Outsized Arbitrage

[gor Makarov*

London School of Economics

November 24, 2020

ABSTRACT

The paper studies incentives and trading decisions of an arbitrageur who can take
concentrated bets in an illiquid market and who cares about interim as well as long-
term performance. By scaling up his position and using price impact, the arbitrageur
can prop up the value of his position, helping him weather periods of low valuation and
successfully complete the arbitrage. But that approach also can trap him into building
an outsized arbitrage position, which can cause persistent mispricing in the market,

even in the presence of other arbitrageurs, and lead to large losses to investors.
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A crucial characteristic of any money manager is the ability to identify and exploit
arbitrage opportunities. Famous trades, such as Soros’ British pound short bet or
Paulson’s bet against the U.S. subprime mortgage market, instantly become legendary
and propel the arbitrageurs behind them into a Hall of Fame. But finding such bets
is not easy. According to the acclaimed hedge fund manager Stanley Druckenmiller,
“only maybe one or two times a year do you see something that really, really excites
you.” And when you see it, you should “bet the ranch on it.”!

At first glance, the idea that active money managers should double down on excep-
tional bets might appear convincing. Given the widespread availability of mutual funds
and exchange-traded funds today, investors can easily form diversified portfolios them-
selves. Hence, they should only be willing to pay for alpha—i.e., excess returns—that
are otherwise not available to them. However, this view neglects the agency problems
that shape investor-manager relationships in money management.

By taking a concentrated bet, a manager makes his future career depend on the
performance of the trade. But few arbitrage trades are truly riskless. Often, there is a
risk that, in the short term, fundamentals can move against the manager. If investors
are uncertain about a manager’s skills, they may negatively update their beliefs and
withdraw their funds (see Shleifer and Vishny (1997)). Thus, in practice the manager is
under pressure to show good performance not just when he completes his arbitrage but
also in the interim period. But what can the manager do to show good performance
when fundamentals move against him?

In a perfectly liquid market, the answer would be “nothing.” However, in markets
that are not perfectly competitive and liquid, and therefore in which arbitrage oppor-
tunities are more likely to exist, the manager may be tempted to exploit the price
impact of his trades to inflate the marked-to-market value of his arbitrage position.?
Inflating the marked-to-market value of his arbitrage position can help the manager
weather periods of low valuation and, therefore, successfully complete the arbitrage.
But it can also trap him in outsized arbitrage: Every time the arbitrageur scales up his
position in an attempt to support its marked-to-market value, he gets more exposed to
the value of this position; which, in turn, creates even stronger incentives to support
it. Eventually, the position can become so large that the manager may find it optimal
to prop up the asset value even above its fundamental level. This can cause persistent
mispricing in the market and lead to large losses to investors.

This paper describes a new framework I developed to study incentives and trading

decisions of an arbitrageur who can make concentrated bets in an illiquid market. The

!Presentation at the Lone Tree Club, North Palm Beach, Florida, January 18, 2015,
http://covestreetcapital.com/wp-content/uploads/2015/03 /Druckenmiller-_Speech.pdf.
2Price impact is co-movement of prices in the direction of trades.



basic setup considers a single fund manager who learns about an arbitrage opportunity
and can trade on it. The arbitrage closes at a random time, at which point the market
becomes perfectly liquid, the manager liquidates his arbitrage position, and the game
ends. Prior to this time, the manager’s trades result in price impact. The fund’s assets
are marked to market and are subject to random valuation shocks. The manager cares
about both the final profit from the arbitrage trades and the interim valuation of the
fund’s assets. Price impact limits the arbitrage profits but also allows the manager
to mitigate the effect of negative shocks. By trading in the direction of the existing
position, the manager increases marked-to-market value. The larger the position, the
higher the benefit of propping up the asset’s value. For sufficiently large positions, the
manager finds it optimal to acquire assets even above their fundamental value: Trading
at a loss is compensated by the increased valuation of the overall position.

My model shows that the position tends to grow over time. Therefore, the longer the
arbitrage stays open, the higher the chance that the manager accumulates an outsized
arbitrage position and trades at a loss, trying to support it. As a result, fund returns
are negatively skewed, and investors can realize large losses. Furthermore, by trading
at a loss and propping up the value of his position, the manager increases the wedge
between the market price and the asset’s fundamental value, making the market less
and less efficient.

One might hypothesize that it would be impossible for the manager to push the
price above the fair value if other arbitrageurs were present in the market and ready
to correct the mispricing. Surprisingly, I show that the mispricing can persist, and
even become stronger, in the presence of other arbitrageurs. To demonstrate this, I
consider an extension of the main setup wherein I allow other arbitrageurs to trade
in the market. Unlike the manager, who is a “whale” and can establish a very large
position in the risky asset, I assume that other arbitrageurs are restricted in their
risk-taking capacity.

I first assume that arbitrageurs do not have to worry about their interim perfor-
mance. [ study two cases: stealth and open trading. The two cases exhibit very
different equilibrium dynamics.

In the stealth trading case, arbitrageurs secretly trade against the manager. In this
case, arbitrageurs not only fail to eliminate the mispricing, but their trading leads to
even larger mispricing. This happens because the manager, oblivious of the presence of
arbitrageurs, keeps defending the value of his position until other arbitrageurs exhaust
their risk-taking capacity.

In the open trading case, the manager and arbitrageurs are aware of each other

and take each other’s trading strategy as a given. In this case, I focus on a scenario



of one arbitrageur and the manager. In the closed-loop equilibrium, faced with the
prospect of trading against the arbitrageur, the manager revises his strategy and scales
down his risky position. Interestingly, the arbitrageur front-runs the manager, quickly
establishing an oversized short position and then gradually reducing it. The eventual
outcome is the reduction in mispricing.

Which scenario is more likely? I show that the arbitrageur’s profit is higher if she
trades secretly from the manager. By revealing her presence, the arbitrageur makes the
manager quickly scale down his risky position. As a result, the arbitrage spread gets
reduced, which has a negative effect on the arbitrageur’s profit. Thus, the arbitrageur,
who only cares about the final profit, would always enter the market and never want
to reveal herself.

The above conclusion, however, crucially depends on the ability of the arbitrageur
to maintain her arbitrage position over the course of the arbitrage. The marked-to-
market profit of the arbitrageur if she trades secretly from the manager stays negative
over the course of the arbitrage, except for a short initial period. Thus, the arbitrageur
realizes her profits only when the arbitrage is closed. If the arbitrageur draws her capital
from outside investors who are unwilling to tolerate losses, then trading secretly against
the manager is not a viable strategy.

In contrast to stealth trading, the marked-to-market profit stays positive for all
periods in the open trading case. It is tempting to conclude that the arbitrageur who
has to worry about her interim performance will have incentives to reveal her presence
before entering the market. This view, however, overlooks the fact that the incentives
to show good interim performance weaken the market power of the arbitrageur.

Whenever the arbitrageur enters the market and starts trading, the manager is
worse off, compared to when he is alone in the market. Therefore, the manager is
better off if he can commit to trading strategies that deter the arbitrageur’s entrance.
If the arbitrageur does not need to be concerned about her interim performance, there
is little the manager can do to prevent her from entering, since every trade against
a nonzero arbitrage spread eventually results in a profit for the arbitrageur. But if
the arbitrageur cannot tolerate interim losses and learns about the arbitrage after the
manager has established an outsized position, she can succeed only if she can“out-
trade” the manager, which may not be possible if she is restricted in her risk-taking
capacity. Thus, if arbitrageurs have to worry about their interim performance, the
prospect of trading against the whale can deter them from entering the market, and
the mispricing can persist for a long time.

The model’s predictions fit well with the narrative of dramatic trades by Bruno
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Iksil, dubbed the “London Whale” for the enormous size of his position.
arbitrageur at JPMorgan Chase, Iksil built a risky position in credit derivatives with
a notional of more than $150 billion between January 2011 and March 2012. This
outsized position had a substantial impact on the prices of underlying securities. A
number of arbitrageurs tried to correct the apparent mispricing but were unable to
do so until some frustrated industry insiders leaked the news about Mr. Iksil’s large
positions to the media.* Confronted by the media, JPMorgan Chase had to wind down
the position, which eventually resulted in a $6.2 billion loss.

While credit derivatives may be viewed as specialized markets, a recent giant bet
by SoftBank was focused on some of the most liquid stocks in the world: Amazon,
Microsoft, Netflix, and Tesla. Many observers believe that SoftBank’s bet contributed
to the vertigo-inducing rise of technology stocks, leading to valuations that seem to be
far removed from fundamentals.’

Together, the “London Whale” and the SoftBank cases highlight the potential dan-
ger of outsized arbitrages in a world in which large amounts of capital are concentrated
in the hands of a few lightly regulated hedge funds and other investment vehicles.
While it is too early to assess the impact of the SoftBank case, the “London Whale”
case received a lot of public attention and scrutiny, not the least because it occurred
inside a major public financial institution subject to strict regulation and controls.
The case has had a long-lasting negative impact on the public perception of the entire
financial sector—a cost that arguably extends far beyond the realized trading losses.

In addition to anecdotal evidence, the model predictions also are consistent with
the results of Carhart, Kaniel, Musto, and Reed (2002) and Ben-David, Franzoni,
Landier, and Moussawi (2013), who show that some mutual funds and hedge funds
systematically attempt to inflate stock prices by purchasing stocks already held in the
last minutes of trading on their reporting dates, and that price inflation increases with
stock illiquidity.

Finally, the model is able to generate negative skewness in fund returns, one of
the most salient features of hedge fund performance. Getmansky, Lo, and Makarov
(2004) show that hedge funds that invest in illiquid securities have negative skewness,

which is opposite to funds that invest in liquid instruments. In the model, skewness

3Report by the Permanent Subcommittee on Investigations Majority and Minority Staff entitled
“JPMorgan Chase Whale Trades: A Case History of Derivatives Risks and Abuses,” March 15, 2013,
http://online.wsj.com/public/resources/documents/JPMWhalePSI.pdf.

4“London Whale Rattles Debt Market,” Wall Street Journal, G. Zuckerman and K. Burne
(4/6/2012), http://online.wsj.com/article/SB10001424052702303299604577326031119412436.html.

5“SoftBank’s Bet on Tech Giants Fueled Powerful Market Rally,” Wall Street Journal, S. Said,
L. Hoffman, G. Benerji, and P. Dvorak (4/9/2020), https://www.wsj.com/articles/softbanks-bet-on-
tech-giants-fueled-powerful-market-rally-11599232205.



increases with the expected horizon of arbitrage. The long horizon increases the chance
of adverse movements in the value of the arbitrage position in the interim period,
and therefore increases the probability that the manager can accumulate an outsized
arbitrage position.

This paper is related to several lines of research in the literature. Price impact and
practice of marking-to-market positions play an important role in Brunnermeier and
Pedersen (2005) and Attari, Mello, and Ruckes (2005) who study strategic interaction
between a financially constrained institution and its competitors. They show that
the practice of marking-to-market positions gives competitors incentives to engage in
predatory trading, whereby in selling assets held by an institution, competitors can
force the institution to liquidate its assets below their fundamental values. In both
of those papers, however, analysis starts when the institution has already established
a large position. In contrast, in this paper, I show how agency problems can lead to
building an excessively large position, and how the threat of aggressively defending this
position can deter the entrance of other arbitrageurs.

A motive of booking profits and concealing losses because of balance sheet con-
straints is also present in Milbrandt (2012). He shows that an institution may suspend
trading in illiquid Level 3 assets if the trade results in a low price at which the existing
assets will have to be marked to market. The incentives to manipulate a fund’s perfor-
mance are also studied in Acharya, Pagano, and Volpin (2016); DeMarzo, Livdan, and
Tchistyi (2013); Dasgupta, Prat, and Verardo (2010); Makarov and Plantin (2015);
and Moreira (2019).

This paper also aligns with a common theme in the literature on price manipulation
(see Allen and Gale (1992), Chakraborty and Yilmaz (2004), Van Bommel (2003), Kyle
and Viswanathan (2008), and Spatt (2014)). As in the literature cited, the manager
uses price impact of his trades to manipulate prices. However, in a departure from the
literature, the reason the manager finds it profitable to manipulate prices is a function
of agency problems between him and his investors, and not the possibility of making
trading profit at the expense of other arbitrageurs.

Finally, on a general level, this paper is related to literature on the limits of ar-
bitrage. As with this literature, I assume that investors have imperfect knowledge of
arbitrage trades, and I show that asset prices may not be equal to their fundamental
values in the presence of arbitrageurs. Most of the literature on the limits of arbi-
trage assumes that arbitragers have limited capital and is focused on the role of capital
constraints—see Shleifer and Vishny (1997) and Gromb and Vayanos (2002). In con-
trast, in my model, the main reason why arbitrage is limited and investors can suffer

large losses is because the manager has access to unlimited capital.



The rest of the paper is organized as follows: First, I describe the basic setup, with
a single arbitrageur; Section 2 provides analysis of the basic setup; Section 3 considers
an extension of the setup and allows for multiple arbitrageurs; and Section 4 provides

my conclusions.

1. Basic Setup

Consider a risk-neutral money manager who can trade in two assets: a riskless
asset and a risky asset available for trading at dates ¢t = 0,...,7. The trading dates
are evenly spaced over time. Denote the length of the period between two consecutive
dates by h.

The riskless asset is in perfectly elastic supply with the rate of return r being a
nonnegative constant. For simplicity, I assume r = 0. Shares of the risky asset are
infinitely divisible. Each share of the risky asset pays a liquidation value of v at the
random final date 7 > 1, which is geometrically distributed with the parameter 0h,
o> 0.

Initially, the manager has a zero position in the risky asset, so all the fund’s assets
under management, W, are invested in the riskless asset. At time zero, the manager
learns the liquidation value and starts trading in the risky asset. Denote the realization
of the liquidation value v by V' and the price of the risky asset at time ¢ by F;. Trading
in the risky asset prior to realization of the liquidation value generates price impact.
If the manager submits a trading order #; in period t < 7, then it is executed at the
price

Pii1 =P+ X0 + €41), (1)

where €,,1 represents a random fluctuation in the price, which is outside the manager’s
control. All ¢, are identically and independently distributed over time, according to
the normal distribution with zero mean and standard deviation o.. At time 7, when
the liquidation value is realized, the manager liquidates his position in the risky asset
at price V, and the game ends.

The price dynamics (1) can be rationalized in a number of ways. For example, one
could follow Brunnermeier and Pedersen (2005) and assume that in addition to the
manager, the market is populated by two types of agents: the long-term traders and
the noise traders. At each period ¢ < 7, the noise traders submit a trading order of
€¢11. The long-term traders take the price as given and have an aggregate demand of
D(P) = (E(v) — P)/\. Then, the equilibrium price evolves according to (1).

The parameter A is a measure of price impact generated by trading in the risky



asset. For simplicity, price impact is modelled to be permanent, linear, and constant
over time.® Constant \ is a common assumption in the literature that studies costs as-
sociated with trading pressure (Carlin, Lobo, and Viswanathan (2007), Bertsimas and
Lo (1998), and Obizhaeva and Wang (2006)). Huberman and Stanzl (2004) show that
a permanent and time-independent price impact must be linear to rule out arbitrage.

The manager’s objective consists of two parts. First, when the liquidation value
is realized the manager receives a fraction 1, of the realized profit from all his trades
prior to this date. The second part comes from the manager’s interim performance over
the course of arbitrage. The large body of literature that studies limits of arbitrage
documents that few investors are willing to tolerate losses, and they withdraw their
funds at first sight of negative returns (see e.g., Shleifer and Vishny (1997)). Faced
with funds outflows, the manager then can be forced to liquidate his arbitrage position
prematurely, which can lead to even larger losses. To model the impact of the interim
performance, I assume that at every trading date prior to the liquidation date, fund
investors audit the performance of the manager, with probability ph, p > 0. An audit
reports the current value of the fund’s assets under management at the prevailing
market price P;. FEach audit report has an additive effect, ¥,(W;, — Wy), ¥, > 0,
on manager’s objective function. Thus, at any time ¢ prior to the realization of the

liquidation value, the manager solves the following problem:

7—1
I (P Xo) = max By a(V = Posa)0s + duph(Wosa = W)l (2)
s s=t

s. t. P5+1 = Ps + )\(Qs + 55—}-1)7
Xs+1 == Xs + esa
Ws+1 = Ws + Xs(Ps—i—l - PS))

where X, is the time-¢ fund’s position in the risky asset, and W; is the time-t marked-
to-market value of the fund.

In formulation (2), the manager’s objective is linear in his profit and his interim
performance. In particular, the assets under management and payments to the man-
ager can take negative values. The main friction comes from the fact that the interim
performance of the manager is evaluated at the prevailing market prices, which he can
influence. A higher market price leads to a higher valuation of assets under manage-
ment. In practice, the manager is protected by the limited liability, and the effect of
interim performance may not be linear. For example, the fund can be closed following

a sufficiently negative performance. Incorporating the limited liability or fund termina-

6The results in the presence of temporary price impact are similar and available upon request.



tion in the analysis gives stronger incentives to the manager to inflate the value of the
fund’s assets, but it also significantly complicates the model. Therefore, to make the
model and its insights as clear as possible, in the basic setup, I use objective (2) as a
means of providing the manager with incentives to care about his interim performance,

and study the impact of fund termination in Section 3.

2. Analysis

Because of price impact, objective (2) is a linear-quadratic optimal control problem.

The solution is summarized in Proposition 1.

Proposition 1: Suppose
_ up

0

and the manager solves problem (2). Then his optimal trading strategy is

©® <1 (3)

V — P+ \pX
t1+(1 ih)t2 ' @)
V()

07 =

Proof: See the Appendix.

The optimal strategy does not depend on the initial state and random fluctuations in
the price, which is a well-known result in the linear quadratic control theory (Anderson,
Hansen, McGrattan, and Sargent (1995)). The parameter ¢, defined by equation (3),
plays an important role in the subsequent analysis. It quantifies the benefits associated
with inflating the value of the existing arbitrage position in the risky asset. The
incentives to inflate the value increase with 1, and p, and decrease with ¢ and .. By
the property of the geometric distribution, 1/ is the expected horizon of the arbitrage
trade. Thus, p/d is the expected number of audits during the life of the arbitrage. A
higher ,p/0 or a lower 1, means a higher relative weight of interim performance in
the manager’s objective function.

The assumption ¢ < 1 is necessary for a well-defined solution. If ¢ > 1, the
manager has too strong an incentive to inflate the price, which leads to an unbounded
solution. If ¢ = 0, the manager only cares about his final profit, and trading rule (4)

reduces to
V—-PB

A(1+ %)

In this case, the manager always trades in the direction implied by the current arbitrage

kk
0;" =

spread, V — P,. Because of the price impact of trades, the manager smooths his trades



over time. His trading intensity is inversely proportional to price impact multiplied by
the square root of the expected number of trading periods.

A nonzero ¢ affects trading decisions in two ways. First, it makes trading more
aggressive, because more aggressive trading allows the manager to accelerate booking
of trading gains. Second, and more importantly, it introduces a bias into the manager’s
trading decisions. The bias is proportional to the current position in the risky asset.

The position in the risky asset is endogenous and is jointly determined with the
dynamics of the arbitrage spread V' — P;. If the manager follows his optimal trading
strategy (4), then the arbitrage spread and the manager’s position in the risky asset

evolve according to the first-order autoregressive process:

V - P, V—-P
1) _p by Oepon, (5)
Xit1 Xy
where

I — 1 V—g —/\(]_—V)QO ,Q: —A U= 1 — 1_90
I—=p \ (1=v)/A 1—vp 0 1 4 1/ =0=dm)e?

éh

Iterating (5) we obtain
V-P V- PR —
¢ = Ft 0 + Z FSQ&'t,S,
Xy Xo =

rt— 1 V- —A(1-ve
L= \ (1=vY/A 1—vly .

The assumption ¢ < 1 ensures that v < 1. If the manager has a zero initial position

where

in the risky asset, then the expected arbitrage spread and his position in the risky asset

at time ¢ are given by the following expression:

V—-F\ V-FK vt— o
Z%< X, )"Lwa<u—wyx>' (6)

Figure 1 plots the expected arbitrage spread and the manager’s arbitrage position in

trading period ¢, conditional on ¢t < 7 for the two cases ¢ = 0 and ¢ = 0.3. The blue
line corresponds to the case of ¢ = 0. The red line depicts the case of ¢ = 0.3. The
cases ¢ = 0 and ¢ > 0 stand in stark contrast to each other. If ¢ = 0, the expected

arbitrage spread gradually converges to zero. However, if ¢ > 0, it changes its sign



and stays negative, which means that as the manager’s position grows, he eventually

acquires the risky asset at a price that is above its fair value.

Figure 1: FExpected arbitrage spread and arbitrage position
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Panel (a) shows the expected period-t arbitrage spread, (V — P;), t = 1,...,1000. Panel (b) shows
the expected period-t arbitrage position in the risky asset, X;. Other parameters are set as follows:
V—-Py=1,6§=1, h=0.001, and A = 1. The blue line corresponds to the case of ¢ = 0, the red line
to ¢ = 0.3.

By acquiring the asset at a price above its fair value, the manager potentially
exposes investors to large losses. The contribution of the period-t trade to the total
profit is

= (V — Piy1)6;.

Suppose the liquidation value is realized in trading period 7" > 2. Since trading in the
last period results in zero profit, the total trading profit comes from all trades prior to
the last period, that is:

T-2
HT = E Tt.
t=0

Consider first the case of 0. = 0, in which the price changes only because of the

manager’s trades. Direct computations show that

(1 — VT_I) (V (1 + Tt gp) — gp)
AL +v)(1 - ¢)? '

Iy = (V - R) (7)
Figure 2 shows the total trading profit I1r for the three values of ¢ (¢ = 0, ¢ = 0.3, and
¢ = 0.6) and different values of T'. Because higher values of ¢ lead to more aggressive
trading, the total arbitrage profit for small 7" is higher for higher values of . However,
higher values of ¢ also lead to building an outsized arbitrage position at inflated prices.
Therefore, for large values of T, the total trading profit declines with ¢, and even can

become negative.
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Figure 2: Trading profit (o = 0)
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Figure 2 shows the total trading profit if the liquidation value is realized in trading period T, T' =
2,...,1000 for the three values of ¢ : ¢ = 0, p = 0.3, and ¢ = 0.6. Other parameters are set as
follows: V — Py =1,0 =1, h=10.001, and A = 1.

Next, consider a more realistic case of o. # 0, in which some fluctuation in price
is outside the manager’s control. Because the manager has the option of when to
trade, he benefits from random fluctuations in price.” When ¢ = 0, and the manager’s
compensation depends only on his final profit, fluctuations in price also benefit his
investors. Figure 3, Panel (a) shows that the expected trading profit increases with the
number of trading periods. This is in contrast with the case of 0. = 0, in which the total
profit converges to a constant. When o, # 0, a higher number of trading periods implies
a higher chance that the arbitrage spread will widen. In the absence of borrowing
constraints and constraints on the position size, a wider arbitrage spread represents
a better trading opportunity. Since the manager always trades in the direction of
the arbitrage spread, every trade increases the total trading profit. As a result, the
distribution of the total profit is positively skewed, as shown in Figure 3, Panel (b).

When the manager’s value function depends on his interim performance, price fluc-
tuations have two effects. On the one hand, as before, they contribute positively to
the expected total trading profit by giving the manager the option to trade against
the arbitrage spread. On the other hand, they increases the chance that the manager
accumulates a large arbitrage position and gets trapped in outsized arbitrage, which,
in turn, can lead to large losses. Figure 3, Panel (d) shows that in contrast to the case
of ¢ = 0, the skewness of the total trading profit now decreases and becomes negative
with the number of trading periods.

The above results are consistent with empirical evidence. The negative skewness

in hedge fund returns is one of the most salient features of hedge fund performance.

"This would not necessarily be the case if investors could withdraw their investments and terminate
the fund following its negative performance.
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Figure 3: Trading profit (0. # 0)
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Panels (a) and (c) show the expected total trading profit if the liquidation value is realized in trading
period T, T' = 2,...,1000. Panel (b) and (d) show the skewness of the total trading profit. The
parameter ¢ is set to 0 in Panels (a) and (b), and to 0.3 in Panels (b) and (d). Other parameters are
set as follows: V — Py =1,0=1, h=0.001, A = 1, and 0. = 0.5V/.

Getmansky, Lo, and Makarov (2004) show that hedge funds that invest in illiquid
securities have negative skewness, as opposed to funds that invest in liquid instruments.

To develop an understanding of the negative skewness, consider Figure 4, which
shows the evolution of the arbitrage spread and total trading profit for a particular
realization of 4, ¢ = 1,...,1000. The green line in Panel (a) shows the path of arbitrage
spread that would prevail if the manager did not trade in the market. In this scenario,
the spread keeps increasing over time. The red lines in Panels (a) and (b) show the
arbitrage spread and total trading profit when the manager trades in the market and
cares only about his final profit. In this case, the spread closes in early trading rounds
and stays around zero thereafter. Fach trading period contributes to the total profit,
which therefore gradually increases over time.

Finally, the blue lines in Panels (a) and (b) show the arbitrage spread and total
trading profit when the manager trades in the market and cares about his interim
performance. In contrast to the case of ¢ = 0, the arbitrage spread gets more and

more negative with the number of trading rounds. After establishing a large position
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Figure 4: Simulation example
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Figure 4 shows the results from a particular realization of ;, t = 1,...,1000.

The green line in Panel (a) shows the path of arbitrage spread if the manager does not trade. The
red and blue lines in Panels (a) and (b) show the arbitrage spread and the total trading profit when
the manager trades, and ¢ = 0 and ¢ = 0.3, correspondingly. Other parameters are set as follows:
V—Py=1,6=1,h=0.001\=1, and 0. = 0.5Vh.

in initial trading rounds, the manager defends it against adverse price movements. That
leads to even larger position in the risky asset, and even stronger incentives to defend
it later. As a result, total trading profit declines over time and becomes negative in
later trading periods. Figure 5 shows the probability of loss as a function of arbitrage
horizon. The probability increases, with the horizon with the unconditional probability
being 4.5%.

Figure 5: Loss probability
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Figure 5 shows the probability of total trading profit to be negative if the liquidation value is realized
in trading period T, T = 2,...,5000. Other parameters are set as follows: V — Py =1, § = 1,
h=0.001, A =1, 0. = 0.5vh, and ¢ = 0.3.

A necessary condition to realize negative total profit is that the manager acquires

the risky asset at a price above its fair value. One might hypothesize that if other
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arbitragers were present in the market, they would trade as to correct the mispricing.
To investigate if this is indeed the case, the next section considers an extension of the

model wherein the manager trades against other arbitrageurs.

3. Trading Against Other Arbitrageurs

Suppose there is another arbitrageur who also learns the liquidation value and starts
trading at some time ¢. For ease of exposition, I will continue to refer to the incumbent
arbitrageur as the manager and the new arbitrageur simply as the arbitrageur.

Unlike the manager, who is a “whale” and can establish a very large position in the
risky asset, I assume the arbitrageur incurs quadratic holding costs per unit of time,
which constrain the size of the risky position she can take. The holding costs can be
viewed as a reduced-form specification of the risk-aversion or collateral costs. Similar
preferences are used in Du and Zhu (2017), Vives (2011), and Malamud and Rostek
(2017). I consider first the case where the arbitrageur does not have to worry about her
interim performance, and then show how preferences over interim performance affect
the results.

One can imagine different informational scenarios for trading between the manager
and arbitrageur. Because of the difference in size, it is likely that the arbitrageur is
aware of the manager, but the manager may or may not be aware of the presence
of the arbitrageur. Section 3.1 studies the case wherein the manager is oblivious of
the presence of the arbitrageur and therefore, follows his previously derived trading
strategy (4). The arbitrageur, in contrast, is fully aware of the manager’s trades and
adjusts her trades accordingly. Alternatively, Section 3.2 studies the case in which both

manager and arbitrageur are aware of the other.

3.1. Stealth Trading

In this scenario, the arbitrageur is aware of the existence of a “whale” in the market
and she can trade secretly against him without revealing herself. Because the manager
is unaware of the arbitrageur’s presence, he continues to follow his previously derived

trading strategy 0% given by equation (4). Thus, the arbitrageur solves

T—1

Ja = max Et[Z(V - Ps—i-l)ea,s - VhX(is]? (8)

a,s
’ s=t

.t Psyn =P+ M0; 4 0us+€511),
Xa,s—H - Xa,s + 9a,s7
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where X, is the time-t arbitrageur’s position in the risky asset, and v > 0 is the
holding cost parameter. The first term is the expected profits from arbitrage when
the liquidation value of realized. The second term is the quadratic holding costs. The

solution is summarized in Proposition 2:

Proposition 2: The objective (8) can be written as a linear quadratic optimization

problem:

Q S
ST R
s. t. Zs+1 = AZS + BQ&S + Q€5+17

Zs
: 9
0. (9)

J, = max s+l [ZST 0, S}
w2 |

where Zy = (V — Py, 0%, X, )", B =1—06h, and matrices A, B, Q, R, S, and Q are
defined in the Appendiz. The optimal strategy 0, s is given by

0273 - FZt,

where
F=—(R+pB"PB)" (BB"PA+S"),

and P 1is the unique stabilizing solution of the algebraic Riccati equation:
P =BATPA - (BATPB +5) (R+8B"PB)” (BB"PA+ST)+Q.  (10)

Proof: See the Appendix.

Riccati equation (10) is highly nonlinear in terms of matrix elements. A closed-form
solution is only available in special cases, so the system must be solved numerically.
When solving (10) numerically, I set the parameter v to 1. Other parameters are as
in Section 1: A=1,0 =1, ¢ = 0.3, and h = 0.001. With these parameter values the

arbitrageur’s strategy takes the following form:
0y = 0.019(V — F;) +4.6680; — 0.039X . (11)

The arbitrageur’s strategy increases with the arbitrage spread and decreases with the
arbitrageur’s position in the risky asset. This is intuitive, as a larger arbitrage spread
implies better trading opportunities to make profit, and holding costs increase in the
position in the risky asset. Inspecting (11), we can see that the arbitrageur’s strategy
is also positively linked to the trading behavior of the manager. To understand this
result, notice that in the absence of random shocks e; and arbitrageur’s orders, the

manager’s trading strategy follows a first-order autoregressive process: 0;,, = v0;,
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where v > 0 is defined by equation (5). If the manager is buying the risky asset today,
he is also expected to buy it in the future. Therefore, the future price is expected to
rise, which makes it rational for the arbitrageur to buy the risky asset today.

Figure 6 shows the resulting dynamics, in the absence of random shocks, when the
arbitrageur learns about the arbitrage opportunity and starts trading after the man-
ager’s position reaches the steady-state studied in Section 2. Because the arbitrage
spread is negative, the arbitrageur establishes a short position, which reduces the ab-
solute value of the arbitrage spread. The reduction in the arbitrage spread, however,
prompts the manager to defend the value of his existing position. As a result, the arbi-
trage spreads widens, giving incentives to the arbitrageur to take an even larger short
position. This tug-of-war continues until the arbitrageur exhausts her risk-taking ca-
pacity, and the arbitrage spread reaches its new steady-state level. Panel (a) shows that
in the new steady state, the arbitrage spread becomes even more negative compared
to its level before the arrival of the arbitrageur.

Thus, by trading secretly against a “whale,“ an arbitrageur with limited risk ca-
pacity not only fails to correct mispricing but actually makes the market even more
inefficient. I now turn to the scenario in which both the manager and the arbitrageur

are aware of each other.

Figure 6: Dynamics (0. = 0)
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Figure 6 shows the equilibrium dynamics of the arbitrage spread and positions in the risky asset of
the manager and the arbitrageur when the arbitrageur learns V after the manager and can secretly
trade against him. The parameters are set as follows: V — Py =1, § = 0.001, A =1, v = 0.001.
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3.2. Open Trading

If the manager and the arbitrageur are aware of each other and take each other’s

trading strategy as given, then the manager solves

T—1
Jm - {emaX }Et[z ¢W(V - Ps—i-l)@m,s + 77Z}wph(VVm,s-i-l - Wm,t)]7 (12)
m,s;s>t s—t

s.t. Poyr = Po+ MOpms + 0, +c511),
Xm7s+1 = Xm,s + 9m,57
Wm,s+1 = Wm,s + Xs(Perl - Ps)7

where 0} , is an equilibrium strategy of the arbitrageur; and the arbitrageur solves

T—1

J, = max Et[Z(V — Py1)04s — ’yhXis], (13)

a,s

s=t
s.t Por =P+ A0, + 0o +e511),
Xa,s+1 == Xa,s + 9(1,87

where 67, . is the equilibrium strategy of the manager.

Problems (12) and (13) define a linear quadratic game. The assumptions ensure
that the trading game is stationary, so it is natural to focus on a solution where optimal
trading strategies do not depend on time and are linear functions of state variables.
The state variables are the arbitrage spread V' — P; and the position in the risky asset
of the manager and the arbitrageur, X,,; and X, , respectively. Denote the vector of
the state variables by Z; = (V — Py, Xpny, Xos)'. Using (12) and (13), the dynamics of

Z; can be written as
Ziy1 = Zt + B10myg + Ballys + Qeyya, (14)

where By = (=), 1,0)T, By, = (=),0,1)7, and Q = (=\,0,0). Therefore, if O =
FyZy and 0, , = F»Z;, from the manager’s perspective, the vector of the state variables
evolves according to

Zipyr = A Zg + B0y s + Qegy, (15)

where A; = [ + By F,. Similarly, from the arbitrageur’s perspective, the dynamics of
the state variables are

Zip1 = AoZs + Boly s + Qegin, (16)

where Ay = I + B F;. The next proposition characterizes a linear, closed loop Nash
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equilibrium.

Proposition 3: The objective of the manager and the arbitrageur can be written as

S1 Z
m(Zy) = max 57 tH[ s } @ T, 17
) {0, Q}Z/B ST R On.s (17)
s. to Z5+1 :AlZs—{—Blﬁm,s—{—stﬂ,
and
So
= max s—itl [Z Qas] @2 * 18
{911 S}Z/B Sg R 6(173 ( )

s. to ZS+1 = AQZS + B2€a75 + Q€5+17

where matrices R, S;, Q;, i = 1,2 are defined in the Appendiv. Strategies 0y, . = F1Z;
and 0, = FyZ, constitute a linear, closed loop Nash equilibrium if and only if there is

a solution to the following system equations:

19
20
21
22

Py = AT PA = (BATPB + 81) (R+ 6BU By (BB PAL+ ) + Q1
Py = BAS P Ay — (BATPuBy + S) (R+ BB BsBy) ™ (BBS Py + 53) + Qa
Fi= - (R+BBIPBy) " (BBIPiA, + ST),

(
(
(
Fy=— (R+ BBIP,B,) " (BBY PyAy + ST) . (

)
)
)
)

Proof: See the Appendix.

The system (19)—(22) is known as a system of coupled Riccati equations. A closed-
form solution is not available, so the system must be solved numerically. For con-
sistency, the parameter values are kept the same: A = 1,0 =1, ¢ = 0.3, v = 1,
and h = 0.001. With these parameters, the equilibrium strategies of the manager and

arbitrageur take the following form:

Oy = 0.2209(V — P,) 4 0.0219X,,, — 0.1228X,,,, (23)
B = 0.2357(V — P,) + 0.0215X,,, — 0.1585X,,.

To understand the intuition behind this solution, it is instructive to consider first the

solution when ¢ = 0, where the manager does not have to worry about his interim
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performance. In this case, the trading strategies take the following form:

Oy = 0.2180(V — P,) — 0.1157X,,, (24)
0 = 0.2287(V — P,) — 0.1479X,,.

Because the manager does not need to worry about his interim performance, and does
not have any holding costs, the size of his position is no longer a state variable.
Figure 7 shows the equilibrium dynamics, in the absence of random shocks, when
the manager and arbitrageur learn V' at the same time, ¢ = 0, and follow strategies (24).
Unlike the case when the manager trades alone, now the arbitrage spread decreases to
zero almost instantaneously as both the manager and the arbitrageur compete with
each other for the trading profits. Inspection of (24) reveals that the arbitrageur is
more aggressive at eliminating the arbitrage spread than the manager. This might seem
surprising, since it is the arbitrageur who has the holding costs; therefore, it is she who
might be expected to trade more cautiously. The dynamics of the arbitrage positions
provide an explanation for this apparently surprising result. While the manager’s
arbitrage position monotonically increases over time, the arbitrageur’s position exhibits
a reversal. After quickly building up the position in the risky asset, the arbitrageur
gradually sells it to the manager. Exploiting predictability in the manager’s large
trading program, the arbitrageur is able to effectively front-run the manager’s trading

orders.

Figure 7: Nash equilibrium (p =10)
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Figure 7 shows the equilibrium dynamics of the arbitrage spread and positions in the risky asset of

o
o
o

the manager and the arbitrageur when both learn V' at the same time, ¢t = 0. The parameters are set
as follows: V — Py =1, § =0.001, A =1, and v = 0.001.

When ¢ > 0, so the manager’s compensation depends on his interim performance,
the size of his risky position becomes a state variable. Similar to what happens when he
is alone in the market, incentives to show good interim performance make the manager
trade more aggressively to accelerate booking of trading gains. More aggressive trading

by the manage, in turn, leads to more aggressive trading by the arbitrageur. Figure 8
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shows the equilibrium dynamics, in the absence of random shocks, when the manager
and arbitrageur learn V' at the same time, ¢ = 0, and follow strategies (23). Similar
to the case of ¢ = 0, the arbitrageur front-runs the manager in the beginning, only
to unload her risky position to the manager later. But unlike the case of ¢ = 0, the

steady-state arbitrage spread is now negative, and the arbitrageur is short the risky

asset.

Arbitrage spread

Figure 8: Nash equilibrium (¢ = 0.3)
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Figure 8 shows the equilibrium dynamics of the arbitrage spread and positions in the risky asset of
the manager and the arbitrageur when both learn V' at the same time, ¢t = 0. The parameters are set
as follows: V — Py =1, 6 =0.001, A =1, and v = 0.001.

Because price impact is permanent, in the absence of random shocks, the sum
V — P, + XN X, + X,:) stays constant over time. Hence, one eigenvalue of matrix
I + B, F| + ByF5 that governs the evolution of the vector of state variables Z; is equal
to 1. It can be verified that the other two eigenvalues of matrix I + B F} + ByFy are
less than 1 in modulus. Therefore, the steady state is the same for all initial states
that have the same value of V' — Py + A(X,0 + Xap). In particular, it is the same for
the case in which the arbitrageur learns V' at the same time as the manager, or when

she learns it sometime after the manager.

Figure 9: FEquilibrium
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Figure 9 shows the equilibrium dynamics of the arbitrage spread and positions in the risky asset of
the manager and the arbitrageur when the arbitrageur learns V after the manager. The parameters
are set as follows: V — Py =1, 6 =0.001, A =1, and v = 0.001.

Figure 9 shows the equilibrium dynamics when the arbitrageur learns V' after the
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manager’s position and arbitrage spread converge to their steady-state values when
the manager is alone in the market. As before, there is a short initial stage in which
the absolute value of the arbitrage spread sharply decreases. During this stage the
arbitrageur quickly establishes a short position. Faced with an aggressive trading
program by the arbitrageur, the manager revises his strategy and scales down his risky
position. Again, faced with predictable changes in the price, the arbitrageur front-runs
the manager—she quickly establishes an oversize short position and then gradually

reduces it.

3.3. Stealth vs. Open Trading

Figures 6 and 9 show that the equilibrium dynamics are very different in the cases
of stealth and open trading. In the stealth trading case, the manager’s position grows,
and the arbitrage spread widens. This is in contrast to the case of open trading, in
which the manager scales down his position and the arbitrage spread gets significantly
reduced. Hence, the two cases have very different implications for market efficiency.
In the case of stealth trading, mispricing can persist for a long time; whereas in the
open trading case, the market gets more and more efficient as more arbitrageurs find
out about the mispricing. Because the arbitrageur can always reveal her presence to
the manager, the question becomes whether she will ever find it to her advantage to
trade secretly.

To answer this question, I compare the value function of the arbitrageur in the two

cases. The value function is given by

2
O¢

Jo=ZiPudo+ 125

0P, (25)

where 7, is an initial vector of state variables, and P, is the solution to Riccati equa-
tion (10) when the arbitrageur trades in the stealth mode, and to coupled Riccati
equation (19) when the manager and arbitrageur are aware of each other. The respec-

tive solution matrices are given below:

0.411 0.127 0.022 0.153 0.017 —-0.061
0.127 0.061 0.156 ; 0.017 0.053 0.043
0.022 0.156 —0.003 —0.061 0.043 —0.247

It can be directly verified that for any initial state where the arbitrageur starts with
zero holdings of the risky asset, her utility is positive in both cases and is higher than

in the case when the manager is oblivious of her trading. By revealing her presence to
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the manager, the arbitrageur makes the manager quickly scale down his risky position.
As a result, the arbitrage spread gets reduced, which has a negative effect on the
arbitrageur’s profit. Thus, the arbitrageur who only cares about the final profit would
always enter the market and would never want to reveal herself.

The above conclusion, however, crucially depends on the ability of the arbitrageur
to maintain her arbitrage position over the course of the arbitrage. Figure 10, Panel
(a) shows the marked-to-market profit of the arbitrageur when she learns V' after the
manager and trades secretly from the manager in the absence of random shocks. The
marked-to-market profit stays negative over the course of the arbitrage, except for a
short initial period. Thus, the arbitrageur realizes her profits only when the arbitrage
is closed. If the arbitrageur draws her capital from outside investors who are unwilling
tolerate losses, then the arbitrageur will have to liquidate her position prematurely,
and her trades would result in losses. Thus, trading secretly against the manager may

not be a viable strategy for the arbitrageur in these circumstances.

Figure 10: Marked-to-market profit
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Figure 10 shows the marked-to-market (MtM) profit of the arbitrageur when she trades secretly
from the manager (Panel (a)) and when both the manager and arbitrageur are aware of each other
(Panel (b)). The trading starts after the manager reaches the steady state studied in Section 2. The
parameters are set as follows: V — Py =1, =1, h=0.001, A\=1, and v = 1.

Panel (b) shows the marked-to-market profit of the arbitrageur in the open trading
case. In contrast to what occurs in stealth trading, the marked-to-market profit stays
positive for all periods. The above result may therefore suggest that the arbitrageur
who has to worry about her interim performance will have incentive to reveal her
presence before entering the market. This view, however, neglects to consider the fact
that the incentive to show good interim performance weakens the arbitrageur’s market
power.

Whenever the arbitrageur enters the market and starts trading, the manager is

worse off compared when he is alone in the market. Therefore, the manager is better
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off if he can commit to trading strategies that deter the arbitrageur’s entrance. If the
arbitrageur does not need to be concerned about her interim performance, there is
little the manager can do to prevent her from from entering, since every trade against
nonzero arbitrage spread eventually results in profit for the arbitrageur. But if the
arbitrageur cannot tolerate interim losses, she becomes vulnerable to the manager’s
aggressive trading strategies.

To show that this is indeed the case, suppose that there are no random fluctuations
in the price. As before, the arbitrageur incurs holding costs and maximizes her final
profit, but with an additional constraint that the arbitrageur’s fund is terminated
whenever her interim profit turns negative. While this is obviously a strong assumption
that can be relaxed, it significantly simplifies the analysis and makes interpretation
as clear as possible. Also, for simplicity, suppose that upon termination, the fund
liquidates its entire position at once, and the manager incurs liquidation costs y > 0.

Let 7, be a stopping time when the fund is terminated:
7, =min{s <7:W,, <0}, (26)

where W, ; is marked-to-market profit of the arbitrageur. The manager solves

7—1

Jm = max Et[z ¢w<v - Ps+1)9m,s + wwph(Wm,SJrl - Wm,t)] (27)

{gm,s;szt
s=t

Po+ MOms+0;,), if W,e>0,
Ps + /\(Qm,s - Xa,s)a if Wa,s < 07

S. t Ps+1 —

Xm,s+1 — Xm,s + 9m,s;
Wm,s—H - Wm,s + XS(PS+1 - Ps)7

and the arbitrageur solves

T—1

Ja = IIelaX Et 1(Ta27—1) Z[(V - Ps+1)9a,s - ’VhXis] - 1(7'a<7'—1)X ) (28)

a,s
] s=t

Pyt MOy +02,),  if Wa, >0,
Ps + /\(‘gm,s - Xa,s)7 if Wa,s < 07

S. t Ps+1 =

Xa,s—l—l - Xa,s + 9&,57
Wa,s—H - Wa,s + Xa,s(Ps—H - Ps)a Wa,O =0.

This lead us to Proposition 4.
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Proposition 4: Suppose the manager and and arbitrageur solve problems (27) and
(28), and the arbitrageur learns V' after the manager reaches his steady state. Suppose,
too, that

(1 —26h)x > m{gmxh [6(V — Py — \9)0 — 76°] . (29)

Then, the only pure strategy equilibrium is where the arbitrageur does not enter the

market.

Proof: See the Appendix.

In the corresponding proof, I show that it is always in the interest of the manager
to trade aggressively and ensure that the arbitrageur’s fund is liquidated right after she
enters the market. Because the manager does not know when the arbitrageur arrives
to the market, he becomes aware of the arbitrageur and reacts to her actions only after
she enters. Therefore, the arbitrageur avoids fund liquidation only if the arbitrage
closes in the next period after she enters the market. The probability of this event is

0h. The expected profit of the arbitrageur, net of holding costs, is therefore
Sh(V — Py — M\9)0 — vho?. (30)

Condition (29) ensures that the expected profit over one trading period is less than
the expected cost of liquidation—a mild condition. As the length of the period goes to

zero, so does the expected profit.

4. Conclusions

This paper studies incentives and trading decisions of a whale fund manager who can
take concentrated bets in illiquid markets. The paper challenges a popular view that
active money managers should double down on exceptional bets. It argues that this
view neglects the agency problems that shape investor-manager relationships in money
management, where managers care about both interim and long-term performance.

In illiquid markets, a manager may be tempted to use the price impact of his own
trades to mitigate the effect of negative shocks on the value of his position. These
“stabilizing” trades can help him complete the arbitrage, but can also trap him into
building an outsized arbitrage position. Trying to defend his position, he may find it
optimal to acquire assets above their fundamental value, which can ultimately lead to
large losses to investors and prolonged mispricing in the market. Other arbitrageurs,

facing the prospect of trading against the whale, may be unable to eliminate the mis-

24



pricing caused by the whale, and may contribute to even larger mispricing.
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Appendix. Proofs

Proof of Proposition 1: Because 7 follows geometric distribution the manager’s

problem (1) can be written as

[e.e]

max F D BT (Y (V = Pa1)0s + thuph(Wapr — W3))
s s=t
s. t. Ps+1 :P3+)\(93+53+1>7

Xs+1 = Xs + 05,

Ws+1 - Ws + X5<Ps+1 - Ps>’

where f =1 — dh. Note that

Ey i BT (Wep — W) = E; io: e (/\ zs: Xiei) =
s=t s=t 1=t

1 o
- BEt </\ > 5S—f+1xses> :
s=t

Thus, we can write the manager’s problem as

max . By | Y B (V= P, + ApX16,) | |,
{05} s=t+1
where
_ Yup
Und

Define J(FP;, X}) as:

J<Pt7 Xt) = 129&5( Et Z 687}6 ((V - Ps—&-l)Qs + )\(PXSGS)] :

s=t

The optimal trading strate 6:17—! is a solution to the following Bellman equation:
g &Y s ss=t g

J(Pt, Xt) = rrbax {(V — Pt + )\LpXt)Qt - )\0,52 + 6Et[J(Pt + A(@t + €t+1), Xt + Qt)]} . (Al)
t

Conjecture that:
J(Pi, X)) = a(V — P+ A\pX;)? + b.
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The first-order condition implies that

1 —2aBA(1 — )
A —aBA1— ¢

Substituting (A2) back into (A1), we obtain equations for a and b:

14+ 4apAp

© S (a9 (83)
af\?c?
- (Ad)

Equation (A3) has two solutions, but only one solution results in a stable control:

1

o= , (A5)
2\ (1-Bp+ VT =B) (1 - 5
Substituting (A5) back into (A2), we obtain the optimal trading strategy 6*:
o = V — P+ X, '
A(1+/522)
Q.E.D.

Proof of Proposition 2: Following similar steps as in the proof of Proposition 1, one

can write the objective of the arbitrageur as:

o0

Z ﬁS_H—l ((V - PS-H)Qa,s - IYX(?,S)] (AG)

s=t

J, = max E,
{0a.s}

s. t.  Pop1 =P+ N0+ 045+ c511),
Xs+1 = Xs + 9:7
Xa,erl = Xa,s + ea,s-

Since
V=P, + \pX,

0 — \ <1 N II%Q)’

the objective (AG) can be written as follows:

oo

S
Ja — max s—t+1 ZT ea s Q
{6a,:} <= 0 [ o ] ST R

S. t ZS+1 — AZS + B@ms —|— Q€S+l7

Zs

, AT
0. (A7)
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where Z; = (V — PS,Q;‘,XQVS)T, B=(X\-\1DT Q= (-\-)\0T R=-)\ 8=
+(1,—,0)", and

1 —a 0 00 0 )
A=|o0 1-al=¢p) 0|, Q=00 0o |, a=
1+ /=82
0 0 1 00 —vh 5

Since all eigenvalues of matrix /3 3 A lie inside the unit circle, a standard result in linear
quadratic control (see Anderson, Hansen, McGrattan, and Sargent (1995)) is that the
optimal strategy 0, s is given by

92,3 = FZ;,

where

F=—(R+pB"PB)" (BB"PA+S"),

and P is a unique stabilizing solution of the algebraic Riccati equation:
P =BATPA - (BATPB+5S) (R+8BTPB) " (BBTPA+ST) +Q.  (AS)

Q.E.D.

Proof of Proposition 3: Following similar steps as in the proof of Proposition 1, one

can write the objective of the manager as

{em’S} s=t+1

s.t. Po1=Ps+ ANOns + 0, +e511),
Xm,s+1 = Xm,s + Hm,s;
Xa,s+1 = Xa,s + 0275-

max QﬁﬁEt Z Bs_t ((V - Ps+1)‘9m,s + )\SOXS(Qm,s + 92,3))] (Ag)

and the objective of the arbitrageur as

Z BS_H_I ((V — Po1)0a,s — ’}/X(is)] (A10)

J, = max E,
} s=t

a,s

s.t. Por =P+ A0, + 0o +es11),
Xm,s+1 = Xm,s +0;

m,s’

Xa,erl = Xa,s + ea,s-
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If 0 , = F2Z;, where Fy = (fo1, fo2, fo3), then objective (A9) can be written as

Zs

, All
0. (A11)

— e Q1 S
et ST L |

s. to Zgp1 = AiZs+ Biby s + Qegpn,

s=t

where 8 =1—6, Ay = I + ByFy, By = (=), 1,0)T, By = (=X,0,1)T, Q = (=), 0,0)7,
Sl = %[(1, )\QDl,O) — )\FQ]T, R = —)\, and

0 fo1/2 0
Q1= Ap1 f21/2 fa2 f23/2
0 fo3/2 0

Similarly, if 6, , = F1Z;, where Fy = (f11, fi2, fi3), then objective (A10) can be written
as

Q2 52
ST R
s. to ZS = AQZS_I + BQHLS + Qés,

max 587t+1 |:ZZ Ha,s:|

, Al12
i (A12)

where A2 =1 -+ BIFl) SQ = %[(1,0,)\%02) — )\Fl]T, and
0 0 0
Q=100 0
0 0 0—~h
Suppose a linear, closed loop Nash equilibrium exists, with I} and F5 being equilibrium
strategies of the manager and the arbitrageur. Then,
-1
Fy=—(R+BB{PB)) (BBl PiA+S]), (A13)
where P; solves Riccati equation

P = ﬁA{Pp‘h - (5A;‘_FP1B1 + 51) (R + 5B{P131)_1 (ﬁBfPu‘h + Sf) +Q1, (Al4)

and
Fy=— (R+ 8BIP,B,) " (BBIPAy+ ST), (A15)
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where P, solves Riccati equation
Py = BAY Py Ay — (BAYPyBy + S2) (R + BBY PyBy) ' (BBY PyAs + ST) + Qa. (A16)

Alternatively, any solution to (A13)-(A16) constitutes a closed-loop equilibrium.
Q.E.D.

Proof of Proposition 4: Suppose there exists a pure strategy equilibrium where the
arbitrageur enters. For ease notation, denote this period by 0. By assumption, the
arbitrageur arrives after the steady state described in Section 2 is reached. At this
point,

pXo=—(V - D), (A17)

and if the arbitrageur does not enter the manager’s continuation utility is zero.

Denote the equilibrium strategy of the arbitrageur by 60§, 07,65 ... and that of the
manager by 07*,05,.... Because the manager does not know when the arbitrageur
arrives to the market he becomes aware of the arbitrageur and reacts to her actions
only after she enters.

To prove the proposition it is enough to show that it is always in the interest of
the manager to ensure that the arbitrageur’s fund is liquidated in period 2 following
her entrance. Indeed, if the fund is going to be liquidated at time 2 then the only case
when the arbitrageur avoids the liquidation if the arbitrage closes at time 2. Hence,

the expected utility of the arbitrageur is
Sh(V — Py — Mg)05 — vh(605)* — (1 — oh)x, (A18)

which is less than zero by the assumption of the proposition. Therefore, the arbitrageur
does not enter the market.

Without loss of generality, one can assume that both 0§ < 0 and ¢ < 0. If 0§ > 0,
then the arbitrageur acquires the asset at the price above its fundamental level, and
therefore trades at a loss. If #f > 0, then even in the absence of the manager’s response,
the marked-to-market value of the arbitrageur’s position at time 2 is negative, and
therefore the fund is liquidated.

If 67 < 0, to ensure liquidation, the manager has to buy 07" = —6{ +¢, where ¢ > 0
is an arbitrary small number. In what follows, I assume that 7" = —6{. If the arbitrage
closes at time 2, then the manager’s actions have no effect on his profit. Therefore,
consider the manager’s utility conditional on the arbitrage not closing at time 2.

Suppose the manager plays 07" = —0{ and 03" = —07" = 60¢. Then, in period 3,
with probability dh the arbitrage closes. In this case, the trade submitted at time 2
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is executed at the fair price V' so the only trade that has a nontrivial impact on the
manager’s profit is his trade at time 1. In this trade, the manager buys —6{ units of
the risky asset at the price Py + A(0§ + 07 4+ 07") = Py + A03. Thus, the profit from this
trade is

(V — Py — AJ2)O™. (A19)

If the arbitrage does not close at time 3, which happens with probability 1—dh, then the
manager sells his position at time 3 at the price Py+ (05 +07+07"+05"—(05+65)) = Py
(because the arbitrageur’s fund is liquidated). Hence, the manager’s profit from the

trade is

(Py — Py — M2)0™ = \gE6°. (A20)

Therefore, the total expected profit from the trade is
U (OR(V — Py — 0507 + (1 — dh)AG307) . (A21)

To compute the total impact of the trade on the manager’s utility one also needs to

consider its contribution to the interim profit. The gain from buying extra 67" units is
YV ph XoA0T". (A22)

Since
VuphXoX = =0V — Py)) & ¢Xo=—(V - F) (A23)

the total effect of the manager’s trade on his utility is
Y NOGO7 > 0. (A24)

Thus, if the arbitrage does not close at time 2, the manager can always ensure his con-
tinuation utility to be nonnegative if he forces fund liquidation at time 2. Hence, in any
equilibrium, conditional on the arbitrage not closing at time 2, the arbitrageur’s total
expected profits from trade should be nonpositive (since any profits to the arbitrageur
results in a loss of utility for the manager).

This, in turn, implies that the expected trading profit of the arbitrageur at period 3,
and all subsequent periods should be nonpositive as well. Otherwise, the arbitrageur,
following periods of positive expected profits, will be tempted to deviate, facing a
prospect of negative expected profits. But the only way for the arbitrageur to have
nonpositive expected profits in period 3 is if she liquidates her short position in the as-
set. This leads to a negative marked-to-market profit and triggers the fund liquidation.

Thus, the arbitrageur is better off not entering the market.
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Finally, the no-entry equilibrium can be supported if, following entry by the arbi-
trageur, the manager commits to prop up the price by buying X () units of the risky
asset, where X () is such that the arbitrageur with holding costs  will never want to

sell more than X () units.

Q.E.D.
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