What is the Expected Return on a Stock?

Ian Martin Christian Wagner

May, 2018

What is the expected return on a stock?

- In a factor model, $\mathbb{E}_t R_{i,t+1} R_{f,t+1} = \sum_{j=1}^K \beta_{i,t}^{(j)} \lambda_t^{(j)}$
 - ► Eg, in the CAPM, $\mathbb{E}_t R_{i,t+1} R_{f,t+1} = \beta_{i,t}^{(m)} \left(\mathbb{E}_t R_{m,t+1} R_{f,t+1} \right)$
- But how to measure factor loadings $\beta_{i,t}^{(j)}$ and factor risk premia $\lambda_t^{(j)}$?
- No theoretical or empirical reason to expect either to vary smoothly, given that news sometimes arrives in bursts
 - Scheduled (or unscheduled) release of firm-specific or macro data, monetary or fiscal policy, LTCM, Lehman, Trump, Brexit, Black Monday, 9/11, war, virus, earthquake, nuclear disaster...
 - Level of concern / market focus associated with different types of events can also vary over time

What is the expected return on a stock?

Not easy even in the CAPM

Figure: Martin (2017, QJE, "What is the Expected Return on the Market?")

What we do

• We derive a formula for a stock's expected excess return:

$$\mathbb{E}_{t} \frac{R_{i,t+1} - R_{f,t+1}}{R_{f,t+1}} = \mathrm{SVIX}_{t}^{2} + \frac{1}{2} \left(\mathrm{SVIX}_{i,t}^{2} - \overline{\mathrm{SVIX}}_{t}^{2} \right)$$

• SVIX indices are similar to VIX and measure risk-neutral volatility

- market volatility: SVIX_t
- volatility of stock i: SVIX_{i,t}
- average stock volatility: SVIX_t
- Our approach works in real time at the level of the individual stock
- The formula requires observation of option prices but no estimation
- The formula performs well empirically in and out of sample

What we do

• We derive a formula for a stock's expected return in excess of the market:

$$\mathbb{E}_{t} \frac{R_{i,t+1} - R_{m,t+1}}{R_{f,t+1}} = \frac{1}{2} \left(\text{SVIX}_{i,t}^{2} - \overline{\text{SVIX}}_{t}^{2} \right)$$

• SVIX indices are similar to VIX and measure risk-neutral volatility

- market volatility: SVIX_t
- volatility of stock i: SVIX_{i,t}
- average stock volatility: SVIX_t
- Our approach works in real time at the level of the individual stock
- The formula requires observation of option prices but no estimation
- The formula performs well empirically in and out of sample

What is the expected return on Apple?

Martin & Wagner (LSE & CBS)

What is the expected return on Apple?

Expected excess returns

Expected returns in excess of the market

APPLE INC

Cross-sectional variation in expected returns

• Expected returns based on our model imply much more cross-sectional variation across stocks than benchmark forecasts

Outline

- Where do the formulas come from?
- Construction and properties of volatility indices
- Panel regressions and the relationship with characteristics
- The factor structure of unexpected stock returns
- Out-of-sample analysis

Theory (1)

- $R_{g,t+1}$: the gross return with maximal expected log return
- This growth-optimal return has the special property that $1/R_{g,t+1}$ is a stochastic discount factor (Roll, 1973; Long, 1990)
- Write \mathbb{E}_t^* for the associated risk-neutral expectation,

$$\frac{1}{R_{f,t+1}} \mathbb{E}_t^* X_{t+1} = \mathbb{E}_t \left(\frac{X_{t+1}}{R_{g,t+1}} \right)$$

• Using the fact that $\mathbb{E}_t^* R_{i,t+1} = R_{f,t+1}$ for any gross return $R_{i,t+1}$, this implies the key property of the growth-optimal return that

$$\mathbb{E}_{t} \, \frac{R_{i,t+1}}{R_{f,t+1}} - 1 = \operatorname{cov}_{t}^{*} \left(\frac{R_{i,t+1}}{R_{f,t+1}}, \frac{R_{g,t+1}}{R_{f,t+1}} \right)$$

Theory (2)

• For each stock *i*, we decompose

$$\frac{R_{i,t+1}}{R_{f,t+1}} = \alpha_{i,t} + \beta_{i,t} \frac{R_{g,t+1}}{R_{f,t+1}} + u_{i,t+1}$$
(1)

where

$$\beta_{i,t} = \frac{\operatorname{cov}_{t}^{*}\left(\frac{R_{i,t+1}}{R_{f,t+1}}, \frac{R_{g,t+1}}{R_{f,t+1}}\right)}{\operatorname{var}_{t}^{*}\frac{R_{g,t+1}}{R_{f,t+1}}}$$
(2)
$$\mathbb{E}_{t}^{*} u_{i,t+1} = 0$$
(3)

$$\operatorname{cov}_{t}^{*}(u_{i,t+1}, R_{g,t+1}) = 0$$
 (4)

- Equations (2) and (3) define $\beta_{i,t}$ and $\alpha_{i,t}$; and (4) follows from (1)–(3)
- Only assumption so far: first and second moments exist and are finite

Theory (3)

• The key property, and the definition of $\beta_{i,t}$, imply that

$$\mathbb{E}_{t} \frac{R_{i,t+1}}{R_{f,t+1}} - 1 = \beta_{i,t} \operatorname{var}_{t}^{*} \frac{R_{g,t+1}}{R_{f,t+1}}$$
(5)

• We also have, from (1) and (4),

$$\operatorname{var}_{t}^{*} \frac{R_{i,t+1}}{R_{f,t+1}} = \beta_{i,t}^{2} \operatorname{var}_{t}^{*} \frac{R_{g,t+1}}{R_{f,t+1}} + \operatorname{var}_{t}^{*} u_{i,t+1}$$
(6)

• We connect the two by linearizing $\beta_{i,t}^2 \approx 2\beta_{i,t} - 1$, which is appropriate if $\beta_{i,t}$ is sufficiently close to one, i.e. replace (6) with

$$\operatorname{var}_{t}^{*} \frac{R_{i,t+1}}{R_{f,t+1}} = (2\beta_{i,t} - 1) \operatorname{var}_{t}^{*} \frac{R_{g,t+1}}{R_{f,t+1}} + \operatorname{var}_{t}^{*} u_{i,t+1}$$
(7)

Theory (4)

• Using (5) and (7) to eliminate the dependence on $\beta_{i,t}$,

$$\mathbb{E}_t \frac{R_{i,t+1}}{R_{f,t+1}} - 1 = \frac{1}{2} \operatorname{var}_t^* \frac{R_{i,t+1}}{R_{f,t+1}} + \frac{1}{2} \operatorname{var}_t^* \frac{R_{g,t+1}}{R_{f,t+1}} - \frac{1}{2} \operatorname{var}_t^* u_{i,t+1}$$

• Value-weighting,

$$\mathbb{E}_t \frac{R_{m,t+1}}{R_{f,t+1}} - 1 = \frac{1}{2} \sum_j w_{j,t} \operatorname{var}_t^* \frac{R_{j,t+1}}{R_{f,t+1}} + \frac{1}{2} \operatorname{var}_t^* \frac{R_{g,t+1}}{R_{f,t+1}} - \frac{1}{2} \sum_j w_{j,t} \operatorname{var}_t^* u_{j,t+1}$$

• Now take differences...

Theory (5)

• Now take differences:

$$\mathbb{E}_{t} \frac{R_{i,t+1} - R_{m,t+1}}{R_{f,t+1}} = \frac{1}{2} \left(\operatorname{var}_{t}^{*} \frac{R_{i,t+1}}{R_{f,t+1}} - \sum_{j} w_{j,t} \operatorname{var}_{t}^{*} \frac{R_{j,t+1}}{R_{f,t+1}} \right) \underbrace{-\frac{1}{2} \left(\operatorname{var}_{t}^{*} u_{i,t+1} - \sum_{j} w_{j,t} \operatorname{var}_{t}^{*} u_{j,t+1} \right)}_{\alpha_{i}}_{\alpha_{i}}$$

- Second term is zero on value-weighted average: we assume it can be captured by a time-invariant stock fixed effect α_i
- Follows immediately if the risk-neutral variances of residuals decompose separably, $\operatorname{var}_t^* u_{i,t+1} = \phi_i + \psi_t$, and value weights are constant over time

Theory (6)

So, $\mathbb{E}_{t} \frac{R_{i,t+1} - R_{m,t+1}}{R_{f,t+1}} = \frac{1}{2} \left(\underbrace{\operatorname{var}_{t}^{*} \frac{R_{i,t+1}}{R_{f,t+1}}}_{\operatorname{SVIX}_{i,t}^{2}} - \underbrace{\sum_{j} w_{j,t} \operatorname{var}_{t}^{*} \frac{R_{j,t+1}}{R_{f,t+1}}}_{\overline{\operatorname{SVIX}}^{2}} \right) + \alpha_{i}$

where fixed effects α_i are zero on value-weighted average

Theory (6)

So,
$$\mathbb{E}_t \frac{R_{i,t+1} - R_{m,t+1}}{R_{f,t+1}} = \frac{1}{2} \left(\text{SVIX}_{i,t}^2 - \overline{\text{SVIX}}_t^2 \right) + \alpha_i$$

where fixed effects α_i are zero on value-weighted average

Theory (7)

- For the expected return on a stock, we must take a view on the expected return on the market
- Exploit an empirical claim of Martin (2017) that

$$\mathbb{E}_{t} \, \frac{R_{m,t+1} - R_{f,t+1}}{R_{f,t+1}} = \operatorname{var}_{t}^{*} \, \frac{R_{m,t+1}}{R_{f,t+1}}$$

Substituting back,

$$\mathbb{E}_{t} \frac{R_{i,t+1} - R_{f,t+1}}{R_{f,t+1}} = \underbrace{\operatorname{var}_{t}^{*} \frac{R_{m,t+1}}{R_{f,t+1}}}_{\operatorname{SVIX}_{t}^{2}} + \frac{1}{2} \left(\underbrace{\operatorname{var}_{t}^{*} \frac{R_{i,t+1}}{R_{f,t+1}}}_{\operatorname{SVIX}_{i,t}^{2}} - \underbrace{\sum_{j} w_{j,t} \operatorname{var}_{t}^{*} \frac{R_{j,t+1}}{R_{f,t+1}}}_{\operatorname{SVIX}_{t}^{2}} \right) + \alpha_{i}$$

Theory (7)

- For the expected return on a stock, we must take a view on the expected return on the market
- Exploit an empirical claim of Martin (2017) that

$$\mathbb{E}_{t} \, \frac{R_{m,t+1} - R_{f,t+1}}{R_{f,t+1}} = \operatorname{var}_{t}^{*} \, \frac{R_{m,t+1}}{R_{f,t+1}}$$

• Substituting back,

$$\mathbb{E}_{t} \frac{R_{i,t+1} - R_{f,t+1}}{R_{f,t+1}} = \mathrm{SVIX}_{t}^{2} + \frac{1}{2} \left(\mathrm{SVIX}_{i,t}^{2} - \overline{\mathrm{SVIX}}_{t}^{2} \right) + \alpha_{i}$$

Theory (8)

• Three different variance measures:

$$SVIX_t^2 = var_t^* (R_{m,t+1}/R_{f,t+1})$$

$$SVIX_{i,t}^2 = var_t^* (R_{i,t+1}/R_{f,t+1})$$

$$\overline{SVIX}_t^2 = \sum_i w_{i,t} SVIX_{i,t}^2$$

• SVIX can be calculated from option prices using the approach of Breeden and Litzenberger (1978)

Theory (9)

• To see it more directly, note that we want to measure

$$\frac{1}{R_{f,t+1}}\operatorname{var}_{t}^{*}R_{i,t+1} = \frac{1}{R_{f,t+1}}\mathbb{E}_{t}^{*}R_{i,t+1}^{2} - \frac{1}{R_{f,t+1}}\left(\mathbb{E}_{t}^{*}R_{i,t+1}\right)^{2}$$

Since E^{*}_t R_{i,t+1} = R_{f,t+1}, this boils down to calculating ¹/_{R_{f,t+1}} E^{*}_t S²_{i,t+1}
That is: how can we price the 'squared contract' with payoff S²_{i,t+1}?

Theory (10)

- How can we price the 'squared contract' with payoff $S_{i,t+1}^2$?
- Suppose you buy:
 - 2 calls on stock *i* with strike K = 0.5
 - 2 calls on stock *i* with strike K = 1.5
 - 2 calls on stock *i* with strike K = 2.5
 - 2 calls on stock *i* with strike K = 3.5
 - ▶ etc . . .

Theory (11)

• In fact, $\frac{1}{R_{f,t+1}} \mathbb{E}_t^* S_{i,t+1}^2 = 2 \int_0^\infty \operatorname{call}_{i,t}(K) dK$

Theory (12)

$$\operatorname{var}_{t}^{*} \frac{R_{i,t+1}}{R_{f,t+1}} = \frac{2R_{f,t+1}}{F_{i,t}^{2}} \left[\int_{0}^{F_{i,t}} \operatorname{put}_{i,t}(K) \, dK + \int_{F_{i,t}}^{\infty} \operatorname{call}_{i,t}(K) \, dK \right]$$

- Closely related to VIX definition, so call this SVIX²_{i,t}
- $F_{i,t}$ is forward price of stock *i*, known at time t, \approx spot price
- For $SVIX_t^2$, use index options rather than individual stock options

Theory: summary

• Expected return on a stock:

$$\frac{\mathbb{E}_{t} R_{i,t+1} - R_{f,t+1}}{R_{f,t+1}} = \alpha_{i} + \text{SVIX}_{t}^{2} + \frac{1}{2} \left(\text{SVIX}_{i,t}^{2} - \overline{\text{SVIX}}_{t}^{2} \right)$$

• Pure cross-sectional prediction:

$$\frac{\mathbb{E}_{t} R_{i,t+1} - R_{m,t+1}}{R_{f,t+1}} = \alpha_{i} + \frac{1}{2} \left(\text{SVIX}_{i,t}^{2} - \overline{\text{SVIX}}_{t}^{2} \right)$$

• Also consider the possibility that $\alpha_i = \text{constant} = 0$

Data

- Prices of index and stock options
 - OptionMetrics data from 01/1996 to 10/2014
 - Maturities from 1 month to 2 years
 - S&P 100 and S&P 500
 - Total of 869 firms, average of 451 firms per day
 - Approx. 2.1m daily observations per maturity
 - Approx. 90,000 to 100,000 monthly observations per maturity
- Other data: CRSP, Compustat, Fama–French library
- A caveat: American-style vs. European-style options
- Today: S&P 500 only unless explicitly noted

One year horizon

• $\overline{\text{SVIX}}_t > \text{SVIX}_t$ (portfolio of options > option on a portfolio)

Martin & Wagner (LSE & CBS)

What is the Expected Return on a Stock?

Average excess returns on individual stocks

12-month horizon

Empirical analysis

• Excess return panel regression:

$$\frac{R_{i,t+1} - R_{f,t+1}}{R_{f,t+1}} = \alpha_i + \beta \operatorname{SVIX}_t^2 + \gamma \left(\operatorname{SVIX}_{i,t}^2 - \overline{\operatorname{SVIX}}_t^2 \right) + \varepsilon_{i,t+1}$$

and we hope to find $\sum_i w_i \alpha_i = 0$, $\beta = 1$, and $\gamma = 0.5$

• Excess-of-market return panel regression:

$$\frac{R_{i,t+1} - R_{m,t+1}}{R_{f,t+1}} = \alpha_i + \gamma \left(\text{SVIX}_{i,t}^2 - \overline{\text{SVIX}}_t^2 \right) + \varepsilon_{i,t+1}$$

and we hope to find $\sum_i w_i \alpha_i = 0$ and $\gamma = 0.5$

- Pooled and firm-fixed-effects regressions
- Block bootstrap to obtain joint distribution of parameters

Expected excess returns

Horizon	30 days	91 days	182 days	365 days	730 days				
Panel regressions with firm fixed effects									
$\sum w_i \alpha_i$	0.080	0.042	-0.008	0.012	-0.026				
	(0.072)	(0.075)	(0.055)	(0.070)	(0.079)				
β	0.603	1.694	3.161	2.612	3.478				
	(2.298)	(2.392)	(1.475)	(1.493)	(1.681)				
γ	0.491	0.634	0.892	0.938	0.665				
	(0.325)	(0.331)	(0.336)	(0.308)	(0.205)				
Panel adj- R^2 (%)	0.650	4.048	10.356	17.129	24.266				
$H_0: \sum_i w_i \alpha_i = 0, \beta = 1, \gamma = 0.5$	0.231	0.224	0.164	0.133	0.060				
$H_0:eta=\gamma=0$	0.265	0.119	0.019	0.008	0.002				
$H_0:\gamma=0.5$	0.978	0.686	0.243	0.155	0.420				
$H_0: \gamma = 0$	0.131	0.056	0.008	0.002	0.001				

• Bottom rows show *p*-values for various hypothesis tests

Expected excess returns

Horizon	30 days	91 days	182 days	365 days	730 days				
Pooled panel regressions									
α	0.057	0.019	-0.038	-0.021	-0.054				
	(0.074)	(0.079)	(0.059)	(0.071)	(0.076)				
β	0.743	1.882	3.483	3.032	3.933				
	(2.311)	(2.410)	(1.569)	(1.608)	(1.792)				
γ	0.214	0.305	0.463	0.512	0.324				
	(0.296)	(0.287)	(0.320)	(0.318)	(0.200)				
Pooled adj- R^2 (%)	0.096	0.767	3.218	4.423	5.989				
$H_0: \alpha = 0, \beta = 1, \gamma = 0.5$	0.267	0.242	0.169	0.184	0.015				
$H_0: \beta = \gamma = 0$	0.770	0.553	0.071	0.092	0.036				
$H_0: \gamma = 0.5$	0.333	0.497	0.908	0.971	0.377				
$H_0: \gamma = 0$	0.470	0.287	0.148	0.108	0.105				
Theory $adj-R^2$ (%)	-0.107	0.227	1.491	1.979	1.660				

Expected returns in excess of the market

Horizon	30 days	91 days	182 days	365 days	730 days			
Panel regressions with firm fixed effects								
$\sum_{i} w_i \alpha_i$	0.036	0.034	0.033	0.033	0.033			
	(0.008)	(0.007)	(0.008)	(0.008)	(0.008)			
γ	0.560	0.730	0.949	0.917	0.637			
	(0.313)	(0.313)	(0.319)	(0.291)	(0.199)			
Panel adj- R^2 (%)	0.398	3.015	7.320	12.637	17.479			
$H_0: \sum_i w_i \alpha_i = 0, \gamma = 0.5$	0.000	0.000	0.000	0.000	0.000			
$H_0: \gamma = 0.5$	0.848	0.461	0.160	0.152	0.491			
$H_0: \gamma = 0$	0.073	0.019	0.003	0.002	0.001			

Expected returns in excess of the market

Horizon	30 days	91 days	182 days	365 days	730 days			
Pooled panel regressions								
α	0.016	0.016	0.013	0.014	0.019			
	(0.015)	(0.015)	(0.016)	(0.019)	(0.019)			
γ	0.301	0.414	0.551	0.553	0.354			
	(0.285)	(0.273)	(0.306)	(0.302)	(0.200)			
Pooled adj- R^2 (%)	0.135	0.617	1.755	2.892	1.901			
$H_0: \alpha = 0, \gamma = 0.5$	0.489	0.560	0.630	0.600	0.596			
$H_0: \gamma = 0.5$	0.486	0.752	0.869	0.862	0.467			
$H_0: \gamma = 0$	0.291	0.129	0.072	0.068	0.077			
Theory adj- <i>R</i> ² (%)	0.068	0.547	1.648	2.667	1.235			

Conclusions so far

- Do not reject our model in most specifications; but in FE regression for excess-of-market returns, avg FE $\neq 0$
- The economic magnitude is small, however, and we will see that the model performs well out-of-sample when we drop FEs entirely
- We can reject the null hypotheses $\beta = \gamma = 0$ for excess returns (ER) and $\gamma = 0$ for excess market returns (EMR)

	S&P100 6mo	S&P100 12mo	S&P100 24mo	S&P500 6mo	S&P500 12mo	S&P500 24mo
ER, pooled	*	**	**	*	*	**
ER, FE	***	***	***	**	***	***
EMR, pooled	**	**	***	*	*	*
EMR, FE	***	***	***	***	***	***

* = p-value < 0.1, ** = p-value < 0.05, *** = p-value < 0.01

Characteristics and $SVIX_i^2$

P.4 P.5 P.6 P.7 P.8 P.9 Loser

Martin & Wagner (LSE & CBS)

What is the Expected Return on a Stock?

80

8

Winner P.2

Characteristics and $SVIX_i^2$

Martin & Wagner (LSE & CBS)

SVIX variables drive out firm characteristics

1-year horizon, excess returns

	Realized	l returns	Expected	Expected returns		d returns
			Estimated	Theory	Estimated	Theory
const	0.721	0.452	0.259	0.164	0.462	0.557
	(0.341)	(0.320)	(0.133)	(0.035)	(0.332)	(0.331)
Beta _{i,t}	0.038	-0.048	0.082	0.097	-0.044	-0.059
	(0.068)	(0.068)	(0.064)	(0.018)	(0.046)	(0.072)
$log(Size_{i,t})$	-0.030	-0.019	-0.010	-0.009	-0.019	-0.021
	(0.014)	(0.013)	(0.007)	(0.002)	(0.013)	(0.013)
$B/M_{i,t}$	0.071	0.068	0.003	0.001	0.068	0.069
	(0.034)	(0.038)	(0.010)	(0.006)	(0.038)	(0.037)
$\text{Ret}_{i,t}^{(12,1)}$	-0.049	-0.005	-0.046	-0.026	-0.003	-0.023
	(0.063)	(0.054)	(0.042)	(0.015)	(0.050)	(0.058)
SVIX ²		2.792				
		(1.472)				
$SVIX_{i,t}^2 - \overline{SVIX}_t^2$		0.511				
-,-		(0.357)				
Adjusted R ² (%)	1.924	5.265	17.277	30.482	0.973	1.197
$H_0: b_i = 0$	0.003	0.201	0.702	0.000	0.187	0.092
$H_0: b_i = 0, c_0 = 1, c_1 = 0.5$		0.143				
$H_0: b_i = 0, c_0 = 0, c_1 = 0$		0.001				

SVIX variables drive out firm characteristics

1-year horizon, excess-of-market returns

	Realized returns		Expected	returns	Unexpecte	d returns
			Estimated	Theory	Estimated	Theory
const	0.429	0.277	0.131	0.107	0.298	0.321
	(0.371)	(0.377)	(0.073)	(0.027)	(0.365)	(0.359)
Beta _{i,t}	0.016	-0.131	0.113	0.105	-0.097	-0.088
	(0.075)	(0.062)	(0.066)	(0.016)	(0.046)	(0.078)
$log(Size_{i,t})$	-0.018	-0.006	-0.009	-0.009	-0.009	-0.010
	(0.014)	(0.015)	(0.006)	(0.002)	(0.015)	(0.013)
$B/M_{i,t}$	0.032	0.031	0.001	0.001	0.032	0.032
	(0.025)	(0.027)	(0.006)	(0.005)	(0.026)	(0.026)
$\text{Ret}_{i,t}^{(12,1)}$	-0.051	-0.029	-0.017	-0.015	-0.034	-0.035
	(0.041)	(0.041)	(0.018)	(0.010)	(0.039)	(0.040)
$SVIX_{i,t}^2 - \overline{SVIX}_t^2$		0.705				
·,		(0.308)				
Adjusted R ² (%)	1.031	3.969	37.766	37.766	1.051	0.974
$H_0: b_i = 0$	0.347	0.153	0.435	0.000	0.157	0.619
$H_0: b_i = 0, c = 0.5$		0.234				
$H_0: b_i = 0, c = 0$		0.018				

Risk premia and firm characteristics

- Our predictor variables drive out stock characteristics
- Characteristics relate to expected returns but not to unexpected (by our model) returns
- The model also performs well on portfolios sorted on characteristics

Expected excess returns

	Beta	Size	B/M	Mom					
	Portfolio fixed-effects regressions								
$\sum w_i \alpha_i$	-0.014	-0.019	-0.019	-0.009					
	(0.068)	(0.072)	(0.069)	(0.067)					
β	2.790	2.723	2.908	2.756					
	(1.502)	(1.503)	(1.563)	(1.525)					
γ	0.688	0.826	0.593	0.772					
	(0.554)	(0.599)	(0.563)	(0.542)					
Panel adj- <i>R</i> ² (%)	21.174	22.404	21.481	21.908					
$\sum w_i \alpha_i, \beta, \gamma$	0.250	0.314	0.232	0.249					
$eta=\gamma=0$	0.153	0.132	0.152	0.133					
$\gamma=0.5$	0.734	0.586	0.868	0.616					
$\gamma = 0$	0.214	0.168	0.292	0.154					

Expected excess returns

	Beta	Size	B/M	Mom			
	Pooled regressions						
α	-0.020	-0.021	-0.021	-0.021			
	(0.071)	(0.071)	(0.071)	(0.071)			
β	2.974	2.963	3.024	2.960			
	(1.603)	(1.600)	(1.619)	(1.606)			
γ	0.450	0.520	0.446	0.511			
	(0.326)	(0.340)	(0.342)	(0.335)			
Pooled adj- R^2 (%)	9.184	9.879	9.178	10.036			
α, β, γ	0.170	0.203	0.159	0.185			
$eta=\gamma=0$	0.119	0.107	0.127	0.116			
$\gamma=0.5$	0.877	0.954	0.874	0.983			
$\gamma = 0$	0.168	0.126	0.193	0.141			
Theory $adj-R^2$ (%)	3.468	4.237	3.152	3.943			

Expected returns in excess of the market

	Beta	Size	B/M	Mom
	Portfolio fixe	d-effects regression	S	
$\sum_{i} w_i \alpha_i$	0.015	0.008	0.014	0.019
γ	(0.017) 0.794 (0.490)	0.941 (0.529)	0.711 (0.507)	0.864 (0.491)
Panel adj- R^2 (%)	13.010	16.419	12.679	15.020
$H_0: \sum_i w_i \alpha_i = 0, \gamma = 0.5$ $H_0: \gamma = 0.5$ $H_0: \gamma = 0$	0.439 0.549 0.106	0.070 0.405 0.075	0.479 0.677 0.161	0.212 0.459 0.079

Expected returns in excess of the market

	Beta	Size	B/M	Mom			
Pooled regressions							
α	0.015	0.013	0.015	0.014			
	(0.019)	(0.020)	(0.020)	(0.019)			
γ	0.495	0.572	0.502	0.559			
	(0.311)	(0.323)	(0.327)	(0.319)			
Pooled $adj-R^2$ (%)	8.391	9.908	8.098	10.245			
$H_0: \alpha = 0, \gamma = 0.5$	0.635	0.593	0.635	0.613			
$H_0: \gamma = 0.5$	0.987	0.823	0.996	0.890			
$H_0: \gamma = 0$	0.112	0.076	0.125	0.088			
Theory adj- R^2 (%)	7.598	8.995	7.232	8.555			

Out-of-sample analysis

- No need for historical data or to estimate any parameters
 - Google: First IPO on August 19, 2004
 - OptionMetrics data from August 27, 2004
 - Included in the S&P 500 from 31, March 2006

GOOGLE INC

The formula performs well out-of-sample

• Out-of-sample *R*² of the model-implied expected excess returns relative to competing forecasts

Horizon	30 days	91 days	182 days	365 days	730 days
$SVIX_t^2$	0.09	0.57	1.77	3.08	2.77
S&P500t	0.09	0.79	2.56	3.82	4.46
$\overline{\text{CRSP}}_t$	-0.09	0.24	1.43	1.70	0.88
6% p.a.	-0.01	0.46	1.84	2.54	2.06
$SVIX_{i,t}^2$	0.95	1.87	1.55	2.17	7.64
$\overline{\mathrm{RX}}_{i,t}$	1.40	4.97	11.79	27.10	56.67
$\widehat{\beta}_{i,t} \times \overline{\text{S}\&\text{P500}}_t$	0.09	0.79	2.54	3.76	4.72
$\widehat{\beta}_{i,t} \times \overline{\text{CRSP}}_t$	-0.06	0.28	1.46	1.68	1.61
$\widehat{\beta}_{i,t} \times \operatorname{SVIX}_t^2$	0.04	0.46	1.58	2.87	2.91
$\widehat{eta}_{i,t} imes$ 6% p.a.	0.00	0.47	1.84	2.48	2.58

$$R_{OS}^2 = 1 - SSE_{model} / SSE_{competitor}$$

Martin & Wagner (LSE & CBS)

What is the Expected Return on a Stock?

... even against in-sample predictions

• Out-of-sample *R*² of the model-implied expected excess returns relative to competing forecasts

Horizon	30 days	91 days	182 days	365 days	730 days
in-sample avg mkt	-0.05	0.31	1.52	1.90	1.42
in-sample avg all stocks	-0.09	0.17	1.26	1.42	0.56
$\widehat{eta}_{i,t} imes$ in-sample avg mkt	-0.03	0.34	1.54	1.87	2.04
Beta _{i,t}	-0.09	0.16	1.22	1.30	0.56
$log(Size_{i,t})$	-0.19	-0.17	0.62	0.21	-1.34
$B/M_{i,t}$	-0.18	-0.03	0.89	0.77	0.00
$\operatorname{Ret}_{i,t}^{(12,1)}$	-0.10	0.15	1.09	1.05	-0.76
All	-0.25	-0.30	0.26	-0.53	-2.71

$$R_{OS}^2 = 1 - SSE_{model} / SSE_{competitor}$$

• Bottom rows indicate performance relative to models that know the **in-sample** relationship between characteristics and returns

Martin & Wagner (LSE & CBS)

The formula performs well out-of-sample

• Out-of-sample *R*² of the model-implied expected returns in excess of the market relative to competing forecasts

Horizon	30 days	91 days	182 days	365 days	730 days
Random walk	0.16	0.76	1.92	3.07	1.99
$(\widehat{\beta}_{i,t} - 1) \times \overline{\text{S\&P500}}_t$	0.18	0.80	1.98	3.10	2.17
$(\widehat{\beta}_{i,t} - 1) \times \overline{\mathrm{CRSP}}_t$	0.21	0.89	2.14	3.35	2.83
$(\widehat{eta}_{i,t} - 1) \times \operatorname{SVIX}_t^2$	0.11	0.62	1.68	2.80	2.01
$(\widehat{eta}_{i,t}-1) imes$ 6% p.a.	0.19	0.83	2.04	3.19	2.49

... even against in-sample predictions

• Out-of-sample *R*² of the model-implied expected returns in excess of the market relative to competing forecasts

Horizon	30 days	91 days	182 days	365 days	730 days
in-sample avg all stocks	0.11	0.58	1.60	2.48	0.95
$(\widehat{\beta}_{i,t}-1)\times$ in-sample avg mkt	0.20	0.86	2.11	3.29	2.63
Beta _{i,t}	0.11	0.58	1.60	2.45	0.95
$\log(\text{Size}_{i,t})$	0.05	0.39	1.27	1.90	0.12
$B/M_{i,t}$	0.07	0.50	1.47	2.31	0.88
$\operatorname{Ret}_{i,t}^{(12,1)}$	0.10	0.56	1.47	2.05	0.03
All	0.03	0.34	1.11	1.46	-0.64

• We even beat the model that knows the **multivariate in-sample** relationship between returns and beta, size, B/M, lagged return

- We derive a formula for the expected return on a stock
- Computable in real time
- Requires observation of option prices but no estimation
- Performs well in and out of sample
- Risk premia vary a lot in the time-series and cross-section
- Many potential applications!