste into your do-files.  

A note on working empirical projects.  

When you start working on an empirical project you will quite quickly accumulate a large number of do files, data sets, log files 

and other output. To keep track of things you should use comments throughout your do files that remind you of what the do file 

does, when you created it, when you last changed it, what links it has to other do files, etc. When saving files add the date they 

were created to them (e.g. 20081005 for the 5th of October 2008) and sort files into different folders. I keep one folder for do files, 

another for data and a third folder to export results and save log files. 

If you are working with large data sets, the UK Labour Force Survey, the U.S. Current Population Survey, etc. memory, or rather 

the lack thereof becomes a problem rather quickly. The memory problem is aggravated by a curious (and apparently unsolvable) 

hard limit on the amount of memory that can be allocated to Stata when using Windows XP (32-bit). The limit is around 1.2 gb of 

memory, no matter how much actual memory your PC has. But two or even three gigabytes of memory might not suffice for your 

projects. The first thing you should do when running into the memory threshold is to drop everything from the dataset that you do 

not need for your analysis. You can always reload the original data set once you ran a particular regression (though this might be a 

fairly slow procedure). Use the compress command. You will not lose any information by doing so, but potentially save some 

space. If everything else fails, you can apply for an ARC account. ARC is a Unix server that runs Stata (among other statistical 

programs). But disk space and computation time is scarce so you should only use ARC as a last resort. You can find more 

information on ARC at the LSE itservice website: http://www.lse.ac.uk/itservices/help/itsupport/ARC/default.htm. 

And last but not least: Never forget to backup your work! 

If you use Stata regularly you might want to think about integrating Stata with an external editor. An excellent choice for 

Windows is WinEdt (http://www.winedt.com). WinEdt is mainly used for writing Latex documents but allows Stata command 

highlighting by installing an add on (http://www.winedt.org/Config/modes/Stata.php). If you want to use Stata and Latex with 

WinEdt I recommend you install another add on called “Auto Mode” (see my website for details). If you do not want to pay the 

$30 license fees, you can also use free alternatives such as Notepad ++ (again see my website for details).  

http://www.lse.ac.uk/itservices/help/itsupport/ARC/default.htm
http://www.winedt.com/
http://www.winedt.org/Config/modes/Stata.php


Database Manipulation  

Now we are going to take the data that is in a form that Stata understands and we will organise those datasets by combining many 

together into a single large dataset, deleting unwanted variables, and also creating some new variables. Finally, we will learn a 

few techniques to close gaps in your data (extrapolation, splicing).  

 

Organising datasets  

Rename  

You may want to change the names of your variables, perhaps to make it more transparent what the variable is:  

. rename countryisocode country_code 

. ren grgdpch gdp_growth  

Note, you can only rename one variable at a time.  

Recode and Replace 

You can change the values that certain variables take, e.g. suppose 1994 data actually referred to 1924:  

. recode year (1994 = 1924) 

This command can also be used to recode missing values to the dot that Stata uses to denote missings. And you can recode several 

variables at once. Suppose a dataset codes missing population and gdp figures as –999:  

. recode pop cgdp (–999 = .) 

recode can not only several variables but several changes at the same time. We could for example use recode to generate a new 

variable with categorical population values, 1 for countries with less than 50 million inhabitants, 2 for 50 to 100 million and 3 for 

more than 100 million inhabitants. 

. recode pop (0 / 50000 = 1)  (50001 / 100000 = 2) (100000 / 7000000 = 3) 

With string variables, however, you need to use the replace command (see more on this command below):  

. replace country=“United Kingdom” if country_code ==“GBR”  

Keep and drop (including some further notes on if-processing)  

The original dataset may contain variables you are not interested in or observations you don’t want to analyse. It’s a good idea to 

get rid of these first – that way, they won’t use up valuable memory and these data won’t inadvertently sneak into your analysis. 

You can tell Stata to either keep what you want or drop what you don’t want – the end results will be the same. For example, 

we can get rid of unwanted variables as follows:  

. keep country year pop cgdp  

or  

. drop country_code openc csave ki grgdpch 

or  

. drop country_code openc - gdp_growth 

Each of these will leave you with the same set of variables. Note that the hyphen sign (-) is a useful shortcut, e.g. the first one 

indicates all the variables between openc and gdp_growth are to be dropped. However, you must be careful that the order of 

the variable list is correct, you don’t want to inadvertently drop a variable that you thought was somewhere else on the list. The 

variable list is in the variables window or can be seen using either the desc or sum commands.  

You can also drop or keep observations, such as those after or before 1995:  

. keep if year >= 1995  

or  

. drop if year < 1995  

Note that missing values of numeric variables are treated as a large positive number, so both commands would keep not only all 

observations for 1995 and after but also all observations with missing values in the year variable. 

The different relational operators are:  

== equal to  



!=  not equal to  
>  greater than  
>=  greater than or equal to  
<  less than  
<=  less than or equal to  

Keeping observations for the years 1990 to 1995 only:  

. keep if (year>=1990 & year<=1995) 

or  

. drop if (year<1990 | year>1995) 

Or, to get really fancy, keep the observations for 1990-95 and 1997-99:  

. keep if ((year>=1990 & year<=1995) | (year>=1997 & year<=1999)) 

Note, the different logical operators are:  

& and  
| or  
~ not 

! not  

You may want to drop observations with specific values, such as missing values (denoted in Stata by a dot):  

. drop if pop == .  

Sometimes it is convenient to use a shorthand notation and leave out the operators: 

. drop if pop 

is short for 

. drop if pop~=0 

that is we drop all the observations where a population of zero is reported. 

You may want to keep observations for all countries other than those for Italy:  

. drop if country_code != “ITA”  

Note, with string variables, you must enclose the observation reference in double quotes. Otherwise, Stata will think that ITA 

refers to a variable and claim not to be able to find what you are referring to.  

If you know the observation number, you can selectively keep or drop different observations. Dropping observations 1 to 10:  

. drop if _n <= 10  

Dropping the last observation (number _N) in the dataset:  

. drop if _n == _N  

Both _n and _N are inbuilt system variables. The upper case N refers to the last number of observation. Combined with the by 

(see below) this can be the number of the last observation in a subset rather than the whole data. Lower case n always refers to the 

number of each observation (combined with by, this can be again a relative relation). 

Finally, you may want to keep only a single occurrence of a specific observation type, e.g. just the first observation of each 

country code we can use Stata’s indexing capabilities. A variable name followed by square brackets means that we want to refer 

to a certain observation, this can be an absolute value [1] would mean the first observation or [_N] the last observation or a 

relative index [_n] means the current and [_n-1] the observation before the current observation. To keep only the first 

occurrence of each country we can use:  

. keep if country[_n]~=country[_n-1]  

or simply  

. keep if country~=country[_n-1]  

Stata starts at observation number one and applies the command, then moves onto observation two and applies the command 

again, then onto three and so on. So, starting at one _n=1 but there is no observation _n-1 = 0, so the country in one cannot equal 

the country in zero (which is missing: “”) and the observation will be kept. Moving on to two: the country in two equals the 

country in one (both AGO), so the observation will be dropped. Each subsequent observation with country AGO will also be 

dropped. When we get to an observation with a different country (which will be ALB), the two countries will be different 

(AGO~=ALB) and the observation will be kept. Thus, we will end up being left with just the first observation for each country.  



Sort  

From the previous example, hopefully you will have realised the importance of the order of your observations. If the country 

codes had started out all jumbled up, then we would have ended up with a completely different set of observations. Suppose we 

applied the above command to the following dataset:  

 
Number in dataset country Result 

1 AGO Kept since _n=0 does not exist 

2 AGO Dropped since country==country[_n-1] 

3 ALB Kept 

4 ALB Dropped 

5 AGO Kept 

6 ALB Kept 

7 BEL Kept 

We would actually end up with numerous occurrences of some country codes. This shows how sorting the data first is important:  

. sort country  

If you wanted to make sure the observation that was kept was the earliest (i.e. 1950), then first:  

. sort country year  

This command first sorts the data by country, and then within each country code it sorts the data by year. This ensures that the 

first observation for every country (the one that is kept) will be 1950. 

Note that sorting is in ascending order (A,B,C or 1950, 1951, 1952). To sort in descending order, you need to use the gsort 

command:  

. gsort –country  

This gives ZWE first, then ZMB, ZAR, ZAF, YEM and so on. Note that you need to place a minus sign before every variable you 

want to sort in descending order. This command allows you to sort in complicated ways, e.g. to sort country codes in descending 

order but then years in ascending order:  

. gsort –country year  

 

By-processing  

You can re-run a command for different subsets of the data using the by prefix. For example, to get summary statistics of 

population broken down by year:  

. sort year  

. by year: sum pop  

Note that you have to either sort the data first or use the bysort prefix: 

. bysort year: sum pop  

The by prefix causes the sum command to be repeated for each unique value of the variable year. The result is the same as writing 

a list of sum commands with separate if statements for each year:  

. sum pop if year==1990  

. sum pop if year==1991  

. sum pop if year==1992  

. sum pop if year==1993  

. sum pop if year==1994  

By-processing can be useful when organising your dataset. In our sort examples above we asked Stata to keep only the first 

observation for each country. The by command makes this selection a lot easier: 

. bysort country: keep in 1 

or equivalently 
. bysort country: keep if _n == 1 

Both commands will keep the first observation of each subset, i.e. the first observation for each country. But this is not necessarily 

the earliest observation. To ensure that we select the first year for each country we need to sort within the by-group (country) we 

selected: 

. bysort country (year): keep in 1 

The parentheses tell Stata to sort within country rather than opening up a different by group: 



CTRY YEAR C-GDP

USA 1990 23,004

GBR 1990 15,930

Append

CTRY YEAR C-GDP

USA 2000 35,618

GBR 2000 24,252

CTRY YEAR C-GDP

USA 1990 23,004

GBR 1990 15,930

USA 2000 35,618

GBR 2000

Merge (1-to-n)

Merge (1-to-1)

CTRY YEAR C-GDP

USA 1990 23,004

GBR 1990 15,930

CTRY YEAR POP

USA 1990 250

GBR 1990 58

CTRY YEAR C-GDP Pop

USA 1990 23,004 250

GBR 1990 15,930 58

CTRY YEAR C-GDP Pop

USA 1990 23,004 250

GBR 1990 15,930 58

USA 2000 35,618 275

GBR 2000 24,252

YEAR UN-M

1990 159

2000 189

CTRY YEA
R

C-GDP Pop UN-M

USA 1990 23,004 250 159

GBR 1990 15,930 58 159

USA 2000 35,618 275 189

GBR 2000 24,252

 
bysort country bysort country (year) bysort country year 

AGO 2000 AGO 1990 AGO 2000 
AGO 1990 AGO 2000 AGO 1990 
ALB 1990 ALB 1990 ALB 1990 

ALB 2000 ALB 2000 ALB 2000 

 

 

Append, merge and joinby 

You can combine different datasets into a single large dataset using the append, merge and joinby commands. append is 

used to add extra observations (rows). Suppose you have two datasets containing the G7 less Germany PWT data for different 

countries and/or different years. The datasets have the same variables country / year / pop / etc, but one 

dataset has data for 1970-1990 (called “G7 less Germany pwt 70-90.dta”) and the other has data for 1975-1998 

(called “G7 less Germany pwt 90-2000.dta”).  

. use "H:\ECStata\G7 less Germany pwt 90-2000.dta", clear  

. append using "H:\ECStata\G7 less Germany pwt 70-90.dta"  

. save "H:\ECStata\G7 less Germany pwt.dta", replace   

append is generally very straightforward. There is one imp ortant exception, however, if the two datasets you want to 

append have stored their variables in different formats (meaning string vs. numeric – having different numeric formats, for 

example byte vs. float, does not matter). In this case, Stata converts the data in the file to be appended to the format of the original 

file and in the process replaces all values to missing! To detect such problems while using append, watch out for messages like: 

. (note: pop is str10 in using data but will be float now) 

This indicates that a variable (here: pop) has been transformed from string to float – and contains all missing values now for the 

appending dataset (here: all years 1970-1990). It is thus very important to check via describe that the two files you intend to 

append have stored all variables in the same broad data categories (string/numeric). If this is not the case, you will need to 

transform them first (see the commands destring and tostring below). 

merge is used to add extra variables (columns). Suppose we now also have a second dataset containing the same indicator 

variables country / year, but one dataset has data for GDP per capita and other variables, and the second has data for shares 

in GDP per capita of consumption and investment.  



You must first ensure that both datasets are sorted by their common indicator variables, then merge according to these variables. 

. use "H:\ECStata\G7 less Germany pwt.dta", clear  

. sort country year  

. save "H:\ECStata\G7 less Germany pwt.dta", replace  

. use "H:\ECStata\G7 extra data.dta", clear /* “master” data */  

. sort country year  

. merge country year using "H:\ECStata\G7 less Germany pwt.dta" /*“using” data */  

. tab _merge /* 1= master, 2= using, 3= both */  

Stata automatically creates a variable called _merge which indicates the results of the merge operation. It is crucial to tabulate this 

variable to check that the operation worked as you intended. The variable can take on the values:  

1 : observations from the master dataset that did not match observations from the using dataset  
2 : observations from the using dataset that did not match observations from the master dataset  
3 : observations from the both datasets that matched  

Ideally, all observations will have a _merge value of 3. However, it may be possible, for instance, that the master dataset has 

observations for extra countries or extra years. If so, then some observations will have a _merge value of 1. You should tabulate 

these to confirm what the extra observations refer to:  

. tab country if _merge==1  

. tab year if _merge==1   

. tab _merge 

 

     _merge |      Freq.     Percent        Cum. 

------------+----------------------------------- 

          1 |         31       10.95       10.95 

          3 |        252       89.05      100.00 

------------+----------------------------------- 

      Total |        283      100.00 

tab country if _merge==1 then reveals that the these extra observations are for the country “GER” or Germany.  Now 

see if you can successfully incorporate the data on Germany between 1970-2000 for all of these variables? Look at help for how 

to do it.  

Finally, joinby joins, within groups formed by the variables list behind the command, observations of the dataset in memory 

with another Stata-format dataset. “join” means "form all pairwise combinations". For example, you might have an industry 

classification (both codes and names) in one file and corresponding tariff rates in another (with only codes and tariff rates). Tariff 

rates vary across time but the industry classification does not. Now, you would like to match every industry with a time series of 

tariffs and also know what the different industry codes stand for. Since the classification data does not contain a year variable, you 

cannot use merge (unless you create a year variable and expand the data first which we will learn how to do later on). 

However, if you type 

. joinby indclass using tariffs.dta 

this will create all possible combinations between indclass (the variable that contains the different classification categories) 

and year. If the master and using dataset contain common variables, joinby will use the master contents. Also, observations 

unique to one or the other datasets are ignored, unless you overrule this using the option unmatched (see help joinby for 

details). 

Collapse  

This command converts the data into a dataset of summary statistics, such as sums, means, medians, and so on. One use is when 

you have monthly data that you want to aggregate to annual data:  

. collapse (sum) monthpop, by(country year)  

or firm-level data that you want to aggregate to industry level:  

. collapse (sum) firmoutput, by(industry year month)  

by() excludes the indicator variable that you are collapsing or summing over (month in the first example, firm in the 

second) – it just contains the indicator variables that you want to collapse by. Note that if your dataset contains other variables 

beside the indicator variables and the variables you are collapsing, they will be erased. 

One possible problem that arises in the use of collapse is in its treatment of missings. It returns the summary statistic of missing 

values as zero. If, for example, when using the PWT Afghanistan (“AFG”) contains all missing values for pop. If you wanted to 

aggregate population data over time (for whatever reasons), collapse would report aggregate population for Afghanistan as zero, 

not missing. If , instead, you want aggregate population figures to be missing if any or all of the year data is missing, then use the 



following coding (the technicalities of it will become clearer later, after you learn how to create dummy variables): 

. gen missing=(pop==.) 

. collapse (sum) pop missing, by(countrygroup) 

. replace firmoutput=. If missing>0 

. rename pop aggpop 

. drop missing 

Note, if you are running this command on a large dataset, it may be worthwhile to use the fast option – this speeds things up 

skipping the preparation of a backup if the command is aborted by the user pressing BREAK, but this is really only useful for 

when you are working interactively). 

 

Order, aorder, and move 

These commands can be used to do some cosmetic changes to the order of your variable list in the variables window, e.g. if you 

want to have the indicator variables on top of the list. aorder alphabetically sorts variables and order brings them in a user-

specified order: 

. aorder 

. order countrycode year pop 

If you do not list certain variables after order, they will remain where they are. move is used if you simply want to swap the 

position of two variables, e.g. bringing year to the top: 

. move year countrycode 



Creating new variables  
 

Generate, egen, replace  

The two most common commands for creating new variables are gen and egen. We can create a host of new variables from the 

existing data with the gen command:  
. gen realgdp=(pop*1000)*cgdp   /* real GDP in current prices */  
. gen lpop=ln(pop)     /* log population */  
. gen popsq=pop^2     /* squared population */  
. gen ten=10      /* constant value of 10 */  
. gen id=_n      /* id number of observation */  

. gen total=_N    /* total number of observations */ 

. gen byte yr=year-1900    /* 50,51,etc instead of 1950,1951 */  

. gen str6 source=“PWT6.1”   /* string variable */  

. gen largeyear=year if pop>5000 & pop!=.  

A couple of things to note. First, Stata’s default data type is float, so if you want to create a variable in some other format (e.g. 

byte, string), you need to specify this. Second, missing numeric observations, denoted by a dot, are interpreted by Stata as a very 

large positive number. You need to pay special attention to such observations when using if statements. If the last command 

above had simply been gen largeyear=year if pop>5000, then largeyear would have included observations 

1950-1959 for AGO, even though data for those years is actually missing.  

The egen command typically creates new variables based on summary measures, such as sum, mean, min and max:  

. egen totalpop=sum(pop), by(year)  /* world population per year */  

. egen avgpop=mean(pop), by(year)  /* average country pop per year */  

. egen maxpop=max(pop)  /* largest population value */  

. egen countpop=count(pop)  /* counts number of non-missing obs */  

. egen groupid=group(country_code) /* generates numeric id variable for countries */ 

The egen command is also useful if your data is in long format (see below) and you want to do some calculations on different 

observations, e.g. year is long, and you want to find the difference between 1995 and 1998 populations. The following routine 

will achieve this:  

. gen temp1=pop if year==1995  

. egen temp2=max(temp1), by(country_code)  

. gen temp3=pop-temp2 if year==1998  

. egen diff=max(temp3), by(country)  

. drop temp*  

 

Note that both gen and egen have sum functions. egen generates the total sum, and gen creates a cumulative sum. The 

running cumulation of gen depends on the order in which the data is sorted, so use it with caution:  

. egen totpop=sum(pop)    /* sum total of population = single result*/  

. gen cumpop=sum(pop)    /* cumulative total of population */  

To avoid confusion you can use the total function rather than sum for egen. It will give you the same result. 

As with collapse, egen has problems with handling missing values. For example, summing up data entries that are all 

missing yields a total of zero, not missing (see collapse below for details and how to solve this problem). 

The replace command modifies existing variables in exactly the same way as gen creates new variables:  

. gen lpop=ln(pop)  

. replace lpop=ln(1) if lpop==.  /* missings now ln(1)=0 */  

. gen byte yr=year-1900 

. replace yr=yr-100 if yr >= 100  /* 0,1,etc instead of 100,101 for 2000 onwards */  

  
Converting strings to numerics and vice versa  

As mentioned before, Stata cannot run any statistical analyses on string variables. If you want to analyse such variables, you must 

first encode them:  

. encode country, gen(ctyno)  

. codebook  ctyno    /* Tells you the link with the data* / 

This creates a new variable ctyno, which takes a value of 1 for CAN, 2 for FRA, and so on. The labels are automatically 

computed, based on the original string values – you can achieve similar results but without the automatic labels using egen 



ctyno=group(country).  

You can go in the other direction and create a string variable from a numerical one, as long as the numeric variable has labels 

attached to each value:  

. decode ctyno, gen(ctycode)  

If you wanted to convert a numeric with no labels, such as year, into a string, the command is:  

. tostring year, generate(yearcode) 

And if you have a string variable that only contains numbers, you can convert them to a numeric variable using:  

. destring yearcode, generate(yearno) 

This last command can be useful if a numeric variable is mistakenly read into Stata as a string. You can confirm the success of 

each conversion by:  

. desc country ctyno ctycode year yearcode yearno  

 

Combining and dividing variables  

You may wish to create a new variable whose data is a combination of the data values of other variables, e.g. joining country code 

and year to get AGO1950, AGO1951, and so on. To do this, first convert any numeric variables, such as year, to string (see 

earlier), then use the command:  

. gen str7 ctyyear=country_code+yearcode  

If you want to create a new numeric combination, first convert the two numeric variables to string, then create a new string 

variable that combines them, and finally convert this string to a numeric:  

. gen str4 yearcode=string(year)  

. gen str7 popcode=string(pop)  

. gen str11 yearpopcode=yearcode+popcode  

. gen yearpop=real(yearpopcode)  

 

. sum yearpopcode yearpop /* displays the result */ 

To divide up a variable or to extract part of a variable to create a new one, use the substr function. For example, you may want 

to reduce the year variable to 70, 71, 72, etc. either to reduce file size or to merge with a dataset that has year in that 

format:  

. gen str2 yr=substr(yearcode,3,2)  

The first term in parentheses is the string variable that you are extracting from, the second is the position of the first character you 

want to extract (--X-), and the third term is the number of characters to be extracted (--XX). Alternatively, you can select your 

starting character by counting from the end (2 positions from the end instead of 3 positions from the start):  

. gen str2 yr=substr(yearcode,-2,2)  

Things can get pretty complicated when the string you want to divide isn’t as neat as yearcode above. For example, suppose 

you have data on city population and that each observation is identified by a single variable called code with values such as “UK 
London”, “UK Birmingham”, “UK Cardiff”, “Ireland Dublin”, “France Paris”, “Germany 

Berlin”, “Germany Bonn”, and so on. The code variable can be broken into country and city as follows:  

. gen str10 country=substr(code,1,strpos(code," ")-1) 

. gen str10 city=trim(substr(code, strpos(code," "),11))  

The strpos() function gives the position of the second argument in the first argument, so here it tells you what position the 

blank space takes in the code variable. The country substring then extracts from the code variable, starting at the first 

character, and extracting a total of 3-1=2 characters for UK, 8-1=7 characters for Ireland and so on. The trim() 

function removes any leading or trailing blanks. So, the city substring extracts from the code variable, starting at the blank 

space, and extracting a total of 11 characters including the space, which is then trimmed off. Note, the country variable could 

also have been created using trim(): 

. gen str10 country=trim(substr(code,1,strpos(code,“ ”)))  

 

Dummy variables  

You can use generate and replace to create a dummy variable as follows:  

. gen largepop=0  

. replace largepop=1 if (pop>=5000 & pop!=. ) 



Or you can combine these in one command:  

. gen largepop=(pop>=5000 & pop~=.)  

Note, the parenthesis are not strictly necessary, but can be useful for clarity purposes. It is also important to consider missing 

values when generating dummy variables. With the command above a missing value in pop results in a 0 in largepop. If you 

want to keep missing values as missing, you have to specify an if condition: 

. gen largepop=(pop>=5000 & pop~=.) if pop~=. 

The & pop~=. part is not strictly necessary in this case, but it doesn’t hurt to keep it there either. 

You may want to create a set of dummy variables, for example, one for each country:  

. tab country, gen(cdum)  

This creates a dummy variable cdum1 equal to 1 if the country is “CAN” and zero otherwise, a dummy variable cdum2 if the 

country is “FRA” and zero otherwise, and so on up to cdum7 for “USA”. You can refer to this set of dummies in later 

commands using a wild card, cdum*, instead of typing out the entire list.  

A third way to generate dummy variables is by using the xi prefix as a command. 

. xi i.country 

i.country         _Icountry_1-6       (_Icountry_1 for country==Canada omitted) 

The command generates 5 dummy variables, omitting the sixth. This is useful to avoid a dummy variable trap (i.e. perfect 

multicolinearity of the intercept and a set of dummy variables) in a regression. We can control which category should be omitted 

and also specify that all dummy variables should be generated (see help xi). But the main use of xi is as a prefix, if we want 

to include a large set of dummy variables or dummy variables and interactions with dummy variables, we can use xi to save us 

the work of defining every variable by itself. And we can easily drop the variables after we used them with drop _*. 

. xi: sum i.country*year 

i.country         _Icountry_1-6       (_Icountry_1 for country==Canada omitted) 

i.country*year    _IcouXyear_#        (coded as above) 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

 _Icountry_2 |        66    .1666667    .3755338          0          1 

 _Icountry_3 |        66    .1666667    .3755338          0          1 

 _Icountry_4 |        66    .1666667    .3755338          0          1 

 _Icountry_5 |        66    .1666667    .3755338          0          1 

 _Icountry_6 |        66    .1666667    .3755338          0          1 

-------------+-------------------------------------------------------- 

        year |        65    1933.846    347.2559          0       2000 

_IcouXyear_2 |        65         307    725.5827          0       2000 

_IcouXyear_3 |        65         307    725.5827          0       2000 

_IcouXyear_4 |        65    337.6154     753.859          0       2000 

_IcouXyear_5 |        65    337.6154     753.859          0       2000 

-------------+-------------------------------------------------------- 

_IcouXyear_6 |        65    337.6154     753.859          0       2000 

Lags and leads  

To generate lagged population in the G7 dataset:  

. so countrycode year  

. by countrycode: gen lagpop=pop[_n-1] if year==year[_n-1]+1  

Processing the statement country-by-country is necessary to prevent data from one country being used as a lag for another, as 

could happen with the following data:  

  



country  Year  pop  

AUS  1996 18312 

AUS  1997 18532 

AUS  1998 18751 

AUT  1950 6928 

AUT  1951 6938 

AUT  1952 6938  

 
The if argument avoids problems when there isn’t a full panel of years – if the dataset only has observations for 1950, 1955, 

1960-1998, then lags will only be created for 1961 on. A lead can be created in similar fashion:  

 
. so country year  

. by country: gen leadpop=pop[_n+1] if year==year[_n+1]-1  



Cleaning the data  

This section covers a few techniques that can be used to fill in gaps in your data.  

Fillin and expand  

Suppose you start with a dataset that has observations for some years for one country, and a different set of years for another 

country:  

country  Year  pop  
AGO  1960 4816 
AGO  1961 4884 
ARG  1961 20996 
ARG  1962 21342  

You can “rectangularize” this dataset as follows:  

. fillin country year  

This creates new missing observations wherever a country-year combination did not previously exist:  

country  Year  pop  
AGO  1960 4816 
AGO  1961 4884 
AGO  1962 . 
ARG  1960 . 
ARG  1961 20996 
ARG  1962 21342  

It also creates a variable _fillin that shows the results of the operation; 0 signifies an existing observation, and 1 a new one.  
If no country had data for 1961, then the fillin command would create a dataset like:  

country  Year  pop  
AGO  1960 4816 
AGO  1962 . 
ARG  1960 . 
ARG  1962 21342  

So, to get a proper “rectangle”, you would first have to ensure that at least one observation for the year 1961 exists:  

. expand 2 if _n==1  

. replace year=1961 if _n==_N  

. replace pop=. if _n==_N  

expand 2 creates 2 observations identical to observation number one (_n==1) and places the additional observation at the 

end of the dataset, i.e observation number _N. As well as recoding the year in this additional observation, it is imperative to 

replace all other data with missing values – the original dataset has no data for 1961, so the expanded dataset should have 

missings for 1961. After this has been done, you can now apply the fillin command to get a complete “rectangle”.  

These operations may be useful if you want to estimate missing values by, for example, extrapolation. Or if you want to replace 

all missing values with zero or some other amount.  

Interpolation and extrapolation  

Suppose your population time-series is incomplete – as with some of the countries in the PWT (e.g. STP which is Sao Tome and 

Principe). You can linearly interpolate missing values using:  

. so country  

. by country: ipolate pop year, gen(ipop)  

 

  



country  Year  pop  

STP  1995  132 

STP  1996  135.29 

STP  1997  . 

STP  1998  141.7 

STP  1999  144.9 

STP  2000  148  

Note, first of all, that you need to interpolate by country, otherwise Stata will simply interpolate the entire list of observations 

irrespective of whether some observations are for one country and some for another. The first variable listed after the ipolate 

command is the variable you actually want to interpolate, the second is the dimension along which you want to interpolate. So, if 

you believe population varies with time, you can interpolate along the time dimension. You then need to specify a name for a new 

variable that will contain all the original and interpolated values – here ipop. You can use this cleaned-up version in its entirety 

in subsequent analysis, or you can select values from it to update the original variable, e.g. to clean values for STP only:  

. replace pop=ipop if country==“STP”  

Linear extrapolation can be achieved with the same command, adding the epolate option, e.g. to extrapolate beyond 2000:  

. so country  

. by country: ipolate pop year, gen(ipop) epolate  

Note, however, that Stata will fail to interpolate or extrapolate if there are no missing values to start with. No 2001 or 2002 

observations actually exist, so Stata will not actually be able to extrapolate beyond 2000. To overcome this, you will first have to 

create blank observations for 2001 and 2002 using expand (alternatively, if these observations exist for other countries, you can 

rectangularise the dataset using fillin).  

Splicing data from an additional source  

It is also possible to fill gaps with data from another source, as long as the series from both sources are compatible. For example, 

one source may provide data for 1950-92 and another for 1970-2000 with data for the overlapping years being identical. In such 

cases, you can simply replace the missing years from one source with the complete years from the other.  

It is more common, however, for the data in the overlapping years to be similar but not identical, as different sources will often 

use different methodologies and definitions. In such instances, you can splice the data from one source on to that from the other. 

For example, the latest version of PWT has data for the unified Germany going back to 1970 while the earlier PWT5.6 has data 

for West Germany going all the way back to 1950. It is arguably reasonable to assume that the trends in the total German data 

were similar to those in the West German data and to splice the early series onto the up-to-date version. To do this, you must first 

merge the old series into the new one, making sure to rename the variables first, e.g. rename pop in PWT6.1 to pop61, and to 

ensure that both Germany’s are coded identically, e.g. GER.  

. gen temp1=pop61/pop56 if country==“GER” & year==1970  

. egen diff=mean(temp1), by(country)  

. replace pop61=pop56*diff if pop61==. & year<1970  

 

country year pop56 pop61 temp1 diff 

GER 1968 59499   1.281248 

GER 1969 60069   1.281248 

GER 1970 60651 77709 1.281248 1.281248 

GER 1971 61303 78345  1.281248 

GER 1972 61675 78715  1.281248 



Panel Data Manipulation: Long versus Wide data sets 
 

Reshape  

Datasets may be laid out in wide or long formats. Suppose we keep population data for 1970-75 only: 

. keep country country_code year pop 

. keep if year<=1975 

In long format, this looks like:  

country country_code year pop 

Canada CAN 1970 21324 

Canada CAN 1971 21962.1 

Canada CAN 1972 22219.6 

Canada CAN 1973 22493.8 

Canada CAN 1974 22808.4 

Canada CAN 1975 23142.3 

France FRA 1970 52040.8 

France FRA 1971 52531.8 

France FRA 1972 52993.1 

France FRA 1973 53420.5 

France FRA 1974 53771 

France FRA 1975 54016 

And the same data in wide format looks like:  

country country_code pop1970 pop1971 pop1972 pop1973 pop1974 pop1975 

Canada CAN 21324 21962.1 22219.6 22493.8 22808.4 23142.3 

France FRA 52040.8 52531.8 52993.1 53420.5 53771 54016 

United Kingdom GBR 55632 55928 56097 56223 56236 56226 

Germany GER 77709 78345 78715 78956 78979 78679 

Italy ITA 53821.9 54073.5 54381.3 54751.4 55110.9 55441 

Japan JPN 103720 104750 106180 108660 110160 111520 

United States USA 205089 207692 209924 211939 213898 215981 

The vast majority of Stata commands work best when the data is in long format. In any case, to convert formats from long to 

wide:  

. reshape wide pop, i(country_code) j(year)  

or from wide to long:  

. reshape long pop, i(country_code) j(year)  

The variable(s) immediately behind long or wide is the one that contains the data we want to reshape (the “data variable”, in 

our case pop). Note that in the reshape long case, Stata will reshape all variables that start with the letters you put behind 

long. Here, there are actually six of them (pop1970-pop1975, all starting with pop). The i() specifies the variable(s) whose unique 

values denote a logical observation in wide format. In our case, this is country. It uniquely identifies every data entry in wide 

format (here: pop). The j() specifies the variable whose unique values denote a sub-observation, in our case year. That is, within 

every group of countries, year uniquely identifies observations. In long format, i() and j() together completely identify each 

observation. 

If there are more than two indicator variables in wide format, then be careful to include the correct list in i(). For example, if there 

were also an agegroup indicator variable, so that pop actually referred to population in a given age group, then we could reshape 

the data from country / agegroup / year / pop to country / agegroup / pop1960 / pop1961 / etc using:  

. reshape wide pop, i(country agegroup) j(year)  

If there is more than one data variable, first drop the variables you are not interested in, and then make sure to include the full 

list you are interested in reshaping within the command:  

. reshape wide pop cgdp pi, i(country) j(year)  

This will create new variables pop1970-1975, cgdp1970-1975 and pi1970-1975. Note if you had not dropped all other variables 

beforehand, you would get an error message. For example, if you had forgotten to delete cc: 

. cc not constant within country 

. Type "reshape error" for a listing of the problem observations. 

As Stata suggests, “reshape error” will list all observations for which country does not uniquely identify observations in wide 



format (here, these are actually all observations!). More generally, any variable that varies across both i() and j() variables either 

needs to be dropped before reshape wide or be included in the data variable list. Intuitively, Stata would not know where to 

put the data entries of such variables once year has gone as an identifier. 

We could also have reshaped the original long data to have the country variable as wide:  

. reshape wide pop, i(year) j(country) string  

Note, you need to specify the string option when j() is a string variable. Browsing the resulting data:  

year popCAN popFRA popGBR popGER popITA popJPN popUSA 

1970 21324 52040.8 55632 77709 53821.9 103720 205089 

1971 21962.1 52531.8 55928 78345 54073.5 104750 207692 

1972 22219.6 52993.1 56097 78715 54381.3 106180 209924 

1973 22493.8 53420.5 56223 78956 54751.4 108660 211939 

1974 22808.4 53771 56236 78979 55110.9 110160 213898 

1975 23142.3 54016 56226 78679 55441 111520 215981 

To create variables named CANpop / FRApop / GBRpop instead of popCAN/popFRA/popGBR, use:  

. reshape wide @pop, i(year) j(country) string  

The @ is useful when, for example, you start with a dataset that has the dimension you want to reshape written the “wrong” way 

around. It denotes where the suffix/prefix is affixed. Suppose you are given a dataset with country / youngpop / oldpop. You can 

reshape the pop variable to long to give country / agegroup / pop using:  

. reshape long @pop, i(country) j(agegroup) string  
  



Estimation 
We now move on from the manipulation of databases to the more exciting material of running regressions. In this tutorial, we 

shall use data from Francesco Caselli’s “Accounting for Cross-Country Income Differences” which is published in the Handbook 

of Economic Growth (2005, Ch. 9). There is a link to these data on my website. But before we start looking at the basics of 

regression commands, let us look at Stata’s graph capabilities in more detail. 

Descriptive graphs 

Stata allows a large variety of graphs and options to customize them (see http://www.ats.ucla.edu/stat/stata/topics/graphics.htm 

for a more indepth overview). Here we will only consider some very basic graphs. We already introduced the graph command to 

plot a simple histogram and a scatter plot. We will extend these examples here and focus on formatting graphs via the graph 

options. A very useful command that helps us manage very long code in do-files is the #delimit command. 

#delimit ; 

or short 

#d; 

The delimit command changes what Stata perceives as the end of a command. Normally we write one command per line, that is 

the end of a line denotes the end of a command as well. #delimit introduces a character – the semicolon (;) – to denote the 

end of a command. This way we can either write several commands on one line, or (more importantly) use several lines for the 

same command. To revert back to the end of line as the end of a command we write: 

#d cr 

Let us start with a simple scatter plot, a command we have used already. 

graph twoway scatter y h 

 

The graph depicts real per worker GDP on the vertical and average human capital on the horizoantal axis, for all countries in the 

sample. We left the options all at standard ans so we have a coloured graph with the variable labels as names for the axes. The 

graph command has some plots that do not fall into the twoway category, e.g. box-and-whiskers plots, but most of the plots you 

see in published articles are twoway-type of plots. The first thing we should change about this graph is the naming of the axes. We 

could either change the label of the underlying variables, or use the graph commands axis options. The second thing we want to 

change is that Stata prodcues a coloured graph. While colours are good for presentations, they will not appear in any paper. 
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#d; 

graph twoway scatter y h,  

scheme(s2mono) ytitle("real GDP per worker")  

xtitle("average Human Capital in 1995")  

note("Source: Penn World Table Version 6.1, Barro and Lee (2001)"); 

#d cr 

 

Stata has some inbuild colour definitions (like the standard colour scheme of the first graph or this black-and-white scheme) 

which are available via the scheme option. The grey shading around the graph is not really a nice feature and so we will make 

some changes to the standard scheme we chose. Also the footnote about the source of the data could be a little further apart from 

the axis label. The title, axis names, the note field, etc. are  

#d; 

graph twoway scatter y h,  

scheme(s2mono) ytitle("real GDP per worker")  

xtitle("average Human Capital in 1995")  

note("Source: Penn World Table Version 6.1, Barro and Lee (2001)" 

, margin(medium)) 

graphregion(fcolor(white) lpattern(solid) lcolor(black) lwidth(medium)); 

#d cr 

 

To give the reader a better idea of what is represented by the dots we could add labels to them. Given the number of observations 
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this would probably be more confusing then helpful. So instead of putting a country name to each single point we could select 

only a few. But how can we tell Stata to distinguis between two sets of points? We generate a dummy variable that indicates to 

which set an observation belongs and draw to scatter plots within one graph. One for each set. We are not limited to drawing only 

scatter plots in the same graph, we could for example overlay the scatter plot with the fitted line from a regression. Note that as 

with the “note“ textbox in the previous example, each individual element of the command can have own options, in addition to the 

options that apply to the whole graph. To seperate to plots within one graph we can either surround each plot command by 

parentheses – () – or use two bars – || –, both are fine. Note that the plots are drawn in the order that we use in the command, 

i.e. the first plot will be the backmost and each additional plot will be layered on top of it. 

#d; 

graph twoway  

 (scatter y h if oecd != 1, mstyle(p1)) 

 (scatter y h if oecd == 1, mstyle(p1) mlabel(iso)) 

 , scheme(s2mono) ytitle("real GDP per worker")  

 xtitle("average Human Capital in 1995")  

 note("Source: Penn World Table Version 6.1, Barro and Lee (2001)" 

  , margin(medium))  

 graphregion(fcolor(white) lpattern(solid) lcolor(black) lwidth(medium)) 

 legend(off); 

#d cr 

 

We need to explicitly specify the style of the scatter markers since Stata chooses different markers for each plot by default, we 

also need a variable that specifies the label names for the markers. Also by default Stata adds a legend that normally tells the 

reader what the different plots/symbols/lines in a graph mean. But since we only use two plots as a trick to add labels we do not 

need a legend an surpress it with the legend(off) option. 

How can we now save the graphs so we can use them in Word or Latex? The easiest (and probably worst way) is to copy the 

graphs directly into Word or Scientific Workplace. Note that you cannot do this if you use an editor other than Scientific 

Workplace (e.g. WinEdt, TeXnicCenter) for Latex documents. To do this simply select “Copy Graph“ from the “Edit“ menu of 

the graph window in Stata and paste into your program of choice.  

The better choice is to export your graphs. Stata allows for different file types when you use the graph export function. Sadly 

not all of them are available under all types of operating systems. Under Windows I would recommend saving graphs as PNG 

files. PNG is a file format similar to GIF which was used a lot (and is somethimes still used) on internet websites. If you are using 

Word, PNG is the way to go. If you use Latex EPS is a good choice, but might give you trouble compiling your document (it is 

not possible to compile a document with EPS graphics directly to PDF but you have to compile a DVI file and then in turn make it 

into a PDF). EPS is a format that should be readable under all operating systems. So we finish our graph with: 

graph save “H:\ECStata\MyFirstGraph”, replace 

graph export “H:\ECStata\MyFirstGraph.png”, replace 
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Estimation syntax 

Before we delve into some particular regression commands let us consider the syntax in Stata help for the details on estimation. 

The basic information is: 

 

 There are many different models of estimation. The main commands include regress, logit, logistic, sureg.  

 Most have a similar syntax:  

 
command varlist [weight] [if exp] [in range] [, options] 

 

 1st variable in the varlist is the dependent variable, and the remaining are the independent variables.   

 You can use Stata's syntax to specify the estimation sample; you do not have to make a special dataset. 

 You can, at any time, review the last estimates by typing the estimation command without arguments. 

 The level() option to indicate the width of the confidence interval.  The default is level(95). 

 

Once you have carried out your estimation, there are a number of post-estimation commands that are useful: 

 

 You can recall the estimates, VCM, standard errors, etc…; 

 You can carry out hypothesis testing => test (Wald tests), testnl (non-linear Wald tests), lrtest (likelihood-

ratio tests), hausman (Hausman's specification test); 

 You can use Stata's predict command, which does predictions and residual calculations.  

Weights and subsets 

Most Stata commands allow the use of weights and the if and in qualifiers. if and in were discussed earlier and have the 

same use when applied to regression commands as with other commands. Instead of running the regression on all observations, 

the if and in qualifier limit the data to a certain subset.  

. regress cgdp pop if year < 2000 

This command runs an ordinary least squared (OLS) regression of per capita GDP on the population level for all years prior to 

2000. What is important to note is that when we want to apply post-estimation commands, for example if we want to generate the 

residual for each observation, that we apply the same conditions as for the regression command. If we fail to control for the 

selection of a subset of the data we might inadvertently conduct an out-of-sample prediction. 

What we haven’t discussed yet is the use of weights in Stata. There are four types of weights in Stata. 

Sampling weights [pweight] Sampling weights are the inverse sampling probability, that is how many subjects of the 

population are represented by the observation. This is a very common type of weight in micro data samples. 

Often certain firms of different sizes have different probabilities of being in a sample, ethnic groups are often 

oversampled in surveys, etc. The reason is that with a fixed sampling probability the number of observations 

for certain types of subjects in the population is too small to yield any statistically valid results, so 

oversampling is applied. Sampling weights allow the user to account for those different sampling 

probabilities. 

Analytic weights [aweight] Analytic weights are appropriate when you run commands on aggregated data. We might 

want to run a regression of county level average wages on county characteristics. Analytical weights are then 

the number of individuals that are used to calculate the average wage. The reason is that the more 

observations are used to calculate the average wage the more precisely the population average wage is 

estimated and therefore the more we want to rely on that information. Analytic weights should not be used in 

lieu of sampling weights when Stata does not allow the use of sampling weights! 

Frequency and importance weights These two types of weights are less frequently used. Frequency weights are used when 

memory is conserved by dropping observations that have exactly the same values in all variables. Importance 

weights are a programmers option and beyond the need of this course (See the [U] User’s Guide for more 

detail). 

For most day to day-to-day work pweights and aweights should suffice. If you use a complex survey you might need to go further 

and use the survey (svy) commands in Stata. These allow you account for stratified and clustered sampling as well as differing 

sampling probabilities. 



Linear regression  
 
Stata can do a lot of general and very specialized regression commands. With Stata 10 there are now three sets of specialized 

commands for time series data, panel data, survey data and survival data. Stata can do a lot of fancy regressions (and most of 

which we will not talk about in these classes). The syntax for most of them is very similar and so we will focus on few commands 

in detail rather than discuss the whole list. Just so that you know the main ones, here is an abbreviated list of other regression 

commands that may be of interest: 

 

anova  analysis of variance and covariance 

cnreg  censored-normal regression 

heckman Heckman selection model 

intreg  interval regression 

ivreg  instrumental variables (2SLS) regression 

newey  regression with Newey-West standard errors 

prais  Prais-Winsten, Cochrane-Orcutt, or Hildreth-Lu regression 

qreg   quantile (including median) regression 

reg   ordinary least squares regression 

reg3   three-stage least squares regression 

rreg   robust regression (NOT robust standard errors) 

sureg  seemingly unrelated regression 

svyheckman Heckman selection model with survey data 

svyintreg interval regression with survey data 

svyivreg  instrumental variables regression with survey data 

svyregress linear regression with survey data 

tobit  tobit regression 

treatreg  treatment effects model 

truncreg  truncated regression 

xtabond  Arellano-Bond linear, dynamic panel-data estimator 

xtintreg  panel data interval regression models 

xtreg  fixed- and random-effects linear models 

xtregar  fixed- and random-effects linear models with an AR(1) disturbance 

xttobit  panel data tobit models 

 

We will focus on this is the most basic form of linear regression. regress fits a model of depvar on varlist using linear 

regression. The help regress command will bring up the following instructions for using regress.   

 

regress depvar [varlist] [if exp] [in range] [weight] [, level(#) beta vce(robust/cluster(varname)/bootstrap/jackknife/hc2/hc3) 

hascons noconstant tsscons noheader eform(string) depname(varname) mse1 plus ] 

 

Looking in the bottom of this help file will explain the options as follows: 

 

Options 

level(#)   specifies the confidence level, in %, for confidence intervals of the coefficients; see help level. 

 

beta   requests that normalized beta coefficients be reported instead of confidence intervals. beta may not be 

specified with cluster(). 

 

vce(robust)  specifies that the Huber/White/sandwich estimator of variance is to be used in place of the traditional 

calculation. See [U] 20.15 Obtaining robust variance estimates. 

 
vce(hc2) and vce(hc3)  specify an alternative bias correction for the robust variance calculation.  hc2 and hc3 may not be 

specified with cluster(). hc2 uses u_j^2/(1-h_j) as the observation's variance estimate. hc3 uses u_j^2/(1-h_j)^2 as the 

observation's variance estimate. Specifying either hc2 or hc3 implies robust. 

 

vce(cluster(varname)) specifies that the observations are independent across groups (clusters) but not necessarily 

independent within groups.  varname specifies to which group each observation belongs; e.g., cluster(personid) in data with 

repeated observations on individuals.  cluster() can be used with pweights to produce estimates for unstratified cluster-sampled 

data, but see help svyregress for a command especially designed for survey data. Specifying cluster() implies robust. 

 

vce(bootstrap) and vce(jackknife)  specify that the variance is estimated by resampling the data. The bootstrap resamples 

from the data with replacement while the jackknife consecutively deletes one observation. With both options the estimator is 

calculated several times which might take very long.  

 

hascons   indicates that a user-defined constant or its equivalent is specified among the independent variables.  Some 



caution is recommended when using this option as resulting estimates may not be as accurate as they otherwise would be.  Use of 

this option requires "sweeping" the constant last, so the moment matrix must be accumulated in absolute rather than deviation 

form.  This option may be safely specified when the means of the dependent and independent variables are all "reasonable" and 

there are not large amounts of colinearity between the independent variables.  The best procedure is to view hascons as a reporting 

option -- estimate with and without hascons and verify that the coefficients and standard errors of the variables not affected by the 

identity of the constant are unchanged.  If you do not understand this warning, it is best to avoid this option. 

 

noconstant  suppresses the constant term (intercept) in the regression. 

 

tsscons   forces the total sum of squares to be computed as though the model has a constant; i.e., as deviations from the 

mean of the dependent variable.  This is a rarely used option that has an effect only when specified with nocons.  It affects only 

the total sum of squares and all results derived from the total sum of squares. 

 

noheader, eform(), depname(), mse1, and plus are for ado-file (i.e. self-written commands) writers; see [R] regress. 

 

 

As described above, most estimation commands will follow this type of syntax but the available options will differ and so you 

should check the relevant help files if you wish to use these approaches. Of course, Stata has a number of defaults and so you 

don’t need to include any options if you don’t wish to change the default (though it is always good to figure out what the default 

is!) 

 

Lets start with a very simple regression of GDP per worker (y) on capital-output ratio (k).  
 

. regress y k 

 

      Source |       SS       df       MS              Number of obs =     104 

-------------+------------------------------           F(  1,   102) = 1110.99 

       Model |  2.5465e+10     1  2.5465e+10           Prob > F      =  0.0000 

    Residual |  2.3380e+09   102  22921482.3           R-squared     =  0.9159 

-------------+------------------------------           Adj R-squared =  0.9151 

       Total |  2.7803e+10   103   269936187           Root MSE      =  4787.6 

 

------------------------------------------------------------------------------ 

           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

           k |   .3319374   .0099587    33.33   0.000     .3121844    .3516904 

       _cons |   4720.016   617.1018     7.65   0.000     3495.998    5944.035 

 

There are a few points to note here:  

- The first variable listed after the regress (or reg for short) command is the dependent variable, and all subsequently 

listed variables are the independent variables.  
- Stata automatically adds the constant term or intercept to the list of independent variables (use the noconstant option if 

you want to exclude it).  
- The top-left corner gives the ANOVA decomposition of the sum of squares in the dependent variable (Total) into the 

explained (Model) and unexplained (Residual).  
- The top-right corner reports the statistical significance results for the model as a whole.  
- The bottom section gives the results for the individual explanatory variables.  

The regress command can be used with the robust option for estimating the standard errors using the Huber-White 

sandwich estimator (to correct the standard errors for heteroscedasticity):  

. regress y k, robust  

 

Regression with robust standard errors                 Number of obs =     104 

                                                       F(  1,   102) =  702.15 

                                                       Prob > F      =  0.0000 

                                                       R-squared     =  0.9159 

                                                       Root MSE      =  4787.6 

 

------------------------------------------------------------------------------ 

             |               Robust 

           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 



-------------+---------------------------------------------------------------- 

           k |   .3319374   .0125268    26.50   0.000     .3070905    .3567842 

       _cons |   4720.016   506.2807     9.32   0.000     3715.811    5724.222 

 

The coefficient estimates are exactly the same as in straightforward OLS, but the standard errors take into account 

heteroscedasticity. Note, the ANOVA table is deliberately suppressed as it is no longer appropriate in a statistical sense.  

Sometimes you also want to allow for more general deviations from the iid-assumption on the error term. The option 

cluster(group) allows for arbitrary correlation within specified groups (see Wooldridge, “Econometrics of Cross-Section 

and Panel Data”, chapter 4, for more details and limitations of this approach). For example, you might think that in a panel of 

countries, errors are correlated across time but independent across countries. Then, you should cluster standard errors on 

countries. In our example, we do not have a time dimension so clustering on country yields the same results as the robust option 

(which is a special case of the cluster option): 

. regress y k, cluster(country) 

Stata comes with a large amount of regression diagnostic tools, such as tests for outliers, heteroskedasticity in the errors etc. A 

good survey is available at http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter2/statareg2.htm. We will focus on two useful 

tools for detecting influential observations and looking at partial correlations. The first tool is the command lvr2plot (read 

leverage-versus-residual squared plot). This is not available after the robust option is used so let us revert back to the original 

regression: 

. regress y k 

. lvr2plot, mlabel(country) 

This plots the leverages of all observations against their squared residuals (the option mlabel labels points according to the 

variable listed in brackets behind it). Leverage tells you how large the influence of a single observation on the estimated 

coefficients is. Observations with high values could potentially be driving the results obtained (especially if they also have a large 

squared residual) so we should check whether excluding them changes anything.  

The second command is avplot (added-variable plot) which graphs the partial correlation between a specified regressor and the 

dependent variable. For this not to be simply the fitted values, we should add another variable such as human capital (h). Formally 

. regress y k 

. avplot k, mlabel(country) 

For some very basic econometrics which also comes with the necessary Stata commands, see 
http://psc.maths.lancs.ac.uk/shortCourses/notes/stata/session5.pdf for model diagnostics. 

 

Now you should play around with the regressions by adding constants, dropping variables from the regression.  

http://www.ats.ucla.edu/stat/stata/webbooks/reg/chapter2/statareg2.htm
http://psc.maths.lancs.ac.uk/shortCourses/notes/stata/session5.pdf


Post-estimation 
 
Once you have done your regression, you usually want to carry out some extra analysis such as forecasting or hypothesis testing. 

Here is a list of the most useful post-estimation commands: 

 

Command Description 

adjust  Tables of adjusted means and proportions 

estimates Store, replay, display, ... estimation results 

hausman  Hausman's specification test after model fitting 

lincom  Obtain linear combinations of coefficients 

linktest  Specification link test for single-equation models 

lrtest   Likelihood-ratio test after model fitting 

mfx   Marginal effects or elasticities after estimation 

nlcom  Nonlinear combinations of estimators 

predict   Obtain predictions, residuals, etc. after estimation 

predictnl  Nonlinear predictions after estimation 

suest   Perform seemingly unrelated estimation 

test    Test linear hypotheses after estimation 

testnl  Test nonlinear hypotheses after estimation 

vce   Display covariance matrix of the estimators 

 

Prediction  

A number of predicted values can be obtained after all estimation commands, such as reg, cnsreg, logit or probit. The 

most important are the predicted values for the dependent variable and the predicted residuals. For example, suppose we run the 

basic regression again:  

. regress y k h 

. predict y_hat   /* predicted values for dependent var */  

. predict r, residual   /* predicted residuals */  

Stata creates new variables containing the predicted values, and these variables can then be used in any other Stata command, e.g. 

you can graph a histogram of the residuals to check for normality.  

If we run a selected regression (e.g. just using OECD countries) and then wish to know how well this regression fits, we could run 

the following commands: 

 
regress y k h  if oecd==1 

 

predict y_hat_oecd if oecd==1 

predict r_oecd if oecd==1, residual  

The if statements are only necessary if you are running the analysis on a subset of dataset currently loaded into Stata. If you 

want to make out-of-sample predictions, just drop the if statements in the predict commands.  
 

predict y_hat_oecd_full  

predict r_oecd_full, residual   

 

Hypothesis testing  

The results of each estimation automatically include for each independent variable a two-sided t-test (for linear regressions) and a 

z-test (for regressions such as logit or probit) on the null hypothesis that the “true” coefficient is equal to zero. You can also 

perform an F-test or χ2 test on this hypothesis using the test command:  
. regress y k h y1985 ya 

. test y1985  /*since Stata defaults to comparing the listed terms to zero, you can 

simply use the variable*/ 

 

 ( 1)  y1985 = 0 

 

       F(  1,    63) =   15.80 

            Prob > F =   0.0002 

The F-statistic with 1 numerator and 63 denominator degrees of freedom is 15.80. The p-value or significance level of the test is 

basically zero (up to 4 digits at least), so we can reject the null hypothesis even at the 1% level – y1985 is significantly different 



from zero. Notice that, since the critical values of the F-distribution and the F-statistic with 1 numerator degree of freedom is 

identical to the square of the same values from the t-distribution, so the F-test result is the same as the result of the t-test. Also the 

p-values associated with each test agree.  
 

You can perform any test on linear hypotheses about the coefficients, such as:  

. test y1985=0.5   /* test coefficient on y1985 equals 0.5 */  

. test y1985 h   /* test coefficients on y1985 & h jointly zero */  

. test y1985+h=-0.5  /* test coefficients on y1985 & h sum to -0.5 */  

. test y1985=h   /* test coefficients on y1985 & h are the same */  

With many Stata commands, you can refer to a list of variables using a hyphen, e.g. desc k- ya gives descriptive statistics on 

exp, ya and every other variable on the list between them. However, the test command interprets the hyphen as a minus, and gets 

confused because it thinks you are typing a formula for it to test. If you want to test a long list of variables, you can use the 

testparm command (but remember to use the order command to bring the variables in the right order first)  
 

. order k h y1985 ya 

 

. testparm k-ya 

 

 ( 1)  k = 0 

 ( 2)  h = 0 

 ( 3)  y1985 = 0 

 ( 4)  ya = 0 

 

       F(  4,    63) =  370.75 

            Prob > F =    0.0000 

 



Extracting results  

We have already seen how the predict command can be used to extract predicted values from Stata’s internal memory for use 

in subsequent analyses. Using the generate command, we can also extract other results following a regression, such as 

estimated coefficients and standard errors:  

regress y k h y1985 ya, robust  

gen b_cons=_b[_cons]  /* beta coefficient on constant term */  

gen b_k=_b[k]   /* beta coefficient on GDP60 variable */  

gen se_k=_se[k]   /* standard error */  

You can tabulate the new variables to confirm that they do indeed contain the results of the regression. You can then use 

these new variables in subsequent Stata commands, e.g. to create a variable containing t-statistics:  

. gen t_k=b_k/se_k  

or, more directly:  

. gen t_k=_b[k]/_se[k]  

Stata stores extra results from estimation commands in e(), and you can see a list of what exactly is stored using the ereturn 

list command:  

. regress y k h y1985 ya, robust 

. ereturn list 

 

scalars: 

                 e(N) =  68 

              e(df_m) =  4 

              e(df_r) =  63 

                 e(F) =  273.7198124833108 

                e(r2) =  .9592493796249692 

              e(rmse) =  3451.985251440704 

               e(mss) =  17671593578.3502 

               e(rss) =  750720737.0983406 

              e(r2_a) =  .9566620386487768 

                e(ll) =  -647.8670640006279 

              e(ll_0) =  -756.6767273270843 

 

macros: 

            e(depvar) : "y" 

               e(cmd) : "regress" 

           e(predict) : "regres_p" 

             e(model) : "ols" 

           e(vcetype) : "Robust" 

 

matrices: 

                 e(b) :  1 x 5 

                 e(V) :  5 x 5 

 

functions: 

            e(sample)    

e(sample) is a temporary variable that is 1 if an observation was used by the last regression command run and 0 otherwise. It 

is a useful tool to have. Earlier we ran the following commands: 

regress  y k h if oecd==1 

predict y_hat_oecd if oecd==1 

but in the event that the “if” statement is complex, we may wish to simple tell Stata to predict using the same sample it used in the 

regression. We can do this using the e(sample): 

predict y_hat_oecd if e(sample) 

e(N) stores the number of observations, e(df_m) the model degrees of freedom, e(df_r) the residual degrees of freedom, 

e(F) the F-statistic, and so on. You can extract any of these into a new variable:  



. gen residualdf=e(df_r)  

And you can then use this variable as usual, e.g. to generate p-values:  

. gen p_k=tprob(residualdf,t_k)  

The tprob function uses the two-tailed cumulative Student’s t-distribution. The first argument in parenthesis is the relevant 

degrees of freedom, the second is the t-statistic.  

In fact, most Stata commands – not just estimation commands – store results in internal memory, ready for possible extraction. 

Generally, the results from other commands – that is commands that are not estimation commands – are stored in r(). You can 

see a list of what exactly is stored using the return list command, and you can extract any you wish into new variables:  

 
. sum y 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

           y |       105    18103.09    16354.09   630.1393   57259.25 

 

. return list 

 

scalars: 

                 r(N) =  105 

             r(sum_w) =  105 

              r(mean) =  18103.08932466053 

               r(Var) =  267456251.2136306 

                r(sd) =  16354.08973968379 

               r(min) =  630.1392822265625 

               r(max) =  57259.25 

               r(sum) =  1900824.379089356 

. gen mean_y=r(mean) 

Note that the last command will give exactly the same results as egen mean_y=mean(y).  

OUTREG2 – the ultimate tool in Stata/Latex or Word friendliness? 

There is a tool which will automatically create excel, word or latex tables or regression results and it will save you loads of time 

and effort. It formats the tables to a journal standard and was originally just for word (outreg) but now the updated version will 

also do tables for latex also.  

There are other user-written commands that might be helpful, outtable, outtex, estout, mat2txt, etc. just find the one that suit your 

purpose best. 

However, it does not come as a standard tool and so before we can use it, we must learn how to install extra ado files (not to be 

confused with running our own do files).  



Extra commands on the net  
 

Looking for specific commands 

If you are trying to perform an exotic econometric technique and cannot find any useful command in the Stata manuals, you may 

have to programme in the details yourself. However, before making such a rash move, you should be aware that, in addition to the 

huge list of commands available in the Stata package and listed in the Stata manuals, a number of researchers have created their 

own extra commands. These extra commands range from the aforementioned exotic econometric techniques to mini time-saving 

routines. For example, the command outreg2.  

You need to first locate the relevant command and then install it into your copy of Stata. The command can be located by trying 

different searches, e.g. to search for a command that formats the layout of regression results, I might search for words like 

“format” or “table”:  

. search format regression table 

 

Keyword search 

 

Keywords:  format regression table 

  Search:  (1) Official help files, FAQs, Examples, SJs, and STBs 

 

Search of official help files, FAQs, Examples, SJs, and STBs 

 

 

FAQ     Can I make regression tables that look like those in journal articles? 

. . . . . . . . . . . . . . . . . .  UCLA Academic Technology Services 

5/01    http://www.ats.ucla.edu/stat/stata/faq/outreg.htm 

 

STB-59  sg97.3  . . . . . . . . . . . . Update to formatting regression output 

(help outreg if installed)  . . . . . . . . . . . . . . . J. L. Gallup 

1/01    p.23; STB Reprints Vol 10, p.143 

small bug fixes 

 

STB-58  sg97.2  . . . . . . . . . . . . Update to formatting regression output 

(help outreg if installed)  . . . . . . . . . . . . . . . J. L. Gallup 

11/00   pp.9--13; STB Reprints Vol 10, pp.137--143 

update allowing user-specified statistics and notes, 10% 

asterisks, table and column titles, scientific notation for 

coefficient estimates, and reporting of confidence interval 

and marginal effects 

 

STB-49  sg97.1  . . . . . . . . . . . . . . . . . . . . . . Revision of outreg 

(help outreg if installed)  . . . . . . . . . . . . . . . J. L. Gallup 

5/99    p.23; STB Reprints Vol 9, pp.170--171 

updated for Stata 6 and improved 

 

STB-46  sg97  . . . . . . .  Formatting regression output for published tables 

(help outreg if installed)  . . . . . . . . . . . . . . . J. L. Gallup 

11/98   pp.28--30; STB Reprints Vol 8, pp.200--202 

takes output from any estimation command and formats it as 

in journal articles 

 

(end of search) 

 

You can read the FAQ by clicking on the blue hyperlink. This gives some information on the command. You can install the 

command by first clicking on the blue command name (here sg97.3, the most up-to-date version) and, when the pop-up window 

appears, clicking on the install hyperlink. Once installed, you can create your table and then use the command outreg2 as any 

other command in Stata. The help file will tell you the syntax. 

 

However, I mentioned outreg2 and this has not appeared here, so I may need to update more. 

 

Checking for updates in general 

New Stata routines and commands appear all the time and existing ones get updates. A simple way to keep up-to-date with any 

changes is to use the update commands. The first step is to check when your version was last updated: 



. update 

 

Stata executable 

    folder:               \\st-server5\stata10$\ 

    name of file:         wsestata.exe 

    currently installed:  11 Aug 2008 

 

Ado-file updates 

    folder:               \\st-server5\stata10$\ado\updates\ 

    names of files:       (various) 

    currently installed:  22 Sep 2008 

 

Utilities updates 

    folder:               \\st-server5\stata10$\utilities 

    names of files:       (various) 

    currently installed:  27 May 2008 

 

Recommendation 

    Type -update query- to compare these dates with what is available from 

    http://www.stata.com. 

Stata consists of basically two sets of files, the executable file and the ado-files (the utilities are new and so far include only one 

program that is called internally by Stata). The former is the main programme while the latter present the different Stata 

commands and routines. In order to check whether there are any more up-to-date versions use the update query command: 

. update query 

(contacting http://www.stata.com) 

 

Stata executable 

    folder:               \\st-server5\stata10$\ 

    name of file:         wsestata.exe 

    currently installed:  11 Aug 2008 

    latest available:     11 Aug 2008 

 

Ado-file updates 

    folder:               \\st-server5\stata10$\ado\updates\ 

    names of files:       (various) 

    currently installed:  22 Sep 2008 

    latest available:     22 Sep 2008 

 

Utilities updates 

    folder:               \\st-server5\stata10$\utilities 

    names of files:       (various) 

    currently installed:  27 May 2008 

    latest available:     27 May 2008 

 

Recommendation 

    Do nothing; all files up to date. 

It looks like my executable and ado files are okay. If I needed to update my ado files, Stata would have told me to type update ado 

which would lead to the following type of update: 

. update ado 

(contacting http://www.stata.com) 

 

Ado-file update log 

    1.  verifying \\st-server5\stata10$\ado\updates\ is writeable 

    2.  obtaining list of files to be updated 

    3.  downloading relevant files to temporary area 

downloading checksum.hlp 

  ... 

downloading varirf_ograph.ado 

downloading whatsnew.hlp 

    4.  examining files 

    5.  installing files 



    6.  setting last date updated 

 

Updates successfully installed. 

 

Recommendation 

    See help whatsnew to learn about the new features 

 

Finally, to learn about the new features installed, simply type help whatsnew. 

 
But we know that outreg2 exists so how do we find it to install? Well, type outreg2 into google to convince yourself that it 

exists. Then type: 

 
search outreg2, net  

 

Web resources from Stata and other users 

 

(contacting http://www.stata.com) 

 

1 package found (Stata Journal and STB listed first) 

---------------------------------------------------- 

 

outreg2 from http://fmwww.bc.edu/RePEc/bocode/o 

    'OUTREG2': module to arrange regression outputs into an illustrative table 

    / outreg2 provides a fast and easy way to produce an illustrative / table 

    of regression outputs. The regression outputs are produced / piecemeal and 

    are difficult to compare without some type of / rearrangement. outreg2 

 

(click here to return to the previous screen) 

 

(end of search) 

 

Click on the blue link and follow instructions to install the ado file and help.  

 

Most additional commands that you will find are available from the Statistical Software Archive (SSC) and can be installed by 

typing ssc install followed by the name of the command. If the command you want to install is not available from SSC but 

elsewhere on the internet you can use the net install command. But  you should be wary of the source of the commands you 

install and always test them before starting to use them. 

. ssc install outreg2 

checking outreg2 consistency and verifying not already installed... 

installing into c:\ado\plus\... 

installation complete. 

 

Now using the help, try to figure out the syntax and then run the regressions from earlier in your do file but create a table which 

places the results of, for example, 6 regressions next to each other in either word or latex. 

 

Problems when installing additional commands on shared PCs 

When you are not using your private PC or Laptop but a shared PC, for example in the library, you might run into problems 

updating Stata or installing additional commands. 

. ssc install outreg2 

checking outreg2 consistency and verifying not already installed... 

installing into c:\ado\plus\... 

could not rename c:\ado\plus\next.trk to c:\ado\plus\stata.trk 

could not rename c:\ado\plus\backup.trk to c:\ado\plus\stata.trk 

r(699);  

This error occurs when someone else installed additional commands for Stata on this PC before. The reason is simply that 

Windows allows only the “owner” and administrators to change a file. To keep track of installed commands, Stata has to change 

some files. If you were not the first person to install additional commands (or update) on the PC you are using, these tracking files 

will belong to someone else and you cannot change them.  

But there is no reason for despair as there are several workarounds for this problem. The first solution is not to install the 

http://fmwww.bc.edu/RePEc/bocode/o


command but to run the ado file so the command becomes available temporarily. When you install a command it will remain 

available even if you restart Stata. If on the other hand you only run the associated ado file, the command will only work until you 

exit the current Stata session.  

. cap run http://fmwww.bc.edu/repec/bocode/o/outreg2.ado 

When typing in the commands interactively the capture command is not necessary, but if you include the line as part of your 

do-file you should use it, since you will get an error message when you try to load the command into memory when you have 

already done so. The advantage of this method is that you will have to explicitly load all the commands you need into memory 

and so even if you change the PC you use often your do-files will still work. The disadvantage is that you will need internet access 

and that the help for the commands is not installed and cannot be accessed from Stata directly by typing help outreg2. You 

can however access the help for the command via the web repository. 

. view http://fmwww.bc.edu/repec/bocode/o/outreg2.hlp 

The other method to solve the renaming problem is to change the path where you install updates and additional commands. For 

additional commands this is the “Plus” path. You can check the current path with the sysdir command and change it by typing 

sysdir set PLUS "H:\mypath". 

. sysdir 

   STATA:  \\st-server5\stata10$\ 

 UPDATES:  \\st-server5\stata10$\ado\updates\ 

    BASE:  \\st-server5\stata10$\ado\base\ 

    SITE:  \\st-server5\stata10$\ado\site\ 

    PLUS:  c:\ado\plus\ 

PERSONAL:  c:\ado\personal\ 

OLDPLACE:  c:\ado\ 

. sysdir set PLUS "H:\ECStata" 

 

. sysdir 

   STATA:  \\st-server5\stata10$\ 

 UPDATES:  \\st-server5\stata10$\ado\updates\ 

    BASE:  \\st-server5\stata10$\ado\base\ 

    SITE:  \\st-server5\stata10$\ado\site\ 

    PLUS:  H:\ECStata\ 

PERSONAL:  c:\ado\personal\ 

OLDPLACE:  c:\ado\ 

Exporting results “by hand” 

While export commands that were written by other users might give you nice looking tables, they might not be versatile enough 

for your needs, or give you too much output, i.e. you might not be interested in all results, but just one number from several 

regressions.  

What you can do in these cases is export information “by hand”, i.e. use Stata’s in-built functions to write information on the hard 

drive. The easiest way is to simply save a dataset containing the information you need. But that will not do you any good if you 

want to construct a table in Excel or Latex. What you can do is write an ASCII file that contains the numbers you want, and 

maybe some additional information. 

. file open tmpHolder using “H:\ECStata\MyOutputFile.txt”, write replace text  
(note: file H:\ECStata\MyOutputFile.txt not found) 

The file command handles the export to a text file. For this it uses a link to a file on the hard drive. The link has to be named 

(since we could in theory open several links at the same time) and will be referred to by its handle after being opened. The handle 

here is “tmpHolder”. In the options we specify that we want to open a file for writing, if the file already exists it should be 

replaced and we want the output to be plain text. The file we use to save the results is specified after the using qualifier.  

To write some text into the output file we write: 

. file write tmpHolder “This is the header for my Output file” _n 



Again we use the file command but now with write as subcommand. After the subcommand we specify 

which link should be used by providing a handle (here tmpHolder) and follow by the text we want to write into the 

text file. The _n is the newline command and so the next text will start in the second line of the output file. Now we 

don’t want to export text only but more importantly numbers. Let us say the mean and the variance of a variable: 

. sum y 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

           y |       105    18103.09    16354.09   630.1393   57259.25 

. file write tmpHolder “y,” (r(mean)) “,” (r(Var)) _n 

If we refer to some return values of descriptive or estimation commands we need to put them between parentheses, otherwise 

Stata will regard r() as text and just write the text and not the value of r() into the output file. 

When we have finished writing lines into an output file we close it (i.e. severe the link) and save it by using the close 

subcommand. 

 . file close tmpHolder 



More Estimation 

There are a host of other estimation techniques which Stata can handle efficiently. Below is a brief look at a couple of these. 

Further information on these or any other technique you may be interested in can be obtained from the Stata manuals.  

 

Constrained linear regression  
 

Suppose the theory predicts that the coefficients for REV and ASSASS should be identical. We can estimate a regression model 

where we constrain the coefficients to be equal to each other. To do this, first define a constraint and then run the cnsreg 

command:  
 
. constraint define 1 rev=assass   /* constraint is given the number 1 */ 
. cnsreg gr6085 lgdp60 sec60 prim60 gcy rev assass pi60 if year==1990, constraint(1) 

 

Constrained linear regression                          Number of obs =     100 

                                                       F(  6,    93) =   12.60 

                                                       Prob > F      =  0.0000 

                                                       Root MSE      =  1.5025 

 ( 1) - rev + assass = 0 

------------------------------------------------------------------------------ 

      gr6085 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      lgdp60 |  -1.617205   .2840461    -5.69   0.000    -2.181264   -1.053146 

       sec60 |   .0429134    .012297     3.49   0.001     .0184939    .0673329 

      prim60 |   .0352023    .007042     5.00   0.000     .0212183    .0491864 

         gcy |  -.0231969    .017786    -1.30   0.195    -.0585165    .0121226 

         rev |  -.2335536   .2877334    -0.81   0.419     -.804935    .3378279 

      assass |  -.2335536   .2877334    -0.81   0.419     -.804935    .3378279 

        pi60 |  -.0054616   .0024692    -2.21   0.029    -.0103649   -.0005584 

       _cons |    12.0264   2.073177     5.80   0.000     7.909484    16.14332 

------------------------------------------------------------------------------ 

 

Notice that the coefficients for REV and ASSASS are now identical, along with their standard errors, t-stats, etc. We can define 

and apply several constraints at once, e.g. constrain the lGDP60 coefficient to equal –1.5:  
 

. constraint define 2 lgdp60=-1.5  

. cnsreg gr6085 lgdp60 sec60 prim60 gcy rev assass pi60 if year==1990, constraint(1 2) 

 

Dichotomous dependent variable  

When the dependent variable is dichotomous (zero/one), you can run a Linear Probability Model using the regress command. 

You may also want to run a logit or a probit regression. The difference between these three models is the assumption that 

you make about the probability distribution of the latent dependent variable (LPM assumes an identity function, Logit a logistic 

distribution function, and Probit a normal distribution function).  

For the sake of trying out these commands, let us “explain” why a country is an OECD member using a logit regressions: 

. logit OECD lrgdpl if year==1990 

 

Iteration 0:   log likelihood = -63.180951 

... 

Iteration 7:   log likelihood =  -21.99139 

 

Logit estimates                                   Number of obs   =        135 

                                                  LR chi2(1)      =      82.38 

                                                  Prob > chi2     =     0.0000 

Log likelihood =  -21.99139                       Pseudo R2       =     0.6519 

 

------------------------------------------------------------------------------ 

        OECD |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      lrgdpl |    4.94118   1.119976     4.41   0.000     2.746067    7.136292 

       _cons |  -47.38448    10.7335    -4.41   0.000    -68.42176    -26.3472 

------------------------------------------------------------------------------ 



Panel Data  

If you are lucky enough to have a panel dataset, you will have data on n countries/people/firms/etc, over t time periods, for a total 

of n × t observations. If t is the same for each country/person/firm then the panel is said to be balanced; but for most things Stata 

is capable of working out the optimal/maximum dataset available. There are a few things to note before using panel data 

commands: 

1. Panel data should be kept in long form (with separate person and time variables). However, sometimes your data may 

be in wide form and needs to be converted to long form using the reshape command.  

2. You have to declare your data a panel. One way to do this is using the xtset command (the previously used 

commands iis and tss are outdated as of Stata 10). To do this, you need two indicator variables, indicating the unit 

(panelvar) and time (timevar) dimensions of your panel. In our case, these are simply year and country. Note that 

panel dimensions cannot be string variables so you should first encode country. Once you have done this, use the 

xtset command: 

. encode country, gen(country_no) 

. xtset country_no year 

 

You are now free to use Stata’s panel data commands, although I will only make use of a few main ones (bolded):  

xtdes  Describe pattern of xt data 

xtsum  Summarize xt data 

xttab  Tabulate xt data 

xtdata  Faster specification searches with xt data 

xtline  Line plots with xt data 

xtreg  Fixed-, between- and random-effects, and population-averaged linear models 

xtregar  Fixed- and random-effects linear models with an AR(1) disturbance 

xtgls  Panel-data models using GLS 

xtpcse  OLS or Prais-Winsten models with panel-corrected standard errors 

xtrchh  Hildreth-Houck random coefficients models 

xtivreg  Instrumental variables and two-stage least squares for panel-data models 

xtabond  Arellano-Bond linear, dynamic panel data estimator 

xttobit  Random-effects tobit models 

xtintreg  Random-effects interval data regression models 

xtlogit  Fixed-effects, random-effects, & population-averaged logit models 

xtprobit  Random-effects and population-averaged probit models 

xtcloglog  Random-effects and population-averaged cloglog models 

xtpoisson  Fixed-effects, random-effects, & population-averaged Poisson models 

xtnbreg  Fixed-effects, random-effects, & population-averaged negative binomial models 

xtgee  Population-averaged panel-data models using GEE 

 

Describe pattern of xt data 

xtdes is very useful to see if your panel is actually balanced or whether there is large variation in the number of years for which 

each cross-sectional unit is reporting.  
 

. xtdes 

 

country_no:  1, 2, ..., 168                                  n =        168 

    year:  1950, 1951, ..., 2000                             T =         51 

           Delta(year) = 1; (2000-1950)+1 = 51 

           (country_no*year uniquely identifies each observation) 



 

Distribution of T_i:   min      5%     25%       50%       75%     95%     max 

                        51      51      51        51        51      51      51 

 

     Freq.  Percent    Cum. |  Pattern 

 ---------------------------+----------------------------------------------------- 

      168    100.00  100.00 |  111111111111111111111111111111111111111111111111111 

 ---------------------------+----------------------------------------------------- 

      168    100.00         |  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Of course, in our sample there are year entries for every country and every year, but much of the data is missing. Looking at the 

patterns given that GDP per capita data exists tells a much more mixed story. Some 50 countries have data for all years, but many 

other variant patterns are evident (especially samples than begin after 1950). 

. xtdes if cgdp!=. 

 

country_no:  1, 2, ..., 168                                  n =        168 

    year:  1950, 1951, ..., 2000                             T =         51 

           Delta(year) = 1; (2000-1950)+1 = 51 

           (country_no*year uniquely identifies each observation) 

 

Distribution of T_i:   min      5%     25%       50%       75%     95%     max 

                         1       1      15        41        51      51      51 

 

     Freq.  Percent    Cum. |  Pattern 

 ---------------------------+----------------------------------------------------- 

       50     29.76   29.76 |  111111111111111111111111111111111111111111111111111 

       29     17.26   47.02 |  ..........11111111111111111111111111111111111111111 

       14      8.33   55.36 |  ..............................................1.... 

        6      3.57   58.93 |  ........................................11111111111 

        6      3.57   62.50 |  .11111111111111111111111111111111111111111111111111 

        5      2.98   65.48 |  ..........1111111111111111111111111111111111111111. 

        4      2.38   67.86 |  ...........................111111111111111111111111 

        4      2.38   70.24 |  .........111111111111111111111111111111111111111111 

        4      2.38   72.62 |  .....1111111111111111111111111111111111111111111111 

       46     27.38  100.00 | (other patterns) 

 ---------------------------+----------------------------------------------------- 

      168    100.00         |  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

Summarize xt data  

xtsum is similarly very useful and can be used in the same way that sum is used for non-panel data. 

. xtsum pop cgdp 

 

Variable         |      Mean   Std. Dev.       Min        Max |    Observations 

-----------------+--------------------------------------------+---------------- 

pop      overall |  31252.47   108217.8      40.82    1258821 |     N =    5847 

         between |             89099.92      42.48   913862.3 |     n =     168 

         within  |             28391.67  -313609.8   405753.2 | T-bar = 34.8036 

                 |                                            | 

cgdp     overall |  7.467798   1.272928   4.417209   10.79891 |     N =    5847 

         between |             1.052756   5.527193   10.05989 |     n =     168 

         within  |             .8357679   5.050297   9.835527 | T-bar = 34.8036 

This tables tells us the minimum and maximum, standard deviation and mean (in the overall case) of our selected variables (pop 

and cgdp) in three ways that are of interest: 

1. the overall sample 

2. the between sample – i.e. x(bar)i 

3. the within sample – i.e. xit - x(bar)i - x(global bar) 

Tabulate xt data  

xttab is also a generalisation of the tabulate command for panel data and will show overall, within and between variation.  



. xttab  G7 

 

                  Overall             Between            Within 

       G7 |    Freq.  Percent      Freq.  Percent        Percent 

----------+----------------------------------------------------- 

        0 |    8211     95.83       161     95.83         100.00 

        1 |     357      4.17         7      4.17         100.00 

----------+----------------------------------------------------- 

    Total |    8568    100.00       168    100.00         100.00 

                               (n = 168) 

Panel regressions 

xtreg is a generalisation of the regress commands. As with the summary data above, we can make use of the information in the 

cross-section (between) and also in the time-series (within). Also, as per your econometrics training, Stata allows you to run 

fixed-effects (fe), random effects (re) and between estimators using xtreg. More complicated estimation (such as the Arellano-

Bond dynamic GMM estimator) have specific xt estimation commands. 

Fixed Effects Regression 

Fixed effects regression controls for unobserved, but constant, variation across the cross-sectional units. It is equivalent to 

including a dummy for each country/firm in our regression. Let us use the xtreg command with the fe option: 

. xtreg grgdpch gdp60 openk kc kg ki, fe 

 

Fixed-effects (within) regression               Number of obs      =      5067 

Group variable (i): country_no                  Number of groups   =       112 

 

R-sq:  within  = 0.0164                         Obs per group: min =         2 

       between = 0.2946                                        avg =      45.2 

       overall = 0.0306                                        max =        51 

 

                                                F(4,4951)          =     20.58 

corr(u_i, Xb)  = -0.4277                        Prob > F           =    0.0000 

 

------------------------------------------------------------------------------ 

     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       gdp60 |  (dropped) 

       openk |  -.0107672   .0042079    -2.56   0.011    -.0190166   -.0025178 

          kc |  -.0309774   .0089545    -3.46   0.001    -.0485322   -.0134225 

          kg |  -.0733306   .0147568    -4.97   0.000    -.1022604   -.0444007 

          ki |   .1274592   .0178551     7.14   0.000     .0924552    .1624631 

       _cons |   4.425707   .7451246     5.94   0.000     2.964933    5.886482 

-------------+---------------------------------------------------------------- 

     sigma_u |  1.6055981 

     sigma_e |  6.4365409 

         rho |  .05858034   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

F test that all u_i=0:     F(111, 4951) =     1.82           Prob > F = 0.0000 

Notice that gdp60, the log of GDP in 1960 for each country, is now dropped as it is constant across time for each country and so is 

subsumed by the country fixed-effect. 

Between Effects 

We can now use the xtreg command with the be option. This is equivalent to running a regression on the dataset of means by 

cross-sectional identifier. As this results in loss of information, between effects are not used much in practice.  

. xtreg grgdpch gdp60 openk kc kg ki, be 

 

Between regression (regression on group means)  Number of obs      =      5067 

Group variable (i): country_no                  Number of groups   =       112 

 

R-sq:  within  = 0.0100                         Obs per group: min =         2 



       between = 0.4575                                        avg =      45.2 

       overall = 0.0370                                        max =        51 

 

                                                F(5,106)           =     17.88 

sd(u_i + avg(e_i.))=  1.277099                  Prob > F           =    0.0000 

 

------------------------------------------------------------------------------ 

     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       gdp60 |  -.5185608   .1776192    -2.92   0.004    -.8707083   -.1664134 

       openk |   .0008808   .0029935     0.29   0.769    -.0050541    .0068156 

          kc |  -.0151328    .009457    -1.60   0.113    -.0338822    .0036166 

          kg |  -.0268036   .0149667    -1.79   0.076    -.0564765    .0028693 

          ki |   .1419786   .0213923     6.64   0.000     .0995662     .184391 

       _cons |   4.657591   1.587533     2.93   0.004     1.510153     7.80503 

------------------------------------------------------------------------------ 

 

Random Effects 

The command for a linear regression on panel data with random effects in Stata is xtreg with the re option. Stata's random-

effects estimator is a weighted average of fixed and between effects. 

. xtreg grgdpch gdp60 openk kc kg ki, re 

 

Random-effects GLS regression                   Number of obs      =      5067 

Group variable (i): country_no                  Number of groups   =       112 

 

R-sq:  within  = 0.0143                         Obs per group: min =         2 

       between = 0.4235                                        avg =      45.2 

       overall = 0.0389                                        max =        51 

 

Random effects u_i ~ Gaussian                   Wald chi2(5)       =    159.55 

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000 

 

------------------------------------------------------------------------------ 

     grgdpch |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       gdp60 |  -.5661554   .1555741    -3.64   0.000    -.8710751   -.2612356 

       openk |  -.0012826   .0024141    -0.53   0.595    -.0060142     .003449 

          kc |  -.0270849   .0061971    -4.37   0.000     -.039231   -.0149388 

          kg |  -.0506839   .0101051    -5.02   0.000    -.0704895   -.0308783 

          ki |   .1160396   .0127721     9.09   0.000     .0910067    .1410725 

       _cons |   6.866742   1.239024     5.54   0.000       4.4383    9.295185 

-------------+---------------------------------------------------------------- 

     sigma_u |  .73122048 

     sigma_e |  6.4365409 

         rho |  .01274156   (fraction of variance due to u_i) 

------------------------------------------------------------------------------ 

Choosing Between Fixed and Random Effects 

Choosing between FE and RE models is usually done using a Hausman test, and this is easily completed in Stata using the 

Hausman command. To run a Hausman test we need to run the RE and FE models and save the results using the store 

command. We then instruct Stata to retrieve the 2 sets of results and carry-out the test. 

For example, using the same estimates as above, we can write the following in our do file: 

xtreg grgdpch gdp60 openk kc kg ki, fe 

estimates store fe 

xtreg grgdpch gdp60 openk kc kg ki, re 

estimates store re 

hausman fe re 

 

                 ---- Coefficients ---- 

             |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B)) 



             |       fe           re         Difference          S.E. 

-------------+---------------------------------------------------------------- 

       openk |   -.0107672    -.0012826       -.0094846        .0034465 

          kc |   -.0309774    -.0270849       -.0038924        .0064637 

          kg |   -.0733306    -.0506839       -.0226467        .0107541 

          ki |    .1274592     .1160396        .0114196        .0124771 

------------------------------------------------------------------------------ 

                           b = consistent under Ho and Ha; obtained from xtreg 

            B = inconsistent under Ha, efficient under Ho; obtained from xtreg 

 

    Test:  Ho:  difference in coefficients not systematic 

 

                  chi2(4) = (b-B)'[(V_b-V_B)^(-1)](b-B) 

                          =       20.15 

                Prob>chi2 =      0.0005 

 

As described in the results, the null hypothesis is that there is no difference in the coefficients estimated by the efficient RE 

estimator and the consistent FE estimator. If there is no difference, then use the RE estimator – i.e. if the statistic is insignificant 

that is the Prob>chi2 is larger than .05 or .01. Otherwise, you should use FE, or one of the other solutions for unobserved 

heterogeneity as outlined in your Econometrics lectures. 

 



Time series data 

Stata has a very particular set of functions that control time series commands. But in order to use these commands, you must 

ensure that you tell Stata. Similar to the panel data commands above, we can do this using the tsset For example: 

tsset datevar 

Once you have done this, you are free to use the time series commands – I present a selection of these below (type help time for 

the full list): 

tsset  Declare a dataset to be time-series data 

tsfill  Fill in missing times with missing observations in time-series data 

tsappend  Add observations to a time-series dataset 

tsreport  Report time-series aspects of a dataset or estimation sample 

 

arima  Autoregressive integrated moving-average models 

arch  Autoregressive conditional heteroskedasticity (ARCH) family of estimators 

 

tssmooth_ma Moving-average filter 

tssmooth_nl Nonlinear filter 

 

corrgram  Tabulate and graph autocorrelations 

xcorr  Cross-correlogram for bivariate time series 

dfuller  Augmented Dickey-Fuller unit-root test 

pperron  Phillips-Perron unit-roots test 

archlm  Engle's LM test for the presence of autoregressive conditional heteroskedasticity 

 

var  Vector autoregression models 

svar  Structural vector autoregression models 

varbasic  Fit a simple VAR and graph impulse-response functions 

vec  Vector error-correction models 

 

varsoc  Obtain lag-order selection statistics for VARs and VECMs 

varstable  Check the stability condition of VAR or SVAR estimates 

vecrank  Estimate the cointegrating rank using Johansen's framework 

 

irf create  Obtain impulse-response functions and FEVDs 

vargranger Perform pairwise Granger causality tests after var or svar 

 

irf graph  Graph impulse-response functions and FEVDs 

irf cgraph  Combine graphs of impulse-response functions and FEVDs 

irf ograph  Graph overlaid impulse-response functions and FEVDs 

 

All of these can be implemented where appropriate by using the help function, manuals and internet resources (or colleagues 

know-how).  

Stata Date and Time-series Variables 

However, one of the issues with time series in Stata, and something that particularly challenges new users of Stata, is the data 

format used in the program. Therefore, I below provide some more advanced notes on this specialist topic.  

The key thing is that there are 2 possible types of entry – date entries (which work in general for storing dates in Stata) and time-

series entries (which are useful when we are not using daily data).Stata stores dates as the number of elapsed periods since 

January 1, 1960. When using a data-set that is not daily data, we want to use Stata’s time-series function rather than the date 

function – the reason is that the dates for quarterly data will be about 3 months apart but the number of days between them will 

vary so telling Stata to go from Q1 to Q2 will involve changing the date from (for example) January 1st to April 1st – which is 

either 90 days or 91 days depending on whether it is a leap-year. Obviously our life would be easier if we could just tell Stata that 

one entry is Q1, and the other entry is Q2. For example, if we want to take first-differences between quarters, or even more 

trickily, if we wanted to take seasonal differences – Q1 minus Q1 from previous year. 

Therefore when we have a variable that identifies the time-series elements of a dataset, we must tell Stata what type of data we are 

using – is it daily, weekly, monthly, quarterly, half-yearly or yearly. Therefore, if you use daily data it will be the number of 

elapsed days since January 1st 1960 (which is therefore zero), but if you use quarterly data, it is the number of elapsed quarters 



since 1960 Q1. The following table explains the different formats: 

Format Description Beginning +1 Unit  +2 Units  +3 Units 

%td daily  01jan1960 02jan1960 03Jan1960 04Jan1960 

%tw weekly  week 1, 1960 week 2, 1960 week 3, 1960 week 4, 1960 

%tm monthly  Jan, 1960  Feb, 1960 Mar, 1960 Apr, 1960 

%tq quarterly  1st qtr, 1960 2nd qtr, 1960 3rd qtr, 1960 4th qtr, 1960 

%th half-yearly 1st half, 1960 2nd half, 1960 1st half, 1961 2nd half, 1961 

%ty yearly  1960  1961  1962  1963 

 

Obviously, what you tell Stata here is highly important; we will see how to convert our data into Stata dates in a moment, but for 

now assume that we have a Stata date for January 1, 1999 – this is an elapsed date of 14245 (the number of days since January 1st 

1960). If we were to use this number as different types of time-series data, then there would be very different outcomes as shown 

in the following table: 

Daily  Weekly  Quarterly Half-yearly Yearly 

%td  %tw  %tq  %th  %ty 

01 Jan 1999 2233 W50 5521 Q2  9082 H2  - 

These dates are so different because the elapsed date is actually the number of weeks, quarters, etc., from the first week, quarter, 

etc of 1960. The value for %ty is missing because it would be equal to the year 14,245 which is beyond what Stata can accept.  

Therefore if we have a date format of 14245, but we want this to point to quarterly data, then we would need to convert it using 

special Stata functions. These functions translate from %td dates:  

wofd(varname)  daily to weekly 

mofd(varname)  daily to monthly 

qofd(varname)  daily to quarterly 

yofd(varname)  daily to yearly 

Looking up in help can also show how to convert numbers between other formats (help dates_and_times). 

Getting dates into Stata format 

This section covers how we get an existing date or time variable into the Stata format for dates – from here we can rewrite it as 

quarterly, monthly, etc… using the above commands. There are 3 different considerations depending on how your existing “date 

variable” is set up:  

1. Date functions for single string variables 

For example, your existing date variable is called raw_date and is of the form “20mar1999” – then it is said to be a 

single string variable (the string must be easily separated into its components so strings like "20mar1999" and "March 

20, 1999" are acceptable). If you have a string like "200399", we would need to convert it to a numeric variable first and 

then use technique 3 below.  

To convert the raw_date variable to a daily time-series date, we use the command: 

gen daily=date(raw_date,"dmy")  

The "dmy" portion indicates the order of the day, month and year in the variable; so if the variable was of the form 

values been coded as "March 20, 1999" we would have used "mdy" instead.  

The year must have 4 digits or else it returns missing values – therefore if the original date only has two digits, we place 

the century before the "y.": 

gen daily=date(raw_date,"dm19y") 

Or, if we have non-daily dates, we can use the following functions: 

weekly(stringvar,"wy") 

monthly(stringvar,"my") 



quarterly(stringvar,"qy") 

halfyearly(stringvar,"hy") 

yearly(stringvar,"y") 

For example, if our data is 2002Q1, then 

gen quarterly= quarterly(raw_data,"yq")  

will get our elapsed quarters since 1960 Q1.  

2. Date functions for partial date variables  

If there are separate variables for each element of the date; for example: 

month  day  year  

7  11  1948 

1  21  1952 

11  2  1994 

8  12 1993 

We can use the mdy() function to create an elapsed Stata date variable. The month, day and year variables must be 

numeric. Therefore we can write: 

gen mydate = mdy(month,day,year) 

Or, with quarterly data, we would use the yq() function: 

gen qtr=yq(year,quarter) 

All of the functions are: 

mdy(month,day,year)  for daily data 

yw(year, week)  for weekly data 

ym(year,month)  for monthly data 

yq(year,quarter)  for quarterly data 

yh(year,half-year)  for half-yearly data 

3. Converting a date variable stored as a single number  

As discussed above, if you have a single numeric variable, we need to first convert it into its component parts in order to 

use the mdy function. For example, imagine the variable is of the form yyyymmdd (for example, 19990320 for March 

20 1999); now we need to split it into year, month and day as follows: 

gen year = int(date/10000) 

gen month = int((date-year*10000)/100) 

gen day = int((date-year*10000-month*100)) 

gen mydate = mdy(month,day,year) 

In each case the int(x) command returns the integer obtained by truncating x towards zero. 

Using the time series date variables 

Once we have the date variable in Stata elapsed time form, it is not the most intuitive to work with. For example, here is how a 

new variable called stata_date will look by using the command  

gen stata_date = mdy(month,day,year) 

month day year stata_date 

7 11 1948 -4191 

1 21 1952 -2902 

8 12 1993 12277 

11 2 1994 12724 



Therefore to display the stata_date in a more user-friendly manner, we can use the format command as follows: 

format  stata_date %d 

This means that stata_date will now be displayed as: 

month day year stata_date 

7 11 1948 11jul1948 

1 21 1952 21jan1952 

8 12 1993 12aug1993 

11 2 1994 02nov1994 

It is possible to use alternatives to %d, or to use %td to display elapsed dates in numerous other ways – in fact, we can control 

everything about the display. For example if I had instead written: 

format stata_date %dM_d,_CY 

Then we would get: 

month day year stata_date 

7 11 1948 July 11, 1948 

1 21 1952 January 21, 1952 

8 12 1993 August 12, 1993 

11 2 1994 November 2, 1994 

Making use of Dates 

If we want to use our dates in an if command, we have a number of options: 

1. Exact dates 

We have a selection of functions d(), w(), m(), q(), h(), and y() to specify exact daily, weekly, monthly, quarterly, half-

yearly, and yearly dates respectively. For example: 

reg x y if w(1995w9) 

sum income if q(1988-3) 

tab gender if y(1999) 

2. A date range 

If you want to specify a range of dates, you can use the tin() and twithin() functions:  

reg y x if tin(01feb1990,01jun1990) 

sum income if twithin(1988-3,1998-3) 

The difference between tin() and twithin() is that tin() includes the beginning and end dates, whereas twithin() excludes 

them. Always enter the beginning date first, and write them out as you would for any of the d(), w(), etc. functions.  

Time-series tricks using Dates 

Often in time-series analyses we need to "lag" or "lead" the values of a variable from one observation to the next. Or we need to 

take first, second or seasonal differences. One way to do this is to generate a whole bunch of variables which represent the lag or 

the lead, the difference, etc… But if we have many variables, this can be take up a lot of memory.   

You should use the tsset command before any of the "tricks" in this section will work. This has the added advantage that if you 

have defined your data as a panel, Stata will automatically re-start any calculations when it comes to the beginning of a new cross-

sectional unit so you need not worry about values from one panel being carried over to the next.  

 Lags and Leads 

These use the L.varname (to lag) and F.varname (to lead) commands. Both work the same way:  



reg income L.income 

This regresses income(t) on income(t-1)  

If you wanted to lag income by more than one time period, you would simply change the L. to something like "L2." or 

"L3." to lag it by 2 and 3 time periods respectively.  

 Differencing 

Used in a similar way, the D.varname command will take the first difference, D2.varname will take the double 

difference (difference in difference), etc… For example: 

Date  income  D.income D2.income 

02feb1999 120  .  . 

02mar1999 230  110  . 

02apr1999 245  15  5 

 Seasonal Differencing 

The S.varname command is similar to the D.varname, except that the difference is always taken from the current 

observation to the n-th observation: In other words: S.income=income(t)-income(t-1) and S2.income=income(t)-

income(t-2) 

Date  income  S.income  S2.income 

02feb1999 120  .  . 

02mar1999 230  110  . 

02apr1999 245  15  125 



Survey data 

Survey data is very common in many applied microeconomic settings. Labour Economics, Economics of Education, Industrial 

Organization, all these fields employ surveys regularly. To minimize costs surveys are often designed such that the whole 

population is split into several strata and within these strata sampling (with differing probabilities) takes place. As an example we 

can consider so called linked employer-employee (LEE) data. This type of data is very useful for several fields of economics. You 

can e.g. in labour economics control for firm effects, productivity indicators or capital, or in industrial economics control for 

workforce characteristics. A good overview of the issues involved can be found at 

http://www2.napier.ac.uk/depts/fhls/peas/theory.asp.  

The sampling for LEE data is usually conducted in two stages. First a sample of firms is selected and in the second stage 

employees within these firms are randomly sampled. If this method would be conducted without stratification, it would be very 

unlikely that very large firms (of which there are only a few) would be part of our sample. So in order to be able to make 

statements about all firms in a country we would need a very large sample so that the probability that we observe a few very large 

firms is not zero. An easier method would be to split the population of all firms into small, medium and large firms and draw 

independent samples from each of these groups (or strata as they are called in Stata).  

Conversely we would want to sample a share of employees that is inversely related to the size of the firm. If we would for 

example set the share of surveyed employees in a firm to ten percent, we would only get responses from 1 or 2 employees in very 

small firms, a number that will not let us infer anything on the firm’s total workforce. For large firms ten percent might even be 

too large a number (think General Electric). So we will have to use different sampling probabilities (the inverse of which are the 

sampling weights – pweight). Note that we could also apply different sampling probabilities within each stratum, if we have a lot 

more small than medium and large firms we might want to sample less from that category. 

Besides weights and strata Stata can also account for clustering. Clusters arise by sampling groups of individuals (e.g. employees 

from a firm, children from a school or from a class, households from a district). In our example we sample individuals from firms 

and set this as our clustering variable. 

The dataset would be provided with a firm indicator, the inverse sampling probability of the firm (the sampling weight), 

information on the strata (which we can use to construct a stratum indicator dummy) and sampling weights for the workers. If 

there is no overall sampling weight we can generate it by multiplying firm and worker sampling weights (careful when working 

with weights, in Stata the sampling weight is the inverse sampling probability). 

In order to get point estimates right you need to use sampling weights, clustering and stratification (as well as sampling weights) 

matter for the correct estimation of standard errors. 

. svyset firm_id [pweight=total_w], strata(firm_size_cat) || _n 

In small samples we might want to add a finite population correction. This will affect the standard errors, but only in small 

populations (see the PEAS website). For the first stage this is no problem in our artificial example. We generate a variable that 

tells Stata the share of the population that the cluster is representing (i.e. the sampling probability) and we are done. 

. gen double firm_sp = 1/firm_w 

. svyset firm_id [pweight=total_w], strata(firm_size_cat) fpc(firm_sp) || _n 

For the second stage things get a little trickier, the variable that indicates the finite population may not vary within a stratum. If 

this is the case and the probability of an employee to be part of the sample is the same for each employee in the same stratum it 

suffices to specify the fpc() option using the workers sampling probability. If not, it might be that the second stage is stratified 

as well, for example we might have first stage strata defined by industry and region of a firm and after selecting the firms we 

stratify by firm size for the second stage.  

. svyset firm_id [pweight=total_w], strata(firm_ind_reg_cat) fpc(firm_sp) || _n, 

strata(firm_size_cat) fpc(worker_sp) 

The number of commands that support the survey option is constantly increasing (the number more than doubled from Stata 9 to 

Stata 10). All the basic estimation commands (ordinary least squares, instrumental variable estimation, logit and probit models 

and many more) are supported by svy. To account for the survey properties we simply use the svy prefix: 

. svy: regress y x 

  

http://www2.napier.ac.uk/depts/fhls/peas/theory.asp


Programming  
 

Program Basics 
 

Creating or “defining” a program  

A program contains a set of commands and is activated by a single command. A do-file is essentially one big program – it 

contains a list of commands and is activated by typing:  

. do "class 4.do" 

You can also create special programs within a do-file, especially useful when you have a set of commands that are going to be 

used repetitively. The use of these programs will initially be demonstrated interactively, but they are best used within a do-file.  

We will keep on using the PWT dataset from last week’s classes. Suppose you want to create new variables that contain the 

average values (across countries and years) of some of the underlying variables in the dataset and at the same time display on 

screen these averages. No single Stata command will do this for you, but there are a couple of ways you can combine separate 

Stata commands to reach your goal. The most efficient method is:  

. egen mean_kc=mean(kc)  

. tab mean_kc  

 

    mean_kc |      Freq.     Percent        Cum. 

------------+----------------------------------- 

   72.53644 |      8,568      100.00      100.00 

------------+----------------------------------- 

      Total |      8,568      100.00 

 

. egen mean_kg=mean(kg)  

. tab mean_kg  

 

    mean_kg |      Freq.     Percent        Cum. 

------------+----------------------------------- 

   20.60631 |      8,568      100.00      100.00 

------------+----------------------------------- 

      Total |      8,568      100.00.  

The tasks are the same for each variable you are interested in. To avoid repetitive typing or repetitive cutting and pasting, you can 

create your own program that combines both tasks into a single command (note, in what follows the first inverted comma or 

single-quote of `1’ is on the top-left key of your keyboard, the second inverted comma is on the right-hand side on the key with 

the @ symbol, and inside the inverted commas is the number one, not the letter L):  

program define mean  

egen mean_`1’=mean(`1’)  

tab mean_`1’  

end  

You have now created your own Stata command called mean, and the variable you type after this new command will be used in 

the program everywhere there is a `1’. For example, mean kg will use kg everywhere there is a `1’. This command can now 

be applied to any variable you wish:  

. mean ki 

 

    mean_ki |      Freq.     Percent        Cum. 

------------+----------------------------------- 

   15.74088 |      8,568      100.00      100.00 

------------+----------------------------------- 

      Total |      8,568      100.00 

Naming a program  

You can give your program any name you want as long as it isn’t the name of a command already in Stata, e.g. you cannot name 

it summarize. Actually, you can create a program called summarize, but Stata will simply ignore it and use its own 



summarize program every time you try using it. To check whether Stata has already reserved a particular name:  

. which sum 

built-in command: summarize 

. which mean 

command mean not found as either built-in or ado-file 

r(111); 

Redefining a program  

You may want to change your program in some way, such as altering a line, or adding or dropping a line. For example, the 

tabulate command displays more than just the single number we are interested in. We can provide a more user-friendly result 

using the display command, where everything in double-quotes (“”) is interpreted as straightforward text and anything not in 

double-quotes is interpreted as something in Stata memory, such as a variable name or results of a previous command (e.g. 

e(_b) or e(_se) from a regress command):  

. display "Mean of kg = " mean_kg  

Mean of kg = 21.15341 

Note, the value of mean_kg that is displayed is that of the first observation (_n=1). In our example, the value just so happens to 

be the same for all observations so we don’t care whether it is displaying the first, tenth or one-hundredth observation. However, 

this will not be so in many other examples, so care needs to be taken when using this command in this way.  

We can redefine our mean program by replacing the tabulate command with this display command. To do so, we must first 

drop the old mean program (placing capture before the command avoids Stata tripping up if there is no program called mean 

defined in the first place – useful for preventing Stata crashing in the middle of a long do-file):  

capture program drop mean  
program define mean  
egen mean_`1’=mean(`1’)  
display “Mean of `1’ = ” mean_`1’  
end  

Now we need to drop the existing mean_kc and mean_kg variables and re-run the commands to get: 

. mean kc 

Mean of kc = 72.536438 

. mean kg 

Mean of kg = 20.606308 

Debugging a program  

Your program may crash out half-way through for some reason:  

. mean kc  
mean_kc already defined  
r(110);  

Here, Stata tells us the reason why the program has crashed – you are trying to create a new variable called mean_kc but there 

is an old variable already called that. Our mean program is a very simple one, so we can figure out very quickly that the problem 

arises with the first line, egen mean_`1’=mean(`1’). However, with more intricate programs, it is not always so obvious 

where the problem lies. This is where the set trace command comes in handy. This command traces the execution of the 

program line-by-line so you can see exactly where it trips up. Because the trace details are often very long, it is usually a good 

idea to log them for review afterwards. 

. log using “debug.log”,replace  

. set more off  

. set trace on  

. mean kg  

. set trace off  

. log close  



You can further limit the amount of output by using set tracedepth to follow nested commands only to a certain depth. So 

if your program calls another program (which in turn calls another program) you can avoid the output from the second level 

onwards by using 

. set tracedepth 1  

Program arguments  

Our mean command was defined to handle only one argument – `1’. It is possible to define more complicated programs to 

handle several arguments, `1’, `2’, `3’, and so on. These arguments can refer to anything you want – variable names, specific 

values, strings of text, command names, if statements, and so on. For example, we can define a program that displays the value of 

a particular variable (argument `1’) for a particular country (argument `2’) and year (argument `3’):  

capture program drop show  
program define show 

tempvar obs  
quietly gen `obs’=`1’ if (countryisocode==“`2’” & year==`3’)  
so `obs’  
display “`1’ of country `2’ in `3’ is: ” `obs’  
end  

To see this in action:  

. show pop USA 1980 

pop of country USA in 1980 is: 227726 

 

. show pop FRA 1990 

pop of country FRA in 1990 is: 58026.102 

Some things to note about this program:  

- Line 1 creates a temporary variable that will exist while the program is running but will be automatically dropped once the 

program has finished running. Once this tempvar has been defined, it must be referred to within the special quotes (`’), 

just as with the arguments.  

- Line 2 starts with quietly, which tells Stata to suppress any onscreen messages resulting from the operation of the 

command on this line.  

- Make sure to properly enclose any string arguments within double-quotes. `2’ will contain a string of text, such as ARG or 

FRA, so when `2’ is being used in a command it should be placed within double-quotes (“”).  

- Line 3 ensures that observation number one will contain the value we are interested in. Missings are interpreted by Stata as 

arbitrarily large, so when the data is sorted in ascending order our value will be at the top of the list, ahead of these missings.  

As we have seen, use of strings can cause a bit of a headache. A further complication may arise if the argument itself is a string 

containing blank spaces, such as United States instead of USA. Stata uses blank spaces to number the different arguments, so if 

we tried show kg United States 1980, Stata would assign kg to `1’, United to `2’, States to `3’ and 1980 to `4’. 

The way to get around this is to enclose any text containing important blank spaces within double-quotes – the proper command 

then would be:  

. show kg “United States” 1980  

Renaming arguments  

Using `1’, `2’, `3’, and so on can be confusing and prone to error. It is possible to assign more meaningful names to the 

arguments at the very beginning of your program so that the rest of the program is easier to create. Make sure to continue to 

include your new arguments within the special quotes (`’):  

. capture program drop show  

. program define show  
1. args var cty yr  
2. tempvar obs  
3. quietly gen `obs’=`var’ if countryisocode==“`cty’” & year==`yr’  
4. so `obs’  
5. display “`var’ of country `cty’ in `yr’ is: ” `obs’  
6. end  



show kg USA 1980  

kg of country USA in 1980 is: 13.660507 

Macros  

A Stata macro is different to an Excel macro. In Excel, a macro is like a recording of repeated actions which is then stored as a 

mini-program that can be easily run – this is what a do file is in Stata. Macros in Stata are the equivalent of variables in other 

programming languages. A macro is used as shorthand – you type a short macro name but are actually referring to some longer 

name or string of characters. For example, you may use the same list of independent variables in several regressions and want to 

avoid retyping the list several times. Just assign this list to a macro. Using the PWT dataset:  

. local varlist gdp60 openk kc kg ki 

. regress grgdpch `varlist' if year==1990 

 

      Source |       SS       df       MS              Number of obs =     111 

-------------+------------------------------           F(  5,   105) =    6.70 

       Model |  694.520607     5  138.904121           Prob > F      =  0.0000 

    Residual |  2175.67123   105  20.7206784           R-squared     =  0.2420 

-------------+------------------------------           Adj R-squared =  0.2059 

       Total |  2870.19184   110  26.0926531           Root MSE      =   4.552 

 

------------------------------------------------------------------------------ 

     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       gdp60 |  -1.853244   .6078333    -3.05   0.003    -3.058465   -.6480229 

       openk |  -.0033326   .0104782    -0.32   0.751    -.0241088    .0174437 

          kc |  -.0823043   .0356628    -2.31   0.023     -.153017   -.0115916 

          kg |  -.0712923   .0462435    -1.54   0.126    -.1629847    .0204001 

          ki |   .2327257   .0651346     3.57   0.001     .1035758    .3618757 

       _cons |   16.31192   5.851553     2.79   0.006     4.709367    27.91447 

 

 

. regress  grgdpch `varlist' if year==1980 

 

      Source |       SS       df       MS              Number of obs =     111 

-------------+------------------------------           F(  5,   105) =    2.27 

       Model |  880.685302     5   176.13706           Prob > F      =  0.0524 

    Residual |  8130.51957   105  77.4335197           R-squared     =  0.0977 

-------------+------------------------------           Adj R-squared =  0.0548 

       Total |  9011.20487   110  81.9200443           Root MSE      =  8.7996 

 

------------------------------------------------------------------------------ 

     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       gdp60 |  -.2969159   1.143709    -0.26   0.796    -2.564679    1.970847 

       openk |   .0023893   .0218479     0.11   0.913    -.0409311    .0457097 

          kc |  -.1349823   .0518524    -2.60   0.011     -.237796   -.0321686 

          kg |  -.1363929   .0845697    -1.61   0.110     -.304079    .0312932 

          ki |  -.1307708   .1124651    -1.16   0.248    -.3537683    .0922267 

       _cons |   16.98343   9.885368     1.72   0.089    -2.617433    36.58429 

Macros are of two types – local and global. Local macros are “private” – they will only work within the program or do-file in 

which they are created. Thus, for example, if you are using several programs within a single do-file, using local macros for each 

means that you need not worry about whether some other program has been using local macros with the same names – one 

program can use varlist to refer to one set of variables, while another program uses its varlist to refer to a completely 

different set of variables. Global macros are “public” – they will work in all programs and do files – varlist refers to exactly 

the same list of variables irrespective of the program that uses it. Each type of macro has its uses, although local macros are the 

most commonly used type.  

 
Just to illustrate this, let’s work with an example. The program reg1 will create a local macro called varlist and will also 

use that macro. The program reg2 will not create any macro, but will try to use a macro called varlist. Although reg1 has 

a macro by that name, it is local or private to it, so reg2 cannot use it:  



. program define reg1  

  1. local varlist gdp60 openk kc kg ki  

  2. reg  grgdpch `varlist' if year==1990 

  3. end  

 

. reg1 

 

      Source |       SS       df       MS              Number of obs =     111 

-------------+------------------------------           F(  5,   105) =    6.70 

       Model |  694.520607     5  138.904121           Prob > F      =  0.0000 

    Residual |  2175.67123   105  20.7206784           R-squared     =  0.2420 

-------------+------------------------------           Adj R-squared =  0.2059 

       Total |  2870.19184   110  26.0926531           Root MSE      =   4.552 

 

------------------------------------------------------------------------------ 

     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       gdp60 |  -1.853244   .6078333    -3.05   0.003    -3.058465   -.6480229 

       openk |  -.0033326   .0104782    -0.32   0.751    -.0241088    .0174437 

          kc |  -.0823043   .0356628    -2.31   0.023     -.153017   -.0115916 

          kg |  -.0712923   .0462435    -1.54   0.126    -.1629847    .0204001 

          ki |   .2327257   .0651346     3.57   0.001     .1035758    .3618757 

       _cons |   16.31192   5.851553     2.79   0.006     4.709367    27.91447 

------------------------------------------------------------------------------ 

 

. capture program drop reg2 

. program define reg2  

  1. reg  grgdpch `varlist' if year==1990 

  2. end  

 

. reg2 

      Source |       SS       df       MS              Number of obs =     129 

-------------+------------------------------           F(  0,   128) =    0.00 

       Model |           0     0           .           Prob > F      =       . 

    Residual |  4008.61956   128  31.3173404           R-squared     =  0.0000 

-------------+------------------------------           Adj R-squared =  0.0000 

       Total |  4008.61956   128  31.3173404           Root MSE      =  5.5962 

 

------------------------------------------------------------------------------ 

     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       _cons |   .9033816    .492717     1.83   0.069    -.0715433    1.878306 

------------------------------------------------------------------------------ 

Now, suppose we create a global macro called varlist – it will be accessible to all programs. Note, local macros are enclosed 

in the special quotes (`’), global macros are prefixed by the dollar sign ($).  

. global varlist gdp60 openk kc kg ki  

 

. capture program drop reg1  

. program define reg1  

  1. local varlist gdp60 openk kc kg ki   

  2. reg grgdpch `varlist'  

  3. reg grgdpch $varlist  

  4. end  

 

. capture program drop reg2  

. program define reg2  

  1. reg grgdpch $varlist  

  2. reg grgdpch `varlist'  

  3. end  

 

. reg1  

      Source |       SS       df       MS              Number of obs =    5067 

-------------+------------------------------           F(  5,  5061) =   41.21 

       Model |  8692.09731     5  1738.41946           Prob > F      =  0.0000 



    Residual |  213498.605  5061  42.1850632           R-squared     =  0.0391 

-------------+------------------------------           Adj R-squared =  0.0382 

       Total |  222190.702  5066   43.859199           Root MSE      =   6.495 

 

------------------------------------------------------------------------------ 

     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       gdp60 |  -.5393328   .1268537    -4.25   0.000    -.7880209   -.2906447 

       openk |  -.0003768   .0020639    -0.18   0.855    -.0044229    .0036693 

          kc |  -.0249966   .0055462    -4.51   0.000    -.0358694   -.0141237 

          kg |  -.0454862   .0089808    -5.06   0.000    -.0630924     -.02788 

          ki |   .1182029    .011505    10.27   0.000     .0956481    .1407578 

       _cons |   6.344897   1.045222     6.07   0.000     4.295809    8.393985 

 

      Source |       SS       df       MS              Number of obs =    5067 

-------------+------------------------------           F(  5,  5061) =   41.21 

       Model |  8692.09731     5  1738.41946           Prob > F      =  0.0000 

    Residual |  213498.605  5061  42.1850632           R-squared     =  0.0391 

-------------+------------------------------           Adj R-squared =  0.0382 

       Total |  222190.702  5066   43.859199           Root MSE      =   6.495 

 

------------------------------------------------------------------------------ 

     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       gdp60 |  -.5393328   .1268537    -4.25   0.000    -.7880209   -.2906447 

       openk |  -.0003768   .0020639    -0.18   0.855    -.0044229    .0036693 

          kc |  -.0249966   .0055462    -4.51   0.000    -.0358694   -.0141237 

          kg |  -.0454862   .0089808    -5.06   0.000    -.0630924     -.02788 

          ki |   .1182029    .011505    10.27   0.000     .0956481    .1407578 

       _cons |   6.344897   1.045222     6.07   0.000     4.295809    8.393985 

 

. reg2  

 

      Source |       SS       df       MS              Number of obs =    5067 

-------------+------------------------------           F(  5,  5061) =   41.21 

       Model |  8692.09731     5  1738.41946           Prob > F      =  0.0000 

    Residual |  213498.605  5061  42.1850632           R-squared     =  0.0391 

-------------+------------------------------           Adj R-squared =  0.0382 

       Total |  222190.702  5066   43.859199           Root MSE      =   6.495 

 

------------------------------------------------------------------------------ 

     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       gdp60 |  -.5393328   .1268537    -4.25   0.000    -.7880209   -.2906447 

       openk |  -.0003768   .0020639    -0.18   0.855    -.0044229    .0036693 

          kc |  -.0249966   .0055462    -4.51   0.000    -.0358694   -.0141237 

          kg |  -.0454862   .0089808    -5.06   0.000    -.0630924     -.02788 

          ki |   .1182029    .011505    10.27   0.000     .0956481    .1407578 

       _cons |   6.344897   1.045222     6.07   0.000     4.295809    8.393985 

 

      Source |       SS       df       MS              Number of obs =    5621 

-------------+------------------------------           F(  0,  5620) =    0.00 

       Model |           0     0           .           Prob > F      =       . 

    Residual |  250604.237  5620  44.5915012           R-squared     =  0.0000 

-------------+------------------------------           Adj R-squared =  0.0000 

       Total |  250604.237  5620  44.5915012           Root MSE      =  6.6777 

 

------------------------------------------------------------------------------ 

     grgdpch |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       _cons |   2.069907   .0890675    23.24   0.000       1.8953    2.244513 

As you will see, Stata runs two fully specified regressions in the first case but only one in the last case since again, the program 

reg2 does not recognize `varlist’. 

Macro contents  



We introduced macros by showing how they can be used as shorthand for a list of variables. In fact, macros can contain 

practically anything you want – variable names, specific values, strings of text, command names, if statements, and so on. Note, 

we were actually using macros implicitly earlier in the class. When we created the programs mean and show, the arguments 

(e.g. pop ARG 1980) were passed to the programs via local macros (`1’, `2’, `3’). These local macros contained variables 

(kg) and specific values (ARG and 1980). Some other examples of what macros can contain:  

Text  

Text is usually contained in double quotes (“”) though this is not necessary for macro definitions:  

. local ctyname “United States”  

gives the same result as 

. local ctyname United States  

A problem arises whenever your macro name follows a backslash (\). Whenever this happens, Stata ignores the first single quote 

(`) of the macro name and so fails to properly load the macro:  

. local filename PWT.dta  

. use “H:\ECStata\`filename’“ 

file H:\ECStata`filename'.dta not found 

r(601); 

To get around this problem, use double backslashes (\\) instead of a single one or slashes (/) instead of backslashes: 

. use “H:\ECStata\\`filename’“ 

. use “H:/ECStata/`filename’“ 

Statements  

Using macros to contain statements is essentially an extension of using macros to contain text. For example, if we define the local 

macro:  

. local year90 “if year==1990” 

then,  

. reg grgdpch $varlist `year90’ 

is the same as:  

. reg grgdpch gdp60 openk kc kg ki if year==1990 

Note that when using if statements, double quotes become important again. For simplicity, consider running a regression for all 

countries whose codes start with “B”. First, I define a local macro and then use it in the reg command: 

. local ctyname B 

. reg grgdpch gdp60 openk kc kg ki if substr(country,1,1)=="`ctyname'" 

Although it does not matter whether I define ctyname using double quotes or not, it is important to include them in the if-

statement since the variable country is string. The best way to think about this is to do what Stata does: replace `ctyname’ 

by its content. Thus, substr(country,1,1)=="`ctyname'" becomes substr(country,1,1)=="B". Omitting the 

double quotes would yield substr(country,1,1)==B which as usual results in an error message (since the results of the 

substr-operation is a string). 

Numbers and expressions  

. local i=1  

. local result=2+2  

Note, when the macro contains explicitly defined numbers or equations, an equality sign must be used. Furthermore, there must be 

no double-quotes, otherwise Stata will interpret the macro contents as text:  

. local problem=“2+2”  

Thus, the problem macro contains the text 2+2 and the result macro contains the number 4. Note that as before we could 

also have assigned “2+2” to problem while omitting the equality sign. The difference between the two assignments is that 

assignments using “=” are evaluations, those without “=” are copy operations. That is, in the latter case, Stata simply copies “2+2” 



into the macro problem while in the former case it evaluates the expression behind the “=” and then assigns it to the 

corresponding macro. In the case of strings these two ways turn out to be equivalent. There is one subtle difference though: 

evaluations are limited to string lengths of 244 characters (80 in Intercooled Stata) while copy operations are de facto only limited 

by available memory. Thus, it is usually safer to omit the equality sign to avoid parts of the macro being secretly cut off (which 

can lead to very high levels of confusion…) 

While a macro can contain numbers, it is essentially holding a string of text that can be converted back and forth into numbers 

whenever calculations are necessary. For this reason, macros containing numbers are only accurate up to 13 digits. When precise 

accuracy is crucial, scalars should be used instead:  

. scalar root2=sqrt(2)  

. display root2  
1.4142136  

Note, when you call upon a macro, it must be contained in special quotes (e.g. display `result’), but this is not so when 

you call upon a scalar (e.g. display root2 and not display `root2’).  

Manipulation of macros 

Contents of macros can be changed by simply redefining a macro. For example, if the global macro result contains the value 

“2+2” typing: 

. global result “2+3” 

overwrites its contents. If you want to drop a specific macro, use the macro drop command: 

. macro drop year90 

To drop all macros in memory, use _all instead of specific macro names. If you want to list all macros Stata has saved in 

memory instead (including a number of pre-defined macros), type: 

. macro list 

or 

. macro dir 

Macro names starting with an underscore (“_”) are local macros, the others are global macros. Similarly, to drop or list scalars, 

use the commands scalar drop and scalar list (or scalar dir) respectively. 

Temporary objects 

Besides in macros and variables, Stata can also store information in so-called temporary variables which are often used in longer 

programmes: 

 tempvar assigns names to the specified local macro names that may be used as temporary variable names in a dataset (we 

have already seen this type earlier on). When the program or do-file concludes, any variables with these assigned names are 

dropped: 

. program define temporary 

  1. tempvar logpop 

  2. gen `logpop'=log(pop) 

  3. sum pop if `logpop'>=8 

  4. end 

 

.  

. temporary 

(2721 missing values generated) 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

         pop |      4162    43433.71    126246.4       2989    1258821 

Since the tempvar logcgdp is dropped at the end of the program, trying to access it later on yields an error message: 

. sum pop if `logpop'>=8 

>8 invalid name 

r(198); 



 tempname assigns names to the specified local macro names that may be used as temporary scalar or matrix names.  When 

the program or do-file concludes, any scalars or matrices with these assigned names are dropped. This command is used 

more rarely then tempvar but can be useful if you want to do matrix-algebra in Stata subroutines. 

 tempfile assigns names to the specified local macro names that may be used as names for temporary files. When the 

program or do-file concludes, any datasets created with these assigned names are erased. For example, try the following 

programme: 

. program define temporary2 

  1.   tempfile cgdp 

  2.   keep country year cgdp 

  3.   save "`cgdp'" 

  4.   clear 

  5.   use "`cgdp'" 

  6.   sum year 

  7. end 

 

. temporary2 

file C:\DOCUME~1\Michael\LOCALS~1\Temp\ST_0c000012.tmp saved 

 

    Variable |       Obs        Mean    Std. Dev.       Min        Max 

-------------+-------------------------------------------------------- 

        year |      8568        1975    14.72046       1950       2000 

.  

This saves the variables country year cgdp in a temporary file that is automatically erased as soon as the programme 

terminates (check this by trying to reload “`cgdp’” after termination of the programme “temporary”). 

Looping  

There are a number of techniques for looping or repeating commands within your do-file, thus saving you laborious retyping or 

cutting and pasting. These techniques are not always mutually exclusive – you can often use one or more different techniques to 

achieve the same goal. However, it is usually the case that one technique is more suitable or more efficient in a given instance 

than the others. Therefore, it is best to learn about each one and then choose whichever is most suitable when you come across a 

looping situation.  

for  

While the for command is outdated in Stata 10 it is still useful in some settings. for-processing allows you to easily repeat Stata 

commands. As an example, we can use the PWT dataset and create the mean of several variables all at once:  

. for varlist kc ki kg: egen mean_X=mean(X) 

->  egen mean_kc=mean(kc) 

->  egen mean_ki=mean(ki) 

->  egen mean_kg=mean(kg) 

The egen command is repeated for every variable in the specified varlist, with the X standing in for the relevant variable 

each time (note, instead of typing out a long varlist, you could e.g. use varlist kc-ki to signify every variable listed 

between kc and kg, inclusive). You can see in the variables window that our three desired variables have been created.  

for varlist kc ki kg: display "Mean of X = " mean_X 

 

->  display `"Mean of kc = "' mean_kc 

Mean of kc = 72.536438 

 

->  display `"Mean of ki = "' mean_ki 

Mean of ki = 15.740885 

 

->  display `"Mean of kg = "' mean_kg 

Mean of kg = 20.606308 

The onscreen display includes both the individual commands and their results. To suppress the display of the individual 

commands, use the noheader option:  

for varlist kc ki kg, noheader: display "Mean of X = " mean_X  

 



Mean of kc = 72.536438 

Mean of ki = 15.740885 

Mean of kg = 20.606308 

To suppress both the individual commands and their results, you need to specify quietly before for. The example we have 

used above repeats commands for a list of existing variables (varlist). You can also repeat for a list of new variables you want 

to create (newlist):  

. for newlist ARG FRA USA : gen Xpop=pop if countryisocode=="X" & year==1995 

It is also possible to repeat for a list of numbers (numlist) or any text you like (anylist). For example, suppose we wanted to 

append several similarly named data files to our existing dataset:  

. for numlist 1995/1998: append using “H:\ECStata\dataX.dta”  

Note, the full file name H:\ECStata\dataX.dta must be enclosed in double quotes, otherwise Stata will get confused and 

think the backslash \ is a separator belonging to the for command:  

. for numlist 1995/1998: append using H:\ECStata\dataX.dta  

-> append using F:  

file F: not found  

r(601);  

It is possible to nest several loops within each other. In this case, you need to specify the name of the macro Stata uses for the list 

specified after for (in above examples, Stata automatically used “X”): 

. for X in varlist kg cgdp: for Y in numlist 1990/1995: sum X if year==Y 

It is also possible to combine two or more commands into a single for-process by separating each command with a backslash \:  

. for varlist kg cgdp, noheader: egen mean_X=mean(X) \ display “Mean of X = ” mean_X  

If the list of commands you want to repeat is very long and/or complicated, it may be worthwhile using for in conjunction with 

a custom-made program containing your list of commands:  

capture program drop mean  

program define mean  

quietly egen mean_`1'=mean(`1')  

display mean_`1'  

end 

for varlist kg cgdp: mean X 

foreach and forvalues 

The for loop is officially replaced from version 0 onwards by the foreach and forvalues loops. The former is used in 

conjunction with strings, the latter with numeric values. We know that it is possible to combine several commands into a single 

for-process. This can get quite complicated if the list of commands is quite long, but we saw how you can overcome this by 

combining for with a custom-made program containing your list of commands. The foreach command does the same thing 

without the need for creating a separate program:  

foreach var in kg cgdp {  
egen mean_`var’=mean(`var’)  
display “Mean of `var’ = ” mean_`var’  

}  
 

Mean of kg = 20.606308 

Mean of cgdp = 7.4677978 

With the foreach...in command, foreach is followed by a macro name that you assign (e.g. var) and in is followed 

by the list of arguments that you want to loop (e.g. kg cgdp). This command can be easily used with variable names, numbers, 

or any string of text – just as for. 



While this command is quite versatile, it still needs to be redefined each time you want to execute the same list of commands for a 

different set of arguments. For example, the program above will display the mean of kg and cgdp, but suppose that later on in 

your do-file you want to display the means of some other variables – you will have to create a new foreach loop. One way to 

get around this is to write the foreach loop into a custom-made program that you can then call on at different points in your 

do-file:  

capture program drop mean  
program define mean  
foreach var of local 1 {  

egen mean_`var’=mean(`var’)  
display “Mean of `var’ = ” mean_`var’  

}  
end  

 
. mean "kg cgdp"  

Mean of kg = 20.606308 

Mean of cgdp = 7.4677978  

. mean "ki pop"  

Mean of ki = 15.740885 

Mean of pop = 31252.467 

This method works, but can be quite confusing. Firstly, of local is used in place of in. Secondly, reference to the local 

macro `1’ in the first line does not actually use the single quotes we are used to. And thirdly, the list of arguments after the 

executing command must be in double quotes (so that everything is passed to the macro `1’ in a single go). For these reasons, it 

can be a good idea to use foreach only when looping a once-off list. A technique called macro shift can be used when you 

want to loop a number of different lists (see later).  

The forvalues loop works similarly but is defined over a range of values. Instead of in an equality sign is used and the values 

are given as a range, increasing by 1 unit or by a certain increment. 

forvalues t = 1980/1983 { 

show pop USA `t’ 

} 

pop of country USA in 1980 is: 227726 

pop of country USA in 1981 is: 230008 

pop of country USA in 1982 is: 232218 

forvalues t = 1980(5)1990 { 

show pop USA `t’ 

} 

pop of country USA in 1980 is: 227726 

pop of country USA in 1985 is: 238506 

pop of country USA in 1990 is: 249981 

Incremental shift (number of loops is fixed)  

You can loop or repeat a list of commands within your do-file using the while command – as long as the while condition is 

true, the loop will keep on looping. There are two broad instances of its use – the list of commands are to be repeated a fixed 

number of times (e.g. 5 loops, one for each year 1980-84) or the number of repetitions may vary (e.g. maybe 5 loops for a list of 5 

years, or maybe 10 loops for a list of 10 years). We will look first at the incremental shift technique for a fixed number of loops. 

We can see how it works using the following very simple example:  

local i=1  
while `i’<=5 {  

display “loop number ” `i’  
local i=`i’+1  

} 
loop number 1  
loop number 2  
loop number 3  
loop number 4  
loop number 5  



The first command defines a local macro that is going to be the loop increment – it can be seen as a counter and is set to start at 1. 

It doesn’t have to start at 1, e.g. if you are looping over years, it may start at 1980.  

The second command is the while condition that must be satisfied if the loop is to be executed. This effectively sets the upper 

limit of the loop counter. At the end of the while command is an open bracket { that signifies the start of the looped or repeated 

set of commands. Everything between the two brackets { } will be executed each time you go through the while loop.  
The final command before the close bracket } increases or increments the counter, readying it to go through the loop again (as 

long as the while condition is still satisfied). In actuality, it is redefining the local macro `i’ – which is why there are no 

single quotes on the left of the equality but there are on the right. The increase in the counter does not have to be unitary, e.g. if 

you are using bi-annual data you may want to fix your increment to 2. All the looped commands within the brackets are defined in 

terms of the local macro `i’, so in the first loop everywhere there is an `i’ there will now be a 1, in the second loop a 2, and so 

on. If the increase is unitary we can use the shorthand notation: 

local ++i /* same result as local i=`i’+1 */ 

To see a more concrete example, we will create a program to display the largest per capita GDP each year for every year 1980-84:  

capture program drop maxcgdp  

program define maxcgdp  

 local i=1980  

 while `i'<=1984 {  

  tempvar mcgdp  

  quietly egen `mcgdp'=max(cgdp) if year==`i'  

  so `mcgdp'  

  display `i' " " `mcgdp'  

  local ++i  

 }  

end 

 

maxcgdp  

1980 9.4067564 

1981 9.5102491 

1982 9.5399132 

1983 9.6121063 

1984 9.7101154 

Macro shift (number of loops is variable)  

The incremental shift technique used a fully defined counter with a fixed start (1980), end (1984) and increment (1 year). You 

type a single command (maxrgdpl) to execute the program that loops over this fully defined counter. However, this technique 

cannot be used if the required replications are not so neatly definable, e.g. you want to repeat a set of commands for 1980, 1984, 

1986 and 1995, or you want to repeat the commands for 1980-84 and 1990-94. Instead, you write a program that is executed by 

the command and a list of arguments that represent the required replications (e.g. maxrgdpl 1980 1984 1986 1995). 

Stata will allocate the first argument to local macro `1’, the second to local macro `2’, and so on. Thus, you need to shift 

through each of these arguments or local macros in order to shift through the required replications. A simple example of how this 

works:  

capture program drop displayno  
program define displayno  

while “`1’”~=“” {  
display `1’  
macro shift  

}  
end  
displayno 1 2 4 8 10  
1  
2  
4  
8  
10  
. displayno 77 90876 8  
77  
90876  
8  



The command macro shift is used here instead of the counter increment device – it shifts the contents of local macros one 

place to the left; `1’ disappears and `2’ becomes `1’, `3’ becomes `2’, and so on. So, in the example above, `1’ initially 

contained the number 77, `2’ contained 90876 and `3’ contained 8. The looped commands are in terms of `1’ only so the 

first replication uses the number 77. The mac shift command then shifts `2’ into the `1’ slot, so the second replication 

uses the number 90876. Similarly, the third replication uses the number 8.  

The while command at the start of the loop ensures that it will keep on looping until the local macro `1’ is empty, i.e. it will 

work as long as “`1’” is not an empty string “”. This is similar to the while command in the incremental shift technique, but 

here the loop is defined in terms of `1’ instead of `i’ and it is contained in double quotes. The use of double quotes is a 

convenient way to ensure the loop continues until the argument or macro `1’ contains nothing – it has nothing to do with 

whether the arguments are strings of text or numbers.  

For a more realistic application of this technique, we can revisit our maxcgdp program:  

capture program drop maxcgdp 

program define maxcgdp 

 while "`1'"~="" {  

  tempvar mcgdp  

  quietly egen `mcgdp'=max(cgdp) if year==`1'  

  so `mcgdp'  

  display `1' " " `mcgdp'  

  macro shift  

 }  

end 

 

. maxcgdp 1983 1991 1995 1999 

1983 9.6121063 

1991 10.137326 

1995 10.426952 

1999 10.699246 

Note that, essentially, the only things that have changed are the format of the while command, the format of the shifting 

mechanism and the way in which the local macro in the loop is defined (`1’ instead of `i’).  

The macro shift technique is commonly used to shift through variables rather than actual values. For example:  

capture program drop mean  

program define mean  

 while "`1'"~="" {  

  tempvar mean  

  quietly egen `mean'=mean(`1')  

  display "Mean of `1' = " `mean'  

  macro shift  

 }  

end  

Now, we can display the mean of a single variable:  

. mean kg 

Mean of kg = 20.606308 

or of a list of variables:  

. mean kg pop cgdp 

Mean of kg = 20.606308 

Mean of pop = 31252.467 

Mean of cgdp = 7.4677978 

 

Branching  

Branching allows you to do one thing if a certain condition is true, and something else when that condition is false. For example, 

suppose you are doing some sort of analysis year-by-year but you want to perform different types of analyses for the earlier and 

later years. For simplicity, suppose you want to display the minimum per capita GDP for the years to 1982 and the maximum 

value thereafter:  



 

capture program drop minmaxcgdp 

program define minmaxcgdp  

 local i=1980  

 while `i'<=1984 {  

  if `i'<=1982 { 

   local function min 

   }  

  else { 

   local function max 

  }  

  tempvar mcgdp  

  quietly egen `mcgdp'=`function'(cgdp) if year==`i'  

  so `mcgdp'  

  display `i' " " `mcgdp'  

  local ++i 

 }  

end 

. minmaxcgdp 

1980 5.518826 

1981 5.9500399 

1982 6.0682001 

1983 9.6121063 

1984 9.7101154 

The structure of this program is almost identical to that of the maxcgdp program created earlier. The only difference is that 

egen in line 6 is now a min or max function depending on the if/else conditions in lines 3 and 4.  

It is very important to get the brackets {} correct in your programs. Firstly, every if statement, every else statement, and 

every while statement must have their conditions fully enclosed in their own set of brackets – thus, if there are three condition 

with three open brackets {, there must also be three close brackets }. Secondly, nothing except comments in /* */ should be 

typed after a close bracket, as Stata automatically moves on to the next line when it encounters a close bracket. Thus, Stata would 

ignore the else condition if you typed:  

. if `i’<=1982 {local function min} else {local function max}  

Thirdly, it is necessary to place the brackets and their contents on different lines, irrespective of whether the brackets contain one 

or more lines of commands. Finally, it is possible to embed if/else statements within other if/else statements for extra levels of 

complexity, so it is crucial to get each set of brackets right. Suppose you want to display the minimum per capita GDP for 1980 

and 1981, the maximum for 1982 and 1983, and the minimum for 1984:  

capture program drop minmaxrgdpl  

program define minmaxrgdpl  

local i=1980  

while `i'<=1984 {  

if `i'<=1981 {  

local function min  

}  

else {  

if `i'<=1983 {  

local function max  

} 

else { 

local function min  

} 

} 

tempvar mrgdpl  

quietly egen `mrgdpl'=`function'(rgdpl) if year==`i'  

so `mrgdpl'  

display `i' " " `mrgdpl'  

local i=`i'+1  

}  

end 

. minmaxcgdp 



1980 5.518826 

1981 5.9500399 

1982 9.5399132 

1983 9.6121063 

1984 6.1164122 

One final thing to note is that it is important to distinguish between the conditional if:  

. sum cgdp if cgdp>8  

and the programming if:  

if cgdp >8 { 

 sum cgdp 

} 

The conditional if summarizes all the observations on cgdp that are greater than 8. The programming if looks at the first 

observation on cgdp to see if it is greater than 8, and if so, it executes the sum cgdp command, i.e. it summarizes all 

observations on cgdp  (try out the two commands and watch the number of observations). 



ADO programming 

ADO programming involves setting up user-defined programmes which will be stored in the memory of Stata and then can be 

retrieved as a command whenever you use Stata. For example, regress is used as an ado file. While I think it is pretty advanced to 

start programming your own complex ado files, some very simple files might be of use. The following simple examples come 

from http://www.ats.ucla.edu/stat/stata/seminars/stata_programming/default.htm. They are 3 programs of increasing complexity 

(and therefore flexibility) to take the median of a series or set of series.  

Median Program 

Version #1 

Basic program to deal with one variable. 

program define median1 

  version 6 

  sort `1' 

  quietly count if `1' ~= . 

  local n = r(N) 

  local mid = int(`n'/2) 

  local odd = mod(`n',2) 

   

  if `odd' { 

    local median = `1'[`mid'+1] 

  } 

  else { 

    local median = (`1'[`mid'] + `1'[`mid'+1])/2 

  } 

   

  display "Median of `1' = `median'" 

end 

Version #21 

Multiple variables and saves results in return list. 

program define median2, rclass 

  display 

  display in green " Variable        N    Median" 

  display in green "----------------------------" 

   

  while "`1'" ~= "" { 

    quietly count if `1' ~= . 

    local n = r(N) 

    local i = int(`n'/2) 

    local odd = mod(`n',2) 

    sort `1' 

    if `odd' { 

      local median = `1'[`i'+1] 

    } 

    else { 

      local median = (`1'[`i'] + `1'[`i'+1])/2 

    } 

    display in yellow %9s "`1'" %9.0f `n' %10.2f `median' 

    macro shift 

  } 

  return local Mdn = `median' 

  return local N = `n' 

end 

  

http://www.ats.ucla.edu/stat/stata/seminars/stata_programming/default.htm


Version #3 

Allows for multiple series and for “if” and “in” statements.  

program define median3, rclass 

  syntax varlist [if] [in] 

  tokenize `varlist' 

  preserve 

  marksample touse 

  display 

  display in green " Variable        N    Median" 

  display in green "----------------------------" 

   

  while "`1'" ~= "" { 

    quietly keep if `touse' 

    quietly count 

    local n = r(N) 

    local i = int(`n'/2) 

    local odd = mod(`n',2) 

    sort `1' 

    if `odd' { 

      local median = `1'[`i'+1] 

    } 

    else { 

      local median = (`1'[`i'] + `1'[`i'+1])/2 

    } 

    display in yellow %9s "`1'" %9.0f `n' %10.2f `median' 

    macro shift 

  } 

  return local Mdn = `median' 

  return local N = `n' 

end 

These programmes can be written (separately) in the do file editor and then saved as .ado files. You should save them in the Stata 

directory which contains ado file updates, under the “m” folder. Then whenever you type: 

median1 variablename 

it will calculate the median for you. 

 


