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Abstract

Logical puzzles like the doctrinal paradox raise the problem of how
to aggregate individual judgements into a collective judgement, or al-
ternatively, how to merge collectively inconsistent knowledge bases. In
this paper, we view judgement aggregation as a function on propositional
logic valuations, and we investigate how logic constrains judgement ag-
gregation. In particular, we show that there is no non-dictatorial decision
method for aggregating sets of judgements in a logically consistent way if
the decision method is local, i.e., only depends on the individual judge-
ments on the proposition under consideration.

1 Judges’ Dilemmas

Two juridical puzzles can serve as an introduction to our investigation. The first
puzzle from [7] is from the artificial intelligence literature and serves to illustrate
the problems that may arise when combining multiple knowledge bases.! The
following description of the puzzle is taken from [1].

Once upon a time a wise but strictly formal judge questioned two
witnesses. They spoke to her on separate occasions. Witness w;
honestly stated his conviction that proposition p was true. Witness
wo honestly stated that he believed that the implication p — ¢
was true. Nothing else was said or heard. The judge, not noticing
any inconsistency, accepted both statements and concluded that ¢
had to be true. However, when the two witnesses heard about her
conclusion they were shocked because they both were convinced that
q was false. But they were too late to prevent the verdict to be
executed. ..

*Department of Computer Science, University of Liverpool, United Kingdom; e-mail:
pauly@csc.liv.ac.uk

TDepartmen‘u of Philosophy, University of Groningen, the Netherlands; e-mail:
M.van.Hees@philos.rug.nl

'We thank Peter van Emde Boas for drawing our attention to this puzzle.



Individually, the witnesses (or knowledge bases) are consistent, witness w;
believing {p, ~q} and witness wo believing {p — ¢, ~q}. The judge, however, is
led to a conclusion which goes against the opinions of both witnesses. Alter-
natively, the question arises how to combine these two collectively inconsistent
knowledge bases into a consistent one. Especially when knowledge bases are
distributed, situations like the one described frequently arise.

As a second juridical puzzle, consider the so-called doctrinal paradox.? As-
sume that a three-member court has to decide whether a defendant is liable
under a charge of breach of contract. The judges have to make three decisions:
whether the contract was valid (p), whether there was a breach (¢) and whether
the defendant is liable (r). In their decision making they are constrained by the
legal doctrine that the defendant is only liable if the contract was valid and if
there was indeed a breach (r <+ (p A ¢)). Now assume that the members of the
court make the following judgements:

1: p,—q, T
2: -p,q, T
3:pq,r

Note that each of these three judgement sets is compatible with the legal doc-
trine according to which (r <> (p A q)). However, and this basically forms the
doctrinal paradox, the method of majority voting will run against that doctrine.
If a majority vote is held on each proposition, the court will have to decide that
there was a breach of a valid contract but that the defendant is not liable, an
inconsistency similar to the first juridical puzzle.

Both juridical puzzles can be viewed as instances of the more general problem
of judgement aggregation. Given that several individuals make judgements on a
set of interconnected propositions, how can one translate these judgements into
a collective judgement?

2 Aggregation of Judgements

The doctrinal paradox, and particularly the recent generalisation of it given
by List and Pettit [3], has sparked off an interest in the more general issue
of how to aggregate individual judgements. Suppose each member of a group
of individuals has a certain judgement concerning a set of propositions V. In
particular, for each proposition in ¥ an individual either accepts it or rejects
it. Suppose furthermore that these individual judgements satisfy certain con-
sistency requirements, viz., if the individual accepts a proposition, then he will
reject the negation of that proposition, and he accepts the conjunction of two
propositions if and only if he accepts both of its conjuncts. The question now
is what kind of aggregation functions assign to each possible configuration of
consistent individual judgements a consistent ‘group’ judgement. The doctrinal
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paradox basically shows that majority voting fails to be such an aggregation
procedure.

Note that the framework in which the doctrinal paradox is analysed differs
from that of social choice theory. The latter assumes that each individual has
an ordering over a set of social states, the ordering describing the individual’s
preferences. In the logical framework developed by List and Pettit, and of which
we here present a generalisation, the individuals do not express preferences but
make statements about their beliefs. The logical framework can thus be seen as
particularly useful for the analysis of epistemic decision making.

Logic plays a much more central role here than it does in standard so-
cial choice theory. Not only are certain logical meta-axioms investigated (e.g.,
anonymity or neutrality), but also on the object level, an aggregation function
works with logical objects, i.e., sets of formulas or propositional valuations rather
than preference relations. Besides being more purely or essentially logical, we
also view logical consistency restrictions as more fundamental than constraints
on individual preferences. We shall here discard the question to what extent
the two frameworks can be related formally, and thus shall also not go into pos-
sible logical relationships between the results established here and the results
of social choice theory. Remarks regarding the relationship between these two
frameworks can be found in [4].

The main objective of this paper is to present a very general impossibility
result concerning the aggregation of individual judgements. The structure of
the paper is as follows. In section 3 we present our formal framework which
makes use of a t-valued logic (¢ > 1). Since ¢t may be larger than 2, we allow
individuals as well as the group as a whole to express degrees of acceptance
and rejection. In section 4, we present our first main result: given a particular
domain assumption, we show that a dictatorship can be characterised in terms
of the conditions of independence of irrelevant alternatives and responsiveness.
Second, we show that in the particular case of 2-valued logic, the condition of
responsiveness can be weakened yet further.

Our third main result is presented in section 5.1. We show that given a
somewhat weaker domain assumption than the one used in our first theorem,
a dictatorship is characterised by the condition of systematicity. In Sections
5.2 and 5.3 we investigate possible relaxations of some of the assumptions that
were used in the derivation of our main results. In section 5.2, we show that
possibility results emerge if the set of atomic propositions is a singleton set.
In section 5.3 we examine what happens if we restrict the set of logical con-
nectives to conjunction only. Here it is shown that any responsive aggregation
procedure satisfying independence of irrelevant alternatives necessarily entails
the existence of a veto-dictator, that is, there is at least one individual who is
always able to ensure that a proposition is rejected.



3 Formal Framework

Let N = {1,2,...,n} be the finite set of individual decision makers, where
IN| > 1, and let & be the (finite or infinite) set of atomic propositions p, g,
etc. The set of all propositions ® is obtained by closing ®¢ under the standard
propositional connectives of conjunction (A) and negation (—):

p=ploplpAyp

for ¢ € ®, where p € ®y. In general, we shall only be concerned with some
nonempty set of relevant propositions ¥ C &, the propositions on which the
decision makers need to make a judgement. We let ¥y = ¥ N &, be the set
of atomic propositions in ¥. Again, ¥ may be finite or infinite, and ¥y may
or may not include ®y. A literal ¢ is an atomic proposition under 0 or more
negations. Formally, let -°p = p and —=*+'p = =—=Fp. Then ¢ is a literal if
¢ = —*p for some k > 0 and p € &;. We will consider two literals different if
they do not involve the same atomic proposition. Formally, we say that ¢ ~
iff o = =F4) or ¢p = =*¢ for some k > 0.

We will be working in the framework of many-valued logic [8], drawing in
particular on Post’s many valued systems [6]. Let T'= {0,1,...,t — 1} be the
set of truth values, where we assume that |T'| = ¢ > 1. Intuitively, we may
think of ¢ — 1 as “true”, “agree” or “accept”, and of 0 as “false”, “disagree”
or “reject”. The values between 0 and ¢ — 1 (if there are any) then represent
degrees of truthfulness (agreement or acceptance).

A wvaluation is a function v : ®¢ — T', and we let V' be the set of all valuations.
We extend a valuation v by induction to a function ¢ : ® — T which assigns
truth values also to complex propositions:

o(p) =wv(p) for p € ¥
0(np) =0(p) + L(mod t)
(e Ap) =min(d(p),0(¥))

We shall usually identify v and 0, simply writing v(p) instead of 9(yp). Note that
for the particular case of 2-valued logic with T' = {0, 1}, the connectives defined
do indeed correspond to standard negation and conjunction. Furthermore, it
is well-known that in this setting, {—, A} is a functionally complete set of con-
nectives, i.e., every boolean truth-function can be defined using only these two
connectives. For |T'| > 2, there are various ways one might define negation and
conjunction, and indeed, our definition of negation may not be the most natural
one. However, it has been shown in [6] that in general, i.e., also for ¢-valued
logic with ¢t > 2, {—, A} as defined above is functionally complete. Hence, every
t-valued truth function can be defined using only these two connectives, and
also alternative forms of negation and conjunction can be obtained using the
connectives defined above (see [8] for more details).

Valuations naturally give rise to judgement sets. Given valuation v, let
U(v) = {p € ¥lv(p) =t —1}. For |T| = 2, in the terminology of [3], any ¥(v)
is a complete, consistent and deductively closed set of propositions. Conversely,



for any complete, consistent and deductively closed set of propositions X C ¥
there will be a valuation v such that X = ¥(v). Hence, our formal framework
formulated in terms of propositional valuations generalises the framework used
in [3].

An aggregation function A : VN — V returns for every profile of valuations
(v1,...,v,) an aggregated valuation A(vy,...,v,). In this paper we shall always
assume that aggregation functions have universal domain, i.e., they are defined
on all possible valuation profiles.

Anonymity For any permutation f : N — N, any valuation profile vy, ..., v, €
V' and any proposition p € ¥, A(vy,...,v.)(0) = A(Vg), .- Vpm)) (@)

A decision method D : T — T is an n-ary function which maps a profile of
n individual decisions to an aggregated decision. For z € TV, we usually write
z! for z(i). By treating voting procedures as decision methods, one can obtain
elegant equational characterisations of, for instance, democracy, as shown in [5].
Here, we are interested in linking decision methods to the aggregation of sets of
judgements.

Systematicity There is some decision method D such that for all vy, ... v, €
Voand o € U, A(v1,...,v)(p) = D(vi (@), ..., va(p)).

Theorem 1 (List & Pettit, [3]) Let {p,q,pAq¢,~(pAq)} C T and |T| = 2.
Then there is no aggregation function satisfying both anonymity and systematic-
ity.

This result can be seen as a generalisation of the doctrinal paradox. For
|T'| = 2 and |N| odd, consider the decision method D of majority voting, where
D(zx) = 1 if and only if ¢ = 1 for the majority of i € N. Furthermore, let the
aggregated valuation function A(vy,...,v,) be defined as majority voting (on
atomic propositions), i.e., for p € ®y, A(vi,...,v,)(p) = D(vi(p),--.,vn(D))-
The doctrinal paradox demonstrates that while this aggregation function A is
systematic for atomic propositions, it fails to be systematic (for the given D)
for complex propositions like conjunctions. Theorem 1 generalises this observa-
tion: Not only majority voting fails to satisfy anonymity and systematicity, any
aggregation procedure will fail to satisfy at least one of these two properties.

While anonymity might not seem too problematic, systematicity, however,
is a rather strong property to demand of aggregation functions. Consequently,
one may wonder whether relaxing this requirement can turn the impossibility
theorem into a possibility theorem.

4 Characterising Dictatorship

Systematicity is a condition which requires decision making to be uniform across
all relevant propositions, i.e., (1) the decision method depends only on the indi-



vidual judgements regarding the formula under consideration, and (2) the same
decision method is used for all relevant formulas. The following notion relaxes
the second requirement, as the subsequent lemma, shows.

Independence of Irrelevant Alternatives (ITA) For all vy,...,vp,0],...,
v, €Voand p € ¥, A(vy,...,vn)(p) = AV, ..., v},)(p) whenever for all i € N

vili) = vl(p). o

Lemma 1 An aggregation function A is independent of irrelevant alternatives
if and only if for every ¢ € ¥ there is some decision method D, such that for
allvi,...,0, €V, A(v1,...,u0) (@) = Dy(v1(9), ..., vn(p))-

Proof. Assume that A satisfies I[TA. For ¢ € ¥ and z,...,z, € T, let
Dy(21,...,2n) = A(Wey,...,ws,)(p), where w,; € V is some valuation for
which w,, (¢) = x;, if such a valuation exists. Otherwise, w;, can be arbitrary.

Now for any vy, ...,v, € V, A(v1,...,0,)(p) = A(wg,, .-, wy, )(p) for z; =
v; (), by ITA, since v;(¢) = wg, (¢). Hence, by definition of D,, A(v1,...,v,)(p)
=Dy(z1,...,2n) = Dy(v1(),...,vn(p)). This proves the nontrivial direction
of the claim. ad

The preceding lemma should be compared to the systematicity condition.
Whereas systematicity guarantees a single decision method across all propo-
sitions, ITA allows for the decision method to depend on the formula under
consideration. Hence, systematicity is logically stronger than ITA.

The following lemma summarises some simple consequences of the ITA con-
dition which will be used in the proof of our main result, theorem 2.

Lemma 2 Consider a decision method D, and an aggregation function A such
that for all p € ¥ and vq,...,v, €V, A(v1,...,00)(¢) = Dy (v1(9), ..., vn(p)).
Then the following properties hold:

1. For every literal ¢ such that p,—'p,...,=Fp € ¥ and x € TV, we have
D_y,(x' +k (modt),...,x" + k (modt)) = Dy(a',...,2") +k (modt).

2. For all literals %1 such that p,, o A1) € ¥ and z,y € TV, we have
min(Dy(z', ..., 2"),Dy(y',...,y")) = Dysy(min(z',y'),...,min(z",
y"))-

8. For all literals p#1) such that @1, oAy € ¥ and x € TN, if Dypy(z) #0
then D,(z) # 0 and Dy(x) # 0.

Proof. For the first claim, consider any = = (z!,...,2") € TV, and let v;(¢) =
z'. Then v;(=*p) = 2 + k (mod t), and hence D_x,(z" + k (mod t),...,a™ +
k (modt)) = D_u,(vi(=*¢),...,v,(="*¢)) which by our assumption must equal
v(=Fp) = A(vi,...,v,)(=*¢). Using the defining properties of valuations, we
have v(=*¢) = v(p) + k (modt) = Dy (vi(9),...,v.(p)) + k (mod t) which in
turn equals Dy (z',...,2") + k (mod t).



The second claim can be established similarly: Consider any z = (z?,...,z")
and y = (y%,...,y"), and let v;(p) = z' and v;(¥)) = y'. Then min(D,(z),
Dy(®) = min(Do(v1(9), - 0n(9), Do (1 (), .-, va(15))) which by asstump-
tion must equal min(v(p),v(y))) = v(p A ). Again by our assumption, this
term must equal Dyay (min(vi (@), v1(¥)), . .., min(va (@), vs (1)) which by def-
inition equals Dyny (min(zt,yt),. .., min(z™,y™)).

For the third claim, if Dyay(z) # 0 then Dyay(z) = min(Dy,(x), Dy(z)) #
0 by the second claim, which implies that D, (z) # 0 and Dy(z) # 0. O

Dictatorship There is some i € N such that for allvy,...,v, €V and p € ¥,
Alvr, ..., vn) (@) = vi(p).

Responsiveness There are two literals @1, 2 € U with ¢1 % w2 such that for
everyi € {1,2} there arevy,...,vpn, v, ...,u, €V such that A(v1,...,v,)(p;) =
0 and A(vl,...,v})(pi) #0.

We call the set of formulas ¥ atomically closed if the following three condi-
tions are met: (1) If ¢ € ¥ and p € &y occurs in ¢, then p € ¥, (2) if p € ¥,
then —=*p € ¥ for all k < t, and (3) if two literals 1,1’ € ¥ then [Al' € ¥. As a
simple example, ¥ is atomically closed if ¥ = ®, but it is also easy to construct
strict subsets of ® which are atomically closed.

Lemma 3 Let ¥ be atomically closed with |Vo| > 2. If A satisfies IIA and
responsiveness, then for all literals ¢ € ¥, A(vy,...,v,)(p) = 0 whenever
vi(p) =0 for all i.

Proof. Suppose to the contrary that for some responsive aggregation function
A satisfying ITA and for some literal ¢ € ¥ we have A(v1,...,v,)(p) # 0 while
v;(¢) = 0 for all ¢. By lemma 1, D,(0,...,0) # 0. Furthermore, by responsive-
ness, there is some literal [ € ¥ with [ % ¢ such that for some z € TV we have
Di(z) = 0 and for some ' € TV we have D;(z') # 0. Using lemma 2.2, we
can conclude on the one hand that D,n;(0,...,0) = 0 (since D;(z) = 0), and
on the other hand that Dy,a(0,...,0) # 0 (since D;(z') # 0), thus yielding a
contradiction. a

Theorem 2 Let ¥ be atomically closed with |VUo| > 2. Then an aggregation
function is responsive and independent of irrelevant alternatives if and only if
it is a dictatorship.

Proof. Tt is easy to see that a dictatorship satisfies responsiveness and ITA. For
the converse direction, assume that the aggregation function A is responsive
and independent of irrelevant alternatives, i.e., by lemma 1, for every ¢ € ¥
there is some decision method D, such that for all vy,...,v, €V,

Avi, -, vn)(9) = Do (01(9); - - 0n (), (1)

which allows us to apply lemma 2. Suppose by reductio that A is not a dicta-
torship, i.e., for every i € N there is some ¢; € ¥ and vy,...,v, € V such that



A(vy,...,vn)(9i) # vi(p;). Since these two valuations differ on ¢;, they also
must differ on some atomic proposition p; occurring in ¢;. By atomic closure,
p; € ¥. Using equation (1), this means that for every i € N there is some D),
and some z; € T™ such that D,, (z;) # z;(i) = x!, as shown in the table below:

i|pi | af 27 | Dpi(i)
Llpy |2y af of | #a
2|p2 | @y 73 oy | # a3
nlpn |z, @ o an| Fap

The condition of non-dictatorship now allows us to apply a diagonalisation argu-
ment. For 0 < k < n, let D,[k] abbreviate that there are some y1,...,yp—t € T
such that

Dtp(oa"'aoayla"'ayn—k) 750
k n—k

We will show by induction on k that for all k¥ < n there are two literals [,I' € ¥
for which [ % I’ such that D;[k] and Dy [k]. Note that this will suffice to derive
a contradiction: D;[n] states that D;(0,...,0) # 0 for some literal [ which using
equation (1) contradicts lemma 3.

For the base case, if p, ¢ € ¥o, we know that D,(0,...,0) = D,(0,...,0) =0
by lemma 3, and hence D_,(1,...,1) = D_4(1,...,1) = 1 by lemma 2.1. Conse-
quently, D_,[0] and D_4[0] hold. To prove the inductive step, assume that D;[k]
and Dy [k] hold. Assume w.l.0.g. that pi41 % ! and that Dy(0,...,0,y1,-..,Yn—k)
# 0. Suppose that m',fﬁ + a(mod t) = 0, where 0 < a < t. Then using lemma
2.1 we have

D-apyr (24 +a(modt),. ..z}, +a(modt))

T Pk+1
= Dpk+1 (‘/I’.i+17 s ,$2+1) + a(mod t)

# ap il +a(modt) = 0.

k+1

——N—
By lemma 2.2, DMﬁale(O,...,O,O,min(y%mﬁﬁ + a(mod t)),...,

min(Yn—k, Ty, + a(mod t))) # 0, and by lemma 2.3, we can conclude from
this that D[k + 1] and D—ap, [k + 1] hold, completing the inductive step. O

Inspection of the proof of the previous theorem reveals that responsiveness
is only used through lemma 3. Hence, we also have the following result: An
aggregation function A satisfying ITA for which A(vy,...,v,)(p) = 0 whenever
v;(p) = 0 for all ¢ must be a dictatorship.

Phrased as an impossibility theorem, the result states that as long as the
set of relevant propositions is atomically closed and contains at least two atomic
propositions, there is no aggregation function which is responsive, non-dictatorial
and independent of irrelevant alternatives. While the domain condition of this



result (atomic closure) is more restrictive than the domain condition of theorem
1, the condition of independence of irrelevant alternatives is much weaker than
systematicity. Furthermore, our result is formulated for general many-valued
logic rather than 2-valued logic. Consequently, even allowing individuals to be
undecided about certain propositions (by allowing for a third truth value) will
not allow us to escape from an impossibility result. However, the next result
shows that for the special case of 2-valued logic, the condition of responsiveness
can be replaced by the following weaker condition.

Weak Responsiveness For at least some vy, ...,v0,,0],...,0), €V and some
¢ € U, we have A(vy,...,00)(¢) £ AW, ., 01) ().

Theorem 3 Let U be atomically closed with |y > 2. If |T'| = 2, an aggrega-
tion function is weakly responsive and independent of irrelevant alternatives if
and only if it is a dictatorship.

Proof. As was remarked earlier, responsiveness was only used in the proof
of theorem 2 through lemma 3. Hence it suffices to show that for |T| = 2,
responsiveness can be weakened in lemma 3, i.e., we will show that if A satisfies
ITA and weak responsiveness, then for all literals ¢ € ¥, A(vy,...,v,)(p) =0
whenever v;(¢) = 0 for all 4.

If an aggregation function A is weakly responsive, there must be some 1) € ¥
and some vy, ..., v, 01, .., v, € Vsuchthat A(vy,...,v,)(¥) # A, ..., v},)(®).
Hence, there must also be a detectable difference on some atomic p € ¥y occur-
ring in 9, so using lemma 1, we can assume that for some z € {0, 1}V we have
D,(x) = 0 and for some 2’ € {0,1}"V we have D,(z') = 1.

Now assume to the contrary that (using lemma 1) there is some literal ¢ € ¥
such that

D,(0,...,0) #0. 2)

We distinguish two cases. First, if p % ¢, then using lemma 2.2, from (2) we
can conclude on the one hand that Dyap(0,...,0) = 0 (since Dp(z) = 0), and
on the other hand that Dypp(0,...,0) # 0 (since Dy(z') = 1), thus yielding a
contradiction.

Second, assume that ¢ = —*p for k € {0,1}, and consider some q # p.
We know that there must be some y € TV and some ¢ € {0,1} such that
D_q(y) # 0. Hence, applying lemma 2.2 and (2), we can conclude that
Dyp-eq(0,...,0) # 0. On the other hand, since there is some z such that
D_x,(z) = 0, we have Dypn-cq(0,...,0) = min(Dy(2), D-cy(0,...,0)) = 0, so
again, we have a contradiction. a

This result shows that for 2-valued logic, theorem 2 can be strengthened con-
siderably: Any aggregation function satisfying ITA which depends on individual
judgements in any way whatsoever will be a dictatorship.



5 Variations and Extensions

In this section, we consider three questions arising from theorem 2. First, we
reconsider the notion of systematicity as a strengthening of the ITA assumption.
We show that under this stronger assumption, we can relax the domain condition
and obtain a result strictly stronger than theorem 1. Second, note that theorem
2 assumes that there are at least two atomic propositions present in the set
of relevant propositions. Reconsidering this assumption, we investigate what
happens if |¥y| = 1. Third, we investigate whether reducing the expressive
power of our logical language allows us to escape dictatorship.

5.1 Systematicity: Uniform Decision Methods

Due to the different domain conditions, (i.e., the requirements put on the set of
relevant propositions ¥), our theorem 2 cannot be compared directly to theorem
1. The requirement of atomic closure is stronger than the domain requirement
imposed in theorem 1. However, it turns out that atomic closure can be weak-
ened appropriately if one is prepared to replace ITA by the logically stronger
notion of systematicity.

Theorem 4 Let {p,q}U{=F(pAq) | 0<k<t} C W. Then an aggregation function
is systematic if and only if it is a dictatorship.

Proof. A dictatorship is trivially systematic. Given the domain assumption we
can conversely prove (analogous to lemma 2) that for the decision method D
provided by systematicity the following two equations hold:

D' +k (mod t),...,a" +k (mod t)) = D(z",...,2") + k (mod t)  (3)
min(D(z',...,2"), D(y',...,y")) = D(min(z',y"),...,min(z",y"))  (4)

We can then simplify the proof of theorem 2 as follows. The assumption of
non-dictatorship will give us the same table as in the proof of theorem 2, but
there is only one decision method D involved. By induction, we can estab-
lish for every k¥ < n that D[k] holds, i.e., that for some y1,...,yn—r € T,
D(,...,0,y1,---,yn—k) # 0.

For the base case with k = 0, we show that D(¢t —1,...,t—1) # 0. Suppose
that D(t — 1,...,t — 1) = x. By equation (3), D(0,...,0) = x + 1(mod t).
On the other hand, D(0,...,0) = D(min(t — 1,0),...,min(t — 1,0)) which by
equation (4) equals min(D(t—1,...,t—1),D(0,...,0)) = min(z,z+1(mod t)).
Hence, z + 1(mod t) = min(z, z + 1(mod t)) which implies that x =t —1 # 0.
Hence, D(t —1,...,t —1) =t — 1 and also D(0,...,0) =0.

Next, the inductive step can be shown analogous to the original proof: As-
suming DIk], i.e. D(0,...,0,y1,...,Yn—k) # 0, we consider py11. Suppose that
x',zi} + a(modt) = 0, where 0 < a < t. Then by equation (3), we have

D(zjy +a(modt),... x| + a(modt))

=D(x}yy,. -2}, ) +a(modt)
# a:’,:ﬂ + a(mod t) = 0.

10



k+1

. — . k42 .
By equation (4), D(0,...,0,0,min(ys, z; 1] + a(modt)),...,min(y,—k, Tj,, +
a(mod t))) # 0, completing the inductive step. O

Note first that theorem 1 is a corollary of theorem 4 (for the special case
where |T'| = ¢t = 2) since a dictatorship is not anonymous. Second, the proof
of theorem 4 shows how by moving from ITA to systematicity we can relax
the original domain restriction of atomic closure. The domain restriction of
{p,q} U{=*(pAq) | 0<k<t} C ¥ is not the only possible one. It suffices that ¥
contains two literals and their conjunction, as well as a literal with all of its up
to ¢ — 1 negations.

Since the domain assumption equals the one used in theorem 1, the result
strengthens theorem 1 in three ways: (a) it is formulated for any t-valued logic
and not just for a two-valued logic, (b) it shows that the condition of anonymity
can be replaced by the much weaker condition of non-dictatorship, (c) it not only
shows that systematicity is a sufficient condition for dictatorship (and thus for
a violation of anonymity) but also makes clear that it is a necessary condition.

5.2 Shortage of Atomic Propositions

The doctrinal paradox assumes that there are at least two basic issues under
discussion, and also the proof of theorem 2 does not succeed if |¥o| = 1. In fact,
we will show here that the theorem does not hold for |¥y| = 1. To illustrate
this, we will focus on the case where |T'| = 2.

The following lemma can be proved easily by induction on ¢. Essentially, it
states that there are only 4 different unary boolean functions.

Lemma 4 If|T| =2 and &, = {p} then for all p € ® one of the following four
claims holds:

1. Forallv eV, v(p) =1.

2. Forallv eV, v(p) =0.

3. For allv eV, v(p) =v(p).

4. For allv eV, v(p) =1—uv(p)

Theorem 5 There are non-dictatorial aggregation functions satisfying system-
aticity (and hence IIA) if |Po| = 1.

Proof. Suppose that &9 = {p}. Let |N| be odd, and define D(zy,...,z,) =
1 if and only if #; = 1 for the majority of z;. Define A(vy,...,vn)(p) =
D(vi(p),...,vn(p)). By the previous lemma, in order to prove that for all
¢ € ¥ we have A(v1,...,vn)(p) = D(v1(p),...,vn(p)), there are only four
cases to consider. (1) If ¢ is a tautology, the claim holds since D(1,...,1) =1,
(2) if ¢ is contradictory, the claim holds since D(0,...,0) = 0, (3) if ¢ is
equivalent to p, the claim holds by definition, and (4) if ¢ is equivalent to —p,
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A(v,...,v,)(—p) = 1=D(v1(p),...,v,(p)) which equals D(vi(—p),...,v.(—p))
by definition of D. a

Dictatorship and majority voting are not the only aggregation functions
satisfying systematicity in case |®¢| = 1. In general, as the proof of the theorem
shows, any decision method D for which D(0,...,0) = 0 and which satisfies
equation (3) will do.

The comparison between theorems 5 and 4 shows that for more than two
issues under consideration, dictatorship is the only uniform and logically con-
sistent decision method. On the other hand, if there is only one issue under
consideration, many different decision methods including majority voting are
possible.

5.3 Shortage of Logical Connectives

On yet a different interpretation of theorem 2 which focuses on the domain of
relevant propositions ¥, a dictatorship is characterised as the unique aggrega-
tion function which is responsiveness and independent of irrelevant alternatives
across both connectives, negation and conjunction. More precisely, both negated
formulas and conjunctions need to be present in ¥ for the theorem to hold. This
raises the question of whether restricting the set of allowable connectives would
allow one to obtain aggregation functions other than dictatorships.

As an example, consider the case where |T'| = 2 and n is odd. Then majority
voting will be a decision method D satisfying the following equation

Avi, -+ vn)(p) = D(vip), - -5 vn(p) ()

for all ¢ € ® which contain negation as the only connective, whereas consensus
voting (i.e., D(z) = 1 iff for all i € N 2 = 1) will not. On the other hand,
consensus voting will be a non-dictatorial rule that satisfies equation (5) for
all ¢ € ® which contain conjunction as the only connective, whereas majority
voting will not. It is easy to characterise the decision methods corresponding
to various sets of connectives using conditions like those in lemma 2. The more
interesting question is whether certain intuitively natural classes of aggregation
functions are characterised by intuitively natural sets of connectives. In this
light, theorem 2 is an example of such a characterisation result for the set
{—, A}

Call an aggregation function A a veto-dictatorship iff there is some i € N such
that for all v1,...,v, € V and ¢ € ¥, A(vy,...,v,)(¢) = 0 if v;(¢) = 0. Note
that every dictatorship is also a veto-dictatorship. We call a set of propositions
¥ conjunctively closed in case (1) if p € ¥ and p € & occurs in ¢, then p € U,
and (2) if two literals [,I' € ¥ then [ Al' € ¥. Hence, every atomically closed
set of propositions is also conjunctively closed, but not vice versa.

Theorem 6 Let ¥ be conjunctively closed with |Uo| > 2. Then if an aggregation
function is responsive and independent of irrelevant alternatives, it must be a
veto-dictatorship.
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Proof. First, note that the equations of lemma 2.2 and 2.3 still hold given con-
junctive closure. Second, it can easily be checked that lemma 3 remains valid if
¥ is conjunctively closed rather than atomically closed. We can then simplify
the proof of theorem 2 as follows: Assuming by reductio that we do not have
veto-dictatorship, we know that D,, (z;) # 0 and ! = 0. We show by induction
on k that for all £ < n there are literals [ % I’ such that D;[k] and Dy [k] hold.
For the base case, we use responsiveness directly to give us two literals [ % I’
for which D;[0] and Dy [0] hold. O

This result demonstrates that even a relaxation of the domain condition from
atomic closure to conjunctive closure still leaves us with a (possibly weaker)
form of dictatorship. Hence, restricting the logical connectives to conjunction
alone does not seem to gain us much. Note, however, that since this result only
establishes a necessary condition for ITA and responsiveness, it may still be the
case that restricting the logical connectives to conjunction does not allow us to
escape even from a strong form of dictatorship.

6 Conclusion

This paper has addressed the question of how the requirement of logical consis-
tency constrains the aggregation of judgements. Initially, one may investigate
what aggregation functions can be characterised by a uniform decision method
which only takes into account the individual judgements on the proposition un-
der consideration. This condition of systematicity, expressed by equation (5)
was already shown in [3] to be very strong. As demonstrated by theorem 4, it
is essentially equivalent to the presence of a dictator. As one way to allow for
more flexibility in decision making, one can allow the decision method to depend
on the formula under consideration, generalising equation (5) to equation (1).
As our main result (theorem 2) has shown, this will still result in a dictator-
ship under some mild domain conditions. Since this result is formulated in the
general setting of |T|-valued logic, allowing individuals to remain undecided on
propositions does not allow one to escape this result.

As already pointed out in [3], there are other routes to escape dictatorship,
giving up universal domain, or the assumption that sets of judgements can
always be linked to a valuation function (and thus imposing logical consistency,
etc.). Furthermore, our work suggests yet different routes. Our investigation
still leaves open the possibility that weakening the domain condition of atomic
closure may allow one to avoid dictatorship. In particular, theorem 6 suggests
that characterisation results for restricted sets of logical connectives may be of
interest.

As mentioned in the introduction, the formal framework for judgement ag-
gregation we used is more logical than the standard framework of social choice
theory which uses preferences. For this reason, we expect more fruitful inter-
action between research in formal logic and social choice theory. In this paper,
examples of this interaction can already be seen: sections 5.2 and 5.3 which
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present typically logical questions, and the use of many-valued logic and its
functional completeness result in section 3.

Finally, we return to the juridical puzzles from section 1. A possible solution
to the first juridical puzzle is proposed in [1]. We treat witness w; as an expert on
p and witness w» as an expert on p — ¢. If the witnesses are informed about each
other’s expertise and accept it, they will retract their belief in —¢ since they will
realise that they must be mistaken. In our framework, this would mean dropping
the ITA condition for a formula if it is a logical consequence of a combination of
other relevant formulas. Hence, we may want to generalise our decision methods
yet further, by taking into account more than the individual judgements on
the proposition under consideration. From this perspective, one might put the
moral of our story informally as follows: when it comes to aggregating individual
judgements, sticking to the point may not be wise.
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