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What is the chance that Apple stock drops 20% over the next month?

We derive bounds on this quantity using index options and individual stock options

No distributional assumptions

The bounds are observable in real time

We argue that the lower bound should be expected to be closer to the truth

And show that it forecasts well in and out of sample
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Probabilities of a 20% decline over the next month
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Probabilities of a 20% decline over the next year
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Theory
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We can infer risk-neutral probabilities directly from asset prices
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We can infer risk-neutral probabilities directly from asset prices

The risk-neutral probability that the market declines by 20% over the next month can
be calculated from index options expiring in a month

P∗[R ≤ 0.8] = Rf ×
1
Rf

E∗[I(R ≤ 0.8)]︸ ︷︷ ︸
price of a binary option

= Rf × put′(0.8)︸ ︷︷ ︸
slope of put prices
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Strengths and weaknesses of risk-neutral probabilities

Risk-neutral probabilities perform quite well in forecasting crashes

But they overstate the probability of a crash

And the extent to which they overstate varies

They overstate most in scary times and for scary (≈ high beta) stocks

This is unfortunate! These are the situations, and stocks, for which a crash indicator is
most useful
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So we want true, not risk-neutral, probabilities

We require an assumption (implicit or explicit) to link the true and risk-neutral
probabilities—that is, about the stochastic discount factor

We take the perspective of a one-period marginal investor with power utility who
chooses to hold the market. So the SDF must be M = R−γm /λ for some constant λ

The true expectation of a random payoff X then satisfies

E[X] = E[λMRγm︸ ︷︷ ︸
≡1

X] = λE[M × (RγmX)] = λ
E∗[RγmX]

Rf

Eliminate λ by considering the case X = 1:

E[X] =
E∗[RγmX]
E∗[Rγm]
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So we want true, not risk-neutral, probabilities

In the case γ = 0, our approach simply forecasts using risk-neutral probabilities

Bad news: Our hypothetical investor understands market risk, but does not “know”
about various anomalies demonstrated in the empirical finance literature

I . . . , momentum, value, profitability, . . .

Good news: We don’t need to make the standard, undesirable, assumption that
historical measures are good proxies for the forward-looking risk measures that come
out of theory
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Theory (1)

Setting X = I(Ri ≤ q), this implies that the crash probability of stock i is

P[Ri ≤ q] =
E∗ [Rγm I(Ri ≤ q)]

E∗ [Rγm]

To calculate E∗ [Rγm], we need marginal risk-neutral distribution of Rm

I Easy, using index option prices (Breeden and Litzenberger, 1978)

To calculate E∗ [Rγm I(Ri ≤ q)], we need the joint distribution of (Rm, Ri)

I Problem: Joint risk-neutral distribution is not observable given assets that are traded in
practice (Martin, 2018, “Options and the Gamma Knife”)

I This is a general theme: we are often interested in covariances and other features of the
joint distribution in asset pricing

I The case i = m is easy. But testing the theory is hard because crashes are rare
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A 2× 2 example

Suppose the risk-neutral probability of a crash in Apple is 5%

Suppose the risk-neutral probability of a crash in the market is also 5%

These numbers can be calculated from options on Apple and options on the market

But they are consistent with different joint distributions, eg,

Apple
Crash No crash

S&P 500
Crash 5% 0%

No crash 0% 95%

Apple
Crash No crash

S&P 500
Crash 0% 5%

No crash 5% 90%

Martin and Shi Forecasting Crashes with a Smile March 2025 10 / 39



A 2× 2 example

Apple
Crash No crash

S&P 500
Crash 5% 0%

No crash 0% 95%

Apple
Crash No crash

S&P 500
Crash 0% 5%

No crash 5% 90%

In the left-hand world, AAPL is risky
I Risk-neutral probability of a crash will overstate the true probability of a crash

In the right-hand world, AAPL is a hedge
I Risk-neutral probability will understate the true probability of a crash

Moral: Even if we can’t observe the joint distribution, we may be able to derive
bounds on the true crash probability
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Theory (2)

P[Ri ≤ q] =
E∗ [Rγm I(Ri ≤ q)]

E∗ [Rγm]

We do not observe the joint risk-neutral distribution, so cannot calculate the
right-hand side

But we do observe the individual (marginal) risk-neutral distributions of Rm and Ri,
from options on the market and on stock i

The Fréchet–Hoeffding theorem provides upper and lower bounds on the right-hand
side, as in the 2× 2 example
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Theory (3)

Result (Bounds on the probability of a crash)
We have

E∗ [Rγm I(Rm ≤ ql)]

E∗ [Rγm]
≤ P[Ri ≤ q] ≤ E∗ [Rγm I(Rm ≥ qu)]

E∗ [Rγm]

The three elements are

E∗ [Rγm] = Rγf + γ(γ − 1)Rf

[∫ Rf

0
Kγ−2putm(K)dK +

∫ ∞
Rf

Kγ−2callm(K)dK

]

E∗ [RγmI (Rm ≤ ql)] = Rf q
γ
l

[
put′m(ql)− γ

putm (ql)

ql

]
+ γ(γ − 1)Rf

∫ ql

0
Kγ−2putm(K)dK

E∗ [RγmI (Rm ≥ qu)] = Rf qγu

[
γ

callm(qu)

qu
− call′(qu)

]
+ γ(γ − 1)Rf

∫ ∞
qu

Kγ−2callm(K)dK
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Theory (4)
The stock-i-specific quantiles ql and qu are such that

P∗[Rm ≤ ql] = P∗[Ri ≤ q] = P∗[Rm ≥ qu]
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Theory (5)

Bounds from the Fréchet–Hoeffding theorem are attainable in principle
I Lower bound achieved for a stock that is comonotonic with the market—i.e., whose

return is a (potentially nonlinear) increasing function of the market return
I Upper bound achieved for a stock that is countermonotonic with the market—i.e., whose

return is a (potentially nonlinear) decreasing function of the market return

Intuitively, asset prices will tend to overstate crash probabilities if crashes are scary; or
understate crash probabilities if crashes occur in good times

A priori, we expect that the scary case is the relevant one, and hence that the lower
bound should be closer to the truth in practice
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Theory (6)

Result (Bounds on the probability of a crash)
We have

E∗ [Rγm I(Rm ≤ ql)]

E∗ [Rγm]
≤ P[Ri ≤ q] ≤ E∗ [Rγm I(Rm ≥ qu)]

E∗ [Rγm]

Further theoretical results
Both P[Ri ≤ q] and P∗[Ri ≤ q] lie in between the bounds

When γ = 0, the lower and upper bounds both equal P∗[Ri ≤ q], and P∗ and P coincide

As γ increases, the bounds widen monotonically, so higher γ is more conservative

As γ →∞, the bounds become trivial: the lower bound tends to zero and the upper
bound tends to one
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Data
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Data

S&P 500 index and stock constituents from Compustat

Risk-free rates and implied volatilities from OptionMetrics
I Monthly from 1996/01 to 2022/12
I On average around 492 firms each month
I Options maturing in 1,3,6 and 12 months
I Over 155,000 firm-month observations per maturity

Firm characteristics from Compustat

Price, return, and volume data from CRSP

Focus on “crashes” of 10%,20% and 30% at horizons τ = 1,3,6 and 12 months

I’ll often focus on the case of a 20% decline over one month

We set risk aversion, γ, equal to 2
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Summary statistics

averaged across firms averaged across time
(number of obs. T = 324) (number of obs. N = 1044)

maturity 1 3 6 12 1 3 6 12

q = 0.7, down by over 30%

realized
mean 0.006 0.029 0.057 0.093 0.009 0.038 0.073 0.115
s.d. 0.019 0.064 0.100 0.120 0.025 0.067 0.103 0.147

lower bound
mean 0.004 0.025 0.051 0.076 0.006 0.030 0.056 0.082
s.d. 0.007 0.019 0.023 0.023 0.013 0.032 0.042 0.049

risk-neutral
mean 0.007 0.044 0.098 0.167 0.009 0.050 0.104 0.173
s.d. 0.012 0.037 0.050 0.056 0.017 0.045 0.061 0.071

upper bound
mean 0.009 0.060 0.139 0.253 0.011 0.066 0.146 0.259
s.d. 0.016 0.053 0.077 0.094 0.020 0.056 0.078 0.093
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Summary statistics

averaged across firms averaged across time
(number of obs. T = 324) (number of obs. N = 1044)

maturity 1 3 6 12 1 3 6 12

q = 0.8, down by over 20%

realized
mean 0.021 0.069 0.110 0.152 0.029 0.084 0.130 0.173
s.d. 0.048 0.107 0.140 0.158 0.059 0.092 0.129 0.165

lower bound
mean 0.022 0.073 0.102 0.123 0.027 0.079 0.110 0.133
s.d. 0.020 0.028 0.027 0.027 0.029 0.046 0.052 0.056

risk-neutral
mean 0.031 0.113 0.174 0.236 0.037 0.120 0.182 0.246
s.d. 0.031 0.050 0.053 0.058 0.036 0.058 0.065 0.072

upper bound
mean 0.038 0.144 0.234 0.340 0.044 0.152 0.243 0.352
s.d. 0.040 0.071 0.082 0.097 0.042 0.069 0.079 0.089
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Summary statistics

averaged across firms averaged across time
(number of obs. T = 324) (number of obs. N = 1044)

maturity 1 3 6 12 1 3 6 12

q = 0.9, down by over 10%

realized
mean 0.096 0.172 0.211 0.238 0.110 0.190 0.231 0.254
s.d. 0.123 0.170 0.184 0.193 0.089 0.119 0.152 0.182

lower bound
mean 0.109 0.168 0.195 0.209 0.118 0.179 0.206 0.218
s.d. 0.036 0.031 0.027 0.023 0.050 0.055 0.056 0.056

risk-neutral
mean 0.136 0.228 0.286 0.341 0.145 0.239 0.297 0.350
s.d. 0.050 0.051 0.051 0.049 0.056 0.061 0.063 0.063

upper bound
mean 0.156 0.277 0.367 0.466 0.166 0.290 0.378 0.476
s.d. 0.064 0.074 0.080 0.085 0.062 0.070 0.073 0.073
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In-sample tests
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Empirical tests

I(Ri ≤ q) = 0 + 1× E[ I(Ri ≤ q) ]︸ ︷︷ ︸
P[Ri≤q]

+ε

So a regression of the realized crash indicator I(Ri ≤ q) onto an ideal crash probability
measure P[Ri ≤ q] would yield zero constant term and a unit regression coefficient

If the lower bound is close to the truth, then in a regression

I[Ri,t→t+τ ≤ q] = αL + βL PL
i,t(τ, q) + εi,t+τ ,

we should find αL ≈ 0 and βL ≈ 1 at any horizon τ and for any crash size q
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In-sample tests (1)

Down by 30% (q = 0.7)

lower bound risk-neutral upper bound
maturity 1 3 6 12 1 3 6 12 1 3 6 12

α 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.01) (0.01)
[0.00] [0.00] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01] [0.00] [0.00] [0.01] [0.01]

β 0.95 1.03 1.09 1.05 0.66 0.60 0.59 0.56 0.51 0.43 0.39 0.35
(0.15) (0.12) (0.11) (0.10) (0.11) (0.08) (0.07) (0.07) (0.09) (0.06) (0.05) (0.05)
[0.16] [0.14] [0.18] [0.15] [0.11] [0.11] [0.11] [0.11] [0.10] [0.09] [0.08] [0.07]

R2 3.90% 5.37% 5.17% 3.91% 3.77% 4.56% 4.01% 3.06% 3.63% 4.16% 3.41% 2.47%
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In-sample tests (1)
with time fixed effects

Down by 30% (q = 0.7)

lower bound risk-neutral upper bound
maturity 1 3 6 12 1 3 6 12 1 3 6 12

β 0.93 1.05 1.11 1.14 0.68 0.70 0.74 0.78 0.55 0.55 0.58 0.60
(0.14) (0.10) (0.08) (0.08) (0.10) (0.07) (0.05) (0.05) (0.09) (0.05) (0.04) (0.04)
[0.16] [0.13] [0.12] [0.11] [0.13] [0.09] [0.10] [0.07] [0.09] [0.07] [0.06] [0.06]

R2-proj 3.27% 4.81% 5.06% 4.54% 3.21% 4.52% 4.87% 4.50% 3.16% 4.39% 4.74% 4.43%
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In-sample tests (2)

Down by 20% (q = 0.8)

lower bound risk-neutral upper bound
maturity 1 3 6 12 1 3 6 12 1 3 6 12

α 0.00 −0.01 −0.01 0.02 0.00 −0.01 −0.02 0.00 0.00 −0.01 −0.01 0.01
(0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.02)
[0.00] [0.01] [0.01] [0.02] [0.00] [0.01] [0.01] [0.02] [0.00] [0.01] [0.02] [0.03]

β 0.92 1.03 1.15 1.07 0.68 0.69 0.73 0.66 0.56 0.51 0.49 0.41
(0.11) (0.09) (0.09) (0.08) (0.09) (0.07) (0.07) (0.07) (0.08) (0.06) (0.06) (0.06)
[0.11] [0.13] [0.15] [0.13] [0.09] [0.10] [0.11] [0.12] [0.07] [0.08] [0.10] [0.10]

R2 5.65% 5.15% 4.76% 3.69% 5.48% 4.50% 3.89% 2.96% 5.32% 4.11% 3.22% 2.30%
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In-sample tests (2)
with time fixed effects

Down by 20% (q = 0.8)

lower bound risk-neutral upper bound
maturity 1 3 6 12 1 3 6 12 1 3 6 12

β 0.93 1.03 1.13 1.10 0.73 0.80 0.89 0.87 0.62 0.67 0.74 0.71
(0.09) (0.07) (0.06) (0.06) (0.07) (0.05) (0.05) (0.05) (0.06) (0.04) (0.04) (0.04)
[0.10] [0.10] [0.09] [0.09] [0.07] [0.07] [0.07] [0.06] [0.07] [0.07] [0.07] [0.06]

R2-proj 4.49% 4.65% 4.55% 4.01% 4.39% 4.53% 4.48% 4.00% 4.33% 4.45% 4.40% 3.98%
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Intermission: Probability of a rise of at least 20%

lower bound risk-neutral upper bound
maturity 1 3 6 12 1 3 6 12 1 3 6 12

α 0.00 0.01 0.09 0.34 0.00 0.00 0.04 0.24 0.00 −0.01 0.03 0.21
(0.00) (0.00) (0.01) (0.02) (0.00) (0.01) (0.01) (0.03) (0.00) (0.01) (0.01) (0.03)
[0.00] [0.01] [0.01] [0.03] [0.00] [0.01] [0.02] [0.04] [0.00] [0.01] [0.02] [0.04]

β 1.35 1.58 1.32 0.12 1.03 1.17 1.08 0.46 0.85 0.91 0.82 0.42
(0.13) (0.11) (0.11) (0.15) (0.10) (0.09) (0.09) (0.12) (0.09) (0.08) (0.07) (0.09)
[0.13] [0.14] [0.15] [0.21] [0.11] [0.13] [0.15] [0.17] [0.09] [0.10] [0.11] [0.13]

R2 6.95% 5.78% 2.51% 0.01% 7.28% 6.66% 3.79% 0.38% 7.36% 6.81% 4.21% 0.72%

For rises, the upper bound would be tight in the comonotonic case

At the one year horizon, it is harder to predict booms than crashes (perhaps because
booms are more idiosyncratic so comonotonicity is further from the truth)
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In-sample tests (3)

Down by 10% (q = 0.9)

lower bound risk-neutral upper bound
maturity 1 3 6 12 1 3 6 12 1 3 6 12

α −0.02 −0.01 −0.01 0.03 −0.02 −0.02 −0.02 0.00 −0.02 0.00 0.01 0.05
(0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.03) (0.01) (0.02) (0.02) (0.03)
[0.01] [0.02] [0.02] [0.03] [0.01] [0.02] [0.03] [0.04] [0.01] [0.03] [0.04] [0.05]

β 1.05 1.07 1.12 1.01 0.88 0.83 0.80 0.68 0.75 0.63 0.54 0.41
(0.08) (0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.09) (0.07) (0.07) (0.07) (0.08)
[0.08] [0.11] [0.12] [0.12] [0.07] [0.11] [0.12] [0.13] [0.08] [0.12] [0.12] [0.11]

R2 5.46% 3.71% 3.38% 2.41% 5.46% 3.39% 2.80% 1.83% 5.35% 3.03% 2.16% 1.23%
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In-sample tests (3)
with time fixed effects

Down by 10% (q = 0.9)

lower bound risk-neutral upper bound
maturity 1 3 6 12 1 3 6 12 1 3 6 12

β 0.99 0.99 1.05 1.05 0.88 0.89 0.94 0.93 0.80 0.79 0.83 0.82
(0.06) (0.05) (0.06) (0.06) (0.05) (0.05) (0.05) (0.05) (0.05) (0.04) (0.04) (0.05)
[0.06] [0.07] [0.08] [0.08] [0.05] [0.07] [0.07] [0.08] [0.05] [0.06] [0.06] [0.06]

R2-proj 4.02% 3.15% 3.14% 2.85% 3.99% 3.12% 3.12% 2.83% 3.96% 3.08% 3.09% 2.82%
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Estimated β, by year: lower bound
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Estimated β, by year: risk-neutral probabilities
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Lower bound vs. risk-neutral probabilities

Risk-neutral probabilities overstate true crash probabilities

The extent to which they overstate varies over time and across stocks

We should expect risk-neutral probabilities to overstate most—hence estimated β
coefficients to be lowest—in scary times or for scary (≈ high beta) stocks

The lower bound adjusts for scariness, so estimated β coefficients are more stable

This gives the lower bound an advantage when we look at OOS performance
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Fréchet–Hoeffding vs. Cauchy–Schwarz

Here’s another approach that does not work as well. Write

P [Ri ≤ q] = P∗ [Ri ≤ q] +
cov∗ [Rγm, I(Ri ≤ q)]

E∗ [Rγm]

Risk-neutral correlation, ρ∗ [Rγm, I(Ri ≤ q)], must lie between plus and minus one, so

P∗ [Ri ≤ q]− σ∗ [Rγm]σ∗ [I(Ri ≤ q)]
E∗ [Rγm]

≤ P [Ri ≤ q] ≤ P∗ [Ri ≤ q] +
σ∗ [Rγm]σ∗ [I(Ri ≤ q)]

E∗ [Rγm]

where σ∗ [·] denotes risk-neutral volatility

But ρ∗ [Rγm, I(Ri ≤ q)] cannot reach plus or minus one: one variable is continuous, the
other discrete!

So these bounds are very weak: typically around three times wider for the 1
month/20% pair and around 10 times wider for the 1 month/30% pair
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Estimated β, by industry: lower bound
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Competitor variables from the literature

We compare against 15 variables drawn from the literature
I Stock characteristics: CAPM beta, (log) relative size, book-to-market, profitability (gross

profit/assets), momentum (prior 2-6 and 2-12 month returns), lagged return
I Chen–Hong–Stein, 2001: realized volatilities (standard deviations of daily

market-adjusted returns over the last six months) and monthly turnover (shares traded
scaled by shares outstanding)

I Greenwood–Shleifer–You, 2019: sales growth
I Asquith–Pathak–Ritter, 2005; Nagel, 2005: short interest (shares shorted/shares held by

institutions)
I Campbell–Hilscher–Szilagyi, 2008: leverage (debt/total assets), net income/total assets,

cash/total assets, log price per share (winsorized from above at $15)

All variables are standardized to unit standard deviation for comparability
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In-sample tests (4)
Asterisks indicate t-statistics above 4

I(Rt→t+1 ≤ 0.8)

PL[Rt→t+1 ≤ 0.8] 3.40∗ 3.02∗ 4.41 2.72∗

(0.41) (0.58) (3.08) (0.33)
P∗[Rt→t+1 ≤ 0.8] 2.81∗ −1.39

(0.66) (3.36)

CHS-volatility 2.27∗ 0.31 0.44 0.32 0.50
(0.31) (0.37) (0.44) (0.39) (0.18)

short int. 0.39∗ 0.34∗ 0.37∗ 0.33∗ 0.27∗

(0.09) (0.08) (0.08) (0.08) (0.06)

...
...

...
...

...

R2/R2-proj. 4.49% 5.65% 5.82% 5.69% 5.83% 4.72%
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In-sample tests (4)
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Out-of-sample tests
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We compare OOS forecast performance of two models

1 Competitor model uses 15 characteristics, lower bound, and risk-neutral probabilities
I We train predictive models using expanding or rolling windows

F variable selection using elastic net
F tuning parameters for sparsity: 5-fold cross validation based on the training sample

I Then make out-of-sample forecasts for the rest of the sample

2 Our lower bound, directly used to forecast with fixed α = 0 and β = 1
I Nothing is estimated

Performance measure: out-of-sample R2

Diebold–Mariano tests reject the null of equal forecasting accuracy

Very similar results for a “kitchen sink” competitor that also uses interactions and
squares of the 15 original characteristics (for a total of 137 variables)
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Out-of-sample forecasts
R2, expanding window, competing against in-sample mean crash probabilities (firm-specific)
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Out-of-sample forecasts
β̂, expanding window, competing against in-sample mean crash probabilities (firm-specific)
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Out-of-sample forecasts
R2, 3yr rolling window, competing against in-sample mean crash probabilities (firm-specific)
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Out-of-sample forecasts
β̂, 3yr rolling window, competing against in-sample mean crash probabilities (firm-specific)
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Industry crash risk
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Industry average crash probabilities
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Industry average crash probabilities
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Explaining crash probabilities
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Explaining crash probabilities

If you accept the lower bound as a tolerable measure of crash risk, then we can use it
to “de-noise” the realized crash event indicator

This boosts power to detect variables that influence a stock’s likelihood of crashing:
we find R2 on the order of 70–75%

Crash risk is higher for
I stocks with high beta, CHS volatility, share turnover, and short interest (Chen, Hong and

Stein, 2001; Hong and Stein, 2003)
I penny stocks, with low log share price (Campbell, Hilscher and Szilagyi, 2008)
I stocks with poor recent returns, either over the past month or from month −6 to −1
I unprofitable stocks or stocks with low net income
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Panel A: Regressions of the lower bound onto 15 characteristics
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Panel B: Regressions onto characteristics, squared characteristics, and interaction terms
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Interactions

...

Crash risk is higher for
I penny stocks with low cash, or that are

small or volatile
I unprofitable growth stocks
I stocks with high short interest and low

net income
I high beta stocks with high CHS

volatility or short interest
I highly levered stocks with low lagged

returns
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Summary

We derive bounds on crash probabilities and show that the lower bound successfully
forecasts crashes in and out of sample

For one month forecasts of 20% crashes, we find
I t-stats in the range 5 to 13
I estimated coefficient 10 times larger than the next most important competitor variable

Risk-neutral probabilities also perform well in sample, but overstate crash
probabilities—and time variation in overstatement hurts out-of-sample performance

Our results depend on one key assumption: the form of the SDF

This is a strong assumption, but it allows us to avoid the undesirable (and commonly
made) assumption that backward-looking historical measures are good proxies for the
forward-looking measures that come out of theory

It seems the price of our assumption is worth paying
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