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Sentiment and Speculation in a 
Market with Heterogeneous Beliefs†

By Ian W. R. Martin and Dimitris Papadimitriou*

We present a model featuring risk-averse investors with heteroge-
neous beliefs. Individuals who are correct in hindsight—whether 
through luck or judgment—get rich, so sentiment is bullish follow-
ing good news and bearish following bad news. Sentiment makes 
extreme outcomes far more important for pricing and has asymmet-
ric effects on left- and right-skewed assets. Investors take speculative 
positions that can conflict with their fundamental views. Moderate 
investors are contrarian: they trade against excess volatility created 
by extremists. All investors view speculation as socially costly; but 
they also think it is in their self-interest, and the market can collapse 
entirely if speculation is banned. (JEL D81, D83, G11, G12, G41)

In this paper, we study the effect of heterogeneity in beliefs on asset prices. We 
work with a frictionless dynamically complete market populated by a continuum 
of  risk-averse agents who differ in their beliefs about the probability of good news.

As a result, agents position themselves differently in the market. Optimistic inves-
tors make leveraged bets on the market; pessimists go short. If the market rallies, the 
wealth distribution shifts in favor of the optimists, whose beliefs become overrep-
resented in prices. If there is bad news, money flows to pessimists and prices more 
strongly reflect their pessimism going forward. At any point in time, one can define 
a representative agent who chooses to invest fully in the risky asset, with no borrow-
ing or lending—our analog of Benjamin Graham’s “Mr. Market”—but the identity 
of the representative agent changes every period, with his or her beliefs becoming 
more optimistic following good news and more pessimistic following bad news. 
Thus market sentiment shifts constantly despite the stability of individual beliefs.

All agents understand the importance of sentiment and take it into account in the 
risk premia that they demand, as they correctly foresee that either good or bad news 
will be amplified by a shift in sentiment. The idea that sentiment itself is a source of 
systematic price risk appears in De Long et al. (1990), but in our model sentiment  
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emerges endogenously rather being modeled as random noise. The presence of sen-
timent induces speculation: agents take temporary positions, at prices they do not 
perceive as justified by fundamentals, in anticipation of adjusting their positions in 
the future.

We start in discrete time, providing a general pricing formula for arbitrary, exog-
enously specified, terminal payoffs. We find the wealth distribution, prices, and 
agents’ investment decisions at every point in time, together with their subjective 
perceptions of expected returns, volatilities, and Sharpe ratios; and other quantities 
of interest, such as aggregate volume, leverage, and the level of the VIX index.

For most of the paper, we focus our attention on heterogeneity in beliefs by work-
ing in the limit in which investors have dogmatic priors, as is broadly consistent 
with the findings of Giglio et al. (2021) and Meeuwis et al. (2019). Although indi-
vidual investors do not learn in this limit, the market exhibits “the wisdom of the 
crowd,” in that the redistribution of wealth over time causes the market to behave 
as if it is learning as a whole. That said, our most general formulation allows the 
agents to learn over time by updating their heterogeneous priors according to Bayes’ 
rule. Following good news, not only do optimists become relatively wealthier, as 
described above, but also every individual updates his or her beliefs in an optimistic 
direction. Formalizing this intuition, we show a precise sense in which learning 
amplifies the effect of belief heterogeneity.

We explore the properties of the model in a series of examples. The first 
makes the point that extreme states are much more important than they are in a 
 homogeneous-belief economy. A risky bond matures in 50 days, and will default, 
paying $30 rather than the par value of $100, only in the “bottom” state of the 
world—that is, only if there are 50 consecutive pieces of bad news. Investors’ 
beliefs about the probability,  h , of an  up-move are uniformly distributed between 0 
and 1. Initially, the representative investor is the median agent,  h = 0.5 , who thinks 
the default probability is less than   10   −15  . And yet we show that the bond trades at 
what might seem (given that the riskless interest rate is zero) the remarkably low 
price of $95.63. Moreover, almost half the agents—all agents with beliefs  h  below 
0.48—initially go short at this price. Most of these think the asset is fundamen-
tally undervalued. Nonetheless, they go short initially because if there is bad news 
next period, pessimists’ trades will have been profitable, so their views will become 
overrepresented in the market and the bond’s price will decline sharply in the short 
run. Most of the investors who are initially short will therefore reverse their posi-
tion to go long if there are two periods of bad news. Only extreme pessimists with  
h < 0.006  stay short to the bitter end.

Our second example modifies the first by considering an asset with a high payoff in 
the “top” state of the world. The asset is bubbly—sentiment inflates its price relative 
to the  homogeneous-belief benchmark—and there are several interesting differences 
in the dynamics relative to the risky bond case. First, sentiment becomes increasingly 
important as time passes: if repeated good news arrives, the asset becomes more and 
more bubbly. (By contrast, sentiment has most impact early in the life of the risky 
bond.) Second, the risk premium perceived by the median investor is initially posi-
tive; becomes increasingly negative as the bubble grows; but then starts to rise and 
ultimately turns positive again at the height of the bubble, just before the terminal 
date. As a result, the median investor reverses position twice during the lifetime of the 
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bubble. Finally, implied volatility, as measured by the VIX index, rises as the bubble 
grows, whereas the reverse happens in the risky bond example.

In our third example, we construct a stark situation in which there is no volatility 
if beliefs are homogeneous: the asset is (until the final period) totally riskless. When 
beliefs are heterogeneous, however, our investors speculate on  short-run sentiment. 
The resulting volatility is socially costly, in the sense that average realized utility is 
lower than it would be if investors were prevented from speculating.

We then consider two  continuous-time limits that model information as arriving 
continuously over time in small pieces (formally, as driven by a Brownian motion), 
or as arriving infrequently in lumps (formally, as driven by a Poisson process).

In the Brownian limit, sentiment drives up true and implied volatility, particularly 
in the short run, and hence also risk premia; both types of volatility are lower at long 
horizons due to the moderating influence of the terminal date at which pricing is dic-
tated by fundamentals. Extremists speculate increasingly aggressively as the market 
moves in their favor, whereas moderate investors trade in contrarian fashion. Among 
moderates, there is a particularly interesting gloomy investor. This  Eeyore-like fig-
ure (Milne 1926) is somewhat pessimistic, and has the lowest expected utility of all 
investors. Despite believing that the risky asset earns zero instantaneous risk pre-
mium, he thinks that sizable Sharpe ratios can be attained by selling in the face of 
irrational exuberance on the up side and buying in response to irrational pessimism 
on the down side. The gloomy investor can therefore be thought of as supplying 
liquidity to the extremists.

Every investor thinks sufficiently  out-of-the-money options are overvalued due 
to the presence of investors with extreme views. As a result, every investor has a 
 U-shaped stochastic discount factor and a target price—the ideal outcome for that 
investor, given his or her beliefs, and hence trading strategy—that can usefully be 
compared to what the investor expects to happen. An extremist is happy if the mar-
ket moves even more than he or she expected. The gloomy investor, in contrast, 
hopes to be proved right; in a sense that we make precise, the best outcome for him 
is the one that he expects.

In the Poisson limit, news arrives infrequently. The jumps that occur at such times 
represent bad news, perhaps driven by credit or catastrophe risk. Optimistic inves-
tors sell insurance against jumps to pessimists: as long as things are quiet, wealth 
flows smoothly from pessimists to optimists, but at the time of a jump there is a sud-
den shift in the pessimists’ favor. Optimists are in the position in which derivative 
traders inside major financial institutions have traditionally found themselves: short 
volatility, making money in quiet times but occasionally subject to severe losses at 
times of market turmoil. As a result, even though all individuals perceive constant 
jump arrival rates, the  risk-neutral jump arrival rate—which can be interpreted as 
a CDS rate—declines smoothly in the absence of jumps, but spikes sharply after a 
jump occurs. Similar patterns have been documented in catastrophe insurance mar-
kets by Froot and O’Connell (1999) and Born and Viscusi (2006), among others.

Related Literature.—Our paper intersects with several strands of the large lit-
erature on the effects of disagreement in financial markets. The closest anteced-
ent of—and the inspiration for—our paper is Geanakoplos (2010), whose paper 
studies disagreement among  risk-neutral investors (as do Harrison and Kreps 1978; 
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Scheinkman and  Xiong 2003).  Risk neutrality simplifies the analysis in some 
respects but complicates it in others. For example, short sales must be restricted 
for equilibrium to exist. This is natural in some settings, but not if one thinks of the 
risky asset as representing, say, a broad stock market index; and the resulting kinked 
indirect utility functions are not very tractable. Moreover, the aggressive trading 
behavior of  risk-neutral investors leads to extreme predictions: every time there is a 
 down-move in the Geanakoplos model, all agents who are invested in the risky asset 
go bankrupt.

In a variation on the Geanakoplos model, Simsek (2013) emphasizes the impor-
tance of the type of disagreement: for example, an agent might be considered rela-
tively optimistic either because she perceives a high chance of some good outcome, 
or because she perceives a low chance of a bad outcome. In our binomial setting 
there is no distinction between these alternatives, as an agent who perceives a high 
chance of “up” must also perceive a low chance of “down,” but Simsek allows 
for more than two—in fact, for a continuum of—possible outcomes. (In the other 
direction, we have a continuum of investor types whereas Simsek has two.) The 
mechanisms in the two papers are complementary: Simsek’s model features just one 
period, so his agents (who are  risk neutral) do not speculate in our sense.

Other strands of the literature have focused on the role of disagreement in the effi-
ciency of the market (Figlewski 1978), in the amplification of volatility and trading 
volume (Basak 2005; Banerjee and Kremer 2010; Atmaz and Basak 2018), in the 
evolution of the wealth distribution (Zapatero 1998; Jouini and Napp 2007; Bhamra 
and Uppal 2014), in the underreaction of prices to public information (Ottaviani 
and  Sørensen 2015), in amplifying the importance of extremely unlikely states 
(Kogan et al. 2006), and in the pricing of options (Buraschi and Jiltsov 2006). Other 
papers generate similar  asset-pricing effects by allowing for heterogeneity in risk 
aversion rather than beliefs (Dumas 1989; Chan and Kogan 2002), though of course 
they do not account for the direct evidence from surveys that individuals have het-
erogeneous beliefs (Shiller 1987;  Ben-David, Graham, and Harvey 2013).

A related literature addresses the question of which agents will survive into the 
infinite future (Sandroni 2000; Jouini and Napp 2007; Borovička 2020). Our paper 
does not directly bear on this question, as we fix a finite terminal horizon. But as the 
truth lies in the support of every agent’s prior in our extended model with learning, 
all agents would in principle survive to infinity (Blume and Easley 2006).

Most of the prior literature restricts to the diffusion setting (of the papers men-
tioned, Dumas 1989; Zapatero 1998; Chan and Kogan 2002; Scheinkman and Xiong 
2003; Basak 2005; Buraschi and Jiltsov 2006; Kogan et al. 2006; Jouini and Napp 
2007; Dumas, Kurshev, and Uppal 2009; Cvitanić et  al. 2012; Atmaz and Basak 
2018; Borovička 2020); while Banerjee and Kremer (2010) work with a CARA–
Normal model, and Geanakoplos (2010) and Simsek (2013) with one- or  two-period 
models. (A notable exception is Chen, Joslin, and Tran (2012), who present a model 
with heterogeneity in beliefs about disaster risk.)

Our model is extremely tractable, which allows us to study all these issues ana-
lytically—together with new results on the implied volatility surface, the variance 
risk premium, individual investors’ trading strategies and attitudes to speculation 
and so forth—in a simple framework that allows for learning and for general ter-
minal payoffs. This tractability is due in part to our use of log utility, which we 
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view as a  reasonable benchmark given the results of Martin (2017); Kremens 
and Martin (2019); and Martin and Wagner (2019), and which implies (even in a 
 nondiffusion setting) that the representative investor’s perceived risk premium is 
equal to  risk-neutral variance so that our model generates empirically plausible first 
and second moments of returns. It also reflects the fact that we work with a contin-
uum of beliefs, like Geanakoplos (2010) and Atmaz and Basak (2018) but unlike 
the  two-type models of Harrison and Kreps (1978); Scheinkman and Xiong (2003); 
Basak (2005); Buraschi and Jiltsov (2006); Kogan et al. (2006); Dumas, Kurshev, 
and Uppal (2009); Banerjee and Kremer (2010); Simsek (2013); Bhamra and Uppal 
(2014); Borovička (2020). Aside from the evident desirability of having a realistic 
belief distribution, the identities of the representative investor and of the investor who 
chooses to sit out of the market entirely then become smoothly varying equilibrium 
objects that are determined endogenously in an intuitive and tractable way.

I. The Model

We work in discrete time,  t = 0, …, T . Uncertainty evolves on a binomial tree, 
so that whatever the current state of the world, there are two possible successor 
states next period: “up” and “down.” There is a risky asset with exogenously speci-
fied payoffs at the terminal date  T . As our agents will have log utility, these payoffs 
must be strictly positive so that utility is finite at every node, but they can otherwise 
be arbitrary. We will assume that the binomial tree is recombining—i.e.,  that the 
terminal payoffs depend on the number of total up- and  down-moves rather than on 
the path by which the terminal node is reached—but our approach generalizes to the 
 non-recombining case.

We normalize the net interest rate to zero. This implies that any variation in 
expected returns, across agents or over time, reflects variation in risk premia.

There is a unit mass of agents indexed by  h ∈  (0, 1)  . Each agent has log utility over 
terminal wealth, zero  time-preference rate, and is initially endowed with one unit of 
the risky asset, which we will think of as representing “the market,” so the risky asset 
is in unit supply and the riskless asset is in zero net supply. Agent  h  believes that the 
probability of an  up-move is  h ; we often refer to  h  as the agent’s belief, for short. In 
most of our examples, payoffs will be higher at nodes closer to the “top” of the tree, so 
we will think of an  up-move as good news, and of agents with higher  h  as being more 
optimistic. By working with the open interval   (0, 1)  , as opposed to the closed interval   
[0, 1]  , we ensure that the investors agree on what events can possibly happen (more 
formally, their beliefs are absolutely continuous with respect to each other). As our 
investors have log utility, they will not allow their wealth to go to zero in any state of 
the world; there are endogenous limits on the amount of leverage taken by optimists 
and on the extent of  short-selling by pessimists.

The mass of agents with belief  h  is  f  (h)  . We allow  f  (h)   to be an arbitrary probabil-
ity density function (PDF) throughout Section IA and in our main pricing Result 1. 
But for much of the paper, we find it convenient to specify that the  cross-section of 
beliefs obeys a beta distribution, so that the PDF is

(1)  f  (h)  =   
 h   α−1   (1 − h)    β−1 

  ___________ 
B (α, β)   , 
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where  α > 0  and  β > 0  are parameters and  B (α, β)  =  ∫  h=0  1     h   α−1   (1 − h)    β−1 dh  is 
the beta function.1 The beta distribution is the conjugate prior for the binomial dis-
tribution, which makes the analysis tractable. The flexibility and tractability of the 
family of beta distributions is particularly important in the  continuous-time limits 
considered in Sections III and IV.

Figure  1 illustrates beta distributions for a range of choices of  α  and  β . If  
α = β  then the distribution of beliefs is symmetric with mean  1/2 . In particular, 
if  α = β = 1  then  f  (h)  = 1 , so that beliefs are uniformly distributed over   (0, 1)  ; 
this is a useful case to keep in mind as one works through the algebra. More gen-
erally, the case  α ≠ β  allows for asymmetric distributions with mean  α/ (α + β)   
and variance  αβ/ [  (α + β)    2  (α + β + 1) ]  . Thus the distribution shifts toward 1 if  
α > β  and toward 0 if  α < β , and there is little disagreement when  α  and  β  are 
large: if, say,  α = 90  and  β = 10  then beliefs are concentrated around a mean of 
0.9, with standard deviation 0.03.

A. Equilibrium

As agents have log utility over terminal wealth, they behave myopically; we can 
therefore consider each period in isolation. We start by taking  next-period prices at 
the up- and  down-nodes as given, and use these prices to determine the equilibrium 
price at the current node. This logic will ultimately allow us to solve the model by 
backward induction, and to express the price at time 0 in terms of the exogenous 
terminal payoffs.2

1 The beta function is related to the gamma function by  B (α, β)  = Γ (α) Γ (β) /Γ (α + β)  . If  α  and  β  are integers, 
then  B (α, β)  =  (α − 1) ! (β − 1) !/ (α + β − 1) ! .

2 A referee pointed out to us that we could also exploit dynamic completeness to solve our model as a static 
Arrow–Debreu equilibrium. We lay out this approach, which gives a shorter proof of Result 1, in the online 
Appendix. We take the approach in the body of the paper for expositional reasons, as it allows us to introduce 
quantities that will be important for understanding the dynamics of the model.

Figure 1. Beta Distributions for Various Choices of  α  and  β 
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Suppose, then, that the price of the risky asset will be either   p d    or   p u    next period. 
Our problem, for now, is to determine the equilibrium price,  p , at the current node; 
we assume that   p d   ≠  p u    so that this pricing problem is nontrivial. (If   p d   =  p u    then 
the asset is riskless so  p =  p d   =  p u   .) Suppose also that agent  h  has wealth   w h    at the 
current node. If he chooses to hold   x h    units of the asset, then his wealth next period 
is   w h   −  x h   p +  x h    p u    in the  up-state and   w h   −  x h   p +  x h    p d    in the  down-state. So the 
portfolio problem is

   max   x h  
    h  log  [ w h   −  x h   p +  x h    p u  ]  +  (1 − h)  log  [ w h   −  x h   p +  x h    p d  ] . 

The agent’s  first-order condition is therefore

(2)   x h   =  w h   (  h _ p −  p d     −   1 − h _  p u   − p  ) . 

The sign of   x h    is that of  p −  p u    for  h = 0  and that of  p −  p d    for  h = 1 . These 
must have opposite signs to avoid an arbitrage opportunity, so at every node there 
are some agents who are short and others who are long. The most optimistic agent3 
levers up as much as possible without risking default. From the perspective of an 
extreme optimist,   p d    can be thought of as the liquidation value: when it is large, 
the optimist can get more leverage. For, the  first-order condition (2) implies that 
as  h → 1 , agent  h  holds   w h  / (p −  p d  )   units of the risky asset. This is the largest 
possible position that does not risk default: to acquire it, the agent must borrow   
w h   p/ (p −  p d  )  −  w h   =  w h    p d  / (p −  p d  )  . If the unthinkable (to this most optimis-
tic agent!) occurs and the down state materializes, the agent’s holdings are worth 
  w h    p d  / (p −  p d  )  , which is precisely what the agent owes to his creditors. 
Correspondingly, the most pessimistic agent takes on the largest short position pos-
sible that does not risk default if the good state occurs.

It will often be convenient to think in terms of the  risk-neutral probability of an 
 up-move,   h   ∗  , defined by the property that the price can be interpreted as a  risk-neutral 
expected payoff,  p =  h   ∗  p u   +  (1 −  h   ∗ )  p d   . (There is no discounting, as the riskless 
rate is zero.) Hence,

   h   ∗  =   p −  p d   _  p u   −  p d    . 

In these terms, the  first-order condition (2) becomes

   x h   =    w h   _  p u   −  p d       
h −  h   ∗  _ 

 h   ∗  (1 −  h   ∗ )   , 

for example. An agent whose  h  equals   h   ∗   will have zero position in the risky asset: 
by the defining property of the  risk-neutral probability, such an agent perceives that 
the risky asset has zero expected excess return.

3 This is an abuse of terminology: there is no “most optimistic agent” since  h  lies in the open set   (0, 1)  . More 
formally, this discussion relates to the behavior of agents in the limit as  h → 1 . An agent with  h = 1  would want 
to take arbitrarily large levered positions in the risky asset, so there is a behavioral discontinuity at  h = 1  (and 
similarly at  h = 0 ).
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Agent  h ’s wealth next period is therefore   w h   +  x h   ( p u   − p)  =  w h   (h/ h   ∗ )   in the 
 up-state, and   w h   −  x h   (p −  p d  )  =  w h   [ (1 − h) / (1 −  h   ∗ ) ]   in the  down-state. In 
either case, all agents’ returns on wealth are linear in their beliefs. Moreover, this 
relationship applies at every node. It follows that person  h ’s wealth at the current 
node is   λ path    h   m   (1 − h)    n  , where   λ path    is a constant that is independent of  h  but which 
can depend on the path travelled to the current node, which we have assumed has  m  
up and  n  down steps.

As aggregate wealth is equal to the value of the risky asset—which is in unit 
supply—we must have

   ∫ 
0
  
1 
   λ path    h   m   (1 − h)    n  f  (h) dh = p. 

This enables us to solve for the value of   λ path   :

   λ path   =   p
 ______________  

 ∫ 0  1    h   m   (1 − h)    n  f  (h) dh
  . 

Substituting back, agent  h ’s wealth equals

   w h   =   
 h   m   (1 − h)    n  p

  ______________  
 ∫ 0  1    h   m   (1 − h)    n  f  (h) dh

  . 

This is maximized by  h ≡ m/ (m + n)  : the agent whose beliefs turned out to be 
most accurate ex post ends up richest.

The wealth distribution—that is, the fraction of aggregate wealth held by type- h  
agents—satisfies

(3)    
 w h    f  (h) 
 _ p   =   

 h   m   (1 − h)    n  f  (h) 
  ______________  

 ∫ 0  1    h   m   (1 − h)    n  f  (h) dh
  . 

The  wealth-weighted  cross-sectional average belief,  H , therefore equals

(4)  H =  ∫ 
0
  
1
   h   

 w h    f  (h) 
 _ p   dh =   

 ∫ 0  1    h   m+1   (1 − h)    n  f  (h) dh
  ________________  

 ∫ 0  1    h   m   (1 − h)    n  f  (h) dh
   

at time  t , after  m   up-moves and  n   down-moves.4

These expressions take a convenient form if  f  (h)  =  h   α−1   (1 − h)    β−1 /B (α, β)   is 
the density function of the  Beta (α, β)   distribution. In that case equation (3) implies 

4 If there is a fixed true probability of an  up-move,   h true   , then investors with  h ≠  h true    will eventually become 
irrelevant. Let us refer to the share of wealth (3) held by type- h  agents as  Ω (h, m, n)  . As the elapsed number of 
 periods,  t , tends to infinity,  m/t →  h true    and  n/t → 1 −  h true    almost surely, by the strong law of large numbers, 
and the asymptotic rate of exponential decay in the type- h  wealth share is

   lim  
t→∞

   −   1 _ t     log   Ω [h,  h true   t,  (1 −  h true  ) t]  =  h true    log     h true   _ 
h
   +  (1 −  h true  )  log    1 −  h true   _ 

1 − h  . 

This holds for any belief distribution  f  (h)  . The decay rate is strictly positive when  h ≠  h true   , so the wealth share 
of any incorrect investor declines exponentially fast. But investors who are roughly correct will retain a substantial 
share of wealth for many periods. For example, the  half-life for investor  h = 0.5 —that is,  log  2/decay rate , the 
time required for the investor’s wealth to halve—is more than 34 periods for all values of   h true    between 0.4 and 0.6. 
See the online Appendix for a proof and more discussion.
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that the wealth distribution is also a beta distribution with parameters  α + m  and  
β + n , so that

(5)    
 w h    f  (h) 
 _ p   =   

 h   α+m−1   (1 − h)    β+n−1 
  _______________  

B (α + m, β + n)    ,

and equation (4) simplifies to

  H =   m + α _ 
t + α + β   .

Example.—Let us now revisit Figure  1. For the sake of argument, suppose 
that  f  (h)   describes a beta distribution with  α = β = 1  so that investor beliefs 
 h ∈  (0, 1)   are uniformly distributed. If, by time 4, there have been  m = 1   up-moves 
and  n = 3   down-moves, then equation (5) implies that the new wealth distribution 
follows the line labeled  α = 2 ,  β = 4 . (Investors with  h  close to 0 or to 1 have 
been almost wiped out by their aggressive trades; the best performers are moderate 
pessimists with  h = 1/4 , whose beliefs happen to have been vindicated ex post.) 
At time 8, following three more  up-moves and one  down-move, the new wealth 
distribution is indicated by the line labeled  α = β = 5 . And if by time 12 there 
have been a further four  up-moves, then the wealth distribution is given by the line 
labeled  α = 9 ,  β = 5 . These shifts in the wealth distribution are central to our 
model. They reflect the fact that money flows, over time, toward investors whose 
beliefs appear correct in hindsight.

Now we solve for the equilibrium price using the  first-order condition described 
in (2). The price  p  adjusts to clear the market, so that aggregate demand for the asset 
by the agents equals the unit aggregate supply:

   ∫ 
0
  
1 
   x h    f  (h) dh =   

p [H ( p u   − p)  −  (1 − H)  (p −  p d  ) ]    _______________________   
 ( p u   − p)  (p −  p d  ) 

   = 1. 

This has a unique solution with respect to  p :

(6)  p =    p d    p u   _____________  
H p d   +  (1 − H)  p u  

  . 

In equilibrium, therefore, the  risk-neutral probability of an  up-move is

(7)   h   ∗  =   H p d   _____________  
H p d   +  (1 − H)  p u  

  . 

It follows that

(8)     p u   _ p   =   H _  h   ∗    and    p d   _ p   =   1 − H _ 
1 −  h   ∗    .

Hence,   h   ∗   is smaller than  H  if   p u   >  p d    and larger than  H  if   p u   <  p d   : in either case, 
 risk-neutral beliefs are more pessimistic than the  wealth-weighted average belief.

The share of wealth an agent of type  h  invests in the risky asset is

(9)     x h   p _  w h     =   h −  h   ∗  _ 
H −  h   ∗   , 
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using equations (2) and (8). We can use this equation to calculate the leverage of 
investor  h , which we define as the ratio of funds borrowed to wealth:

(10)     x h   p −  w h   _  w h     =   h − H _ 
H −  h   ∗   . 

The agent with  h = H  can be thought of as the representative agent, Benjamin 
Graham’s Mr. Market: by equation (9), this is the agent who chooses to invest his 
wealth fully in the market, with no borrowing or lending. Similarly, the individual 
with  h =  h   ∗   is an  all-cash investor who chooses to hold his or her wealth fully in 
the bond. Pessimistic investors with  h <  h   ∗   choose to short the risky asset; mod-
erate investors with   h   ∗  < h < H  hold a balanced portfolio with long positions 
in both the bond and the risky asset; and optimistic investors with  h > H  take on 
leverage, shorting the bond to go long the risky asset.

For comparison, in a homogeneous economy in which all agents agree that the 
 up-probability is   H 

–
   , it is easy to check that

   h   ∗  =    H 
–
   p d   _____________  

 H 
–
   p d   +  (1 −  H 

–
  )  p u  

  . 

Comparing this expression with equation (7), we see that for  short-run pricing 
purposes our heterogeneous economy looks the same as a homogeneous economy 
featuring a representative agent with belief  H . But as the identity,  H , of the represen-
tative agent changes over time in our model, the similarity will disappear when we 
study the pricing of  multiperiod claims.

Investors disagree on risk premia: for example, agent  h  perceives that the risk 
premium is

(11)    
h p u   +  (1 − h)  p d    ____________ p   − 1 =   

 (h −  h   ∗ )  (H −  h   ∗ ) 
  _____________  

 h   ∗  (1 −  h   ∗ )   . 

By contrast, they agree on objective quantities such as the  risk-neutral variance of 
the asset return, which is

(12)   h   ∗   (   p u   _ p  )    
2
  +  (1 −  h   ∗ )   (   p d   _ p  )    

2
  − 1 =   

  (H −  h   ∗ )    2 
 _ 

 h   ∗  (1 −  h   ∗ )     .

In particular, notice that the representative agent’s perceived risk premium, as 
given in equation (11) with  h = H , equals  risk-neutral variance (12). Inside our 
model, this quantity (which Martin (2017) argues is a good empirical proxy for 
the equity premium) is a natural measure of “the market’s” risk premium; it equals 
the  wealth-weighted  cross-sectional average risk premium, and (12) shows that it 
is always positive. Conversely, the  equally weighted  cross-sectional average risk 
premium—the analog of an average survey expectation, as in  Ben-David, Graham 
and Harvey (2013)—may be negative. In the beta case (1), it is given by equation 
(11) with  h = α/ (α + β)  .

We can use these expressions to understand the expression for the proportion of 
wealth invested by an arbitrary agent  h  in the risky asset,

  h’s risky share (9) =   h’s subjective risk premium (11)   _________________________    
objective risk-neutral variance (12)    .
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This can be compared to the Merton (1969) formula,  risky share = μ/ (γ σ   2 )  ,  
derived in a homogeneous setting with risk premium  μ , arbitrary risk aversion  
γ > 0 , and no distinction between true and  risk-neutral variance,   σ   2  . In our model, 
agents disagree on true variance but agree on  risk-neutral variance; and it turns out 
that the latter is the quantity that influences the risky share.

We can calculate the level of the VIX index on similar lines.5 To do so, we use 
the  model-free relationship   VIX  t→t+1  2   = 2 (log   피  t  ∗  R t→t+1   −  피  t  ∗  log  R t→t+1  )  , where   
R t→t+1    is the gross return on the risky asset from  t  to  t + 1 (see, e.g., Martin 2017). 
As the net riskless rate is zero,   피  t  ∗  R t→t+1   = 1 ; together with the equilibrium rela-
tionship (8), this implies that

(13)   VIX  t→t+1  2   = 2 [ h   ∗  log    h   ∗  _ 
H   +  (1 −  h   ∗ ) log  1 −  h   ∗  _ 

1 − H  ] . 

Thus, the VIX index squared equals twice the relative entropy (or Kullback-Leibler 
divergence) of the beliefs of the representative agent with respect to the beliefs of 
the  all-cash agent. When VIX is high, the two agents have very different beliefs.

The left panel of Figure 2 shows a numerical example with uniformly distrib-
uted beliefs and  T = 2 . Sentiment in the heterogeneous belief economy is initially 
the same as it would be in a homogeneous economy—the representative investor’s 
belief is  H = 0.5  at the initial node—but the price is lower because of sentiment 
risk. If bad news arrives, money flows to pessimists, the price declines further than 
it would in a homogeneous economy, and the previously representative investor with  
h = 0.5  takes a levered long position. Conversely, if good news arrives, money 
flows to optimists who drive the price up, to the extent that the previously represen-
tative investor  h = 0.5  exits the market entirely and keeps all his money in cash.

The right panel plots the Sharpe ratios perceived by different investors in each 
of the possible states. As person  h ’s subjectively perceived variance of the asset’s 
return is

  h  (   p u   _ p  )    
2
  +  (1 − h)   (   p d   _ p  )    

2
  −   (  

h p u   +  (1 − h)  p d    ____________ p  )    
2

  =   
h (1 − h)   (H −  h   ∗ )    2 

  ______________  
 h   ∗2   (1 −  h   ∗ )    2 

  , 

his or her perceived Sharpe ratio is

    h −  h   ∗  _ 
 √ 
_

 h (1 − h)   
  , 

which is increasing in  h  for all   h   ∗  . Extremists perceive extreme Sharpe ratios, reflect-
ing their perception that true volatility is close to zero. This might seem surprising, 
given the heuristic that second moments of returns are relatively easy to measure 
empirically, and hence relatively difficult to disagree upon. Indeed this is to some 
extent an artifact of the  two-period setting of the present example: in the Brownian 
limit of Section III, all agents disagree about expected returns, but agree on the vol-
atility of returns.

5 By definition,   VIX  t→t+1  2   ≡ 2  R f,t   ( ∫ 0   F t       1 _ 
 K   2 

    put t   (K) dK +  ∫  F t    
∞    1 _ 

 K   2 
    call t   (K) dK)  , where   R f,t    is the gross  one-period 

interest rate,   F t    is the  one-period-ahead forward price of the risky asset, and   put t   (K)   and   call t   (K)   are time  t  prices of 
 one-period put and call options with strike  K .
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The figure also shows that all investors believe that Sharpe ratios are high in 
bad times and low in good times. Thus the model does not generate extrapolative 
beliefs (as studied empirically by Greenwood and Shleifer (2014) and theoretically 
by Barberis et al. 2015) on the part of individual investors. But the representative 
investor (whose identity in each state is indicated by dots in the right panel) is more 
optimistic, and perceives a higher Sharpe ratio, in good times than in bad times. 
Our model generates extrapolative behavior in a  dollar-weighted sense: Mr. Market 
disagrees with every individual investor about the behavior of Sharpe ratios in good 
and bad states.

B. The General Case

From now on we will keep track of the current node by writing subscripts to indi-
cate the number of  up-moves to date and total time elapsed. Thus, for example,   p m,t    
is the price at time  t  after  m   up-moves and  n = t − m   down-moves, and   H m,t    and 
  h  m,t  ∗    represent the identities of the representative investor and of the investor who is 
fully invested in cash, respectively. Translating the notation of the last section into 
this new notation, we have  p =  p m,t   ,   p u   =  p m+1,t+1   ,   p d   =  p m,t+1   ,  H =  H m,t   , and   
h   ∗  =  h  m,t  ∗   . We also sometimes write   p 0    for   p 0,0   .

Writing   z m,t   = 1/ p m,t   , equation (6) implies that the following recurrence relation 
holds at each node:

(14)   z m,t   =  H m,t    z m+1,t+1   +  (1 −  H m,t  )  z m,t+1  . 

That is, the price at each node is the weighted harmonic mean of the  next-period 
prices, with weights given by the beliefs of the currently representative agent. This 
leads to our main pricing result, whose proof is in the Appendix.
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Figure 2

Notes: Left: the price in a homogeneous economy with    
_

 H   = 1/2  is denoted by    _ p   ; the price in a heterogeneous 
economy with  α = β = 1  is denoted by p; and   h   ∗   and  H  indicate the  risk-neutral probability of an  up-move and 
the identity of the representative agent in the heterogeneous economy. Right: the Sharpe ratio perceived by different 
agents in the initial state (  ·  ), down state ( d ), and up state ( u ).
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RESULT 1: If the risky asset has terminal payoffs   p m,T    at time  T  ( for  m = 0, …, T ), 
then its initial price is6

   p 0   =   1 ________ 
 ∑ m=0  T       c m   _  p m,T     

   , 𝑤ℎ𝑒𝑟𝑒  c m   =  (  T   m  )  ∫ 
0
  
1
    h   m   (1 − h)    T−m  f  (h) dh .

The coefficient   c m    can be interpreted as the  cross-sectional average perceived prob-
ability of reaching node  m . For reference, note that if the  cross-section of beliefs 
obeys a beta distribution, as in equation (1), then   c m    satisfies

   c m   =  (  T   m  )   
B (α + m, β + T − m) 

  _______________  
B (α, β)   . 

Conversely, if beliefs are homogeneous and all agents perceive that the probability 
of an  up-move is   H 

–
   , then   c m   =  (  T   m )   H 

–
     m   (1 −  H 

–
  )    T−m  .

In our setting, pricing is the same as it would be if a single representative investor 
with appropriately chosen prior beliefs learned over time about the probability of an 
 up-move. Although such a model is inconsistent with the evidence that individuals 
have different beliefs, the link reveals a sense in which the market exhibits “the 
wisdom of the crowd,” in that the redistribution of wealth between agents causes the 
market to behave as if it is learning as a whole.7

RESULT 2 (The wisdom of the crowd): Pricing in the  heterogeneous-agent econ-
omy is identical to pricing in an economy with a representative agent with log utility 
whose prior belief, as of time 0, about the probability of an  up-move has distribution  
f  (h)  , and who updates his or her beliefs over time via Bayes’ rule.

The next result characterizes the effect of belief heterogeneity on prices for a 
broad class of assets. In this result, and for the rest of the paper, we restrict attention 
to the beta family of belief distributions, so that  f  (h)   is the PDF given in equation (1).

RESULT 3: If the risky asset has terminal payoffs such that  1/ p m,T    is convex when 
viewed as a function of  m , then the asset’s time 0 price decreases as beliefs become 
more heterogeneous (that is, as the  cross-sectional variance of  h  increases with 
its mean held constant). In particular, it is sufficient, though not necessary, that 
 log  p m,T    be weakly concave for the asset’s price to be decreasing in the degree of 
belief heterogeneity.

Conversely, if  1/ p m,T    is concave in  m  then the asset’s time 0 price increases as 
beliefs become more heterogeneous.

Result 3 implies that if the risky asset’s terminal payoff   p m,T    is concave in  m , 
then its price declines as heterogeneity increases. But the same may be true even 

6 It is of course also possible to represent the price as   p 0   =  ∑ m=0  T     q  m  ∗     p m,T    for appropriate  risk-neutral probabil-
ities,   q  m  ∗   , that we provide in the Appendix. In equilibrium, these  risk-neutral probabilities are such that the formula 
in Result 1 holds.

7 The existence of a representative investor in this sense is guaranteed by the results of Rubinstein (1976). 
Our result makes explicit what the beliefs of such an investor must be. See Blume and Easley (1993) and Blume 
and Easley (2010) for further discussion.
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for assets with convex payoffs—for example, if the asset’s payoffs are exponential 
in  m  then the log payoff is linear, and hence weakly concave, in  m . The examples 
of Sections 3 and 4 fall into this category. On the other hand,8 if the risky asset has 
highly convex payoffs—as might be the case for a “growth” asset with a large payoff 
in some extreme state of the world—then its price increases with heterogeneity. We 
explore the two cases further via concrete examples in Sections IIA and IIB.

Notice that if there were only one period, then—with only two possible terminal 
payoffs— 1/ p m,T    would be both convex and concave in  m , and hence the asset’s price 
would be independent of the degree of heterogeneity. Thus the dynamic aspect of 
our model is critical for Result 3 to be interesting and nontrivial. It is therefore com-
plementary to Simsek (2013, Theorems 4 and 5), who presents results with a super-
ficially similar flavor in a static,  one-period, model: whereas Result 3 characterizes 
the impact of heterogeneity in terms of the concavity or convexity of the asset’s 
payoffs, Simsek emphasizes the importance of the degree of skewness of beliefs in 
the minds of investors.

C. Bayesian Learning

We can extend our model to allow the heterogeneous individuals to update their 
beliefs over time using Bayes’ rule. We continue to assume that each investor has 
a type  h ∈  (0, 1)  , and that types follow a beta distribution with parameters  α  and  
β , as in equation (1). Now, however, investor  h ’s prior belief is that the probabil-
ity of an  up-move is   h ̃   ∼ Beta (ζh, ζ  (1 − h) )  . This prior has mean  h  and variance 
 h (1 − h) / (1 + ζ)  , so is sharply peaked around  h  when the (positive) constant  ζ  is 
large. This structure allows us to calibrate the disagreement across individuals in the 
population, which is controlled by  α  and  β , separately from the uncertainty in the 
mind of a fixed individual, which is controlled by  ζ . In the limit as  ζ  tends to infinity, 
we recover the dogmatic limiting case considered in the rest of the paper.

RESULT 4 (Pricing with belief heterogeneity and learning): If the risky asset has 
terminal payoffs   p m,T    at time  T  ( for  m = 0, …, T ), then its initial price is

   p 0   =   1 _______ 
 ∑ m=0  T       c ̃   m    _  p m,T   

  
   , where    c ̃   m   =  (  T   m  )  ∫ 

0
  
1
     
B (ζh + m, ζ  (1 − h)  + T − m) 

   _____________________   
B (ζh, ζ  (1 − h) )    f  (h) dh, 

where  f  (h)   is the PDF of a beta distribution, as defined in equation (1).
If the risky asset has terminal payoffs such that  1/ p m,T    is convex when viewed 

as a function of  m , then for any level of belief heterogeneity the asset’s time 0 
price decreases as investors’ prior uncertainty increases (i.e., as  ζ  decreases, with 
 α/ (α + β)   held constant so that the mean investor type is held constant). Conversely, 
if  1/ p m,T    is concave in  m  then the asset’s time 0 price increases as investors’ prior 
uncertainty increases.

8 The empirical evidence concerning the effect of belief dispersion on prices is mixed. Johnson (2004) considers 
levered firms with  option-like payoffs and finds that price is increasing in belief dispersion (see also Chen, Hong, 
and Stein 2002; Yu, 2011) while Avramov et al. (2009), Banerjee (2011) and others find the opposite result.
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This result generalizes Results 1 and 2 in the case where  f  (h)   is the beta PDF. 
(To recover the former, let  ζ  tend to infinity; to recover the latter, set  α = aN ,  
β = bN , and  ζ = a + b , and let  N  tend to infinity.) It shows that the effect of 
learning compounds the effect of sentiment, thereby putting Result 3 into a broader 
context. In the online Appendix, we show how the initial price of the risky asset 
depicted in the left panel of Figure 2 varies when agents learn, for a range of values 
of  ζ < ∞ ; and we illustrate the effect of learning in Figure 3 of the next section. 
Elsewhere, we focus on the dogmatic limit case  ζ → ∞ .

II. Three Examples

We now explore a series of examples. These are highly stylized even by the stan-
dards of our highly stylized model, but they allow us to emphasize some important 
features of the framework.

A. A Risky Bond

The dynamic that drives our model is particularly stark in the risky bond example 
outlined in the introduction. Suppose that the terminal payoff is 1 in all states apart 
from the very bottom one, in which the bond defaults with payoff  ε . The price of the 
asset is therefore 1 as soon as an  up-move occurs. But if bad news keeps coming,  
then the price at time  t  following  t  consecutive  down-moves satisfies9

(15)   p 0,t   =   1  _____________________   
1 +   1 − ε ____ ε     Γ (β + T) Γ (α + β + t)   _____________  

Γ (β + t) Γ (α + β + T)   
    ,

9 In this special case, we could argue directly: from equation (6),   p 0,t   =   α  p 0,t+1   +  (t + β)  p 0,t+1    _____________  α  p 0,t+1   + t + β   . Defining 

  y t   ≡ 1/ p 0,t   − 1 , this can be rearranged as   y t   =   β + t
 _ α + β + t    y t+1   . Solving forward, imposing the terminal condition 

that   y T   =  (1 − ε) /ε , and using the fact that  Γ (z + 1) /Γ (z)  = z  for any  z > 0 , we have (15).

Figure 3

Notes: Left: the risky bond’s price over time in the heterogeneous and homogeneous economies following con-
sistently bad news. Right: the identity, at time  t , following consistently bad news, of the representative agent, 
  H t,t   ; and of the investor who is fully invested in the riskless bond at time  t , with zero position in the risky bond,   h  0,t  ∗   .
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by Result 1. If the belief distribution is uniform,  α = β = 1 , we can simplify 
further, to

(16)   p 0,t   =   1 ___________  
1 +   1 − ε _ ε     1 + t _ 1 + T  

  . 

We can determine the identity of the  all-cash investor, following  t  consecutive 
 down-moves, by applying (8) with  p =  p 0,t    and   p u   = 1  to find that

   h  0,t  ∗   =  H 0,t    p 0,t   =   
α  p 0,t   _ α + β + t  . 

Figure 3 shows how the bond price and the identities of the representative agent 
and of the  all-cash investor evolve, assuming bad news arrives each period, in an 
example with uniform beliefs ( α = β = 1 ),  T = 50  periods, and a recovery 
value of  ε = 0.30 . (The left panel also shows how the price evolves if investors 
have heterogeneous priors and learn about the probability of a  down-move as in 
Section IC. We set  ζ = 24  so that the standard deviation of the median investor’s 
prior belief about the probability of an  up-move is 10 percent.)

For comparison, in a homogeneous economy with  H = 1/2  the price and 
 risk-neutral probability would be

(17)   p 0,t   =   1 ___________  
1 +   1 − ε _ ε   2   − (T−t)  

   

and   h  0,t  ∗   =  p 0,t  /2 , respectively. Thus with homogeneous beliefs the bond price is 
approximately 1 and the  risk-neutral probability of an  up-move,   h  0,t  ∗   , is approxi-
mately  1/2  until shortly before the bond’s maturity.

From the perspective of time 0, the  risk-neutral probability of default,   δ   ∗  , sat-
isfies   p 0   = 1 −  δ   ∗  +  δ   ∗ ε , so   δ   ∗  =  (1 −  p 0  ) / (1 − ε)  . In the homogeneous case, 
therefore,   δ   ∗  = 1/ (1 + ε ( 2   T  − 1) )  = O ( 2   −T  )  , whereas in the heterogeneous 
case with uniform belief distribution we have   δ   ∗  = 1/ (1 + εT)  = O (1/T)  . There 
is a qualitative difference between the homogeneous economy, in which default is 
exponentially unlikely under the  risk-neutral distribution, and the heterogeneous 
economy, in which default is only polynomially unlikely. More generally, it is 
straightforward to show that   δ   ∗  = O ( T    − α )   for any  α  and  β , using Stirling’s for-
mula. And the result remains true if  ε > 1 , as in the bubbly asset example of the 
next section: the  risk-neutral probability of the bubbly asset having a large payoff is 
exponentially small in the homogeneous economy but only polynomially small in 
the heterogeneous belief economy.

To understand pricing in the heterogeneous economy, it is helpful to think through 
the portfolio choices of individual investors. The median investor,  h = 0.5 , thinks 
the probability that the bond will default—i.e.,  that the price will follow the path 
shown in Figure 3 all the way to the end—is   2   −50  <  10   −15  . Even so, he believes the 
price is right at time zero (in the sense that he is the representative agent) because 
of the  short-run impact of sentiment. Meanwhile, a modestly pessimistic agent with  
h = 0.25  will choose to short the bond at the price of 0.9563—and will remain 
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short at time  t = 1  before reversing her position at  t = 2 —despite believing that 
the bond’s default probability is less than   10   −6  . (Recall from equation (9) that 
  h  0,t  ∗    is the belief of the agent who is neither long nor short the asset. More optimis-
tic agents,  h >  h  0,t  ∗   , are long, and more pessimistic agents,  h <  h  0,t  ∗   , are short.) 
Following a few periods of bad news, almost all investors are long; but the most 
pessimistic investors are rich.

The left panel of Figure 4 shows the holdings of the risky asset for a range of 
investors with different beliefs, along the trajectory in which bad news keeps on 
coming. The optimistic investor  h = 0.75  starts out highly leveraged so rapidly 
loses almost all his money. The median investor,  h = 0.5 , initially invests fully in 
the risky bond without leverage. If bad news arrives, he levers up to increase the size 
of his position despite his losses; if bad news keeps coming, he is almost completely 
wiped out after about 10 periods. Moderately bearish investors start out short: inves-
tor  h = 0.25  starts out short about 10 units of the bond, despite believing that the 
probability it defaults is less than one in a million, but reverses her position after two 
 down-moves. Investor  h = 0.01 , who thinks that there is more than a 60 percent 
chance of default, is initially extremely short but eventually reverses position as still 
more bearish investors come to dominate the market.

The right panel of Figure 4 shows how the median investor’s leverage (10) evolves 
over time. If forced to trade statically, his leverage ratio is initially 0.457—a seem-
ingly modest number dictated by the requirement that the investor avoid bankruptcy 
at the bottom node. If he can trade dynamically, the optimal strategy starts out fully 
invested in the risky bond, with no leverage. Subsequently, however, leverage rises 
fast. Thus the median investor “keeps his powder dry,” investing cautiously at first 
but levering up after further selloffs. (We report further results on the evolution of 
aggregate leverage and volume in the online Appendix.)

Having seen these results, it might still seem surprising that an investor with (say)  
h = 0.25 , who perceives less than a  one-in-a-million chance of default, goes short 
when the risky bond is almost certain to deliver an excess return on the order of five 
per cent. But it is important to bear in mind that there is a sharp distinction between 
investors’ speculative trading strategies and what one might call their “fundamental 
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Notes: Left: the number of units of the risky bond held by different agents,   x h,t   , plotted against time. Right: the evo-
lution of leverage for the median investor under the optimal dynamic and static strategies. Both panels assume bad 
news arrives each period.
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view.” We define the latter as the position that an investor would choose, at time 0, 
if forced to hold the position statically.10 Figure 5 shows how investors of different 
types,  h , position themselves when they can speculate (calculated from equation 
(2)), and compares with the position they would choose in the static case (as calcu-
lated in the online Appendix). More than 40 percent of the investor population—all 
investors with  h  between 0.054 and 0.48—trade in the opposite direction to their 
own perception of fundamental value. If forced to hold a static position, they would 
go long at time 0. But when speculation is possible, they choose to go short initially 
due to the anticipated  short-run impact of sentiment, before reversing the trade to go 
long if sentiment worsens. To an observer, this behavior might superficially appear 
to be manipulative, but here it arises in a perfectly liquid and frictionless market.

Figure 5 illustrates a second important point. When dynamic trade is possible, opti-
mists trade aggressively because they can reduce their position sizes to avoid bank-
ruptcy if events start to turn against them. In the static equilibrium, by contrast, an 
investor must confront the possibility of eventual default from the start. This makes 
the endogenous leverage limit tighter, so most investors have almost exactly the same 
position: they take (approximately) the largest position that avoids the possibility of 
bankruptcy in the event of default. In the Brownian limit of Section 3, we will see that 
related logic causes the market to collapse entirely if dynamic trade is ruled out.

B. A Bubbly Asset

We now modify the example of the previous section by considering the case in 
which the extreme payoff  ε  is greater than 1. This seemingly trivial modification 
will reveal the differing effects of sentiment on assets with left- and  right-skewed 

10 In this particular example, the price in a static economy would be the same as it is in the dynamic economy, 
as we show in the online Appendix; but this is not true in general.
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payoffs. In this case we refer to the asset as bubbly because—in contrast with the 
risky bond case—sentiment will now inflate its price, by Result 3.

As the extreme payoff now corresponds to a good, rather than bad, outcome, we 
will think of the asset as paying  ε > 1  in the “top” state, i.e. if there are  T  consec-
utive up moves, and 1 otherwise. Hence, the price of the asset is 1 if ever there is a 
down move.

But our interest now is in the evolution of the price if there is repeated good news. 
For general  α > 0  and  β > 0 , the price at time  t , following  t  up moves, is

(18)   p t,t   = 1/ [1 +   1 − ε _ ε     Γ (α + T)  _ 
Γ (α + t)      

Γ (α + β + t)   _  
Γ (α + β + T)   ] . 

Thus the price rises with each successive piece of good news. In part, of course, 
these rises simply reflect good news about fundamentals, which would also cause 
price rises in a  homogeneous-belief economy.

To isolate the influence of belief heterogeneity on pricing, we therefore define the 
sentiment multiplier as the ratio of the price (18) to the price that would prevail in 
a homogeneous economy in which all agents perceive  h = α/ (α + β)  . Along the 
path on which good news keeps on coming,

(19)   sentiment multiplier t   =   
 p t,t   __   p –   t,t  

   =   
1 +   1 − ε _ ε    (  α _ α + β  )    T−t 

   _____________________   
1 +   1 − ε _ ε     Γ (α + T)  _ 

Γ (α + t)      
Γ (α + β + t)   _  
Γ (α + β + T)   

  . 

We define the sentiment multiplier for the risky bond analogously. Heterogeneity 
in beliefs drives the bubbly asset’s price up but the risky bond’s price down, by 
Result 3, so the sentiment multiplier is initially greater than 1 for the bubbly asset 
and less than 1 for the risky bond. In either case it equals 1 at the terminal time  T  (as 
the price is then equal to the payoff whether or not there is heterogeneity in beliefs).

The left panel of Figure 6 shows the evolution of the sentiment multiplier over 
time along the path in which the extreme outcome—the “top” outcome in the case 
of the bubbly asset, and the “bottom” outcome in the case of the risky bond—
remains possible. Beliefs are uniformly distributed between zero and one, that is,  
α = β = 1 . We set  ε = 25  for the bubbly asset and (symmetrically, from the 
point of view of a log investor)  ε = 1/25  for the risky bond, and  T = 20 .

Sentiment has little effect on the pricing of the bubbly asset early in its life, 
but becomes much more important following repeated good news: the multiplier is 
initially only slightly greater than one, but accelerates—it is convex, even on a log 
scale—toward a peak shortly before time  T . Conversely, sentiment has a substantial 
effect on the price of the risky bond early in its life. We provide a formal result along 
these lines for arbitrary  α  and  β  below.

The risk premium perceived by the median investor is positive at first—though 
small because, as we will see, volatility is initially very low. As the bubble emerges, 
the median investor’s perceived risk premium turns negative and declines as senti-
ment drives the asset’s price up. But it then starts to rise, and ultimately turns  positive 
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toward the height of the bubble, as the terminal date  T  approaches (Figure 6, right 
panel).11

These facts have a striking implication: the median investor reverses his position 
twice over the lifetime of the bubble. He starts out long, as the representative inves-
tor at time 0. Following good news, he goes short as optimists drive the price higher 
than he thinks reasonable. But if good news keeps coming, he reverses position a 
second time to go long again at time  T − 1 .12

Implied volatility, as measured by the VIX index, rises as the bubbly asset expe-
riences repeated good news (Figure  7, left panel).13 Conversely, the VIX index 
declines as the risky bond experiences repeated bad news. The central asymmetry 
that separates the two examples is that risk considerations drive the price down and 
toward the extreme payoff for the risky bond, but down and away from the extreme 
payoff for the bubbly asset.

We can view the behavior of the median investor through this lens. As shown 
in equation (13), movements in VIX measure the difference in beliefs between the 
representative agent ( h =  H t,t   ) and the investor who is out of the market and on 
the boundary between the longs and shorts ( h =  h  t,t  ∗   ). As there is a limit to how 
optimistic the representative agent can become,   h  t,t  ∗    must eventually decline to open 
the gap as VIX rises along the bubble path (Figure 7, right panel, which should be 
contrasted with Figure 3, right panel)—to the extent that the median agent ends up 
long, i.e.,   h  t,t  ∗   < 1/2 .

We close this section with a result that applies for arbitrary values of  α  and  β . In 
order to formulate a clean statement, we consider the two extreme cases in which  ε  
tends to zero or to infinity. We refer to these as the risky bond limit and bubbly asset 

11 By contrast, in the risky bond example, the median investor perceives that the risk premium rises monotoni-
cally along the extreme price path.

12 Somewhat more optimistic agents are long for a more extended period at both the beginning and the end. For 
example, investor  h = 0.80  starts out long, goes short in period 5, and reverses position to go long again in period 
15, as can be seen in Figure 7, right panel.

13 The relationship between volatility and bubbles has been widely noted. For example, Cochrane (2003) links 
high volatility to the high prices of growth stocks around the turn of the millennium; more recently, Gao and Martin 
(2021) argue empirically that the high and rising level of implied volatility in the late 1990s points to bubbliness in 
the stock market at the time.
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Notes: Left: sentiment multipliers along the extreme paths. Log scale. Right: the risk premium on the bubbly asset, 
as perceived by the median investor.
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limit, respectively. The result formalizes a sense in which sentiment has most impact 
early in the life of a  left-skewed asset, but late in the life of a  right-skewed asset.

RESULT 5: Let  α > 0  and  β > 0  be arbitrary.
In the risky bond limit, the sentiment multiplier is less than 1 for  0 ≤ t ≤ T − 1 .  

Sentiment becomes less important over time along the extreme path: the multiplier 
increases monotonically from a minimum at time 0 to 1 at time  T .

In the bubbly asset limit, the sentiment multiplier is greater than 1 for  
0 ≤ t ≤ T − 1 . Sentiment becomes more important over time along the extreme 
path: the multiplier increases from time  0  toward a maximum at time  T − 1 , before 
dropping back to 1 at time  T .

C. Speculation on Sentiment

Many authors have noted that markets exhibit more volatility than seems justified 
by fundamental news; classic references include Shiller (1981) and Roll (1984). In 
our setting, investors may speculate on sentiment even if there is essentially no news 
arriving about fundamentals. In doing so, they generate excess volatility.

Consider an example in which the asset pays off  1/ (1 + ε)  , where  0 < ε < 1 , 
if there have been an even number of  up-moves by the terminal date, and  1/ (1 + ε)   
if there have been an odd number of  up-moves. Suppose further that  T  is odd, so that 
there are an even number of terminal nodes.

In a homogeneous economy with   H 
–
   = 1/2 , the asset trades at price   p –   = 1  at 

every node until the terminal payoff: there is therefore no volatility, and the asset is 
riskless until the final period.

With heterogeneity in beliefs, it follows from Result  1 that the initial price 
is 1 if the distribution of beliefs is symmetric around 1/2 (in the sense that 
 f  (h)  = f  (1 − h)   for all  h ).14 But sentiment creates volatility and  time-varying risk 

14 This implies that   c m   =  c T−m   , and hence as  T  is odd,   ∑ m=0  T     (−1)    m  c m   = 0 . Together with the fact that 
  ∑ m=0  T     c m   = 1 , this gives the result. (The initial price is also 1 if there is learning, as    c ̃   m   , defined in Result 3, also 
has the properties   ∑ m=0  T     (−1)    m    c ̃   m   = 0  and   ∑ m=0  T      c ̃   m   = 1 .)

Figure 7

Notes: Left: the evolution of the  one-period VIX index along the extreme paths. Right: the identity,  t , following 
consistently good news, of the representative agent,   H t,t    (solid); and of the investor who is fully invested in the risk-
less bond,   h  t,t  ∗    (dashed).
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premia in the minds of all investors. Suppose that beliefs are uniformly distributed, 
as they are in Figure 8, which illustrates with  T = 3  and  ε = 1/2 . Then, at time 
1, the risky asset’s price rises to  1/ (1 − ε/T)   if there is an  up-move but drops to 
 1/ (1 + ε/T)   if there is a  down-move.15

In equilibrium, our investors use the risky asset to speculate against each other. 
This cannot end well for all of them. If we write   피 ̃    to indicate a  cross-sectional 
mean and   R  0→T  

(h)    to denote the return on agent  h ’s chosen strategy, then we have 
  피 ̃     R  0→T  

(h)   =  R 0→T   , because (by market clearing) the  cross-sectional average return 
on investors’ strategies equals the return on aggregate wealth. It follows, by Jensen’s 
inequality, that  cross-sectional average realized utility is lower than it would be if all 
agents held the risky asset statically:

   피 ̃    log   R  0→T  
 (h)    < log  피 ̃     R  0→T  

 (h)    = log   R 0→T  . 

In this sense, speculation is socially costly. But every investor believes that specula-
tion is in his or her  self-interest: the ability to speculate raises expected utility above 
what is attainable by statically holding the risky asset. We return to this point in a 
more conventional example in Sections IIIC and IIID.

III. A Brownian Limit

In this section, we consider a natural continuous time limit by allowing the num-
ber of periods to tend to infinity and specifying geometrically increasing terminal 
payoffs. This is the setting of Cox, Ross, and Rubinstein (1979), in which the option 

15 This follows from Lemma 1 in the Appendix. There is also an equilibrium in which the asset’s price is 1 until 
time  T − 1 , as in the homogeneous economy. Then the market is incomplete, and agents have no means of betting 
against one another. But this equilibrium is not robust to vanishingly small generic perturbations of the terminal 
payoffs, which would restore market completeness.
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Notes: Speculation on sentiment.  Heterogeneous-economy price ( p ),  homogeneous-economy price (   _ p   ), and the 
 cross-sectional average expected excess return in the heterogeneous economy (ER).
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price formula of Black and Scholes (1973) emerges in the corresponding limit with 
homogeneous beliefs.

We divide the time interval from time 0 to time  T  into  2N  periods of length 
 T/ (2N)  . (The choice of an even number of periods is unimportant, but it sim-
plifies the notation in some of our proofs.) Terminal payoffs are   p m,T   = 
exp [2σ √ 

_
   T _ 2N     (m−N) ]  , as in the Cox, Ross, and Rubinstein (1979) model. As we will 

see,  σ  can be interpreted as the volatility of log terminal payoffs, on which all agents 
agree.

As the number of steps increases, the extent of disagreement over any individual 
step must decline to generate sensible limiting results. We achieve this by setting  
α = θN + η  √ 

_
 N    and  β = θN − η  √ 

_
 N    in (1), which makes the distribution of  h —

that is, of investors’ beliefs about the probability of a single  up-move—increasingly 
spiky as  N  increases. Small values of  θ  correspond to substantial belief heterogeneity, 
while the limit  θ → ∞  represents the homogeneous case. The parameter  η  allows 
for asymmetry in the distribution of beliefs. Using tildes to denote  cross-sectional 
means and variances, the  cross-sectional mean of  h  satisfies   피 ̃    [h]  =   1 _ 2   +   η _ 

2θ  √ 
_

 N  
    

and   ̃  var  [h]  =   1 _ 
8θN

   + O (  1 _ 
 N   2 

  )  .
Given that, by design, the  cross-sectional variance of  h  shrinks toward zero, it 

becomes convenient to parametrize an agent by the number of standard deviations,  
z =  (h −  피 ̃  h) / √ 

_
  ̃  var h   , by which his or her belief deviates from the mean. Thus an 

agent with  z = 2  is two standard deviations more optimistic than the mean agent. 
Standard results on the beta distribution imply that the  cross-sectional distribution 
of  z  is asymptotically standard Normal. When we use this parametrization, we write 
superscripts  z  rather than  h : for example,   피    (z)    rather than   피    (h)   .

Using Result 1 to price the asset, then taking the limit as  N → ∞ , we have the 
following result.

RESULT 6: The price of the asset at time 0 is

   p 0   = exp (  η _ θ   σ √ 
_

 2T   −   θ + 1 _ 
2θ    σ   2 T) . 

Consistent with Result 3, the price declines as beliefs become more heteroge-
neous (i.e., as  θ  decreases with  η/θ , and hence the mean level of optimism, held 
constant).

We now study agents’ return expectations.

RESULT 7: The return of the asset from time 0 to time  t  is lognormally distributed 
from the perspective of agent  z , with

   피    (z)   log   R 0→t   =   θ + 1 _ 
θ +   t _ T  

   (  zσ _ 
 √ 
_

 θT  
   +   θ + 1 _ 

2θ    σ   2 ) t 

   var    (z)   log   R 0→t   =   
(

  θ + 1 _ 
θ +   t _ T  

  
)

    
2

  σ   2 t. 
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Thus agents agree on the second moment but disagree on the first moment of log 
returns. Agents also agree that log returns are negatively autocorrelated, with more 
negative autocorrelations at longer horizons: for  t ≤ T/2 ,

   corr    (z)   (log   R 0→t  ,  log   R t→2t  )  = −   1 _____________  
 √ 

___________

  1 +   (1 +   θT _ t  )    
2
   
  . 

The annualized expected return of the asset from 0 to  t  is

    1 _ t    log   피    (z)   R 0→t   =   θ + 1 _ 
θ +   t _ T  

   
[
  zσ _ 
 √ 
_

 θT  
   +   θ + 1 _ 

2θ     
2θ +   t _ T  
 _ 

θ +   t _ T  
    σ   2 

]
 . 

The  cross-sectional mean (or median) expected return is

   피 ̃   [  
1 _ t    log   피    (z)   R 0→t  ]  =   

  (θ + 1)    2  (θ +   t _ 2T  )   _____________  
θ  (θ +   t _ T  )    

2
 
    σ   2 . 

Disagreement (that is, the  cross-sectional standard deviation of    1 _ t    log   피    (z)   R 0→t   ) is

   √ 
______________

   ̃  var  [  
1 _ t    log   피    (z)   R 0→t  ]    =   θ + 1 _ 

θ +   t _ T  
     σ _ 
 √ 
_

 θT  
  . 

Our next result characterizes option prices. The unusual feature of the result is not 
that option prices can be quoted in terms of the Black–Scholes formula, as this is 
always possible, but that the associated implied volatilities    σ ̃   t    can be expressed in a 
simple yet  nontrivial closed form. (We denote  risk-neutral variance with an asterisk 
in Result 8 and throughout the paper.)

RESULT 8: The time 0 price of a call option with maturity  t  and strike price  K  obeys 
the Black-Scholes formula with  maturity-dependent implied volatility    σ ̃   t   :

  C (t, K)  =  p 0  Φ (  
log     p 0   _ K   +   1 _ 2     σ ̃    t  2  t

  __________   σ ̃   t    √ 
_
 t    )  − KΦ (  

log     p 0   _ K   −   1 _ 2     σ ̃    t  2  t
  __________   σ ̃   t    √ 

_
 t    ) , 

 where   σ ̃   t   =   θ + 1 _  
 √ 
_

 θ (θ +   t _ T  )   
   σ ,

and  Φ  is the standard Normal cumulative distribution function. The VIX index (at 
time 0, for settlement at time  t ) is   𝑉𝐼𝑋 0→t   =   σ ̃   t   , and there is a variance risk pre-
mium, on which all agents agree:

    1 _ 
T

    ( var   ∗  log   R 0→T   − var  log   R 0→T  )  =    σ   2  _ θ  . 

In the limit as  θ → ∞ , implied and physical volatility are each equal to  σ  and 
there is no variance risk premium, as in Black and Scholes (1973). But with hetero-
geneity,  θ < ∞ , speculation boosts implied and physical volatility, particularly in 
the short run, and opens up a gap between the two in the long run. The existence of 
such a variance risk premium is a robust feature of the data; see, for example, Bakshi 
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and Kapadia (2003); Carr and Wu (2009); and Bollerslev, Gibson, and Zhou (2011). 
Holding option maturity fixed, implied volatility is constant across strikes (though 
this is not a general property of our framework: the Poisson limit of Section  4 
generates a volatility “smirk”). Note, however, that although belief heterogeneity 
increases implied volatility by the same amount at all strikes, this implies that its 
proportional impact on prices is greater for  out-of-the-money options.

To understand intuitively why there is a variance risk premium, note that for any 
tradable payoff  X  and stochastic discount factor (SDF)  M , one has the identity

(20)   var   ∗  X − var X =  R f    cov [M,   (X − κ)    2 ] , 

where   R f    is the gross riskless rate and  κ =  (피 X +  피   ∗ X) /2  is a constant.16 We 
apply this identity in our setting with  X = log   R 0→T    and   R f   = 1 . Different people 
agree on physical variance, as shown in Result 7, but the SDF and  κ = zσ  √ 

_
 T  / 

 (2  √ 
_
 θ  )   are  person-specific, so (20) specializes to

   var   ∗  log   R 0→T   − var  log   R 0→T   =  cov    (z)   [ M  0→T  
 (z)   ,   (log   R 0→T   −   zσ  √ 

_
 T   _ 

2  √ 
_
 θ  
  )    

2

 ] . 

From the perspective of the median agent ( z = 0 ), for example, the presence 
of a variance risk premium indicates that the SDF is positively correlated with 
   (log   R 0→T  )    2  , i.e., that bad times are associated with extreme values of   log   R 0→T   .

To see why this is the case, we will study individual agents’ trading strategies 
in the next section. For now, as a suggestive indication, the right panel of Figure 9 
shows the risk premia on options perceived by the median investor. In a homo-
geneous economy,  out-of-the-money call options have—as levered claims on the 
risky asset—high expected excess returns. With heterogeneous beliefs, the median 

16 We are not aware of any prior references to the identity (20) in the literature, and it may be of independent 
interest. It requires only that there is no arbitrage.
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Notes: Left: the term structures of implied and physical volatility. Right: expected excess returns on options of dif-
ferent strikes,  K , as perceived by the median investor,  z = 0 . Solid/dashed lines denote heterogeneous/homoge-
neous beliefs.
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 investor perceives that deep  out-of-the-money calls are so overvalued due to the 
presence of extremists that they earn negative expected excess returns.17

A Calibration.—We illustrate the predictions of the model in a simple calibration. 
We do so with the obvious (but important) caveat that our model is highly stylized; 
moreover, the results above show that the parameter  θ , which controls belief hetero-
geneity, simultaneously dictates several quantities that a priori need not be linked. 
The goal of the exercise is merely to point out that a single value of  θ  can generate 
predictions of broadly the right order of magnitude across multiple dimensions.

We set the horizon over which disagreement plays out to  T = 10  years, and we 
set  σ , which equals the volatility of log fundamentals (i.e., payoffs), to 12 percent. In 
our baseline calibration, we set  θ = 1.8 , which implies that  one-month,  one-year, 
and  two-year implied volatilities are  18.6 percent ,  18.2 percent , and  17.7 percent ,  
respectively, as shown in Table  1. These numbers are close to their empirically 
observed counterparts: in the data of Martin and Wagner (2019), mean implied vol-
atility is 18.6 percent, 18.1 percent, and 17.9 percent at the  one-month,  one-year, 
and  two-year horizons.

The  model-implied  cross-sectional mean expected returns are 3.2 percent and 
1.8 percent at the one- and  10-year horizons. For comparison, in the survey data of 
 Ben-David, Graham, and Harvey (2013), the corresponding  time-series average lev-
els of  cross-sectional average expected returns are 3.8 percent and 3.6 percent. The 
 cross-sectional standard deviations of expected returns (“disagreement”) at the one- 
and  10-year horizons are 4.2 percent and 2.8 percent in the model and 4.8 percent 
and 2.9 percent, on average, in the data of  Ben-David, Graham, and Harvey (2013).

An alternative interpretation of our model would interpret time 0 as a time 
when the market is preoccupied by some new phenomenon over which there is 
considerable disagreement. With 2008 in mind, one might imagine agents dis-
agreeing about the implications of the Lehman Brothers default and the likely 
severity of the ensuing recession; in early 2020, the  COVID-19 coronavirus was 
sweeping the world. On both occasions,  short-term measures of implied volatility 
rose to extraordinarily high levels. Within our model, heightened belief heteroge-
neity (low  θ ) generates steeply  downward-sloping term structures of volatility and 

17 This perception is qualitatively consistent with the findings of Coval and Shumway (2001), who “find con-
siderable evidence that both call and put contracts earn exceedingly low expected returns. A strategy of buying 
 zero-beta straddles has an average return of around  −3  percent per week.”

Table 1—Observables in the Model with  θ = 1.8  (Baseline) and  θ = 0.2  (Crisis) and,  Time-
Averaged, in the Data (in Percent)

Data Model ( θ = 1.8 ) Model ( θ = 0.2 )
1 month implied volume 18.6 18.6 70.5
1 year implied volume 18.1 18.2 58.8
2 year implied volume 17.9 17.7 50.9
1 year  cross-sectional mean risk premium  3.8  3.2 28.8
1 year disagreement  4.8  4.2 33.9
10 year  cross-sectional mean risk premium  3.6  1.8  5.0
10 year disagreement  2.9  2.8  8.5
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of risk premia. To capture scenarios such as these, the table also reports results for 
a “crisis” calibration with  θ = 0.2 . (For comparison, the implied volatility measure 
SVIX, introduced in Martin (2017), rose to 74.1 percent at the  one-month horizon 
and 45.9 percent at the  one-year horizon in late November 2008.) We plot the term 
structures of physical and implied volatilities, and of the average risk premium and 
disagreement, in the two calibrations in the online Appendix.

A. Speculation in Equilibrium

Our investors speculate using complicated dynamic trading strategies. These 
determine, for each investor, an equilibrium return on wealth that is a function of the 
return on the underlying risky asset. To express this in a convenient form, we make 
two definitions. First, we refer to the investor

(21)  z =  z g   = −   θ + 1 _ 
 √ 

_
 θ  
   σ  √ 

_
 T   

as the gloomy investor. There are, of course, more pessimistic investors ( z <  z g   ), 
but they are less gloomy in the sense that they perceive attractive opportunities asso-
ciated with short positions in the risky asset. Second, we introduce the notion of an 
 investor-specific target return   K    (z)    defined via

(22)   log   K    (z)   =   θ + 1 _ 
 √ 

_
 θ  
   zσ  √ 

_
 T   +   

 (θ + 1)  (2θ + 1) 
  ____________ 

2θ    σ   2 T. 

The target return represents the ideal outcome for investor  z : it is the realized return 
on the risky asset that maximizes wealth, and hence utility, ex post.

RESULT 9: Agent  z ’s equilibrium return on wealth,   R  0→T  
 (z)    , can be expressed as a 

function of the return on the risky asset,   R 0→T   , as

(23)   R  0→T  
 (z)    =  √ 

_

   θ + 1 _ θ     exp {  1 _ 
2
    (z −  z g  )    2  −   1 _  

2 (1 + θ)  σ   2 T
    [log  ( R 0→T  / K    (z)  ) ]    

2
 } . 

Thus agent  z ’s terminal wealth is maximized when   R 0→T   =  K    (z)   , and as

   피    (z)   log   R  0→T  
 (z)    =   1 _ 

2
    log    θ + 1 _ θ   +   

  (z −  z g  )    2  − 1
  _ 

2 (1 + θ)   , 

the gloomy investor has the lowest expected utility of all investors.

The left panel of Figure 10 shows how different investors’ outcomes depend on the 
realized return on the market. The  best-case scenario for investor  z  is that the target 
return is attained,   R 0→T   =  K    (z)   , in which case   R  0→T  

 (z)    =  √ 
_

   θ + 1 _ θ     exp {  1 _ 2    (z −  z g  )    2 }  . 
An extremist’s  best-case scenario is better than that of a moderate investor, because 
it is cheap to purchase claims to states of the world that extremists consider likely, 
as few people are extremists. Furthermore, the best case scenario for an optimistic 
agent  z > 0  is better than that of the symmetrically pessimistic investor—agent  
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−z < 0 —because there is more aggregate wealth to go around in good states than 
in bad states. There is a useful distinction between what investors expect to happen 
and what they would like to happen. (The distinction also exists, but is uninteresting, 
in  representative-agent models, as the target return is then infinite.) Using Result 7 
and equations (21) and (22), we can write

(24)   log   K    (z)   =  피    (z)   log   R 0→T   +  (z −  z g  ) σ √ 
_

 θT  . 

The gloomy investor would like to be proved right: his target log return equals his 
expected log return. Targets and expectations differ for all other investors.18 More 
optimistic investors have a target return that exceeds their expectations—i.e., they 
are best off if the risky asset modestly outperforms their expectations—while more 
pessimistic investors are best off if the risky asset modestly underperforms their 
expectations. But any investor does very poorly if the asset performs far better or 
worse than he or she anticipated, consistent with the discussion surrounding identity 
(20).

As our investors—who perceive different SDFs because they disagree on true  
probabilities but agree on asset prices—have log utility, their SDFs satisfy   
M  0→T  

 (z)    = 1/ R  0→T  
 (z)    . It follows that every investor’s SDF is a  U-shaped function of the 

market return, as shown in the right panel of Figure 10. Thus our model is consistent 
with the seemingly puzzling empirical evidence documented by a large literature 
starting from  Aït-Sahalia and Lo (2000) and Jackwerth (2000). By contrast, if beliefs 
were homogeneous the SDF   M 0→T   = 1/ R 0→T    would be a  downward-sloping func-
tion of the market return, as in conventional models.

In our baseline calibration, the median investor’s speculative strategy performs 
well, in the baseline calibration, even if the market itself “does nothing”: she earns 
a positive excess return,   R  0→T  

(0)   > 1 , even if the market’s realized return equals the 

18 Note, however, that maximizing (23) with respect to  z , we see that the richest investor for fixed   R 0→T    is the 
investor whose expectations are met in the sense that   log   R 0→T   =  피    (z)   log   R 0→T   .
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Figure 10

Notes:  Left: return on wealth, as a function of the realized return on the risky asset, for different agents. Dots indi-
cate the expected return on the risky asset perceived by each investor. Right: all investors have  U-shaped SDFs when 
beliefs are heterogeneous. The figure shows the SDF of the median investor, together with the SDF that would pre-
vail in a homogeneous economy.
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riskless rate,   R 0→T   = 1 . There are various ways to understand this fact. In dynamic 
terms, the median investor trades in contrarian fashion, increasing her position in the 
risky asset when its price falls and reducing her position when its price rises, as was 
the case in the simple example shown in the left panel of Figure 2. If the risky asset’s 
price ends up close to where it started, her speculative “buy low, sell high” trades are 
collectively profitable. Alternatively—as the model is dynamically complete—the 
strategy can be implemented statically via a portfolio of options, along the lines of 
Breeden and Litzenberger (1978).

RESULT 10: Investor  z  can implement her optimal strategy by holding a posi-
tion in the riskless bond together with put options at strikes  K <  p 0    K    (z)    and call 
options at strikes  K >  p 0    K    (z)   , with position size at strike   K  proportional to 

   
 ∂    2   R  0→T  

 (z)    _____ 
∂  R  0→T  2  

   (K)  . Thus she is long (short) options in regions in which   R  0→T  
 (z)     is convex 

(concave) as a function of   R 0→T   . In particular, if she is a moderate investor, in the 
sense that  z ∈  [ z g  , 0]  , then she will be short options with strikes close to 
 exp  피    (z)   log    p T   .

B.  Maximum-Sharpe-Ratio Strategies: A Cautionary Tale

As the log return on the risky asset is perceived as Normally distributed by all 
agents, we can use equation (23) to calculate the first and second (subjectively per-
ceived) moments of each agent’s chosen return. These are

   피    (z)   R  0→T  
 (z)    =   1 + θ _ 

 √ 
_

 θ (2 + θ)   
   exp [  

  (z −  z g  )    2  _ 
2 + θ  ] 

 and  피    (z)   [   R  0→T   
 (z) 2

  ]  =   1 + θ _ θ    √ 
_

   1 + θ _ 
3 + θ     exp [  

3  (z −  z g  )    2  _ 
3 + θ  ] , 

and together they pin down the Sharpe ratio of agent  z ’s chosen investment strategy. 
Similarly, the Sharpe ratio of a static investment in the risky asset can be calculated 
using Result 7.

We can contrast these with the maximum Sharpe ratios that investors perceive as 
attainable. We use the Hansen and Jagannathan (1991) bound to compute the latter; 
the bound can be attained as the market is dynamically complete.

RESULT 11: If  θ > 1 , the maximum Sharpe ratio (MSR) perceived by investor  z  is   

MSR  0→t  
 (z)    =  √ 

________

  var    (z)   M  0→t  
 (z)      , where

(25)   var    (z)   M  0→t  
 (z)    =   θ _  

 √ 
_

   θ   2  −   (t/T)    2   
   exp [  

  (z −  z g  )    2  t/T
 _ θ − t/T

  ]  − 1. 

Hence, the gloomy investor perceives the minimal maximum Sharpe ratio.
If  θ ≤ 1  then all investors perceive infinite Sharpe ratios at sufficiently long 

horizons.

AER11208.indb   2493AER11208.indb   2493 6/22/22   10:39 AM6/22/22   10:39 AM



2494 THE AMERICAN ECONOMIC REVIEW AUGUST 2022

It follows that the annualized MSR perceived by agent  z  over very short horizons 
is

(26)   lim  
t→0

      1 _  √ 
_
 t      MSR  0→t  

 (z)    =   
 |z −  z g  |  _ 
 √ 
_

 θT  
  . 

(We annualize, here and in the figures below, by scaling the Sharpe ratio by  1/ √ 
_
 t   .) 

This equals the instantaneous Sharpe ratio of the risky asset. But over longer hori-
zons, all agents believe that there are dynamic strategies with Sharpe ratios strictly 
exceeding that of the risky asset.

Although the gloomy investor perceives that it is impossible to earn positive 
Sharpe ratios in the very short run, as is clear from equation (26), he perceives that 
positive Sharpe ratios are attainable at longer horizons: by Result 11,

   MSR  0→T  
 ( z g  )    =  √ 

___________
    θ _ 

 √ 
_

  θ   2  − 1  
   − 1  . 

The left panel of Figure  11 shows that the maximum attainable Sharpe ratio 
exceeds the Sharpe ratio on a static position in the risky asset, indicating that all 
investors must trade dynamically (that is, must speculate) to achieve their perceived 
MSR. But the figure also shows that the Sharpe ratios that investors perceive on their 
own optimally chosen strategy are not in general close to the maximum Sharpe ratio 
or to the Sharpe ratio of the market.

More strikingly, Result 11 implies that if there is substantial disagreement,  θ ≤ 1 ,  
all investors perceive that arbitrarily high Sharpe ratios are attainable at long hori-
zons. At first sight, this might seem obviously inconsistent with equilibrium. But 
our investors are not  mean-variance optimizers so Sharpe ratios do not adequately 
summarize investment opportunities.19

To see why, we can study the strategies that achieve these maximal Sharpe 
ratios. By the work of Hansen and  Richard (1987), a MSR strategy for investor  
z  must take the form  a − b M  0→T  

 (z)     for some constants  a > 0  and  b > 0 , where 
 a = 1 + b 피    (z)   [ M  0→T  

 (z) 2
  ]  . As the return on wealth chosen by investor  z , which we 

derived in Result 9, reveals the investor’s SDF,   M  0→T  
 (z)    = 1/ R  0→T  

 (z)    , we can write an 
MSR return as

(27)   R  MSR,0→T  
 (z)    = 1 + b ( var    (z)   M  0→T  

 (z)    + 1)  −   b ____ 
 R  0→T  

 (z)   
  , 

where   var    (z)   M  0→T  
 (z)     is provided in equation (25) and  b  can be any positive constant 

(the free parameter reflecting the fact that any strategy can be combined with a 
position in the riskless asset without altering its Sharpe ratio). The right panel 
of Figure  11 plots the realized return   R  MSR,0→T  

 (z)     as a function of the risky return  
  R 0→T   , for investors  z = 0  and  z = 1  in the baseline calibration. The MSR strate-
gies could be implemented dynamically via a contrarian  market-timing strategy that 

19 For our investors, the correct  risk-adjusted measure of the attractiveness of investment opportunities is the 
expected log return. As shown in Result 9, this is finite for all investors for any  θ > 0 .
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goes long if the market sells off and short if the market rallies, thereby exploiting 
what investors view as irrational exuberance on the upside and irrational pessimism 
on the downside; or statically—by the logic of Result 10—via extremely short posi-
tions in  out-of-the-money call and put options.

We view this as a cautionary tale. If betas are calculated with respect to the mar-
ket return, or to any investor’s optimally chosen return, then MSR strategies—or 
factors that load up on tail risk—will earn large alphas. But our investors do not do 
mean–variance analysis, so alphas are not useful or interesting measures for them, 
and although it is possible to earn high Sharpe ratios via short option positions, these 
strategies are not remotely attractive: our investors prefer to choose strategies that lie 
well inside the mean–variance efficient frontier. Indeed, as MSR strategies feature 
the possibility of unboundedly negative gross returns, our investors would prefer to 
invest fully in (say) cash than to rebalance, even slightly, toward a MSR strategy.

Note, finally, that this is all true even in an ostensibly  well-behaved setting in 
which investors have log utility and the risky asset’s return is universally agreed 
to be lognormally distributed. In Section 4, we will show that in a limit featuring 
jumps, all investors perceive that arbitrarily high Sharpe ratios are attainable in any 
calibration.

C. Ex Ante Attitudes to Speculation

We have seen that investors believe that substantial gains in Sharpe ratio 
can be achieved by speculating. But Sharpe ratios do not adequately cap-
ture our investors’ attitudes to speculation. A better measure is provided by 
agent  z ’s perceived gain from speculation,   ξ    (z)   , which satisfies the equation 

  피    (z)   log   R  0→T  
 (z)    =  피    (z)   log  [ (1 +  ξ    (z)  )  R 0→T  ]  . This is the proportional increase in 

wealth that would leave investor  z  as happy, holding the market, as he or she would 
have been when allowed to speculate. More generally, we can ask what investor  z  
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Notes: Left: the annualized Sharpe ratios, from 0 to  T , that investors perceive on their own chosen strategies (solid) 
and on a static position in the risky asset (dashed); and the perceived maximum Sharpe ratio attainable through 
dynamic trading (dotted). Baseline calibration. Right: realized returns on the strategies chosen by investors  z = 0  
and 1 (solid) and the realized returns on their MSR strategies (dotted) as a function of the realized return on the 
risky asset. Log scale on  x -axis.
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thinks investor  x ’s gain from speculation is. When we do so, we assume that investor  
z  uses his or her own beliefs in assessing investor  x ’s expected utility, and we assume 
that other investors continue to trade, so that prices are unaffected by investor  x ’s 
absence: thus we wish to solve

(28)   피    (z)   log   R  0→T  
 (x)    =  피    (z)   log  [ (1 +  ξ    (z,x)  )  R 0→T  ]  

for   ξ    (z,x)   . (Note that   ξ    (z)   =  ξ    (z,z)   .) As   ξ    (z,x)    is a dollar measure of the gain from spec-
ulation, we can then aggregate over  x  to determine agent  z ’s view of the impact of 
speculation on social welfare. In doing so, we are committing to the utilitarian idea 
of cardinal utility that can be compared across people.

RESULT 12 (Ex ante attitudes to speculation): Investor  z ’s perception of investor 
 x ’s gain from speculation,   ξ    (z,x)   , is

   ξ    (z,x)   =  √ 
_

   θ + 1 _ θ     exp [   z   
2  − 1 _ 

2 (1 + θ)    −   
  (z − x)    2 
 _ 

2θ  ]  − 1. 

This is positive for investor types  x  that are sufficiently close to  z  and negative 
 otherwise. Aggregating over  x , investor  z ’s perception of the aggregate gain to spec-
ulation is

  ξ = exp 
[
−   1 _ 

2 (1 + θ)   ]  − 1, 

which is independent of  z  and negative for all  θ > 0 .

Ex ante, all investors perceive that the ability to speculate is in their own inter-
est and in the interest of investors with beliefs sufficiently similar to their own, 
as   ξ    (z,z)   > 0 . But they all also think that speculation is socially costly, as  ξ < 0 .  
In the terminology of Brunnermeier, Simsek, and  Xiong (2014), speculation is 
 belief-neutral inefficient, despite every investor finding it attractive.20 Moreover, as 
heterogeneity increases (i.e., as  θ  decreases) the degree of dissonance increases, in 
the sense that all investors perceive that speculation is increasingly beneficial for 
them personally but increasingly costly for the population as a whole.

One might wonder whether a sufficiently enlightened collection of individuals 
might agree to ban speculation. But if dynamic trade were shut down entirely, so that 
all agents had to trade once at time 0 and then hold their positions statically to time  
T , then equilibrium would not exist in the limit. To see this, write   ψ z    for the share of 
wealth invested by agent  z  in the risky asset. Given any positive time 0 price,   R 0→T    
is lognormal from every agent’s perspective by Result 7 (which applies even in 
the static case at horizon  T , because the terminal payoff is specified exogenously). 
Confronted with a lognormally distributed return, any agent  z  will choose   ψ z   ∈  
[0, 1]   to avoid the possibility of terminal wealth becoming negative. Market clearing 
requires that   ψ z   = 1  on average across agents, so we must in fact have   ψ z   = 1  for 

20 Brunnermeier, Simsek, and Xiong (2014) present some examples of economies with inefficient speculation 
in the presence of heterogeneous beliefs, but their examples have no aggregate risk.
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all  z , which is impossible: there is no positive price at which all agents choose to 
invest fully in the risky asset.

D. Ex Post Regret and Inequality

Ex post, there will always be some investors who are happy to have speculated—
because their chosen return   R  0→T  

 (z)     turned out to be higher than the static return   R 0→T   
—and others who are regretful (that is, whose realized utility is lower as a result of 
speculating than it would have been if they had held the risky asset statically).

On average, however, people are regretful, in the utilitarian sense that average 
realized utility is lower than it would have been had all agents held their original 
position, without trading. This is a direct consequence of inequality in the presence 
of risk aversion. To see this, we can measure inequality at time  T  using the Atkinson 
(1970) inequality index,   A T   , which satisfies21

(29)  log (1 −  A T  )  =  피 ̃   log  R  0→T  
 (z)    − log  R 0→T  . 

Average ex post regret,  log  R 0→T   −  피 ̃   log  R  0→T  
 (z)    , is therefore a function of ex post 

inequality,   A T   . Equation (29) shows that the Atkinson index can be interpreted as the 
fraction of wealth that could be sacrificed while holding social welfare constant, if 
wealth were redistributed equally across the population ex post.

The extent of ex post inequality depends on how surprising the realized outcome 
is, in the mind of the median investor—specifically, on the number of standard devi-
ations by which the realized log return on the risky asset exceeds the median inves-
tor’s expectation,

   s T   =   log  R 0→T   −  피    (0)   log  R 0→T     _________________  
 √ 
_

   var    (0)  log  R 0→T    
  . 

RESULT 13 (Ex post inequality): At time  T , the Atkinson inequality index satisfies

   A T   = 1 −  √ 
_

   θ + 1 _ θ     exp {−    s  T   2  _ 
2 (1 + θ)    −   1 _ 

2θ  } . 

Thus inequality is minimized if the realized log return on the risky asset meets the 
expectations of the median investor, and is high if the realized log return is far from 
the median investor’s expectations.

IV. A Poisson Limit

We now consider an alternative continuous time limit in which the risky asset is 
subject to jumps that arrive at times dictated (in the limit) by a Poisson process. We 

21 Atkinson (1970) defined a family of indices indexed by an inequality aversion parameter,  ε . In equation (29) 
we are considering the case  ε = 1 , which is widely used in practice and which has a natural interpretation in our 
equilibrium.
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think of this setting as representing a stylized model of insurance or credit markets 
in which credit events or catastrophes arrive suddenly and cause large losses.

We divide the period from 0 to  T  into  N  steps, and we will let  N  tend to infinity. 
We want the mean agent to perceive a jump arrival rate of  λ , and the  cross-sectional 
standard deviation to be of a similar order of magnitude. These considerations dic-
tate that the distribution of agent types  h  should be concentrated around a mean of  
1 − λdt  (so that the mean perceived probability of a  down-move is  λdt , where we 
write  dt = T/N ) and should have standard deviation  ωλdt  (so that a higher  ω  cor-
responds to a higher degree of disagreement). Exploiting the flexibility of the beta 
family (1), we therefore set

   α N   =   N _ 
 ω   2 λT

   and  β N   =   1 _ 
 ω   2 

  , 

which achieves the desired mean and standard deviation in the limit as  N → ∞ .
If there are no  down-moves, the terminal payoff is one; we assume that each 

 down-move causes the same proportional loss to the terminal payoff, so that the 
payoffs are   p m,T   =  e   − (N−m) J   for some constant  J . This setup might be viewed as 
a stylized model of a risky bond, for example. Our next result applies Result 1 to 
characterize pricing in the limit as  N → ∞ . In the limit, a  down-move corresponds 
to a Poisson jump. The price is only defined under an assumption that jumps are not 
too frequent or severe, and that there is not too much disagreement:

(30)   ω   2 λT  ( e   J  − 1)  < 1. 

(We will treat  J  as positive, so that jumps represent bad news, but our results go 
through for negative  J , in which case a jump represents good news and (30) is 
always satisfied.) As before, we parametrize investors by  z , which indexes the num-
ber of standard deviations more optimistic than the mean a given investor is; thus 
person  z  thinks that the Poisson process has jump arrival rate  λ (1 − zω)  . In contrast 
to the Brownian limit, investors now disagree about all moments of returns. We also 
modify our previous notation by writing   p q,t    for the price at time  t  if  q  jumps have 
occurred.

RESULT 14: The price at time  t , if  q  jumps have occurred, is

(31)   p q,t   =  e   −qJ   (1 −   
 ω   2 λ (T − t) 
 _ 

1 +  ω   2 λt
    ( e   J  − 1) )    

q+  1 _ 
 ω   2 

  

 . 

Investor  z ’s SDF at time  t  is a function of  q , the number of jumps that have 
occurred:

  M  0→t  
 (z)    =   

Γ (q +   1 _ 
 ω   2 

  ) 
 _ 

Γ (  1 _ 
 ω   2 

  ) 
    [1 −  ω   2 λT ( e   J  − 1) ]    

  1 _ 
 ω   2 

  
  

 ×  [1 −  ω   2 λT ( e   J  − 1) +  ω   2 λt  e   J ]    
−q−  1 _ 

 ω   2 
  
   [  

 ω   2  e   J  _ 
1 − zω  ]    

q

  e   λ (1−zω) t . 
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Expected utility is finite for all investors because   피    (z)  log  R  0→T  
 (z)    = − 피    (z)  log  M  0→T  

 (z)     is 
finite. But as   M  0→t  

 (z)     has infinite variance, all investors perceive that arbitrarily high 
Sharpe ratios are attainable.

Agent  z ’s return on wealth is   R  0→t  
 (z)    = 1/ M  0→t  

 (z)    , so the richest agent at time  t  can be 
identified by minimizing   M  0→t  

 (z)     with respect to  z , giving   z richest   =  (λt − q) / (ωλt)  .  
This agent perceives arrival rate   λ richest   = q/t , so has beliefs that appear correct in 
hindsight.

We can calculate the risky asset share of agent  z  by comparing the return on 
wealth with the return on the risky asset (which can be computed using the price 
(31)):

  risky share  t  
 (z)   = 1 +   ω _ 

 e   J  − 1
     [1 −    ω   2 λ _ 

1 +  ω   2 λT
    e   J  (T − t) ]    



    

>0 by assumption (30)

     1 +  ω   2 λt _ 
1 +  ω   2 q

   [  
ω (q − λt) 
 _ 

1 +  ω   2 λt
   + z]  .

The representative agent (whose risky share equals one) is therefore  z = −   ω (q − λt)  _ 
1 +  ω   2 λt

   ,  
with perceived jump arrival rate   λ rep,t   = λ +    ω   2 λt _ 

1 +  ω   2 λt
   (  q _ t   − λ)  . Thus initially 

the mean investor is representative. Subsequently, the representative investor’s 
perceived arrival rate grows if the realized jump arrival rate is higher than expected 
( q/t > λ ) and declines otherwise. For large  t , the representative investor perceives 
an arrival rate close to the historically realized arrival rate  q/t .

If  q  jumps have occurred by time  t , the investor who is out of the market perceives 
arrival rate

(32)   λ  t  ∗  =   1 + q  ω   2   _____________________   
1 −  ω   2 λT  ( e   J  − 1)  +  ω   2 λt  e   J 

    e   J λ. 

Agents who are more pessimistic, perceiving arrival rates higher than   λ  t  ∗  , are short 
the risky asset. They lose money while nothing happens, but experience sudden 
gains if a jump arrives. Conversely, agents who are more optimistic are long, so do 
well if nothing happens but are exposed to jump risk; one can think of the pessimists 
as having purchased jump insurance from the optimists.

It follows from equation (32) that if jumps are sufficiently large—if   e   J  − 1 ≥ 1 
—then   λ  t  ∗  ≥ λ  for all  t  and  q . In this case, the mean investor is never short the risky 
asset, no matter what happens. By contrast, in any calibration of the Brownian limit 
there are sample paths on which the mean investor goes short the risky asset.

The  risk-neutral arrival rate measures the cost of insuring against a jump. We will 
refer to it as the CDS rate,   λ  t  ∗  , as it equals the price (scaled by the length of contract 
horizon) of a very  short-dated CDS contract that pays $1 if there is a jump:

(33)   λ  t  ∗  =   lim   
ε→0

     1 _ ε    ℙ  t  ∗   (at least one jump occurs in  [t, t + ε] ) . 

We have already used   λ  t  ∗   to denote the arrival rate (32) perceived by the investor 
who is out of the market, but the next result shows that the two quantities coincide.

RESULT 15: The  risk-neutral arrival rate, or CDS rate, is   λ  t  ∗   as defined in 
equation (32).
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The CDS rate jumps when there is a Poisson arrival and declines smoothly as 
time passes during periods where there are no arrivals. (For comparison, the CDS 
rate is constant over time in the homogeneous case:   λ  hom  ∗   =  e   J λ .) Initially, when  
t = q = 0 , the CDS rate is unambiguously higher in the presence of belief 
heterogeneity:

   λ  0  ∗  =   1 _____________  
  1 −  ω   2 λT  ( e   J  − 1)   


    
∈ (0,1)  by assumption (30)

   
    e   J λ >  λ  hom  ∗  . 

By the terminal date,  t = T , we have   λ  T  ∗   =   1 + q  ω   2  _ 
1 + λT ω   2 

    λ  hom  ∗   . Thus   λ  T  ∗    may be larger 

or smaller than   λ  hom  ∗   , depending on whether the realized number of jumps exceeded 
the mean agent’s expectations ( q > λT ) or not.

Figure 12 shows how the equilibrium evolves along a particular sample path on 
which two jumps occur in quick succession, at times  t = 4  and  t = 5 . We set  
ω = 1 ,  λ = 0.05  and  T = 10  and assume that half of the fundamental value is 
destroyed every time there is a jump, that is,   e   −J  = 1/2 , or   e   J  − 1 = 1 . The figure 
shows a relatively unlucky sample path, on which the expectations of the pessimis-
tic agent  z = −3  are realized; for comparison, the mean agent only expected 0.5 
jumps over the ten years.

The left panel shows the evolution of the representative agent’s subjectively 
perceived arrival rate, and of the CDS rate. These two quantities decline smoothly 
during quiet periods with no jumps, but spike immediately after a jump arrives. 
(Similar patterns have been documented in catastrophe insurance markets by Froot 
and O’Connell 1999 and Born and Viscusi 2006, and have also been studied theo-
retically by Duffie 2010.) By contrast, in a homogeneous economy, each would be 
constant over time.

As we have seen, the CDS rate reveals the identity of the investor who is out of 
the market. More optimistic investors hold long positions in the risky asset, anal-
ogous to selling insurance or shorting CDS contracts. They accumulate wealth in 
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Notes: Left: the evolution of the representative agent’s subjectively perceived arrival rate, and of the CDS rate 
(i.e.,   risk-neutral arrival rate), in the heterogeneous and homogeneous economies, on a sample path with jumps 
occurring at times  t = 4  and  t = 5 . Right: the evolution over time of the wealth of four agents ( z = −3, −2, 0, 0.9 )  
on the same sample path.
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quiet times, but experience sudden losses when bad news arrives. Pessimistic inves-
tors, who perceive higher arrival rates than the CDS rate, are short the risky asset, 
which is analogous to buying insurance or going long CDS. Their wealth bleeds 
away during quiet times, but they experience sudden windfalls if bad news arrives.

The right panel plots the cumulative return on wealth for four different agents 
over the same sample path. The figure shows two pessimists, who are two and three 
standard deviations below the mean, and who therefore perceive arrival rates of 0.15 
and 0.20, respectively; the mean investor, with perceived arrival rate 0.05; and an 
optimist who is 0.9 standard deviations above the mean, with perceived arrival rate 
0.005. (All agents must perceive a positive arrival rate, and this imposes a limit on 
how optimistic an agent can be: as  ω = 1  in our calibration, we must have  z < 1 .)

The optimist and the mean investor are both long the asset (i.e., short jump insur-
ance) throughout the sample path. The two pessimists buy or sell insurance depending 
on whether the CDS rate is above or below their subjectively perceived arrival rates. 
By the time of the first jump, both are short the asset—long jump insurance—so expe-
rience sudden increases in wealth at  t = 4 . In this example, the positions of the four 
investors in the wealth distribution are reversed as a result of the first jump. As the 
CDS rate then spikes, the two pessimists reverse their positions temporarily, and are 
short jump insurance between times 4 and 5. At the instant the jump occurs at time 5, 
the  z = −3  pessimist is out of the market, so her wealth is unaffected by the jump. 
The  z = −2  pessimist is still selling insurance, however, so experiences a loss.

For completeness, we present an  option-pricing formula for the Poisson limit in 
the Online Appendix. Notably, the model generates a volatility smirk, with high vol-
atility at low strikes, and a  hump-shaped term structure of implied volatility.

V. Conclusion

We have presented a dynamic model in which individuals have heterogeneous 
beliefs. Short sales are allowed; all agents are  risk averse; and all agents are mar-
ginal. Wealth shifts toward agents whose beliefs are correct in hindsight, whether 
through luck or judgment, so the identity of the representative investor, “Mr. Market,” 
changes constantly over time, becoming more optimistic following good news and 
more pessimistic following bad news. These shifts in sentiment drive up volatility 
and induce speculation: that is, agents take on positions they would not wish to hold 
to maturity. Indeed, they may even temporarily trade in the opposite direction to 
their view of fundamental value.

We would expect these dynamics to be particularly important at times when 
investors are preoccupied by some phenomenon—a plane hits the World Trade 
Center, Lehman Brothers goes bankrupt, a novel coronavirus emerges, a war breaks 
out—around which there is considerable disagreement. At such times, markets are 
typically volatile, with steeply  downward-sloping term structures of implied volatil-
ity, as our model predicts.

Agents anticipate the future impact of sentiment, so payoffs in extreme states of 
the world acquire more importance. If payoffs are  right-skewed, as in our bubbly 
asset example, sentiment drives the price up. Conversely, if payoffs are  left-skewed, 
as in our risky bond example, sentiment drives the price down. The dynam-
ics of  sentiment are quite different in the two cases. In the risky bond example, 
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the  possibility of bad news, and hence negative sentiment, in future drives prices 
sharply down today. By contrast, in the bubbly asset example, good news has little 
effect at first, but positive sentiment gathers pace and volatility (as measured by the 
VIX index) rises over time as the bubble develops. Remarkably, the median inves-
tor reverses his position twice over the course of the bubble: he starts out bullish; 
becomes bearish as more optimistic investors pump up the asset price; and finally 
turns bullish again at the height of the bubble.

The Brownian and Poisson  continuous-time limits embed these phenomena in 
a richer setting. We characterize how all agents speculate, and various insights 
emerge. Extremists drive up both true (“ ℙ ”) and implied (“ ℚ ”) volatility, and this 
induces moderates to trade in a contrarian way, or equivalently—in our dynam-
ically complete model—to take positions that are “short volatility,” i.e.  short 
options. Moderate agents perceive deep  out-of-the-money options as extraordi-
narily overvalued; as a result, their SDFs are U-shaped. Indeed, strategies that short 
these options very aggressively can earn extremely high (or even, in some settings, 
infinite) Sharpe ratios. Such strategies are exposed to tail risk, however, and their 
unattractive  higher-moment properties mean that our investors would not want to 
invest even a tiny fraction of their wealth in a  maximum-Sharpe-ratio strategy. We 
view this as a cautionary tale. The use of alphas and Sharpe ratios as performance 
measures is pervasive in the finance literature; but they are economically meaning-
less in our setting.

Each investor perceives speculation as being in his or her own interest; but also 
thinks that the average investor would be better off (at prevailing market prices) sim-
ply holding their endowment statically instead of speculating. One might therefore 
wonder whether a sufficiently enlightened collection of individuals should agree to 
ban speculation in order to move to an equilibrium in which investors trade just once, 
at time zero. But, as we show in the Brownian limit, doing so can cause the market 
to collapse entirely when agents have heterogeneous beliefs. The ability to trade 
dynamically is therefore a mixed blessing. It makes speculation possible, thereby 
creating inequality and ex post regret for the average investor; but it also enables 
investors to rebalance to avoid bankruptcy if the market starts to move against them. 
This makes it possible for investors to lever up and to  short-sell, and hence permits 
the existence of equilibrium.

Appendix A. Proofs of Results

PROOF OF RESULT 1:
Observe from the recurrence relation (14) that   z 0,0    is a linear combination of 

the reciprocals of the terminal payoffs,   z 0,0   =  ∑ m=0  T     c m    z m,T   . Each coefficient   c m    is 
a sum of products of terms of the form   H j,s    and  1 −  H j,s    over appropriate  j  and 
 s . In order to better handle these products it will be helpful to introduce 
  J m,t    (h)  =  h   m   (1 − h)    t−m  f  (h)  ∝  w h     f  (h)  . Then   ∫ 0  1    J m,t    (h) dh ∝  ∫ 0  1    w h    f  (h) dh = p , 
and hence

(A1)   H m,t   =   
 ∫ 0  1   h  w h    f  (h) dh

  _________ p   =   
 ∫ 0  1   h  J m,t    (h) dh

  _________  
 ∫ 0  1    J m,t    (h) dh

   =   
 ∫ 0  1    J m+1,t+1   (h) dh

  ___________  
 ∫ 0  1    J m,t    (h) dh
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and

(A2)  1 −  H m,t   =   
 ∫ 0  1    J m,t+1   (h) dh

  __________  
 ∫ 0  1    J m,t    (h) dh

  . 

We first show that path independence holds, so that all the possible ways of 
getting from the initial node to node  m  at time  T  make an equal contribution to   
c m   . It suffices to show that, starting from any node, the  risk-neutral probability of 
 down-up equals the  risk-neutral probability of  up-down. That is, for any  m  and 
 t ,   h  m,t  ∗   (1 −  h  m+1,t+1  ∗  )  =  (1 −  h  m,t  ∗  )  h  m,t+1  ∗   . Rewriting equation (8) to insert sub-
scripts, we have

(A3)   h  m,t  ∗   =  H m,t     
 p m,t   _  p m+1,t+1     and 1 −  h  m,t  ∗   =  (1 −  H m,t  )   

 p m,t   _  p m,t+1    . 

It follows that we have path independence if and only if   H m,t   (1 −  H m+1,t+1  )  = 
 (1 −  H m,t  )  H m,t+1   . But this follows immediately from equations (A1) and (A2).

By path independence, we have

   c m   =  (  T   m  )  (1 −  H 0,0  ) ⋯ (1 −  H 0,T−m−1  )  H 0,T−m    H 1,T−m+1  ⋯ H m−1,T−1  . 

Equations (A1) and (A2) allow us to write   c m    as a telescoping product:

   c m   =  (  T   m  )    
 ∫ 0  1    J m,T    (h) dh

 _________  
 ∫ 0  1    J 0,0    (h) dh

   

  =  (  T   m  )  ∫ 
0
  
1
    h   m   (1 − h)    T−m  f  (h) dh. 

If  f  (h)   is the PDF of a  Beta (α, β)   distribution, we can evaluate the integral explicitly 
to give

   c m   =  (  T   m  )    
B (α + m, β + T − m) 

  _______________  
B (α, β)   . 

This quantity is the probability that a random variable with  beta-binomial dis-
tribution with parameters   (T, α, β)   equals  m . Thus the price at time zero satisfies 
  p  0,0  −1  = 피 [ p    m ̃  ,T  −1  ]  , where the expectation is over   m ̃   ∼ BetaBinomial (T, α, β)  . For 
future reference, we note that the mean and variance of a  BetaBinomial (T, α, β)   
random variable are  Tα/ (α + β)   and  Tαβ  (α + β + T) / [  (α + β)    2  (α + β + 1) ]  , 
respectively.

The  risk-neutral probability of ending at node   (m, T)  ,   q  m  ∗   , can be determined using 
(A3) and  path-independence:

  q  m  ∗   =  (  T   m  )  (1 −  h  0,0  ∗  ) ⋯ (1 −  h  0,T−m−1  ∗  )  ⋅  h  0,T−m  ∗    h  1,T−m+1  ∗  ⋯ h  m−1,T−1  ∗   

  =  (  T   m  )  (1 −  H 0,0  )    
 p 0,0   ___  p 0,1    ⋯ (1 −  H 0,T−m−1  )    

 p 0,T−m−1   _____  p 0,T−m    

 ⋅  H 0,T−m      p 0,T−m   _____  p 1,T−m+1    ⋯ H m−1,T−1     
 p m−1,T−1   _____  p m,T     

  =  c m     
 p 0,0   _  p m,T     . ∎ 
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We also have the following generalization of Result 1, which gives the (inverse 
of) the price of the risky asset at node   (m, t)  . We omit the proof, which is essentially 
identical to the above.

LEMMA 1: At node   (m, t)  , we have   z m,t   =  ∑ j=0  T−t    c m,t,j    z m+j,T   , where  j  represents the 
number of further  up-moves after time  t , and

   c m,t,j   =  (  T − t   j  )    
 ∫ 0  1    h   m+j   (1 − h)    T−m−j  f  (h) dh

   ____________________   
 ∫ 0  1    h   m   (1 − h)    t−m  f  (h) dh

  . 

If, in particular,  f  (h)   is the PDF of a  Beta  (α, β)   distribution, then

   c m,t,j   =  (  T − t   j  )    
B (α + m + j, β + T − m − j) 

   ____________________   
B (α + m, β + t − m)   . 

This is the probability that a random variable with  BetaBinomial (T − t, α + m, 
β + t − m)   distribution equals  j ∈  {0, …, T − t}  .

Moreover, the  risk-neutral probability of ending up at node   (m + j, T)   starting 
from node   (m, t)   is given by

   q  m,t,j  ∗   =  c m,t,j     
 p m,t   _  p m+j,T    . 

PROOF OF RESULT 2:
At time  t , following  m   up-moves, let the investor’s posterior belief about the prob-

ability of an  up-move be denoted by   h m,t   . In this general case we assume the belief   
h 0    of the representative agent has a density function  f  (h)  . Then, using Bayes’ rule, 
the posterior density function,   f m,t   (⋅)  , satisfies

   f m,t   (h)  =   
 h   m   (1 − h)    t−m  f   (h) 

  ________________  
 ∫ 0  1    h   m   (1 − h)    t−m  f  (h) dh

  . 

If for instance  f  (h)   is the density function of a  Beta (α, β)   distribution, then   f m,t   (h)   is 
the probability density function of a  Beta (α + m, β + t − m)   distribution. Thus, in 
particular, using equation (A1):

(A4)  피 [ h m,t  ]  =   
 ∫ 0  1    h   m+1   (1 − h)    t−m  f  (h) 

  ________________  
 ∫ 0  1    h   m   (1 − h)    t−m  f  (h) dh

   =  H m,t  . 

That is, the expected belief of the representative agent is the same as the 
 wealth-weighted belief in the heterogeneous economy.

The agent’s portfolio problem at time  t , following  m  up moves, is therefore

   max   x h  
    피 [ h m,t   log ( w h   −  x h   p +  x h    p u  )  +  (1 −  h m,t  ) log ( w h   −  x h   p +  x h    p d  ) ] , 
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with associated  first-order condition

   x h   =  w h   (  
피 [ h m,t  ]  _ p −  p d     −   

1 − 피 [ h m,t  ]  _  p u   − p  ) . 

Market clearing dictates that   x h   = 1  and   w h   = p . Thus

  p =    p u    p d    ____________________   
피 [ h m,t  ]  p d   +  (1 − 피 [ h m,t  ] )  p u  

  . 

By equation (37), this is equivalent to the price (6) in the heterogeneous economy. ∎

PROOF OF RESULT 3:
We use the fact (noted in the proof of Result 1) that the price at time zero satisfies   

p  0,0  −1  = 피 [ p    m ̃  ,T  −1  ]  , where the expectation is over   m ̃   ∼ BetaBinomial (T, α, β)  . Note 
that an increase in belief heterogeneity corresponds to a decrease in  α  and  β  with  
α/β  held constant. The key to the proof is then the following lemma. We presume 
it is well known but have not found a reference, so we include a proof in the online 
Appendix.

LEMMA 2: If    m ̃   1   ∼ BetaBinomial (T,  α –  , λ α –  )   and    m ̃   2   ∼ BetaBinomial (T,  α ¯  , λ α ¯  )  , 
where   α –   >  α ¯    and  λ > 0 , then    m ̃   1    second order stochastically dominates    m ̃   2   .

If    m ̃   1    second order stochastically dominates    m ̃   2    then  피 [u (  m ̃   1  ) ]  ≥ 피 [u (  m ̃   2  ) ]   for 
any concave function  u ( ⋅ )   (Rothschild and Stiglitz 1970). Therefore, if  1/ p m,T    is 
 convex (so that  −1/ p m,T    is concave) then  피 [1/ p   m ̃   1  ,T  ]  ≤ 피 [1/ p   m ̃   2  ,T  ]  , from which 
the first part of the result follows. If instead  1/ p m,T    is concave, then the inequality is 
reversed. Finally,  log-concavity of  p  is equivalent to    ( p ′  )    2  ≥ p p ″   . This implies that  
2  ( p ′  )    2  ≥ p p ″   , which is equivalent to  1 / p  being convex. ∎

PROOF OF RESULT 4:
As the beta distribution is conjugate to the binomial distribution, investor  h ’s  

posterior probability of an up move at node   (m, t)   follows the distribution 

   h ̃   m,t   ∼ Beta (ζh + m, ζ (1 − h)  + t − m)  ; thus  피 [  h ̃   m,t  ]  =  (h + m/ζ) / (1 + t/ζ)  . 
The agent’s  first-order condition is therefore

   x h   =  w h   (  
  h + m/ζ _____ 
1 + t/ζ   ______ p −  p d     −   

1 −   h + m/ζ _____ 
1 + t/ζ    _________  p u   − p  ) . 

As in the main text, we have suppressed the dependence of asset demand   x h    (and, 
below, of  p  and   h   ∗  ) on  m  and  t  for notational convenience.

Starting from node   (m, t)  , the wealth of an investor is   w h   +  x h   ( p u   − p)  = 
 w h     

h + m/ζ _ 
 h   ∗  (1 + t/ζ)     following an  up-move (i.e.,  at node   (m + 1, t + 1)  ) or 

  w h   +  x d   ( p d   − p)  =  w h   (1 −   h + m/ζ _ 
1 + t/ζ  ) / (1 −  h   ∗ )   following a  down-move (i.e.,  at 
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node   (m, t + 1)  ). It follows, by induction, that the wealth of an investor at 
node   (m, t)   is   w h   =   λ ̃   path   ⋅  I m,t   (h)  , where

(A5)
  I m,t    (h)  =    (1 − h)  

(
1 −   h _ 

1 +   1 _ ζ  
  
)

 … 
(

1 −   h _  
1 +   t − m − 1 _ ζ  

  
)

      



     

t−m down moves

        
(

  h _ 
1 +   t − m _ ζ  

  
)

 … 
(

  
h +   m − 1 _ ζ  
 _ 

1 +   t − 1 _ ζ  
  
)

    



    

m up moves

    

  =   
B (ζh + m, ζ (1 − h)  + t − m)    ____________________   

B (ζh, ζ (1 − h) ) 
  . 

(The ordering of up- and  down-moves is immaterial because  피 [1 −   h ̃   m,t  ] 피 [  h ̃   m,t+1  ]  = 
피 [  h ̃   m,t  ] 피 [1 −   h ̃   m+1,t+1  ]  .) As initial wealth does not depend on  h , we have    
I 0   (h)  = 1 . We can find the constant    λ ̃   path    by equating aggregate wealth to the value 
of the risky asset:

(A6)  p =   λ ̃   path   ∫ 
0
  
1
    I m,t    (h)  f  (h) dh. 

To clear the market, we must have

(A7)  1 =   λ ̃   path    [
 ∫ 

0
  
1
    I m,t    (h)  

(
  
  h + m/ζ _____ 
1 + t/ζ   ______ 
p −  p d  

   −   
1 −   h + m/ζ _____ 

1 + t/ζ    _________  p u   − p
  

)
  f  (h)   dh

]  .

If we define

(A8)   G m,t   =   
 ∫ 0  1    I m,t    (h)  (h + m/ζ)  f  (h) dh

   __________________   
 (1 + t/ζ)  ∫ 0  1    I m,t    (h)  f  (h) dh

   =   
 ∫ 0  1    I m+1,t+1   (h)  f  (h) dh

  ______________  
 ∫ 0  1    I m,t    (h)  f  (h) dh

   

then one can check that

(A9)  1 −  G m,t   =   
 ∫ 0  1    I m,t+1   (h)  f  (h) dh

  ____________  
 ∫ 0  1    I m,t    (h)  f  (h) dh

  . 

In these terms, equations (A6) and (A7) imply that

    1 _ p   =   
 G m,t   _ p −  p d     −   

1 −  G m,t   _  p u   − p  . 

Defining   z m,t   = 1/p ,   z m+1,t+1   = 1/ p u   , and   z m,t+1   = 1/ p d   , we can rewrite this as

   z m,t   =  G m,t    z m+1,t+1   +  (1 −  G m,t  )  z m,t+1  . 

By backward induction, and using the fact that   (1 −  G m,t  )  G m,t+1   = 
 G m,t   (1 −  G m+1,t+1  )  , we have   z 0,0   =  ∑ m=0  T     c ̃   m   ⋅  z m,T   , where    c ̃   m   =  (  T   m )  (1 −  G 0,0  ) ⋯ 
(1 −  G 0,T−m−1  )  G 0,T−m  ⋯ G m−1,T−1   . Using equations (A8) and (A9) to evaluate this 
as a telescoping product,

    c ̃   m   =  (  T   m  )  ∫ 
0
  
1
    I m,T    (h)  f  (h) dh, 

which completes the proof of the first part of the Result.
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To prove the second part of the result, note from (A5) that   (  T   m )  I m,T   = 
ℙ ( m ̃   = m)   where   m ̃   ∼ BetaBinomial (T, ζh, ζ (1 − h) )  , so   z 0,0   =  ∫ 0  1   피 [ z  m ̃    ]  f  (h) dh .  
If    m ̃   i   ∼ BetaBinomial (T,  ζ i   h,  ζ i   (1 − h) )   for  i = 1, 2 , where   ζ 1   >  ζ 2   , then    m 1   ̃    sec-
ond order stochastically dominates    m 2   ̃    by Lemma 2. It follows that if   z m    is convex, 
 피 [ z   m ̃   1    ]  < 피 [ z   m ̃   2    ]   for all  h , and hence   p  0,0  

 (1)    >  p  0,0  
 (2)    . Also by Lemma 2, the 

converse is true if   z m    is concave. ∎

PROOF OF RESULT 5:
We will repeatedly use the fact that  Γ (z + 1) /Γ (z)  = z  without comment. In the 

risky bond limit,   (1 − ε) /ε → ∞ , so the sentiment multiplier (19) simplifies to

(A10)  g (t)  =   (  α _ α + β  )    
T−t

    
Γ (α + t) Γ (α + β + T) 

   ________________   
Γ (α + T) Γ (α + β + t)   . 

It follows that  g (t)   is increasing:

   
g (t + 1) 
 _ 

g (t)    =   α + β _ α     
Γ (α+ t + 1) 

  _ 
Γ (α + t)      

Γ (α + β + t) 
  ____________  

Γ (α + β + t + 1)    =   α + β _ α     α + t _ α + β + t   ≥ 1. 

In the bubbly asset limit,   (1 − ε) /ε → −1 , so the sentiment multiplier (19) sim-
plifies to

(A11)  g (t)  =   
1 −   (  α _ α + β  )     T−t 

  __________________   
1 −   Γ (α + T)  _ 

Γ (α + t)      
Γ (α + β + t)   _  
Γ (α + β + T)   

  . 

Write  x (t)  =   [α/ (α + β) ]    
T−t

   and  y (t)  = Γ (α + T) Γ (α + β + t) / [Γ (α + t)  
× Γ (α + β + T) ]  , so that

  g (t)  =   
1 − x (t) 
 _ 

1 − y (t)    and g (t + 1)  =   
1 − x (t + 1) 

  _  
1 − y (t + 1)    =   

1 − x (t)    α + β _ α  
  ____________  

1 − y (t)    α + β + t
 _ α + t  
  . 

It follows that  g (t + 1)  > g (t)   if and only if

(A12)    t _ α + t   x (t) y (t)  +   α _ α + t   y (t)  > x (t) . 

We can write

  y (t)  =   α + t _ α + β + t      
α + t + 1  ___________  α + β + t + 1   ⋯   α + T − 1  ___________  α + β + T − 1  , 

which implies that

(A13)  y (t)  >   (  α + t _ α + β + t  )    
T−t

 . 

We can use this fact to establish that inequality (A12) holds, as required:

   t _ α + t   x (t) y (t)  +   α _ α + t   y (t)  >   t _ α + t    (  α _ α + β    α + t _ α + β + t  )    
T−t

  +   α _ α + t    (  α + t _ α + β + t  )    
T−t

  

 >   (  t _ α + t     
α _ α + β     α + t _ α + β + t   +   α _ α + t     

α + t _ α + β + t  )    
T−t

  

 = x (t) . 
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The first inequality uses the definition of  x (t)   and (A12); the second is Jensen’s 
inequality. ∎

PROOF OF RESULT 6:
As discussed in the proof of Result 1, and noting that we have  2N  periods in 

total, we can write   p  0,0  −1  = 피 [ z  m ̃  ,T  ]  = 피 [ e   −σ √ 
_

 2T      m ̃  −N _ 
 √ 
_

 N  
   ]  , where   m ̃   ∼ BetaBinomial 

(2N, α, β)   and  α = θN + η  √ 
_

 N    and  β = θN − η  √ 
_

 N   . Paul and Plackett (1978) 
show that   m ̃   , appropriately shifted by its mean and scaled by its standard devia-
tion, converges in distribution and in  moment-generating function (MGF) to 
a Normal random variable. The mean of   m ̃    is  2Nα/ (α + β)  , and its variance is 
 2Nαβ (α + β + 2N) / [  (α + β)    2  (α + β + 1) ]  . Thus   ( m ̃   − N −   η _ θ    √ 

_
 N   ) / √ 
_

   1 + θ _ 
2θ   N   

⟶ Ψ ∼ N (0, 1)   and   p  0,0  −1  → 피 exp [−σ  √ 
_

 2T   (Ψ √ 
_

   1 + θ _ 
2θ     +   η _ θ  ) ]  = exp [−   η _ θ   σ  

×  √ 
_

 2T   +   θ + 1 _ 
2θ    σ   2 T]  . ∎

PROOF OF RESULT 7:
Fix  t , and write  ϕ = t/T . Consider the perspective of agent  h  at time 0: for her,  

m  (the number of  up-moves that have occurred by time  t ) has a binomial distribution 
with mean  2ϕNh  and variance  2ϕNh (1 − h)  . Hence, by the Central Limit Theorem, 
we can standardize  m  so that it converges in distribution and in MGF to a standard 

Normal distribution as  N → ∞ :    
 (m − 2ϕNh)  _________  

 √ 
_

  2ϕNh (1 − h)   
   → N (0, 1)  . Again, we emphasize 

that we are taking the perspective of agent  h .
When we take the limit as  N → ∞ , it is convenient to parametrize the inves-

tor type by  z =  (h −  피 ̃  h) / √ 
_

  ̃  var h   , as described in the main text. Similarly, we 

will parametrize  m  via  ψ =   m −  피    (0)   [m]  _ 
 √ 
_

  var    (0)   [m]   
   , the number of standard deviations 

by which  m  exceeds the expectations of the mean investor. Thus  m = ϕN + 
 (  ψ _ 

 √ 
_
 2  
   +   η _ θ    √ 

_
 ϕ  )  √ 
_

 ϕN   . (Here and throughout the proof, we neglect terms of lower 

order in  N , which will be irrelevant in the limit.) In this notation,    m − 2ϕNh
 _  

 √ 
_

  2ϕNh (1 − h)   
   → 

N (0, 1)   can be rewritten as

(A14)  ψ −    √ 
_

 ϕ   _ 
 √ 

_
 θ  
   z → ξ ∼ N (0, 1) . 

At time  t , we have (by Lemma 1)   p  m,t  −1  = 피 [ e   −σ √ 
_

 2T     m+ j ̃  −N
 _ 

 √ 
_

 N  
   ]  , where the expecta-

tion is over   j ̃   ∼ BetaBinomial (2 (1 − ϕ) N, α + m, β + 2ϕN − m)  . After substi-
tuting in  α  and  β , as given in the main text, together with the parametrization of  
m  described above, we can standardize   j ̃    so that it converges in distribution and in 
MGF to a standard Normal random variable, as in the proof of Result 6, and we have 
the realized price, at time  t , as a function of  ψ :

(A15)   p t   = exp (−   1 − ϕ _ 2     θ + 1 _ θ + ϕ    σ   2 T +   η _ θ   σ  √ 
_

 2T   +   θ + 1 _ ϕ + θ   σ √ 
_

 ϕT  ψ) . 
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Thus, from (A14) and (A15), the investor perceives   p t    as lognormally distributed, 
and

   피    (z)   log  p t   =   
t (θ + 1)   z _ 

 √ 
_
 θ  
   σ  √ 

_
 T   −   1 _ 2   (T − t)  (θ + 1)  σ   2  T

    ____________________________   θT + t   +   η _ θ   σ  √ 
_

 2T  

and

  var    (z)   log  p t   =  σ   2 t  
(

  θ + 1 _ 
θ +   t _ T  

  
)

    
2

 . 

Her expected return is therefore

   피    (z)   [ R 0→t  ]  =  피    (z)   [  
 p t   _  p 0,0    ] 

 = exp {  
ϕ (θ + 1) 
 _ θ + ϕ   [  z _ 
 √ 

_
 θ  
   σ  √ 

_
 T   +   θ + 1 _ 

2
   (  1 _ θ   +   1 _ θ + ϕ  )  σ   2 T] } . 

The  cross-sectional average expectation and disagreement follow immediately, 
using the fact that  z  has zero  cross-sectional mean and unit variance.

To find the autocorrelation of returns, let  m  and  m + j  be random variables rep-
resenting the number of  up-moves by times   t 1    and   t 2    respectively. As above, we 
have    m − 2 ϕ 1  Nh

 ___________  
 √ 

___________
  2 ϕ 1  Nh (1 − h)   
   →  ξ 1    and    m + j − 2 ϕ 2  Nh

  ___________  
 √ 

___________
  2 ϕ 2  Nh (1 − h)   
   →  ξ 2    as  N → ∞ , where   ξ 1  ,  ξ 2    are 

standard Normal,   √ 
_

  ϕ 2     ξ 2   =  √ 
_

  ϕ 1     ξ 1   +  √ 
_

  ϕ 2   −  ϕ 1     Ξ , and  Ξ ∼ N (0, 1)   is indepen-
dent of   ξ 1   . We then have

 cov (log  R 0→ t 1    , log  R  t 1  → t 2    )  = cov [  
θ + 1 _  ϕ 1   + θ   σ √ 

_
  ϕ 1  T   ξ 1  ,   

θ + 1 _  ϕ 2   + θ   σ √ 
_

  ϕ 2  T   ξ 2   −   θ + 1 _  ϕ 1   + θ   σ √ 
_

  ϕ 1  T   ξ 1  ]  

  =   
  (θ + 1)    2 
 _ 

  ( ϕ 1   + θ)    2 
      ϕ 1   −  ϕ 2   _  ϕ 2   + θ    σ   2  ϕ 1  T. 

Moreover,  var [log  R 0→ t 1    ]  =     (θ + 1)    2  _ 
  ( ϕ 1   + θ)    2     σ   2  ϕ 1  T , and using the fact that  var [log  R  t 1  → t 2    ]  = 

var [log ( p  t 1    ) ]  + var [log ( p  t 2    ) ]  − 2cov (log ( p  t 1    ) , log ( p  t 2    ) )  , we have

 var [log  R  t 1  → t 2    ]  =   
  (θ + 1)    2 

  ______________  
  ( ϕ 1   + θ)    2   (θ +  ϕ 2  )    2 

    σ   2  ϕ 1  T [  ( ϕ 2   + θ)    2  +    ϕ 2   _  ϕ 1  
     ( ϕ 1   + θ)    2  − 

 2 ( ϕ 1   + θ)  ( ϕ 2   + θ) ] . 

Combining these, we find the expression for the autocorrelation given in the result. ∎

PROOF OF RESULT 8:
Note that  2ϕN  is the number of periods corresponding to  t = ϕT . Writing   q m,t    for 

the  risk-neutral probability of going from node   (0, 0)   to node   (m, t)  , we have (as in 
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Lemma 1)   q m,t   =    p 0   _  p m,t      c m,t   , where   c m,t   =  ( 2ϕN   m  )    
B (α + m, β + 2ϕN − m)   ______________  

B (α, β)    . As the riskless 

rate is 0, the time zero price of a call option with strike  K , maturing at time  t , is

 C (0, t; K)  =   ∑ 
m=0

  
2ϕN

   q m,t     ( p m,t   − K)    +   =  p 0    ∑ 
m=0

  
2ϕN

   c m,t     (1 −   K _  p m,t    )    
+
   =  p 0   피 [  (1 −   K _  p m,t    )    

+
 ] . 

The expectation is over  m ∼ BetaBinomial (2ϕN, α, β)   which is asymptotically 
Normal as above. Using (A15) to substitute for the price we have, in the limit,

  C (0, t; K)  =  p 0   피 [  (1 − K e     
1−ϕ _ 2    θ+1 _ θ+ϕ   σ   2 T−  η _ θ  σ √ 

_
 2T  −  θ+1 _ θ+ϕ  σ √ 

_
 ϕT   √ 
_

   ϕ+θ _ θ    Ψ )    
+

 ] , 

where  Ψ ∼ N (0, 1)  . (Convergence in distribution implies convergence in expec-
tation by the Helly–Bray theorem, as the function of  Ψ  inside the expectation is 
bounded and continuous.) The expectation can be evaluated as in Black and Scholes 
(1973), giving the result.

Lastly, we can calculate the variance risk premium at arbitrary horizons  t < T . 
We have   var   ∗  log  R 0→t   =  피   ∗  [  (log  R 0→t  )    2 ]  −   [ 피   ∗  (log  R 0→t  ) ]    

2  . Each of the  risk- 
neutral expectations is determined by the prices of options expiring at time  t , by 
the logic of Breeden and Litzenberger (1978), so   var   ∗ log  R 0→t    is as it would be in 
the Black–Scholes model with constant volatility    σ ̃   t   . As is well known, this is    σ ̃    t  2   in 
annualized terms. Using the expression for  var log  R t    provided in Result 7, we have 
a generalization of the result given in the text:

    1 _ t   ( var   ∗  log  R 0→t   − var log  R 0→t  )  =   
  (θ + 1)    2    t _ T  
 _ 

θ   (θ +   t _ T  )    
2
 
    σ   2  . ∎ 

PROOF OF RESULT 9:
As all investors have log utility,   R  0→T  

(z)    is the growth optimal return from 0 to  T  as 
perceived by investor  z , which equals  1/ M  0→T  

(z)    where   M  0→T  
(z)    is the SDF perceived 

by investor  z . The following lemma provides a formula for this quantity.

LEMMA 3: The SDF of investor z,   M  0→t  
(z)   , is given by

(A16)   M  0→t  
 (z)    =  √ 

_
   θ _ θ + ϕ     exp {  θ + ϕ ___________  

2  (1 + θ)    2  σ   2 T
    [log ( R 0→t  / K  t  

 (z)  ) ]    
2

 −   1 _ 
2
    (z −  z g  )    2 }  ,

where  log  K  t  
(z)  =  피   (z)  log  R 0→t   +  [ (θ + 1) / (θ + ϕ) ]  (z −  z g  ) σ  √ 

_
 θT    .

PROOF:
  M  0→t  

(z)    links investor  z ’s perceived true probabilities to the objectively observed 
 risk-neutral probabilities, which we computed in Lemma  1. Hence the value of 
agent   z ’s SDF at node  (m, t)  is   M  0→t  

(z)   =    p 0,0   ___  p m,t       
 c m,t   ___ 
 π  m,t  (z)  

    , where   π  m,t  (z)    is the agent’s sub-

jective probability of arriving at node  (m, t)  and   c m,t    was defined in the proof 
of Result 8. We established in the proofs of Results 7 and 8 that   c m,t    and   π  m,t  (z)    cor-
respond to the probability mass functions of a  beta-binomial distribution and of 
a binomial distribution, which converge (after appropriate rescaling) to the pdf 
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of the Normal distribution. For the binomial distribution we standardize  m  via 

 ψ =   
m − ϕN −   η _ θ  ϕ √ 

_
 N  
  ___________ 

 √ 
_

 ϕN/2  
    , as in the proof of Result 7, while for the  beta-binomial 

distribution we set   ψ ̃   =   ψ ________ 
 √ 

________
 (ϕ + θ)/θ  
    . Then   c m,t   = ℙ 

(
  
 X N   − ϕN −   η _ θ  ϕ √ 

_
 N  
  ___________  

 √ 
_

   ϕ + θ _ 
2θ   ϕN  

   =  ψ ̃  
)

  ∼ 

  1 _ 
 √ 
_

 2π  
    e   −  1 _ 2    ψ ̃     2    1 _ 

 √ 
_

   ϕ + θ _ 
2θ   ϕN  

    , where   X N    is a sequence of  beta-binomial random variables, 

and   π  m,t  (z)   ∼   1 _ 
 √ 
_

 2π  
    e   −  1 _ 2    (ψ−   √ 

_
 ϕ   _ 

 √ 
_
 θ  
  z)    

2

    1 _ 
 √ 
_

 ϕN/2  
    . Thus   M  t  

(z)  ∼  √ 
_

   θ _ ϕ + θ       
1 _  R 0→t  

    e   −  θ _____ 
2(ϕ+θ)   ψ   2 +  1 _ 2    (ψ−   √ 

_
 ϕ   _ 

 √ 
_
 θ  
  z)    

2

   . 

Using the fact that  ψ −    √ 
_

 ϕ   _ 
 √ 

_
 θ  
   z =   log  R 0→t   −  피   (z) [log  R 0→t  ]  ______________  

 √ 
__________

   var   (z) log  R 0→t    
    (which follows from equa-

tion (A15)) and rearranging, we have equation (A16) as  N → ∞ . ∎
Equation (23) and the remaining statements of the result follow immediately. 

For future reference, note that as  ψ −  ( √ 
_

 ϕ  / √ 
_
 θ   ) z  →     

d   ξ ∼ N (0, 1)   from (A14), 
we have

(A17)   M  0→t  
 (z)     →     

d    √ 
_

   θ _ ϕ + θ      e   −  θ _ 
2 (ϕ+θ)     (ξ+   √ 

_
 ϕ   _ 

 √ 
_
 θ  
  z)    

2

 +   1 _ 2    ξ   2 −   θ+1 _ θ+ϕ   σ √ 
_
 t   ξ− 피    (z)   [log R 0→t  ]    ,

where  ξ ∼ N (0, 1)  . ∎

PROOF OF RESULT 10:
We exploit a lemma in the spirit of Breeden and Litzenberger (1978) whose proof 

we provide in the online Appendix:

LEMMA 4: Write  W ( p T  )   for an investor’s wealth at time  T , as a function of the price 
of the risky asset   p T   . Suppose that  W (0)  = 0 . Then, terminal wealth  W ( p T  )   can be 
achieved by holding a portfolio of (i)   W ′   ( K 0  )   units of the underlying asset, (ii) bonds 
with face value  W ( K 0  )  −  K 0   W ′   ( K 0  )  , (iii)   W ″   (K) dK  put options on the risky asset 
maturing at time  T  with strike  K , for every  K <  K 0   , and (iv)   W ″   (K) dK  call options 
maturing at time  T  with strike  K , for every  K >  K 0   . The constant   K 0   > 0  can be 
chosen arbitrarily.

We can write investor  z ’s wealth at time  T  as   W    (z)   ( p T  )  =  p 0    R  0→T  
 (z)     ( p T  / p 0  )  , where   

R  0→T  
 (z)     is given as a function of   R 0→T   =  p T  / p 0    in equation (23). The result follows 

by applying Lemma 4 with   K 0   =  p 0    K    (z)   , and noting that   W     (z)  ′    ( K 0  )  = 0  from the 
definition (24) of   K    (z)   . Furthermore, from (23) we have

  sign [   W      (z) ′′  (exp  피    (z)  log  p T  ) ]  = sign [ z   
2  −  z g   z −   θ + 1 _ θ  ] , 

which is negative for moderate investors (including all investors  z ∈  [ z g  , 0]  ), and 
positive if   |z|   is sufficiently large. ∎
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PROOF OF RESULT 11:
As the market is complete, there is a strategy that attains the MSR implied by the 

Hansen and Jagannathan (1991) bound. In order to be able to use equation (A17) 

to compute the variance of   M t   —for the rest of the proof, we write   M  0→t  
 (z)     =   M t    to 

save space—we will first need the following Lemma which we prove in the online 
Appendix:

LEMMA 5: If  θ > 1 , then the sequence   {  ( M  t  2 )     (N)  }   (where we include superscripts 
to emphasize the dependence on  N ) is uniformly integrable.

Uniform integrability implies convergence of expectations. We can thus use 
equation (A17) to find the variance of   M t    from the perspective of agent  z , as 
 N → ∞ , by computing the MGF of a  chi-squared random variable. Doing so, we 
find that

   피    (z)   [ M  t  2 ]  =   θ _ 
 √ 
_

  θ   2  −  ϕ   2   
   exp [  

  [z √ 
_

 θϕ   +  (θ + 1) σ √ 
_

 ϕT  ]    
2
 
   ___________________  

θ (θ − ϕ)   ] . 

If  θ ≤ 1  and  ϕ = 1  (i.e.,   t = T ), we have  lim  inf   피    (z)   [  ( M  T  2  )     (N)  ]  ≥ 
 피    (z)   [ e     1 _ θ+1

   ξ   2 +Bξ+C ]   for some constants  B  and  C , using Fatou’s lemma and equation 
(A17). As  1/ (θ + 1)  ≥ 1/2  and  ξ ∼ N (0, 1)  , the expectation on the  right-hand 

side is infinite, so   피    (z)   [ M  T  2  ]  = ∞ . ∎

PROOF OF RESULT 12:

Write   r  0→T  
 (x)    = log  R  0→T  

 (x)     and   r 0→T   = log  R 0→T   . Rearranging (23), we have

  r  0→T  
 (x)    =   1 _ 

2
   log   θ + 1 _ θ   +   1 _ 

2
     (x −  z g  )    2  −   1 _ 

2 (1 + θ)   

  ×  {   r 0→T   −  피    (z)   r 0→T    ____________ 
σ √ 

_
 T  
   +    피    (z)   r 0→T   −  피    (x)   r 0→T    ______________  

σ √ 
_
 T  
   −  √ 

_
 θ   (x −  z g  ) }    

2

 . 

As   피    (z)   r 0→T   −  피    (x)   r 0→T   =  (z − x) σ √ 
_
 T  / √ 

_
 θ    and     r 0→T   −  피    (z)   r 0→T    _ 

σ √ 
_
 T  
    is a  zero-mean, 

 unit-variance random variable in the opinion of agent  z ,

  피    (z)   r  0→T  
 (x)    =   1 _ 

2
   log   θ + 1 _ θ   +   1 _ 

2
     (x −  z g  )    2  −   1 _ 

2 (1 + θ)   

 ×  {1 +   [  
z − x _ 
 √ 

_
 θ  
   −  √ 

_
 θ   (x −  z g  ) ]    

2
 } . 

Result 7 showed that

   피    (z)   r 0→T   =   zσ √ 
_
 T   _ 

 √ 
_
 θ  
   +   θ + 1 _ 

2θ    σ   2 T = −   
z  z g   _ θ + 1   +   1 _ 

2
     

 z  g  2 
 _ θ + 1  , 
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where we use the definition of   z g    in the second equality. It follows that

   피    (z)   ( r  0→T  
 (x)    −  r 0→T  )  =   1 _ 

2
   log   θ + 1 _ θ   +    z   

2  − 1 _ 
2 (1 + θ)    −   

  (z − x)    2 
 _ 

2θ  , 

which gives the first part of the result because  log (1 +  ξ    (z,x)  )  =  피    (z)   ( r  0→T  
 (x)    −  r 0→T  )  . 

As the asymptotic distribution of types  x  is standard Normal,  ξ =  ∫ −∞  ∞    ξ    (z,x)  g (x) dx  
where  g (x)  =   1 _ 

 √ 
_

 2π  
    e   − x   2 /2  , and evaluating the integral gives the final part of the 

result. ∎

PROOF OF RESULT 13:
From the definition (29), we see that  log (1 − AT)  =   1 _ N    ∑ i=1  N   log  y i   − log μ , 

where  μ  is  cross-sectional average wealth. In our setting, with a continuum of 
investors, this becomes  log (1 − AT)  =  피 ̃  log W     (z)   − log  피 ̃   W     (z)   . (As before, we use 
the notation   피 ̃    to denote a  cross-sectional expectation that averages across 
agents.) As   피 ̃   W     (z)   =  p 0    R 0→T    equals aggregate wealth, whereas  log W     (z)   = 
log ( p 0    R  0→T  

 (z)   )   equals the log return chosen by investor  z , we have  log (1 − AT)  = 
 피 ̃  log  R  0→T  

 (z)    −log  R 0→T   . Henceforth, we write   r  0→T  
 (z)    = log  R  0→T  

 (z)     and   r 0→T   = 
log  R 0→T   , so that  log (1 − AT)  =  피 ̃   r  0→T  

 (z)    −  r 0→T   .
We can rewrite equation (23) as

  r  0→T  
 (z)    =   1 _ 

2
   log   θ + 1 _ θ   +   1 _ 

2
    (z −  z g  )    2  −   1 _ 

2 (1 + θ)   

  ×  [  
 r 0→T   − zσ √ 

_
   T _ θ     −   θ + 1 _ 

2θ    σ   2 T
   ___________________  

σ √ 
_
 T  
   −  √ 

_
 θ   (z −  z g  ) ]    

2

 . 

This expression is quadratic in  z . As  z  has zero mean and unit variance, so that 
  피 ̃   z = 0  and   피 ̃    z   2  = 1 , we have (after some algebra)

  피 ̃    r  0→T  
 (z)    =   1 _ 

2
   log   θ + 1 _ θ   +   1 _ 

2
   (1 +  z  g  2 )  −   1 _ 

2 (1 + θ)   

 ×  {  [  
 r 0→T   _ 
σ √ 

_
 T  
   −   θ + 1 _ 

2θ   σ √ 
_
 T   −  (θ + 1) σ √ 

_
 T  ]    

2

  +   ( √ 
_
 θ   +   1 _ 

 √ 
_
 θ  
  )    

2
 } . 

Using the expression for   z g    given in equation (21) and simplifying, we find that

  log (1 − AT)  =   1 _ 
2
   (log   θ + 1 _ θ   −   1 _ θ  )  −   1 _  

2 (1 + θ)  σ   2 T
    ( r 0→T   −   1 + θ _ 

2θ    σ   2 T)    
2

 . 

This is equivalent to the expression given in the text. ∎

PROOF OF RESULT 14:
There are  N  periods of length  T/N . Let us write  t = ϕT . Suppose there have 

been  n = q   down-moves (jumps) and  m = ϕN − q   up-moves by time  t . If   q ̃    of 
the remaining   (1 − ϕ) N  periods are  down-moves and  j  are  up-moves, then we must 
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have   q ̃   + j =  (1 − ϕ) N . From Lemma 1, the price at time  t  is    [피 ( e    (q+ q ̃  ) J ) ]    
−1

  ,  
where the expectation is over   q ̃   ∼ BetaBinomial ( (1 − ϕ) N, q + 1/ ω   2 , 
N/ ( ω   2 λT)  + ϕN − q)  . We now use the fact that as  n → ∞ , a beta binomial dis-
tribution with parameters  n ,  α ,  Cn  approaches a negative binomial distribution 
with  r = α  and  p = 1/ (1 + C)  . Therefore, as  N → ∞ ,   q ̃    is asymptotically 
distributed as a negative binomial distribution with parameters  q + 1/ ω   2   and 
  ω   2 λT  (1 − ϕ) / (1 +  ω   2 λT)  . Using the formula for the MGF of a negative binomial 
distribution, the price equals

   e   −qJ   [  
1 −  ω   2 λT  ( e   J  − 1)  +  ω   2 λt  e   J 

   _____________________  
1 +  ω   2 λt

  ]    
q+  1 _ 

 ω   2 
  

 . 

Simplifying this expression gives the price (31).
As the riskless rate equals zero, agent  z ’s SDF equals the ratio of the  risk-neutral 

probability of  q  jumps occurring by time  t  to the corresponding true probability 
(which is    (λ (1 − zω) t)    

q
  e   −λ (1−zω) t /q! ). As in the proof of Result 8, the  risk-neutral 

probability of  m = ϕN − q   up-moves having occurred during the first  ϕN  moves 
is   ( p 0  / p m,ϕN  )  x N   , where   x N    is the probability of  m  realizations in a  beta-binomial dis-
tribution with parameters  ϕN ,  N/ ( ω   2 λT)  , and  1/ ω   2   or, equivalently, the probability 
of  ϕN − m = q  realizations in a  beta-binomial distribution with parameters   (ϕN, 

1/ ω   2 , N/ ( ω   2 λT) )  . In the limit as  N → ∞ , using the convergence of this  beta bino-

mial to a negative binomial distribution with parameters  1/ ω   2 ,    ω   2 λϕT
 _ 

1 +  ω   2 λϕT
   , we find 

that the probability   x N    is therefore equal to

    
Γ (q +   1 _ 

 ω   2 
  ) 
  _ 

q!Γ (  1 _ 
 ω   2 

  ) 
     (  1 _ 

1 +  ω   2 λt
  )    

  1 _ 
 ω   2 

  
   (   ω   2 λt _ 

1 +  ω   2 λt
  )    

q

 . 

Similarly, as  N  tends to infinity,   p 0  / p m,ϕN    tends to the reciprocal of the return from 
0 to  t  conditional on  q  jumps having occurred, as provided in Result 14. The SDF 
follows as stated. To calculate   피    (z)   log  M  0→T  

 (z)    , note that investor  z  perceives the 
number of jumps,  q , that occur by time  T  as distributed according to a Poisson 
distribution with parameter  λ (1 − zω) T . As  Γ (z)  = O ( z   z−1/2  e   −z )  , it follows 

that   피    (z)   log  M  0→T  
 (z)     is finite but   피    (z)   [  ( M  0→T  

 (z)   )    
2

 ]   is infinite. ∎

PROOF OF RESULT 15:
The  risk-neutral probability inside the limit in (33) is the price of a security with 

unit payoff if there is at least one jump in   [t, t + ε]  . As the interest rate is zero, this 
price equals  1 −  x ε   , where   x ε    is the price of a security with unit payoff if there are 
no jumps between  t  and  t + ε . A straightforward calculation gives

   x ε   =   
[

1 +   ε  ω   2 λ  e   J   _____________________   
1 −  ω   2 λT  ( e   J  − 1)  +  ω   2 λt  e   J 

  
]
    
−q−1/ ω   2 

 . 

As   λ  t  ∗  =  lim ε→0    
1 −  x ε   _ ε   , the result follows by the binomial theorem. ∎
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