Forecasting Crashes with a Smile

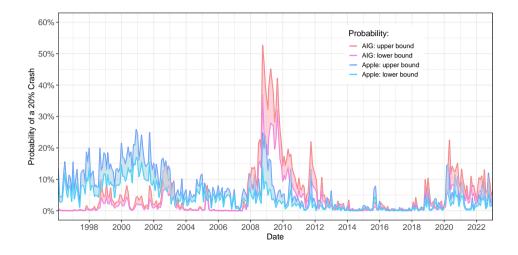
Ian Martin Ran Shi

April, 2024

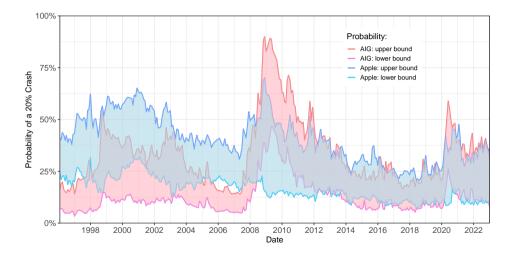
Introduction

- What is the probability that a given stock drops by 20% over the next month?
- We derive bounds on this quantity using index options and individual stock options
- The bounds are observable in real time
- They perform well in and out of sample
- No distributional assumptions

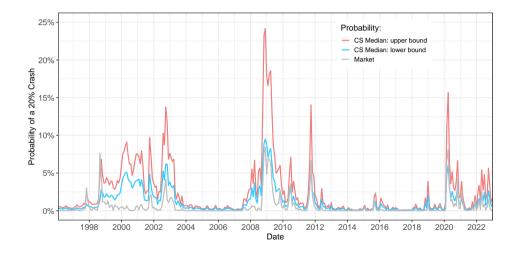
Probabilities of a 20% decline over the next month

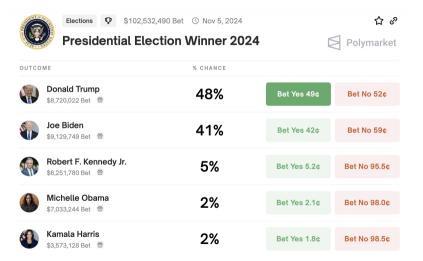


Probabilities of a 20% decline over the next year



Probabilities of a 20% decline over the next month





• The risk-neutral probability that the market declines by 20% over the next month can be calculated from index options expiring in a month

$$\mathbb{P}^*[R \le 0.8] = R_f imes \underbrace{rac{1}{R_f} \mathbb{E}^*[I(R \le 0.8)]}_{ ext{price of a binary option}} = R_f imes \underbrace{ ext{put}'(0.8)}_{ ext{slope of put prices}}$$

• The risk-neutral probability that the market declines by 20% over the next month can be calculated from index options expiring in a month

$$\mathbb{P}^{*}[R \leq 0.8] = R_{f} \times \underbrace{\frac{1}{R_{f}} \mathbb{E}^{*}[I(R \leq 0.8)]}_{\text{price of a binary option}} = R_{f} \times \underbrace{\text{put}'(0.8)}_{\text{slope of put prices}}$$

• The risk-neutral probability that the market declines by 20% over the next month can be calculated from index options expiring in a month

$$\mathbb{P}^{*}[R \leq 0.8] = R_{f} \times \underbrace{\frac{1}{R_{f}} \mathbb{E}^{*}[I(R \leq 0.8)]}_{\text{price of a binary option}} = R_{f} \times \underbrace{\text{put}'(0.8)}_{\text{slope of put prices}}$$

• The risk-neutral probability that the market declines by 20% over the next month can be calculated from index options expiring in a month

$$\mathbb{P}^*[R \le 0.8] = R_f \times \underbrace{\frac{1}{R_f} \mathbb{E}^*[I(R \le 0.8)]}_{\text{price of a binary option}} = R_f \times \underbrace{\text{put}'(0.8)}_{\text{slope of put prices}}$$

• The risk-neutral probability that the market declines by 20% over the next month can be calculated from index options expiring in a month

$$\mathbb{P}^{*}[R \leq 0.8] = R_{f} \times \underbrace{\frac{1}{R_{f}} \mathbb{E}^{*}[I(R \leq 0.8)]}_{\text{price of a binary option}} = R_{f} \times \underbrace{\text{put}'(0.8)}_{\text{slope of put prices}}$$

But we want true, not risk-neutral, probabilities

- We require an assumption (implicit or explicit) to link the true and risk-neutral probabilities—that is, about the stochastic discount factor
- Simple example: think from the perspective of a marginal investor with log utility who chooses to invest fully in the market
 - From this investor's perspective, $1/R_m$ must be a stochastic discount factor
 - This implies that

$$\mathbb{E} X = \mathbb{E} \left[\left(\frac{1}{R_m} \right) X R_m \right] = \frac{1}{R_f} \mathbb{E}^* \left(X R_m \right)$$

• We can infer beliefs about X from the price of XR_m

- We take the perspective of a one-period marginal investor with power utility who chooses to hold the market
- It follows that the SDF is of the form $M = R_m^{-\gamma}/\lambda$ for some constant λ
- γ is the coefficient of relative risk aversion

Theory (2)

• The true expectation of a random payoff *X* then satisfies

$$\mathbb{E}[X] = \mathbb{E}[\underbrace{\lambda M R_m^{\gamma}}_{\equiv 1} X] = \lambda \mathbb{E}[M \times (R_m^{\gamma} X)] = \lambda \frac{\mathbb{E}^*[R_m^{\gamma} X]}{R_f}$$

Applied in the case X = 1, we must have λ = R_f/E^{*}[R_m^γ]
So,

$$\mathbb{E}[X] = rac{\mathbb{E}^*[R_m^{\gamma}X]}{\mathbb{E}^*[R_m^{\gamma}]}$$

Theory (3)

• Consider $X = I(R_i \le q)$, the crash probability of a stock

$$\mathbb{P}[R_i \leq q] = rac{\mathbb{E}^*\left[R_m^\gamma I(R_i \leq q)
ight]}{\mathbb{E}^*\left[R_m^\gamma
ight]}$$

- To calculate $\mathbb{E}^*[R_m^{\gamma}]$, we need marginal distribution of R_m
 - Easy, using index option prices (Breeden and Litzenberger, 1978)
- To calculate $\mathbb{E}^* [R_m^{\gamma} I(R_i \leq q)]$, we need the joint distribution of (R_m, R_i)
 - Problem: Joint risk-neutral distribution is not observable given assets that are traded in practice (Martin, 2018)
 - This is a general theme: we are often interested in covariances and other features of the joint distribution

A 2×2 example

- Suppose the risk-neutral probability of a crash in Apple is 5%
- Suppose the risk-neutral probability of a crash in the market is also 5%
- These numbers can be calculated from options on Apple and options on the market
- But they are consistent with different joint distributions, eg,

		A	pple
		Crash	No crash
S&P 500	Crash	5%	0%
3&P 300	No crash	0%	95%

		A	pple
		Crash	No crash
S&P 500	Crash	0%	5%
5&P 500	No crash	5%	90%

A 2×2 example

		А	pple
		Crash	No crash
S&P 500	Crash	5%	0%
5&P 500	No crash	0%	95%

		A	pple
		Crash	No crash
S&P 500	Crash	0%	5%
5&P 500	No crash	5%	90%

- In the left-hand world, AAPL is risky
 - ▶ Risk-neutral probability of a crash will overstate the true probability of a crash
- In the right-hand world, AAPL is a hedge
 - ▶ Risk-neutral probability will understate the true probability of a crash
- Moral: Even if we can't observe the joint distribution, we may be able to derive bounds on the true crash probability

Theory (4)

$$\mathbb{P}[R_i \leq q] = rac{\mathbb{E}^* \left[R_m^\gamma I(R_i \leq q)
ight]}{\mathbb{E}^* \left[R_m^\gamma
ight]}$$

- We do not observe the joint risk-neutral distribution, so cannot calculate the right-hand side
- But we do observe the individual (marginal) risk-neutral distributions of R_m and R_i , from options on the market and on stock *i*
- The Fréchet–Hoeffding theorem provides upper and lower bounds on the right-hand side, as in the 2 × 2 example

Theory (5)

Result (Bounds on the probability of a crash)

We have

$$\frac{\mathbb{E}^*\left[R_m^\gamma I(R_m \leq \boldsymbol{q_l})\right]}{\mathbb{E}^*\left[R_m^\gamma\right]} \leq \mathbb{P}[R_i \leq q] \leq \frac{\mathbb{E}^*\left[R_m^\gamma I(R_m \geq \boldsymbol{q_u})\right]}{\mathbb{E}^*\left[R_m^\gamma\right]}$$

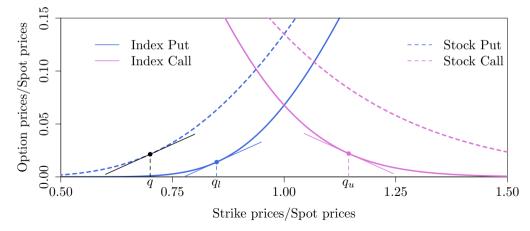
• The three elements are

$$\mathbb{E}^{*}\left[R_{m}^{\gamma}\right] = R_{f}^{\gamma} + \gamma(\gamma - 1)R_{f}\left[\int_{0}^{R_{f}} R^{\gamma - 2} \operatorname{put}_{m}(R) \, \mathrm{d}R + \int_{R_{f}}^{\infty} R^{\gamma - 2} \operatorname{call}_{m}(R) \, \mathrm{d}R\right]$$
$$\mathbb{E}^{*}\left[R_{m}^{\gamma}I\left(R_{m} \leq q_{l}\right)\right] = R_{f}q_{l}^{\gamma}\left[\operatorname{put}_{m}'(q_{l}) - \gamma \frac{\operatorname{put}_{m}(q_{l})}{q_{l}}\right] + \gamma(\gamma - 1)R_{f}\int_{0}^{q_{l}} R^{\gamma - 2}\operatorname{put}_{m}(R) \, \mathrm{d}R$$
$$\mathbb{E}^{*}\left[R_{m}^{\gamma}I\left(R_{m} \geq q_{u}\right)\right] = R_{f}q_{u}^{\gamma}\left[\gamma \frac{\operatorname{call}_{m}(q_{u})}{q_{u}} - \operatorname{call}'(q_{u})\right] + \gamma(\gamma - 1)R_{f}\int_{q_{u}}^{\infty} R^{\gamma - 2}\operatorname{call}_{m}(R) \, \mathrm{d}R$$

Theory (6)

• The stock-specific quantiles q_l and q_u are such that

$$\mathbb{P}^*[R_m \leq q_l] = \mathbb{P}^*[R_i \leq q] = \mathbb{P}^*[R_m \geq q_u]$$



Theory (7)

- Bounds from the Fréchet–Hoeffding theorem are attainable in principle
 - Lower bound achieved for a stock that is comonotonic with the market—i.e., whose return is a (potentially nonlinear) increasing function of the market return
 - Upper bound achieved for a stock that is countermonotonic with the market—i.e., whose return is a (potentially nonlinear) decreasing function of the market return
- Intuitively, asset prices will tend to overstate crash probabilities if crashes are scary; or understate crash probabilities if crashes occur in good times
- A priori, we expect that the scary case is the relevant one, and hence that the lower bound should be closer to the truth in practice

Theory (8)

Result (Bounds on the probability of a crash)

We have

$$\frac{\mathbb{E}^*\left[R_m^\gamma I(R_m \leq \boldsymbol{q_l})\right]}{\mathbb{E}^*\left[R_m^\gamma\right]} \leq \mathbb{P}[R_i \leq \boldsymbol{q}] \leq \frac{\mathbb{E}^*\left[R_m^\gamma I(R_m \geq \boldsymbol{q_u})\right]}{\mathbb{E}^*\left[R_m^\gamma\right]}$$

Further theoretical results

- Both $\mathbb{P}[R_i \leq q]$ and $\mathbb{P}^*[R_i \leq q]$ lie in between the bounds
- When $\gamma = 0$, the lower and upper bounds both equal $\mathbb{P}^*[R_i \leq q]$, and \mathbb{P}^* and \mathbb{P} coincide
- As γ increases, the bounds widen monotonically, so higher γ is more conservative
- As $\gamma \to \infty$, the bounds become trivial: the lower bound tends to zero and the upper bound tends to one

Data

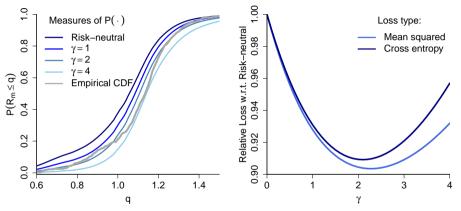
- S&P 500 index and stock constituents from Compustat
- Option implied volatilities from **OptionMetrics**
 - Underlying stocks belonging to the S&P 500 index
 - Monthly from 1996/01 to 2022/12
 - Maturing in 1, 3, 6 and 12 months
 - 1044 firms in total
 - On average around 492 firms each month
 - Over 155,000 firm-month observations per maturity
- Risk-free rates from **OptionMetrics**
- Firm characteristics from **Compustat**
- Price, return, and volume data from CRSP

Empirical setup

- We set γ equal to 2
- Focus on "crashes" of 5%, 10% and 20%: q = 0.95, 0.9 and 0.8
- For stock *i* in month *t*, compute upper and lower bounds at horizons $\tau = 1, 3, 6$ and 12 months, $\mathbb{P}_{i,t}^{U}(\tau, q)$ and $\mathbb{P}_{i,t}^{L}(\tau, q)$
- I'll emphasize the case of 20% decline over one month

Calibrating risk aversion

We set $\gamma = 2$



• Left: unconditional CDF of market return for various γ ; and the empirical distribution

• Right: Loss functions when different values of γ are used to forecast market crashes

Summary statistics

		av	eraged a	cross fir	ms	averaged across time					
		(nun	nber of c	bs. $T =$	324)	(num	ber of ol	os. $N = 1$	1044)		
	maturity	1	3	6	12	1	3	6	12		
	q = 0.80, down by over 20%										
	mean	0.021	0.069	0.111	0.152	0.029	0.084	0.130	0.173		
realized	s.d.	0.048	0.107	0.141	0.160	0.059	0.092	0.129	0.166		
lower bound	mean	0.022	0.073	0.102	0.123	0.027	0.079	0.110	0.133		
lower bound	s.d.	0.020	0.029	0.028	0.027	0.029	0.046	0.052	0.056		
upper bound	mean	0.038	0.144	0.233	0.339	0.044	0.152	0.242	0.350		
upper bound	s.d.	0.040	0.071	0.082	0.098	0.042	0.069	0.079	0.089		
risk-neutral	mean	0.031	0.113	0.173	0.236	0.037	0.120	0.181	0.245		
iisk-neutrai	s.d.	0.031	0.050	0.053	0.059	0.036	0.058	0.065	0.072		

Summary statistics

		av	eraged a	cross fir	ms	av	averaged across time				
		(nun	nber of c	bs. $T =$	324)	(num	ber of ol	os. $N = 1$	1044)		
	maturity	1	3	6	12	1	3	6	12		
	q=0.90, down by over 10%										
us alizad	mean	0.096	0.173	0.211	0.236	0.110	0.191	0.231	0.252		
realized	s.d.	0.124	0.170	0.185	0.196	0.089	0.119	0.152	0.183		
lower bound	mean	0.109	0.168	0.196	0.210	0.118	0.179	0.206	0.219		
lower bound	s.d.	0.037	0.031	0.028	0.023	0.050	0.055	0.056	0.056		
upper bound	mean	0.156	0.277	0.366	0.466	0.166	0.289	0.378	0.475		
upper bound	s.d.	0.064	0.074	0.081	0.087	0.062	0.070	0.074	0.074		
risk-neutral	mean	0.136	0.228	0.286	0.341	0.145	0.239	0.297	0.350		
115K-neutral	s.d.	0.051	0.051	0.051	0.050	0.056	0.061	0.063	0.063		

Summary statistics

		av	eraged a	cross fir	ms	av	averaged across time				
		(nun	nber of c	bs. $T =$	324)	(num	ber of ol	os. $N = 1$	1044)		
	maturity	1	3	6	12	1	3	6	12		
	q = 0.95, down by over 5%										
us alizad	mean	0.216	0.271	0.288	0.289	0.230	0.287	0.306	0.306		
realized	s.d.	0.187	0.200	0.204	0.210	0.101	0.122	0.155	0.185		
lower bound	mean	0.215	0.264	0.277	0.271	0.228	0.275	0.286	0.279		
lower bound	s.d.	0.036	0.024	0.020	0.020	0.052	0.049	0.047	0.048		
unner beund	mean	0.281	0.393	0.465	0.541	0.294	0.404	0.474	0.548		
upper bound	s.d.	0.064	0.064	0.066	0.074	0.059	0.058	0.056	0.057		
risk-neutral	mean	0.251	0.332	0.375	0.408	0.264	0.343	0.383	0.415		
iisk-neutrai	s.d.	0.049	0.041	0.038	0.040	0.055	0.052	0.049	0.050		

Empirical tests

•
$$I(R_i \le q) = 0 + 1 \times \underbrace{\mathbb{E}[I(R_i \le q)]}_{\mathbb{P}[R_i \le q]} + \varepsilon$$

- So a regression of the realized crash indicator $I(R_i \le q)$ onto an ideal crash probability measure $\mathbb{P}[R_i \le q]$ would yield zero constant term and a unit regression coefficient
- If the lower bound is close to the truth, then in a regression

$$\boldsymbol{I}[\boldsymbol{R}_{i,t\to t+\tau} \leq \boldsymbol{q}] = \alpha^L + \beta^L \, \mathbb{P}_{i,t}^L(\tau,\boldsymbol{q}) + \varepsilon_{i,t+\tau},$$

we should find $\alpha^L \approx 0$ and $\beta^L \approx 1$ at any horizon τ and threshold q

In-sample tests (1)

Down by 20% (*q* = 0.80)

		lower	bound			upper bound				risk neutral			
maturity	1	3	6	12	1	3	6	12	1	3	6	12	
α	0.00	-0.01	-0.01	0.02	0.00	0.00	0.00	0.01	0.00	-0.01	-0.02	0.00	
	(0.00)	(0.01)	(0.01)	(0.01)	(0.00)	(0.01)	(0.01)	(0.02)	(0.00)	(0.01)	(0.01)	(0.02)	
	[0.00]	[0.01]	[0.01]	[0.01]	[0.00]	[0.01]	[0.02]	[0.03]	[0.00]	[0.01]	[0.01]	[0.03]	
β	0.92	1.03	1.15	1.08	0.55	0.51	0.50	0.41	0.68	0.69	0.73	0.66	
	(0.11)	(0.09)	(0.09)	(0.08)	(0.08)	(0.06)	(0.06)	(0.06)	(0.09)	(0.07)	(0.07)	(0.08)	
	[0.11]	[0.15]	[0.14]	[0.12]	[0.08]	[0.08]	[0.09]	[0.10]	[0.08]	[0.10]	[0.12]	[0.13]	
R^2	5.66%	5.17%	4.78%	3.76%	5.29%	4.13%	3.26%	$\mathbf{2.33\%}$	5.45%	4.51%	3.91%	3.00%	

In-sample tests (1)

with time fixed effects

Down by 20% (q = 0.80)

		lower	bound			upper bound				risk neutral			
maturity	1	3	6	12	1	3	6	12	1	3	6	12	
β	0.93	1.04	1.13	1.11	0.62	0.68	0.74	0.72	0.73	0.81	0.89	0.87	
	(0.09)	(0.07)	(0.06)	(0.06)	(0.06)	(0.04)	(0.04)	(0.04)	(0.07)	(0.05)	(0.05)	(0.05)	
	[0.10]	[0.10]	[0.10]	[0.08]	[0.06]	[0.09]	[0.04]	[0.06]	[0.08]	[0.05]	[0.05]	[0.06]	
R ² -proj	4.45%	4.66%	4.56%	4.11%	4.29%	4.46%	4.41%	4.08%	4.35%	4.54%	4.49%	4.10%	

Intermission: Probability of a rise of at least 20%

		lower bound				upper	bound		risk neutral			
maturity	1	3	6	12	1	3	6	12	1	3	6	12
α	0.00	0.01	0.09	0.34	0.00	0.00	0.03	0.20	0.00	0.00	0.04	0.23
	(0.00)	(0.00)	(0.01)	(0.02)	(0.00)	(0.01)	(0.01)	(0.03)	(0.00)	(0.01)	(0.01)	(0.03)
	[0.00]	[0.01]	[0.01]	[0.03]	[0.00]	[0.01]	[0.02]	[0.04]	[0.00]	[0.01]	[0.02]	[0.03]
β	1.35	1.58	1.30	0.10	0.85	0.91	0.82	0.44	1.03	1.17	1.08	0.49
	(0.13)	(0.11)	(0.11)	(0.14)	(0.09)	(0.08)	(0.08)	(0.09)	(0.11)	(0.09)	(0.09)	(0.12)
	[0.13]	[0.16]	[0.19]	[0.19]	[0.10]	[0.11]	[0.10]	[0.13]	[0.11]	[0.12]	[0.14]	[0.17]
R^2	7.01%	5.78%	2.44%	0.01%	7.42%	6.86%	4.24%	0.80%	7.35%	6.70%	3.80%	0.43%

- For rises, the upper bound would be tight in the comonotonic case: sign flips because $I(R_i \ge q)$ is an increasing function of R_i , whereas $I(R_i \le q)$ is decreasing
- At the one year horizon, it is harder to predict booms than crashes (perhaps because booms are more idiosyncratic so comonotonicity is further from the truth)

In-sample tests (2)

Down by 10% (*q* = 0.90)

		lower	bound			upper bound				risk neutral			
maturity	1	3	6	12	1	3	6	12	1	3	6	12	
α	-0.02	-0.01	-0.01	0.02	-0.02	0.00	0.01	0.05	-0.02	-0.02	-0.02	0.00	
	(0.01)	(0.01)	(0.01)	(0.02)	(0.01)	(0.02)	(0.02)	(0.04)	(0.01)	(0.02)	(0.02)	(0.03)	
	[0.01]	[0.01]	[0.02]	[0.03]	[0.01]	[0.03]	[0.03]	[0.06]	[0.01]	[0.02]	[0.03]	[0.04]	
β	1.05	1.07	1.12	1.03	0.75	0.63	0.54	0.41	0.88	0.83	0.81	0.69	
	(0.08)	(0.07)	(0.07)	(0.08)	(0.07)	(0.07)	(0.07)	(0.08)	(0.08)	(0.08)	(0.08)	(0.09)	
	[0.08]	[0.10]	[0.11]	[0.13]	[0.07]	[0.11]	[0.10]	[0.13]	[0.08]	[0.11]	[0.12]	[0.14]	
R^2	5.47%	$\mathbf{3.73\%}$	3.43%	2.54%	5.36%	3.06%	$\mathbf{2.20\%}$	1.25%	5.47%	3.41%	2.84%	1.88%	

In-sample tests (2)

with time fixed effects

Down by 10% (*q* = 0.90)

		lower	bound			upper bound				risk neutral			
maturity	1	3	6	12	1	3	6	12	1	3	6	12	
β	0.99	1.00	1.06	1.06	0.81	0.79	0.83	0.83	0.89	0.89	0.95	0.95	
	(0.06)	(0.05)	(0.06)	(0.06)	(0.05)	(0.04)	(0.04)	(0.05)	(0.05)	(0.05)	(0.05)	(0.06)	
	[0.07]	[0.08]	[0.06]	[0.06]	[0.05]	[0.05]	[0.06]	[0.07]	[0.06]	[0.05]	[0.08]	[0.09]	
R^2 -proj	4.02%	3.17%	3.18%	2.97%	3.96%	3.11%	3.14%	2.96%	3.98%	3.14%	3.17%	2.95%	

In-sample tests (3)

Down by 5% (*q* = 0.95)

	lower bound				upper bound				risk neutral			
maturity	1	3	6	12	1	3	6	12	1	3	6	12
α	0.00	0.02	-0.01	0.05	0.00	0.05	0.06	0.11	0.00	0.01	-0.01	0.04
	(0.01)	(0.02)	(0.02)	(0.03)	(0.02)	(0.03)	(0.04)	(0.05)	(0.02)	(0.03)	(0.03)	(0.05)
	[0.01]	[0.03]	[0.03]	[0.06]	[0.02]	[0.05]	[0.06]	[0.09]	[0.02]	[0.04]	[0.05]	[0.07]
β	0.98	0.95	1.06	0.88	0.76	0.56	0.49	0.33	0.88	0.77	0.80	0.61
	(0.07)	(0.07)	(0.08)	(0.10)	(0.08)	(0.09)	(0.09)	(0.10)	(0.08)	(0.09)	(0.10)	(0.12)
	[0.06]	[0.10]	[0.11]	[0.18]	[0.08]	[0.13]	[0.14]	[0.17]	[0.08]	[0.12]	[0.14]	[0.17]
R^2	3.01%	1.85%	1.86%	1.36%	$\mathbf{3.02\%}$	1.35%	0.94%	0.49%	$\mathbf{3.08\%}$	1.64%	1.45%	0.93%

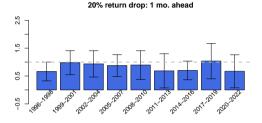
In-sample tests (3)

with time fixed effects

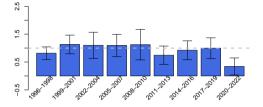
Down by 5% (*q* = 0.95)

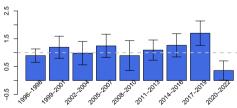
lower bound				upper bound				risk neutral			
1	3	6	12	1	3	6	12	1	3	6	12
0.87	0.86	0.97	0.97	0.77	0.76	0.85	0.86	0.83	0.82	0.93	0.93
(0.05)	(0.05)	(0.07)	(0.07)	(0.04)	(0.05)	(0.06)	(0.06)	(0.05)	(0.05)	(0.06)	(0.07)
[0.04]	[0.06]	[0.12]	[0.07]	[0.02]	[0.08]	[0.07]	[0.06]	[0.03]	[0.09]	[0.10]	[0.09]
2.21%	1.62%	1.75%	1.84%	2.19%	1.60%	1.74%	1.85%	2.20%	1.61%	1.74%	1.84%
	(0.05) [0.04]	1 3 0.87 0.86 (0.05) (0.05) [0.04] [0.06]	1 3 6 0.87 0.86 0.97 (0.05) (0.05) (0.07) [0.04] [0.06] [0.12]	1 3 6 12 0.87 0.86 0.97 0.97 (0.05) (0.05) (0.07) (0.07) [0.04] [0.06] [0.12] [0.07]	1 3 6 12 1 0.87 0.86 0.97 0.97 0.77 (0.05) (0.05) (0.07) (0.07) (0.04) [0.04] [0.06] [0.12] [0.07] [0.02]	1 3 6 12 1 3 0.87 0.86 0.97 0.97 0.77 0.76 (0.05) (0.05) (0.07) (0.07) (0.04) (0.05) [0.04] [0.06] [0.12] [0.07] [0.02] [0.08]	1 3 6 12 1 3 6 0.87 0.86 0.97 0.97 0.77 0.76 0.85 (0.05) (0.05) (0.07) (0.07) (0.04) (0.05) (0.06) [0.04] [0.06] [0.12] [0.07] [0.02] [0.08] [0.07]	1 3 6 12 1 3 6 12 0.87 0.86 0.97 0.97 0.77 0.76 0.85 0.86 (0.05) (0.05) (0.07) (0.07) (0.07) (0.04) (0.05) (0.06) (0.06) [0.04] [0.06] [0.12] [0.07] [0.02] [0.08] [0.07] [0.06]	1 3 6 12 1 3 6 12 1 0.87 0.86 0.97 0.97 0.77 0.76 0.85 0.86 0.83 (0.05) (0.05) (0.07) (0.07) (0.04) (0.05) (0.06) (0.06) (0.05) [0.04] [0.06] [0.12] [0.07] [0.02] [0.08] [0.07] [0.06] [0.03]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

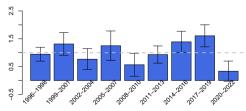
Estimated β , by year: lower bound



20% return drop: 3 mo. ahead

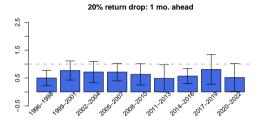




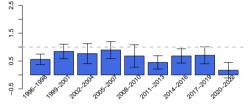


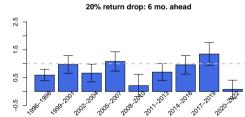
Martin and Shi

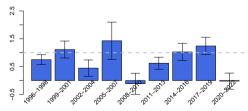
Estimated β , by year: risk-neutral probabilities



20% return drop: 3 mo. ahead







Martin and Shi

Forecasting Crashes with a Smile

Lower bound vs. risk-neutral probabilities

- Risk-neutral probabilities overstate true crash probabilities
- The extent to which they overstate varies over time
- We should expect risk-neutral probabilities to overstate most—hence estimated β coefficients to be lowest—in scary times
- The lower bound adjusts for scariness, so estimated β coefficients are more stable
- This gives the lower bound an advantage when we look at OOS performance

Fréchet-Hoeffding vs. Cauchy-Schwarz

• Here's another approach that also does not work as well. Write

$$\mathbb{P}\left[R_i \leq q
ight] = \mathbb{P}^*\left[R_i \leq q
ight] + rac{\operatorname{cov}^*\left[R_m^\gamma, I(R_i \leq q)
ight]}{\mathbb{E}^*\left[R_m^\gamma
ight]}$$

• As correlation must lie between plus and minus one, it follows that

$$\mathbb{P}^*\left[R_i \leq q\right] - \frac{\sigma^*\left[R_m^\gamma\right]\sigma^*\left[I(R_i \leq q)\right]}{\mathbb{E}^*\left[R_m^\gamma\right]} \leq \mathbb{P}\left[R_i \leq q\right] \leq \mathbb{P}^*\left[R_i \leq q\right] + \frac{\sigma^*\left[R_m^\gamma\right]\sigma^*\left[I(R_i \leq q)\right]}{\mathbb{E}^*\left[R_m^\gamma\right]}$$

where $\sigma^* [\cdot]$ denotes risk-neutral volatility

• These bounds depend only on univariate risk-neutral expectations, so can be calculated from observable option prices. But they are much wider than our bounds

Fréchet-Hoeffding vs. Cauchy-Schwarz

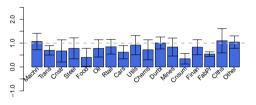
- If, say, returns were jointly lognormal, then it *could* in principle be the case that log returns were perfectly positively or negatively correlated
- But observed option prices rule out lognormality
- They also bound correlations away from ± 1
- Are we just using the fact that correlations lie in [-1, 1]? No!

Width of FH bounds relative to CS bounds

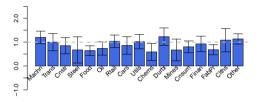
crash size	mo.	mean	sd	median	q25	q75	min	max
20%	1	0.271	0.184	0.247	0.113	0.410	0.000	0.800
20%	3	0.561	0.127	0.592	0.490	0.648	0.000	0.813
20%	6	0.658	0.075	0.662	0.623	0.706	0.000	0.811
20%	12	0.704	0.057	0.711	0.672	0.745	0.001	0.842
10%	1	0.544	0.108	0.565	0.487	0.618	0.000	0.848
10%	3	0.679	0.059	0.678	0.642	0.723	0.000	0.828
10%	6	0.727	0.043	0.733	0.698	0.761	0.000	0.812
10%	12	0.751	0.032	0.758	0.736	0.772	0.002	0.842
5%	1	0.615	0.083	0.630	0.578	0.668	0.000	0.849
5%	3	0.716	0.047	0.717	0.681	0.757	0.003	0.828
5%	6	0.751	0.033	0.761	0.735	0.775	0.053	0.812
5%	12	0.766	0.024	0.771	0.757	0.781	0.074	0.842

	20% crashes over one month					
Fréchet–Hoeffding	0.85	1.27	1.57			
	(0.54)	(0.84)	(1.47)			
Cauchy–Schwarz	0.09		-0.20			
	(0.56)		(0.65)			
risk-neutral		-0.27	-0.35			
		(0.66)	(0.80)			
constant	0.00	0.00	-0.00			
	(0.00)	(0.00)	(0.00)			

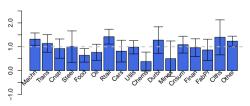
Estimated β , by industry: lower bound



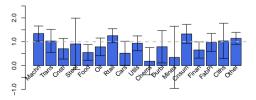
20% return drop: 3 mo. ahead



20% return drop: 6 mo. ahead



20% return drop: 12 mo. ahead



Martin and Shi

Competitor variables from the literature

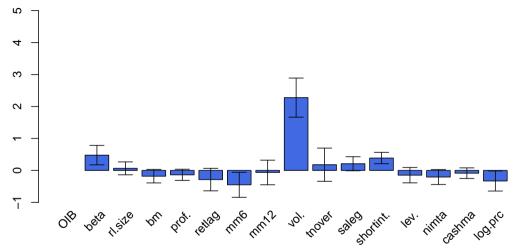
- We compare against 15 variables drawn from the literature
 - Stock characteristics: CAPM beta, (log) relative size, book-to-market, profitability (gross profit/assets), momentum (prior 2-6 and 2-12 month returns), lagged return
 - Chen–Hong–Stein, 2001: realized volatilities (standard deviations of daily market-adjusted returns over the last six months) and monthly turnover (shares traded scaled by shares outstanding)
 - Greenwood–Shleifer–You, 2019: sales growth
 - Asquith–Pathak–Ritter, 2005; Nagel, 2005: short interest (shares shorted/shares held by institutions)
 - Campbell–Hilscher–Szilagyi, 2008: leverage (debt/total assets), net income/total assets, cash/total assets, log price per share (winsorized from above at \$15)
- All variables are standardized to unit standard deviation for comparability

In-sample tests (4)

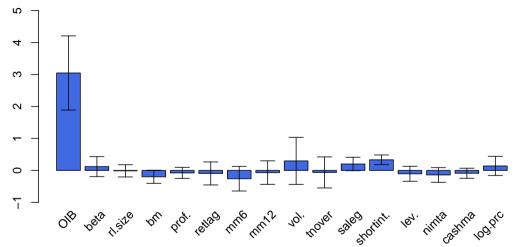
Asterisks indicate *t*-statistics above 4

	$I(R_{t ightarrow t+1} \leq 0.8)$						
$\mathbb{P}^{L}[R_{t o t+1} \leq 0.8]$		3.41*	3.05*		4.44	2.74^{*}	
		(0.41)	(0.59)		(3.08)	(0.33)	
$\mathbb{P}^*[R_{t \to t+1} \leq 0.8]$				2.83^{*}	-1.40		
				(0.67)	(3.37)		
CHS-volatility	2.28^{*}		0.30	0.43	0.31	0.50	
	(0.31)		(0.38)	(0.45)	(0.39)	(0.18)	
short int.	0.39*		0.33^{*}	0.36^{*}	0.32^{*}	0.27^{*}	
	(0.09)		(0.08)	(0.08)	(0.08)	(0.06)	
	÷	÷	÷	÷	÷	:	
R^2/R^2 -proj.	4.51%	5.66%	5.85%	5.72%	5.87%	4.74%	

In-sample tests (4)



In-sample tests (4)



Back–Crotty–Kazempour (2022)

- GMM-based tests for the validity and tightness of bounds, applied to Martin (2017), Martin–Wagner (2019), Kadan–Tang (2020), Chabi-Yo–Loudis (2020)
- Conclusions:
 - Our upper and lower bounds are valid
 - Our upper bound is (with very high confidence) not tight
 - Mixed evidence on tightness of the lower bound

BCK tests

p-values for tests of validity and tightness

	lower bound					upper bound			
horizon	1	3	6	12		1	3	6	12
Panel A: $q = 0.80$, down by over 20%									
validity	0.452	0.381	0.621	0.487		0.769	1.000	0.754	1.000
tightness	0.352	0.022	0.043	0.164		0.011	0.000	0.000	0.018
Panel B: $q=0.90$, down by over 10%									
validity	0.069	0.626	0.683	0.505		0.780	0.768	0.755	0.755
tightness	0.133	0.059	0.057	0.114		0.000	0.000	0.000	0.020
Panel C: $q = 0.95$, down by over 5%									
validity	0.552	0.629	0.563	0.486		1.000	0.779	0.760	1.000
tightness	0.176	0.043	0.048	0.096		0.001	0.000	0.000	0.019

Out-of-sample forecasts

 R^2 , expanding window, competing against in-sample mean crash probabilities

20% crash in 1 months

RN / full-sample mean

2005

Martin and Shi

ပု

2000

RN / firm-specific mean

2010 Date

15 15 9 10 ${ extsf{R}_{ extsf{oos}}^2}(\,\%\,)$ $R_{00s}^2(\%)$ 0 0 OIB-LB / full-sample mean OIB-LB / full-sample mean OIB-LB / firm-specific mean OIB-LB / firm-specific mean

20% crash in 3 months

RN / full-sample mean

2005

RN / firm-specific mean

2010

Date

2015

Foreca

2015

2020

S

2000

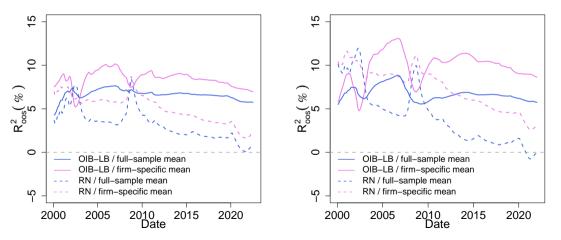
2020

Out-of-sample forecasts

 R^2 , expanding window, competing against in-sample mean crash probabilities

20% crash in 6 months

20% crash in 12 months



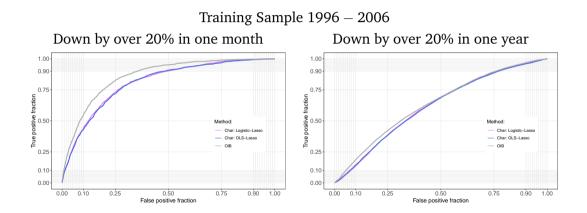
Martin and Shi

Out-of-sample forecasts

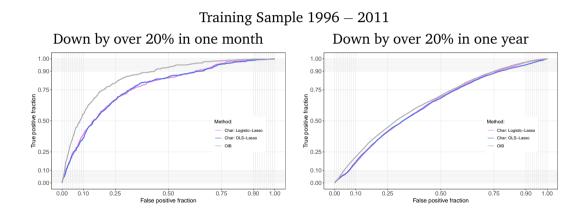
A more challenging competitor

- We include all 15 additional variables together with risk-neutral probabilities
- We train predictive models using data from 1996 to 2006/2011/2016
 - variable selection using Lasso
 - tuning parameters for sparsity: 10-fold cross validation based on the training sample
- Then make out-of-sample forecasts for the rest of the sample
- Option-implied bounds are directly used to forecast with fixed $\alpha = 0$ and $\beta = 1$
- Performance measure: (area under) ROC curves

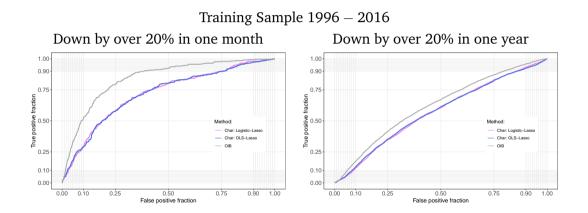
Out-of-sample forecasts: ROC curves



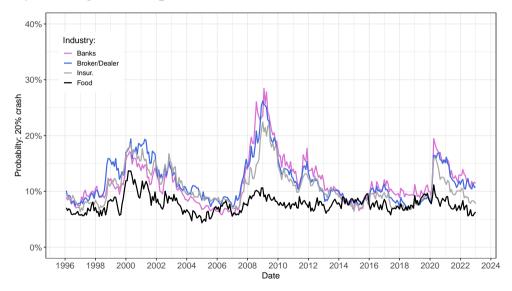
Out-of-sample forecasts: ROC curves



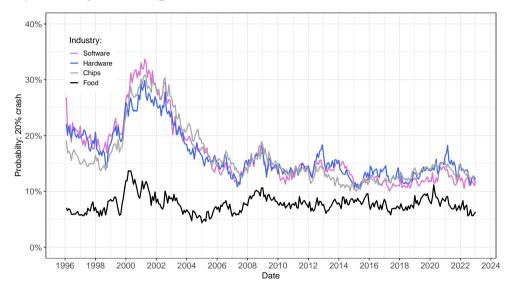
Out-of-sample forecasts: ROC curves



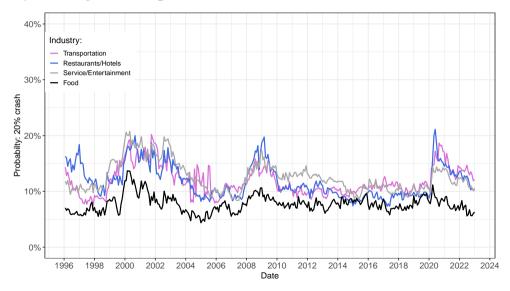
Industry average crash probabilities



Industry average crash probabilities



Industry average crash probabilities



Summary

- We derive bounds on crash probabilities and show that the lower bound successfully forecasts crashes in and out of sample
- For one month forecasts of 20% crashes, we find
 - *t*-stats in the range 5 to 13
 - estimated coefficient is 10 times larger than the next most important competitor variable
- Risk-neutral probabilities also perform well in sample, but overstate crash probabilities—and time variation in overstatement hurts out-of-sample performance
- Our results depend on one assumption: the form of the SDF
- This is a strong assumption, but it allows us to avoid the undesirable (and commonly made) assumption that backward-looking historical measures are good proxies for the forward-looking measures that come out of theory
- It seems the price of our assumption is worth paying