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Introduction

What is the probability that a given stock drops by 20% over the next month?

We derive bounds on this quantity using index options and individual stock options

The bounds are observable in real time

They perform well in and out of sample

No distributional assumptions
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Probabilities of a 20% decline over the next month
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Probabilities of a 20% decline over the next year
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Probabilities of a 20% decline over the next month
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We can infer risk-neutral probabilities directly from asset prices
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We can infer risk-neutral probabilities directly from asset prices

The risk-neutral probability that the market declines by 20% over the next month can
be calculated from index options expiring in a month

P∗[R ≤ 0.8] = Rf ×
1
Rf

E∗[I(R ≤ 0.8)]︸ ︷︷ ︸
price of a binary option

= Rf × put′(0.8)︸ ︷︷ ︸
slope of put prices
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But we want true, not risk-neutral, probabilities

We require an assumption (implicit or explicit) to link the true and risk-neutral
probabilities—that is, about the stochastic discount factor

Simple example: think from the perspective of a marginal investor with log utility
who chooses to invest fully in the market

I From this investor’s perspective, 1/Rm must be a stochastic discount factor
I This implies that

EX = E
[(

1
Rm

)
XRm

]
=

1
Rf

E∗ (XRm)

I We can infer beliefs about X from the price of XRm
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Theory (1)

We take the perspective of a one-period marginal investor with power utility who
chooses to hold the market

It follows that the SDF is of the form M = R−γm /λ for some constant λ

γ is the coefficient of relative risk aversion

Martin and Shi Forecasting Crashes with a Smile April, 2024 6 / 42



Theory (2)

The true expectation of a random payoff X then satisfies

E[X] = E[λMRγm︸ ︷︷ ︸
≡1

X] = λE[M × (RγmX)] = λ
E∗[RγmX]

Rf

Applied in the case X = 1, we must have λ =
Rf

E∗[Rγ
m]

So,

E[X] =
E∗[RγmX]
E∗[Rγm]
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Theory (3)

Consider X = I(Ri ≤ q), the crash probability of a stock

P[Ri ≤ q] =
E∗ [Rγm I(Ri ≤ q)]

E∗ [Rγm]

To calculate E∗ [Rγm], we need marginal distribution of Rm

I Easy, using index option prices (Breeden and Litzenberger, 1978)

To calculate E∗ [Rγm I(Ri ≤ q)], we need the joint distribution of (Rm, Ri)

I Problem: Joint risk-neutral distribution is not observable given assets that are traded in
practice (Martin, 2018)

I This is a general theme: we are often interested in covariances and other features of the
joint distribution
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A 2× 2 example

Suppose the risk-neutral probability of a crash in Apple is 5%

Suppose the risk-neutral probability of a crash in the market is also 5%

These numbers can be calculated from options on Apple and options on the market

But they are consistent with different joint distributions, eg,

Apple
Crash No crash

S&P 500
Crash 5% 0%

No crash 0% 95%

Apple
Crash No crash

S&P 500
Crash 0% 5%

No crash 5% 90%
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A 2× 2 example

Apple
Crash No crash

S&P 500
Crash 5% 0%

No crash 0% 95%

Apple
Crash No crash

S&P 500
Crash 0% 5%

No crash 5% 90%

In the left-hand world, AAPL is risky
I Risk-neutral probability of a crash will overstate the true probability of a crash

In the right-hand world, AAPL is a hedge
I Risk-neutral probability will understate the true probability of a crash

Moral: Even if we can’t observe the joint distribution, we may be able to derive
bounds on the true crash probability
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Theory (4)

P[Ri ≤ q] =
E∗ [Rγm I(Ri ≤ q)]

E∗ [Rγm]

We do not observe the joint risk-neutral distribution, so cannot calculate the
right-hand side

But we do observe the individual (marginal) risk-neutral distributions of Rm and Ri,
from options on the market and on stock i

The Fréchet–Hoeffding theorem provides upper and lower bounds on the right-hand
side, as in the 2× 2 example
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Theory (5)

Result (Bounds on the probability of a crash)
We have

E∗ [Rγm I(Rm ≤ ql)]

E∗ [Rγm]
≤ P[Ri ≤ q] ≤ E∗ [Rγm I(Rm ≥ qu)]

E∗ [Rγm]

The three elements are

E∗ [Rγm] = Rγf + γ(γ − 1)Rf

[∫ Rf

0
Rγ−2putm(R)dR +

∫ ∞
Rf

Rγ−2callm(R)dR

]

E∗ [RγmI (Rm ≤ ql)] = Rf q
γ
l

[
put′m(ql)− γ

putm (ql)

ql

]
+ γ(γ − 1)Rf

∫ ql

0
Rγ−2putm (R) dR

E∗ [RγmI (Rm ≥ qu)] = Rf qγu

[
γ

callm(qu)

qu
− call′(qu)

]
+ γ(γ − 1)Rf

∫ ∞
qu

Rγ−2callm (R) dR
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Theory (6)
The stock-specific quantiles ql and qu are such that

P∗[Rm ≤ ql] = P∗[Ri ≤ q] = P∗[Rm ≥ qu]

Strike prices/Spot prices
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Theory (7)

Bounds from the Fréchet–Hoeffding theorem are attainable in principle
I Lower bound achieved for a stock that is comonotonic with the market—i.e., whose

return is a (potentially nonlinear) increasing function of the market return
I Upper bound achieved for a stock that is countermonotonic with the market—i.e., whose

return is a (potentially nonlinear) decreasing function of the market return

Intuitively, asset prices will tend to overstate crash probabilities if crashes are scary; or
understate crash probabilities if crashes occur in good times

A priori, we expect that the scary case is the relevant one, and hence that the lower
bound should be closer to the truth in practice
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Theory (8)

Result (Bounds on the probability of a crash)
We have

E∗ [Rγm I(Rm ≤ ql)]

E∗ [Rγm]
≤ P[Ri ≤ q] ≤ E∗ [Rγm I(Rm ≥ qu)]

E∗ [Rγm]

Further theoretical results
Both P[Ri ≤ q] and P∗[Ri ≤ q] lie in between the bounds

When γ = 0, the lower and upper bounds both equal P∗[Ri ≤ q], and P∗ and P coincide

As γ increases, the bounds widen monotonically, so higher γ is more conservative

As γ →∞, the bounds become trivial: the lower bound tends to zero and the upper
bound tends to one
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Data

S&P 500 index and stock constituents from Compustat

Option implied volatilities from OptionMetrics
I Underlying stocks belonging to the S&P 500 index
I Monthly from 1996/01 to 2022/12
I Maturing in 1,3,6 and 12 months
I 1044 firms in total
I On average around 492 firms each month
I Over 155,000 firm-month observations per maturity

Risk-free rates from OptionMetrics

Firm characteristics from Compustat

Price, return, and volume data from CRSP
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Empirical setup

We set γ equal to 2

Focus on “crashes” of 5%,10% and 20%: q = 0.95,0.9 and 0.8

For stock i in month t, compute upper and lower bounds at horizons τ = 1,3,6 and
12 months, PU

i,t(τ, q) and PL
i,t(τ, q)

I’ll emphasize the case of 20% decline over one month
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Calibrating risk aversion
We set γ = 2

q

P
(R

m
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Summary statistics

averaged across firms averaged across time
(number of obs. T = 324) (number of obs. N = 1044)

maturity 1 3 6 12 1 3 6 12

q = 0.80, down by over 20%

realized
mean 0.021 0.069 0.111 0.152 0.029 0.084 0.130 0.173
s.d. 0.048 0.107 0.141 0.160 0.059 0.092 0.129 0.166

lower bound
mean 0.022 0.073 0.102 0.123 0.027 0.079 0.110 0.133
s.d. 0.020 0.029 0.028 0.027 0.029 0.046 0.052 0.056

upper bound
mean 0.038 0.144 0.233 0.339 0.044 0.152 0.242 0.350
s.d. 0.040 0.071 0.082 0.098 0.042 0.069 0.079 0.089

risk-neutral
mean 0.031 0.113 0.173 0.236 0.037 0.120 0.181 0.245
s.d. 0.031 0.050 0.053 0.059 0.036 0.058 0.065 0.072
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Summary statistics

averaged across firms averaged across time
(number of obs. T = 324) (number of obs. N = 1044)

maturity 1 3 6 12 1 3 6 12

q = 0.90, down by over 10%

realized
mean 0.096 0.173 0.211 0.236 0.110 0.191 0.231 0.252
s.d. 0.124 0.170 0.185 0.196 0.089 0.119 0.152 0.183

lower bound
mean 0.109 0.168 0.196 0.210 0.118 0.179 0.206 0.219
s.d. 0.037 0.031 0.028 0.023 0.050 0.055 0.056 0.056

upper bound
mean 0.156 0.277 0.366 0.466 0.166 0.289 0.378 0.475
s.d. 0.064 0.074 0.081 0.087 0.062 0.070 0.074 0.074

risk-neutral
mean 0.136 0.228 0.286 0.341 0.145 0.239 0.297 0.350
s.d. 0.051 0.051 0.051 0.050 0.056 0.061 0.063 0.063
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Summary statistics

averaged across firms averaged across time
(number of obs. T = 324) (number of obs. N = 1044)

maturity 1 3 6 12 1 3 6 12

q = 0.95, down by over 5%

realized
mean 0.216 0.271 0.288 0.289 0.230 0.287 0.306 0.306
s.d. 0.187 0.200 0.204 0.210 0.101 0.122 0.155 0.185

lower bound
mean 0.215 0.264 0.277 0.271 0.228 0.275 0.286 0.279
s.d. 0.036 0.024 0.020 0.020 0.052 0.049 0.047 0.048

upper bound
mean 0.281 0.393 0.465 0.541 0.294 0.404 0.474 0.548
s.d. 0.064 0.064 0.066 0.074 0.059 0.058 0.056 0.057

risk-neutral
mean 0.251 0.332 0.375 0.408 0.264 0.343 0.383 0.415
s.d. 0.049 0.041 0.038 0.040 0.055 0.052 0.049 0.050
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Empirical tests

I(Ri ≤ q) = 0 + 1× E[ I(Ri ≤ q) ]︸ ︷︷ ︸
P[Ri≤q]

+ε

So a regression of the realized crash indicator I(Ri ≤ q) onto an ideal crash probability
measure P[Ri ≤ q] would yield zero constant term and a unit regression coefficient

If the lower bound is close to the truth, then in a regression

I[Ri,t→t+τ ≤ q] = αL + βL PL
i,t(τ, q) + εi,t+τ ,

we should find αL ≈ 0 and βL ≈ 1 at any horizon τ and threshold q
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In-sample tests (1)

Down by 20% (q = 0.80)

lower bound upper bound risk neutral
maturity 1 3 6 12 1 3 6 12 1 3 6 12

α 0.00 −0.01 −0.01 0.02 0.00 0.00 0.00 0.01 0.00 −0.01 −0.02 0.00
(0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.02) (0.00) (0.01) (0.01) (0.02)
[0.00] [0.01] [0.01] [0.01] [0.00] [0.01] [0.02] [0.03] [0.00] [0.01] [0.01] [0.03]

β 0.92 1.03 1.15 1.08 0.55 0.51 0.50 0.41 0.68 0.69 0.73 0.66
(0.11) (0.09) (0.09) (0.08) (0.08) (0.06) (0.06) (0.06) (0.09) (0.07) (0.07) (0.08)
[0.11] [0.15] [0.14] [0.12] [0.08] [0.08] [0.09] [0.10] [0.08] [0.10] [0.12] [0.13]

R2 5.66% 5.17% 4.78% 3.76% 5.29% 4.13% 3.26% 2.33% 5.45% 4.51% 3.91% 3.00%
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In-sample tests (1)
with time fixed effects

Down by 20% (q = 0.80)

lower bound upper bound risk neutral
maturity 1 3 6 12 1 3 6 12 1 3 6 12

β 0.93 1.04 1.13 1.11 0.62 0.68 0.74 0.72 0.73 0.81 0.89 0.87
(0.09) (0.07) (0.06) (0.06) (0.06) (0.04) (0.04) (0.04) (0.07) (0.05) (0.05) (0.05)
[0.10] [0.10] [0.10] [0.08] [0.06] [0.09] [0.04] [0.06] [0.08] [0.05] [0.05] [0.06]

R2-proj 4.45% 4.66% 4.56% 4.11% 4.29% 4.46% 4.41% 4.08% 4.35% 4.54% 4.49% 4.10%
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Intermission: Probability of a rise of at least 20%

lower bound upper bound risk neutral
maturity 1 3 6 12 1 3 6 12 1 3 6 12

α 0.00 0.01 0.09 0.34 0.00 0.00 0.03 0.20 0.00 0.00 0.04 0.23
(0.00) (0.00) (0.01) (0.02) (0.00) (0.01) (0.01) (0.03) (0.00) (0.01) (0.01) (0.03)
[0.00] [0.01] [0.01] [0.03] [0.00] [0.01] [0.02] [0.04] [0.00] [0.01] [0.02] [0.03]

β 1.35 1.58 1.30 0.10 0.85 0.91 0.82 0.44 1.03 1.17 1.08 0.49
(0.13) (0.11) (0.11) (0.14) (0.09) (0.08) (0.08) (0.09) (0.11) (0.09) (0.09) (0.12)
[0.13] [0.16] [0.19] [0.19] [0.10] [0.11] [0.10] [0.13] [0.11] [0.12] [0.14] [0.17]

R2 7.01% 5.78% 2.44% 0.01% 7.42% 6.86% 4.24% 0.80% 7.35% 6.70% 3.80% 0.43%

For rises, the upper bound would be tight in the comonotonic case: sign flips because
I(Ri ≥ q) is an increasing function of Ri, whereas I(Ri ≤ q) is decreasing

At the one year horizon, it is harder to predict booms than crashes (perhaps because
booms are more idiosyncratic so comonotonicity is further from the truth)
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In-sample tests (2)

Down by 10% (q = 0.90)

lower bound upper bound risk neutral
maturity 1 3 6 12 1 3 6 12 1 3 6 12

α −0.02 −0.01 −0.01 0.02 −0.02 0.00 0.01 0.05 −0.02 −0.02 −0.02 0.00
(0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.04) (0.01) (0.02) (0.02) (0.03)
[0.01] [0.01] [0.02] [0.03] [0.01] [0.03] [0.03] [0.06] [0.01] [0.02] [0.03] [0.04]

β 1.05 1.07 1.12 1.03 0.75 0.63 0.54 0.41 0.88 0.83 0.81 0.69
(0.08) (0.07) (0.07) (0.08) (0.07) (0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.09)
[0.08] [0.10] [0.11] [0.13] [0.07] [0.11] [0.10] [0.13] [0.08] [0.11] [0.12] [0.14]

R2 5.47% 3.73% 3.43% 2.54% 5.36% 3.06% 2.20% 1.25% 5.47% 3.41% 2.84% 1.88%
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In-sample tests (2)
with time fixed effects

Down by 10% (q = 0.90)

lower bound upper bound risk neutral
maturity 1 3 6 12 1 3 6 12 1 3 6 12

β 0.99 1.00 1.06 1.06 0.81 0.79 0.83 0.83 0.89 0.89 0.95 0.95
(0.06) (0.05) (0.06) (0.06) (0.05) (0.04) (0.04) (0.05) (0.05) (0.05) (0.05) (0.06)
[0.07] [0.08] [0.06] [0.06] [0.05] [0.05] [0.06] [0.07] [0.06] [0.05] [0.08] [0.09]

R2-proj 4.02% 3.17% 3.18% 2.97% 3.96% 3.11% 3.14% 2.96% 3.98% 3.14% 3.17% 2.95%
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In-sample tests (3)

Down by 5% (q = 0.95)

lower bound upper bound risk neutral
maturity 1 3 6 12 1 3 6 12 1 3 6 12

α 0.00 0.02 −0.01 0.05 0.00 0.05 0.06 0.11 0.00 0.01 −0.01 0.04
(0.01) (0.02) (0.02) (0.03) (0.02) (0.03) (0.04) (0.05) (0.02) (0.03) (0.03) (0.05)
[0.01] [0.03] [0.03] [0.06] [0.02] [0.05] [0.06] [0.09] [0.02] [0.04] [0.05] [0.07]

β 0.98 0.95 1.06 0.88 0.76 0.56 0.49 0.33 0.88 0.77 0.80 0.61
(0.07) (0.07) (0.08) (0.10) (0.08) (0.09) (0.09) (0.10) (0.08) (0.09) (0.10) (0.12)
[0.06] [0.10] [0.11] [0.18] [0.08] [0.13] [0.14] [0.17] [0.08] [0.12] [0.14] [0.17]

R2 3.01% 1.85% 1.86% 1.36% 3.02% 1.35% 0.94% 0.49% 3.08% 1.64% 1.45% 0.93%

Martin and Shi Forecasting Crashes with a Smile April, 2024 24 / 42



In-sample tests (3)
with time fixed effects

Down by 5% (q = 0.95)

lower bound upper bound risk neutral
maturity 1 3 6 12 1 3 6 12 1 3 6 12

β 0.87 0.86 0.97 0.97 0.77 0.76 0.85 0.86 0.83 0.82 0.93 0.93
(0.05) (0.05) (0.07) (0.07) (0.04) (0.05) (0.06) (0.06) (0.05) (0.05) (0.06) (0.07)
[0.04] [0.06] [0.12] [0.07] [0.02] [0.08] [0.07] [0.06] [0.03] [0.09] [0.10] [0.09]

R2-proj 2.21% 1.62% 1.75% 1.84% 2.19% 1.60% 1.74% 1.85% 2.20% 1.61% 1.74% 1.84%
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Estimated β, by year: lower bound
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Estimated β, by year: risk-neutral probabilities
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Lower bound vs. risk-neutral probabilities

Risk-neutral probabilities overstate true crash probabilities

The extent to which they overstate varies over time

We should expect risk-neutral probabilities to overstate most—hence estimated β
coefficients to be lowest—in scary times

The lower bound adjusts for scariness, so estimated β coefficients are more stable

This gives the lower bound an advantage when we look at OOS performance
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Fréchet–Hoeffding vs. Cauchy–Schwarz

Here’s another approach that also does not work as well. Write

P [Ri ≤ q] = P∗ [Ri ≤ q] +
cov∗ [Rγm, I(Ri ≤ q)]

E∗ [Rγm]

As correlation must lie between plus and minus one, it follows that

P∗ [Ri ≤ q]− σ∗ [Rγm]σ∗ [I(Ri ≤ q)]
E∗ [Rγm]

≤ P [Ri ≤ q] ≤ P∗ [Ri ≤ q] +
σ∗ [Rγm]σ∗ [I(Ri ≤ q)]

E∗ [Rγm]

where σ∗ [·] denotes risk-neutral volatility

These bounds depend only on univariate risk-neutral expectations, so can be
calculated from observable option prices. But they are much wider than our bounds
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Fréchet–Hoeffding vs. Cauchy–Schwarz

If, say, returns were jointly lognormal, then it could in principle be the case that log
returns were perfectly positively or negatively correlated

But observed option prices rule out lognormality

They also bound correlations away from ±1

Are we just using the fact that correlations lie in [−1,1]? No!
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Width of FH bounds relative to CS bounds

crash size mo. mean sd median q25 q75 min max

20% 1 0.271 0.184 0.247 0.113 0.410 0.000 0.800
20% 3 0.561 0.127 0.592 0.490 0.648 0.000 0.813
20% 6 0.658 0.075 0.662 0.623 0.706 0.000 0.811
20% 12 0.704 0.057 0.711 0.672 0.745 0.001 0.842

10% 1 0.544 0.108 0.565 0.487 0.618 0.000 0.848
10% 3 0.679 0.059 0.678 0.642 0.723 0.000 0.828
10% 6 0.727 0.043 0.733 0.698 0.761 0.000 0.812
10% 12 0.751 0.032 0.758 0.736 0.772 0.002 0.842

5% 1 0.615 0.083 0.630 0.578 0.668 0.000 0.849
5% 3 0.716 0.047 0.717 0.681 0.757 0.003 0.828
5% 6 0.751 0.033 0.761 0.735 0.775 0.053 0.812
5% 12 0.766 0.024 0.771 0.757 0.781 0.074 0.842
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20% crashes over one month

Fréchet–Hoeffding 0.85 1.27 1.57
(0.54) (0.84) (1.47)

Cauchy–Schwarz 0.09 −0.20
(0.56) (0.65)

risk-neutral −0.27 −0.35
(0.66) (0.80)

constant 0.00 0.00 −0.00
(0.00) (0.00) (0.00)
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Estimated β, by industry: lower bound
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Competitor variables from the literature

We compare against 15 variables drawn from the literature
I Stock characteristics: CAPM beta, (log) relative size, book-to-market, profitability (gross

profit/assets), momentum (prior 2-6 and 2-12 month returns), lagged return
I Chen–Hong–Stein, 2001: realized volatilities (standard deviations of daily

market-adjusted returns over the last six months) and monthly turnover (shares traded
scaled by shares outstanding)

I Greenwood–Shleifer–You, 2019: sales growth
I Asquith–Pathak–Ritter, 2005; Nagel, 2005: short interest (shares shorted/shares held by

institutions)
I Campbell–Hilscher–Szilagyi, 2008: leverage (debt/total assets), net income/total assets,

cash/total assets, log price per share (winsorized from above at $15)

All variables are standardized to unit standard deviation for comparability
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In-sample tests (4)
Asterisks indicate t-statistics above 4

I(Rt→t+1 ≤ 0.8)

PL[Rt→t+1 ≤ 0.8] 3.41∗ 3.05∗ 4.44 2.74∗

(0.41) (0.59) (3.08) (0.33)
P∗[Rt→t+1 ≤ 0.8] 2.83∗ −1.40

(0.67) (3.37)

CHS-volatility 2.28∗ 0.30 0.43 0.31 0.50
(0.31) (0.38) (0.45) (0.39) (0.18)

short int. 0.39∗ 0.33∗ 0.36∗ 0.32∗ 0.27∗

(0.09) (0.08) (0.08) (0.08) (0.06)

...
...

...
...

...
...

R2/R2-proj. 4.51% 5.66% 5.85% 5.72% 5.87% 4.74%
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In-sample tests (4)
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Back–Crotty–Kazempour (2022)

GMM-based tests for the validity and tightness of bounds, applied to Martin (2017),
Martin–Wagner (2019), Kadan–Tang (2020), Chabi-Yo–Loudis (2020)

Conclusions:
I Our upper and lower bounds are valid
I Our upper bound is (with very high confidence) not tight
I Mixed evidence on tightness of the lower bound
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BCK tests
p-values for tests of validity and tightness

lower bound upper bound
horizon 1 3 6 12 1 3 6 12

Panel A: q = 0.80, down by over 20%

validity 0.452 0.381 0.621 0.487 0.769 1.000 0.754 1.000
tightness 0.352 0.022 0.043 0.164 0.011 0.000 0.000 0.018

Panel B: q = 0.90, down by over 10%

validity 0.069 0.626 0.683 0.505 0.780 0.768 0.755 0.755
tightness 0.133 0.059 0.057 0.114 0.000 0.000 0.000 0.020

Panel C: q = 0.95, down by over 5%

validity 0.552 0.629 0.563 0.486 1.000 0.779 0.760 1.000
tightness 0.176 0.043 0.048 0.096 0.001 0.000 0.000 0.019
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Out-of-sample forecasts
R2, expanding window, competing against in-sample mean crash probabilities
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Out-of-sample forecasts
R2, expanding window, competing against in-sample mean crash probabilities
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Out-of-sample forecasts
A more challenging competitor

We include all 15 additional variables together with risk-neutral probabilities

We train predictive models using data from 1996 to 2006/2011/2016
I variable selection using Lasso
I tuning parameters for sparsity: 10-fold cross validation based on the training sample

Then make out-of-sample forecasts for the rest of the sample

Option-implied bounds are directly used to forecast with fixed α = 0 and β = 1

Performance measure: (area under) ROC curves
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Out-of-sample forecasts: ROC curves

Training Sample 1996− 2006
Down by over 20% in one month Down by over 20% in one year
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Out-of-sample forecasts: ROC curves

Training Sample 1996− 2011
Down by over 20% in one month Down by over 20% in one year

0.00

0.10

0.25

0.50

0.75

0.90

1.00

0.00 0.10 0.25 0.50 0.75 0.90 1.00
False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Method:

Char: Logistic−Lasso

Char: OLS−Lasso

OIB

0.00

0.10

0.25

0.50

0.75

0.90

1.00

0.00 0.10 0.25 0.50 0.75 0.90 1.00
False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Method:

Char: Logistic−Lasso

Char: OLS−Lasso

OIB

Martin and Shi Forecasting Crashes with a Smile April, 2024 40 / 42



Out-of-sample forecasts: ROC curves

Training Sample 1996− 2016
Down by over 20% in one month Down by over 20% in one year
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Industry average crash probabilities
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Summary

We derive bounds on crash probabilities and show that the lower bound successfully
forecasts crashes in and out of sample

For one month forecasts of 20% crashes, we find
I t-stats in the range 5 to 13
I estimated coefficient is 10 times larger than the next most important competitor variable

Risk-neutral probabilities also perform well in sample, but overstate crash
probabilities—and time variation in overstatement hurts out-of-sample performance

Our results depend on one assumption: the form of the SDF

This is a strong assumption, but it allows us to avoid the undesirable (and commonly
made) assumption that backward-looking historical measures are good proxies for the
forward-looking measures that come out of theory

It seems the price of our assumption is worth paying
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