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FIGURE S.1 shows the functions Fγ(z), scaled by 2γ so that they integrate to 1.

S.1. SIMPLE SPECIAL CASES WITH SYMMETRIC BROWNIAN MOTIONS

In some special cases, it is possible to obtain considerably simpler expres-
sions for the price-dividend ratio. In this section, I consider the special case
in which the log dividend processes of each asset follow independent drifting
Brownian motions with drifts μ and volatilities σ . It follows that the CGF is
given by

c(θ1� θ2)= μ(θ1 + θ2)+ 1
2
σ2

(
θ2

1 + θ2
2

)
�(S.1)

Recall the general pricing formula,

Pα

Dα

= [
2 cosh(u/2)

]γ ·
∫ ∞

−∞

eiuzFγ(z)

ρ− c(α1 − γ/2 − iz�α2 − γ/2 + iz)
dz�

I focus on pricing the claim to asset 1, so α1 = 1�α2 = 0. Substituting in from
(S.1),

ρ− c(1 − γ/2 − iz�−γ/2 + iz)= σ2
[
(z + i/2)2 +A2

]
�

where A2 ≡ (ρ+μ(γ − 1))/σ2 − (γ − 1)2/4. The finiteness condition requires
that

ρ− c(1 − γ/2�−γ/2) > 0 and ρ− c(1 − γ�0) > 0�

which amounts to the requirement that A> (γ − 1)/2.
The general pricing formula gives the price-dividend ratio of asset 1, written

P/D1, as

P/D1 = [
2 cosh(u/2)

]γ ·
∫ ∞

−∞

eiuzFγ(z)

σ2[(z + i/2)2 +A2] dv�(S.2)

The question, as before, is where the poles of the integrand are. In the up-
per half-plane, Fγ(z) has infinitely many regularly spaced poles on the imag-
inary axis, at (γ/2)i� (γ/2 + 1)i� (γ/2 + 2)i� � � � . The other pole is at the zero,
in the upper half-plane, of the denominator σ2[(z + i/2)2 + A2]—that is, at
(A− 1/2)i. It turns out that the integral takes on a relatively simple form if we
ensure that the pole at (A− 1/2)i is an integer distance from the poles (γ/2)i,
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FIGURE S.1.—The functions 2γ · Fγ(z) for γ = 1 (most peaked), 2, 3, 4, 5 (least peaked).

(γ/2 + 1)i, etc. (The simple example presented in Cochrane, Longstaff, and
Santa-Clara (2008) has ρ= σ2, so A = 1.) Thus, we want

A ∈ {
(γ + 1)/2� (γ + 3)/2� (γ + 5)/2� � � �

}
�

For example, if γ = 2 and ρ is chosen so that A = (γ+ 1)/2 = 3/2, the price-
dividend ratio of asset 1 is

P/D1(s) = 2(1 − s)3 log(1 − s)+ 2s − 5s2 + 3s3 − s3 log s
3(1 − s)2s3σ2

�

In terms of the expression provided in Proposition 4 of the paper, these param-
eter choices correspond to choosing λ1 and λ2 so that the hypergeometric func-
tions simplify nicely. In the symmetric independent case, setting A = (γ+ 1)/2
implies that λ1 = γ/2 and λ2 = −(1 + γ)/2. These values give special cases of
the hypergeometric functions that simplify in terms of more elementary func-
tions, as above.

S.2. A MORE DETAILED BETA DECOMPOSITION

This section conducts a beta decomposition in more detail than was possible
in the body of the paper. In the body of the paper, we considered the decom-
position

covt(d logP1� d logPM)

vart d logPM︸ ︷︷ ︸
CAPM beta, β

(S.3)

= covt(d logD1� d logPM)

vart d logPM︸ ︷︷ ︸
βCF1

+
covt

(
d log

P1

D1
� d logPM

)
vart d logPM︸ ︷︷ ︸

βDR1

�

as in Campbell and Mei (1993). Figures S.2(d) and S.2(g) show βCF1 and βDR1

in the model; they add up to CAPM beta, plotted in Figure S.2(a).
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(a) CAPM beta, β (b) Cashflow beta, βCFM (c) Discount-rate beta, βDRM

(d) βCF1 (e) βCF1�CFM (f) βCF1�DRM

(g) βDR1 (h) βDR1�CFM (i) βDR1�DRM

FIGURE S.2.—Beta decomposition. Panels in the top row are the sum of the panels below them. Panels in the left column are the sum of the
panels to their right.
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We also sliced the CAPM beta up in a different way, splitting the market’s
return into a cashflow component and a valuation component:

covt(d logP1� d logPM)

vart d logPM︸ ︷︷ ︸
CAPM beta

(S.4)

= covt(d logP1� d logC)

vart d logPM︸ ︷︷ ︸
cashflow beta, βCFM

+
covt

(
d logP1� d log

PM

C

)
vart d logPM︸ ︷︷ ︸

discount-rate beta, βDRM

�

Cashflow beta measures the covariance of the asset’s return with shocks to
the aggregate market’s cashflows, while discount-rate beta measures the co-
variance of the asset’s return with shocks to the aggregate market’s valuation
ratio. This is the continuous-time version of the good-beta/bad-beta decompo-
sition of Campbell and Vuolteenaho (2004). In a log-linear approximation of
a homoskedastic conditionally lognormal model, Campbell (1993) derived an
ICAPM result whose continuous-time analogue is that

RP = γσ2βCFM + σ2βDRM�(S.5)

where RP1 denotes asset 1’s instantaneous risk premium, σ2 is the instanta-
neous variance of the market return, and βCFM and βDRM were defined in (S.4).
Figure S.3 shows that this holds to high accuracy in the present calibration. Fig-
ures S.2(b) and S.2(c) plot cashflow beta and discount-rate beta against s; they
add up to Figure S.2(a) to their left.

We can now complete the square by combining (S.3) and (S.4), splitting the
returns on both asset 1 and the market into cashflow and discount-rate com-
ponents. (Campbell, Polk, and Vuolteenaho (2010) carried out this exercise.)
Doing so, we see that cashflow betas are high for a small asset because the
small asset’s valuation ratio covaries strongly with the market’s cashflows (Fig-
ures S.2(e) and S.2(h), which add up to Figure S.2(b)). The picture is more
mixed regarding a small asset’s discount-rate beta. There are two forces pulling
in opposite directions: a small asset’s cashflows covary negatively with the mar-
ket valuation ratio, but its valuation ratio covaries positively with the market
valuation ratio (Figures S.2(f) and S.2(i), which add up to Figure S.2(c)).

S.3. CGFS FOR SECTION 3.1

Examples 1 through 3 do not have jumps. The CGF in each case is

c(θ)=μ′θ+ 1
2
θ′Σθ�
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(a) γ = 2 (b) γ = 4

(c) γ = 6

FIGURE S.3.—The exact excess return on asset 1 plotted against its share s (blue); and the ex-
cess return predicted by the continuous-time analogue of Campbell and Vuolteenaho’s equation
(8) (red).

In Examples 1 and 2, there are N = 4 assets, so θ and μ are four-dimensional
vectors and Σ is a 4 × 4 matrix. In Example 3, there are N = 5 assets, so θ and
μ are five-dimensional vectors and Σ is a 5 × 5 matrix.

In Example 1, we have

μ=
⎛
⎜⎝

0�03
0�01
0�03
0�01

⎞
⎟⎠ and Σ=

⎛
⎜⎝

0�12 0 0 0
0 0�12 0 0
0 0 0�12 0
0 0 0 0�12

⎞
⎟⎠ �

In Example 2, we have

μ=
⎛
⎜⎝

0�02
0�02
0�02
0�02

⎞
⎟⎠ and Σ=

⎛
⎜⎝

0�052 0 0 0
0 0�152 0 0
0 0 0�052 0
0 0 0 0�152

⎞
⎟⎠ �

In Example 3, we have

μ=

⎛
⎜⎜⎜⎝

0�02
0�02
0�02
0�02
0�02

⎞
⎟⎟⎟⎠
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and

Σ=

⎛
⎜⎜⎜⎝

0�12 0 0 0 0
0 0�12 0 0 0�5 × 0�12

0 0 0�12 0 0
0 0 0 0�12 0�5 × 0�12

0 0�5 × 0�12 0 0�5 × 0�12 0�12

⎞
⎟⎟⎟⎠ �

Example 4 features jumps. The CGF is

c(θ)=μ′θ+ 1
2
θ′Σθ+ ω̃

(
eμ

′
Jθ+(1/2)θ′ΣJθ − 1

)
�

where

μ=

⎛
⎜⎜⎜⎝

0�02
0�02
0�02
0�02
0�02

⎞
⎟⎟⎟⎠ and Σ =

⎛
⎜⎜⎜⎝

0�12 0 0 0 0
0 0�12 0 0 0
0 0 0�12 0 0
0 0 0 0�12 0
0 0 0 0 0�12

⎞
⎟⎟⎟⎠

control the Brownian components, and ω̃ = 0�017 is the jump arrival rate, and

μJ =

⎛
⎜⎜⎜⎝

0
−0�38

0
−0�38
−0�38

⎞
⎟⎟⎟⎠ and ΣJ =

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 0�252 0 0�252 0�252

0 0 0 0 0
0 0�252 0 0�252 0�252

0 0�252 0 0�252 0�252

⎞
⎟⎟⎟⎠

control the distribution of disasters.

S.4. UNDERREACTION VERSUS COMOVEMENT

In the three-tree example of Section 3, the simplex can be divided into three
regions. If asset 1 is sufficiently dominant, it overreacts to own-cashflow news,
and other assets comove positively with it; at the other extreme, if asset 1 is suf-
ficiently small, it underreacts to own-cashflow news, and other assets comove
negatively; in between, asset 1 underreacts to own-cashflow news and other as-
sets comove positively with it. This last regime applies when all three assets are
the same size, in the middle of the simplex, where the riskless rate is constant
to first order.

It is natural to ask what happens for larger N . How large must asset 1 be for
other assets to comove with it? And how large must it be to overreact to its
own cashflow news? In the N = 2 case, comovement and overreaction are in-
tertwined: in a symmetric calibration, if an asset experiences overreaction when
its share is larger than s—where s is the point at which P1/D1(s) achieves its
minimum, s = 0�608 in the present calibration—then other assets will comove
with it when its share is larger than 1 − s.
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TABLE S.I

REGIONS IN WHICH (POSITIVE) COMOVEMENT AND
OVERREACTION OCCUR

Comovement if. . . Overreaction if. . .

N s1 ≥ rel. size ≥ s1 ≥ rel. size ≥

2 0.39 0.64 0.61 1.54
3 0.26 0.71 0.47 1.80
4 0.20 0.74 0.41 2.06
5 0.16 0.75 0.37 2.34
6 0.13 0.76 0.35 2.66

This tight link between overreaction and positive comovement is broken if
N ≥ 3. Table S.I shows the corresponding results for N up to 6, with γ = 4 and
ρ set so that the long rate is 7%. In each case, I assume that asset 1 has dividend
share s1, and that all other assets have equal dividend shares (1 − s1)/(N − 1).
The column labelled “rel. size” shows the ratio of asset 1’s dividend share to
the dividend share of any one of the other assets, (N − 1)s1/(1 − s1). We have
already seen that positive comovement and underreaction are the norm at the
center of the state space. Indeed, positive comovement can occur even if asset
1 is significantly smaller than all the other assets. But for an asset to overreact,
it must be significantly larger than all the other assets, and the relative amount
by which it must be larger increases fairly rapidly with N .

Different calibrations deliver similar results. In the no-jump calibration, the
critical values of s1 are within 0.01 of those reported in Table S.I. The same is
true if we introduce correlation between dividends in such a way that consump-
tion volatility when all assets have equal share is held constant as N increases.
On the other hand, the critical values at which comovement and overreaction
take place are sensitive to γ. Lower γ reduces the variability of the riskless rate
by more than it reduces the variability of risk premia, so underreaction and
positive comovement occur over more of the simplex.

Figure S.4 shows 3D plots corresponding to the contour plots in Figure 8.

(a) Riskless rate (b) Asset 1’s excess return (c) Asset 1’s P/D

FIGURE S.4.—The riskless rate, and asset 1’s excess return and price-dividend ratio.
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