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On the Valuation of Long-Dated Assets

Ian Martin
Stanford University and National Bureau of Economic Research

I show that the pricing of a broad class of long-dated assets is driven
by the possibility of extraordinarily bad news. This result does not
depend on any assumptions about the existence of disasters, nor does
it apply only to assets that hedge bad outcomes; indeed, it applies
even to long-dated claims on the market in a lognormal world if the
market’s Sharpe ratio is higher than its volatility, as appears to be the
case in practice.

This paper advances a general principle that the valuation of a broad
class of long-dated assets is driven by the possibility of extreme outcomes.
Versions of this principle have been developed by Weitzman (1998), in
the context of the discount rate appropriate for events that occur in
the far-distant future, and by Weitzman (2009), in the form of a “dismal
theorem” that highlights the extraordinary influence of extreme events
in a certain category of models and whose intended application is to
cost-benefit analyses of projects that might mitigate the effects of climate
change (see also Gollier 2002, 2008; Weitzman 2007).

But Weitzman’s dismal theorem has been criticized by Nordhaus
(2011) on the grounds that it relies on particular distributional as-
sumptions and on marginal utility that becomes infinite at zero con-
sumption. If taken seriously, these assumptions imply that society should
be prepared to pay almost any price to avoid, say, an astronomically
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Ross, Jeremy Stein, Dimitri Vayanos, and Martin Weitzman; to seminar participants at
Berkeley, the London School of Economics, and the Stanford Institute for Theoretical
Economics conference in 2009; and to the editor, Monika Piazzesi, and anonymous referees
for their comments.
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unlikely but potentially catastrophic meteorite strike, a conclusion that
Nordhaus finds unacceptable.

I avoid taking a stand on this issue by starting from an apparently
tangential observation that, in its most stripped-down form, relies only
on a no-arbitrage assumption. If we write for the stochastic discountMt

factor (SDF) that prices time t payoffs from the perspective of time
and for any asset’s gross return from time to time t, thent � 1 R t � 1t

it is a fundamental result of asset pricing that the cumulative time- and
risk-adjusted return is a martingale. Although the…X { M R M Rt 1 1 t t

focus is typically on the expectation, , one can also ask: What�X p 1t

is it about the sample paths of that leads its expectation to equalXt

one? Although this question may seem hopelessly vague, we will see,
under minimal assumptions, that has certain distinctive features. InXt

particular, I apply a result of Kakutani (1948)—a theorem on product
martingales, not the fixed-point theorem that is used to prove the ex-
istence of Nash equilibrium—to show that although has an expectedXt

value of one at all horizons, it tends to zero almost surely1 for generic
assets.

Where, then, do such assets get their value—their —from? I�X p 1t

show that in this generic case, occasionally experiences enormousXt

explosions that can be attributed to some combination of explosions in
and explosions in . Interestingly, the two alternatives… …M M R R1 t 1 t

have very different interpretations. The first represents bad news at the
aggregate level. I will refer to such outcomes as aggregate disasters, al-
though it should be emphasized that I neither assume nor exclude the
possibility of rare disasters in the sense of Rietz (1988) and Barro (2006):
aggregate disasters in my sense can also unfold slowly in thin-tailed
models via a grinding sequence of negative realizations. The second
possibility represents good news at the level of the individual asset. In
the case of long-dated hedge assets—assets such as climate change–mit-
igation projects whose returns are low when marginal utility is low—
valuation is overwhelmingly driven by the possibility of aggregate
disaster.

A more prosaic illustration of this result is provided by Warren Buffett
in his 2008 letter to the shareholders of Berkshire Hathaway (http://
www.berkshirehathaway.com/letters/2008ltr.pdf). Consider selling at-
the-money European put options on the S&P 500 index, expiring in
100 years. Plugging reasonable values for volatility and interest rate into
the Black-Scholes formula, Buffett calculates that with a notional value
of $1 billion, this trade would generate an incoming cash flow of $2.5
million up front. What of the potential outflows? When what he con-
siders an extremely conservative forecast is used (a 1 percent probability

1 From now on, I drop “almost surely” qualifications in the interest of readability.

http://www.berkshirehathaway.com/letters/2008ltr.pdf
http://www.berkshirehathaway.com/letters/2008ltr.pdf
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of a decline in the index over 100 years and an expected return of �50
percent conditional on a decline) the expected cash outflow in 100
years’ time is $5 million. But even in this unfortunate state of the world,
the two cash flows would be equivalent to borrowing for 100 years at
an interest rate of only 0.7 percent. Buffett concludes that “the Black-
Scholes formula, even though it is the standard for establishing the
dollar liability for options, produces strange results when the long-term
variety are being valued.” Here again we are leaning on a particular
parametric model. But in Buffett’s example, unlike Weitzman’s, the
model in question—the Black-Scholes model—postulates a particularly
nicely behaved world in which the underlying asset price follows a geo-
metric Brownian motion. This makes the phenomenon he describes
more striking, not less: long-dated puts are “surprisingly expensive” even
in a lognormal model. Again, valuation is driven by the possibility of
disaster.

The same may be true even for assets whose returns are low in bad
times—and even in a thin-tailed lognormal environment. Suppose that
there is a riskless asset with certain return and a risky asset withrfR { ef,t

return , where is standard Normal. Then
2m�j /2�jZtR { e Z M {t t t

is a valid SDF, where l is the Sharpe ratio , so
2�r �l /2�lZf te (m � r)/jf

. The return volatility of the S&P 500 index
2…�(l�j)(Z � �Z )�(l�j) t/21 tX p et

is about 16 percent while its Sharpe ratio is about 50 percent, so let
percent and percent. Figure 1A plots 400 sample pathsj p 16 l p 50

of over a 250-year horizon. Each sample path starts from .X X p 1t 0

Figure 1B shows the same 400 sample paths plotted on a log scale.
Together the figures illustrate the results of the paper. First, despite the
fact that for all t, just two of the 400 sample paths lie above�X p 1t

one after 250 years. If the plot were extended, we would see that these
paths, too, eventually tend to zero. In population, the median value of

after 250 years is . Second, the tendency for
2�(0.50–0.16) #250/2 �6X e ! 10t

to approach zero along sample paths is counterbalanced by occasionalXt

explosions in : one sample path rises above 2,700. The possibility ofXt

such sample paths is critically important for the valuation of long-dated
assets; these are the paths, lying at the very edge of the distribution,
that Buffett neglects to consider. Third, the empirical fact that Sharpe
ratios are high— —means that in this example explosions in canl 1 j Xt

be attributed to negative realizations of and hence to ag-…Z � � Z1 t

gregate disasters.
In the body of the paper, I generalize to a richer conditionally log-

normal example and to the nonlognormal case, though the latter re-
quires an economic assumption to link the SDF to the return on the
market. In more general parametric models, the theory of large devi-
ations (and specifically the Gärtner-Ellis theorem) can be used in con-
junction with the methods of Hansen and Scheinkman (2009) and Han-
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Fig. 1.—400 sample paths of over a 250-year horizon: A, linear scale; B, log scaleXt

sen (forthcoming) to assess the relative importance of disasters and
idiosyncratic good news. I relegate these results to online Appendix B
because the earlier results on hedge assets apply very generally and do
not require this extra technology. When not included in the text, proofs
of the results are in Appendix A.
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I. Kakutani and the Long Run

Time is discrete; today is time 0. Consider a sequence of gross returns,
, on some limited-liability asset or investment strategy, and supposeR t

that there is no arbitrage. For , we can therefore define to bet 1 0 Mt

an SDF that prices payoffs at time t from the perspective of time .t � 1
Define the risk-adjusted cumulative return ;…X { M R 7 M R 7 7 M Rt 1 1 2 2 t t

then for all t and is a nonnegative martingale. As a result,�X p 1 Xt t

the random variable almost surely exists and is finite, byX { lim X� tr� t

the martingale convergence theorem of Doob (1953, 319). It is tempting
to argue that

?�X p � lim X p lim �X p lim 1 p 1,� t t
tr� tr� tr�

but this interchange of expectation and limit is not valid in general.
Definition 1. We are in the generic case if .M R r� 1t t

To get a feel for this definition, suppose that the SDF and returnMt

satisfy . Given an arbitrary return , we have˜ ˜R M R p 1 R � M R pt t t t t�1 t t

, so by Jensen’s inequality, .˜1 � log R ≤ � log (1/M ) p � log Rt�1 t t�1 t t�1 t

This implies that is the growth-optimal return. Moreover, is aR Mt t

special SDF, namely, the reciprocal of the growth-optimal return (Long
1990). So the generic case applies unless both is asymptotically growthR t

optimal and the SDF is asymptotically the reciprocal of the growth-Mt

optimal return.2

Result 1. Although for all t, in the generic case we have�X p 1t

. On the other hand, (i) and (ii) for any ,X p 0 � max X p � � 1 0� t

as .1���X r � t r �t

If a generic asset’s risk-adjusted return tends to zero almost surely,Xt

where does its value—its —come from? Why isn’t it cheaper?�X p 1t

The answer is that such an asset’s value can be attributed to the presence
of a small number of extreme sample paths along which explodes,Xt

as demonstrated by the fact that and .31��� max X p � �X r �t t

The next result considers the probability that exceeds somemax Xt

large number N. It places tight bounds on the rate at which this prob-
ability declines as N increases. In the generic case, such events are rare,
but not very rare.

Result 2. In either case, explosions in are rare in the sense that,Xt

for any , . In the generic case this result isN 1 0 �(max X ≥ N ) ≤ 1/Nt

sharp in the sense that for any we can find arbitrarily large N such� 1 0
that .1���(max X ≥ N ) 1 1/Nt

2 In a complete market, the SDF is unique and so must equal the reciprocal of the
growth-optimal return (which is always an SDF). The generic case applies as long as isRt

not asymptotically growth optimal.
3 The proof of result 1 actually establishes the stronger result that �X log (1 � X ) rt t

.�
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For generic assets, there are rare states of the world in which isXt

enormous. In such states, we have very large, and…M R 7 M R M R1 1 2 2 t t

so we must have some combination of large and large…M M1 t

. The former possibility corresponds roughly to the realization…R R1 t

of a disastrously bad state of the world. In a consumption-based model
with time-separable utility, for example, is large when marginal…M M1 t

utility at time t is high. The latter possibility, large , corresponds…R R1 t

to a particularly favorable series of returns for the asset in question. To
get more intuition for what happens in specific model economies, I
now consider two examples that are in a sense polar opposites.

First, consider a risk-neutral economy with a constant riskless rate
. Any asset that is not asymptotically riskless is generic, and from theR f

above results we have

… …R R R R1 t 1 t
r 0 and � max p �.t tR Rf f

Since is deterministic, the rare explosions that drivet…M M p 1/R1 t f

the second result can be attributed only to occasional explosions in
. That is, in a risk-neutral economy, the pricing of risky assets…R R1 t

is driven by occasional bonanzas: low-probability events in which
becomes very large.…R R1 t

For the second example, take an economy in which is a nonde-Mt

generate random variable for all t and consider the pricing of a hedge
asset whose return is a (weakly) increasing function of . ThenR Mt t

can explode only at times when explodes, so we… …M R M R M M1 1 t t 1 t

have the following result.
Result 3. Pricing of long-dated hedge assets is driven by the pos-

sibility of aggregate disaster.
This is a more general version of Weitzman’s (1998) logic. What can

we say in the case of a risky asset such as the aggregate market? From
the Hansen-Jagannathan (1991) bound, combined with high available
Sharpe ratios and a low riskless rate, it follows that is large relativej(M)
to the volatility of the market, . By imposing some more structurej(R)
on the economy, in the form of a conditional lognormality assumption,
we can use this observation to argue that explosions in must be dueXt

to explosions in and hence to bad news. The critical condition…M M1 t

that implies that explosions in correspond to bad news is that theXt

Sharpe ratio of the market is higher than its volatility. In the data, the
Sharpe ratio of the market is on the order of 50 percent whereas its
volatility is on the order of 16 percent, so this is a mild assumption.

Result 4. Suppose that the market return is
2m �j /2�j Zt�1 t�1 t�1 tR { et

conditionally lognormal and that the riskless return is . Thenrf,tR { ef,t

is a valid SDF, where is the Sharpe
2�r �l /2�l Zf,t t�1 t�1 tM { e l { (m � r )/jt t t f,t�1 t

ratio on the market. Finally, suppose that the market Sharpe ratio and
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volatility satisfy almost surely, for some . Then we are inl 1 j � � � 1 0t t

the generic case, so and . Moreover, the pricingX p 0 � max X p �� t t

of long-dated claims on the market is driven by the possibility of ex-
tremely bad outcomes, in the sense that explosions in are driven byXt

explosions in .…M M1 t

This result applies to a wide range of models, and it can be extended
to allow for multiple risk factors , , and for imperfectZ j p 1, … , Nj,t

correlation between and (see online App. B). It does, how-log R log Mt t

ever, depend in a more important way on the conditional lognormality
assumption, which implies that the higher conditional cumulants of log
M and log R are zero.4 With nonzero higher cumulants, it becomes
possible to construct examples in which (say) M is bounded whereas R
has a small amount of weight in the extreme right tail, in such a way
that SDF volatility is large (so the maximal Sharpe ratio is high) and
return volatility relatively small, and yet explosions in are…M R M R1 1 t t

due to right-tail events in which explodes. In Appendix B, I…R R1 t

show how to use the theory of large deviations to determine whether
or not explosions are driven by bad news in any given parametric model.

A simpler approach is to note that in the lognormal setting of result
4, the log SDF and log market return are tightly linked by a relation

; the assumption that the market’s Sharpe ra-log M p a � g log Rt t�1 t�1 t

tio is greater than its volatility is equivalent to the restriction .g 1 1t�1

To generalize result 4 to the nonlognormal setting in a tractable and
somewhat flexible way, we can assume that this latter relationship holds
without imposing the requirement that and are lognormal. AR Mt t

sufficient condition for this to be the case is that there is a representative
agent with power utility and risk aversion greater than one, whou(7)
chooses portfolio weights to solve the maximization problem{w }i

(i)max � u w R subject to w p 1 (1)� �t i t�1 i( )
i i{w }i

and who ends up holding the market, so that . The first-(i)� w R p Ri t�1 t�1

order conditions for this problem imply that is′ ′u (R )/� [R u (R )]t�1 t t�1 t�1

an SDF and hence that , where is an un-log M p a � g log R at�1 t t t�1 t

important quantity known at time t and is the agent’s relative riskg 1 1t

aversion. Imposing this assumption on preferences gives us some trac-
tion by pinning down the behavior of the higher cumulants, and we
have the following result.

Result 5. Suppose that , where .log M p a � g log R g 1 1t�1 t t t�1 t

Then

4 See Backus, Chernov, and Martin (2011) and Martin (forthcoming) for an extended
discussion of cumulants.
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1�(1/g ) 1�gt tM Rt�1 t�1≤ M R ≤ ,t�1 t�1( ) ( )� M � Rt t�1 t t�1

so can explode only if is small. That is, explosionsM R R /� Rt�1 t�1 t�1 t t�1

in correspond to bad news. In contrast, if is small, thenX M Rt t�1 t�1

must also be small.M /� Mt�1 t t�1

A generalization of a traditional result.—Suppose that the SDF is the
reciprocal of the growth-optimal return, , but that is notM p 1/R* Rt t t

asymptotically growth optimal so that we are in the generic case. Result
1 amounts to the statement that as : with… …R R /(R* R*) r 0 t r �1 t 1 t

probability one, the growth-optimal portfolio outperforms any non-
growth-optimal portfolio by an arbitrary amount in the long run. This
extends the traditional results of Latané (1959), Breiman (1960), and
Markowitz (1976) to the non–independent and identically distributed
(i.i.d.) case. Such an extension has already been provided by Algoet
and Cover (1988); however, none of these authors emphasize the cor-
ollary—in the spirit of Samuelson (1971)—that since

… …� max [R R /(R* R*)] p �,1 t 1 t

the growth-optimal portfolio can hugely underperform in the short run.
Of greater interest, though, we have seen that if markets are incom-

plete (so that the SDF is not unique), this traditional result can be
extended to SDFs . This is interesting because it is oftenM ( 1/R*t t

desirable to work with SDFs that are more easily interpretable than
, such as SDFs proportional to the marginal value of wealth.1/R*t

The consumption path of a utility-maximizing investor.—Suppose that there
is an unconstrained investor in the economy who maximizes

for some strictly concave, differentiable utility functiont� � bu(C ) u(7)t

and subjective discount factor b. The investor’s marginal rate of sub-
stitution is then a valid SDF, and the above results imply that in the
generic case,

′u (C )tt …b R R r 0 (2)1 t′u (C )0

and yet

′u (C )tt …� max b R R p �. (3)1 t′[ ]u (C )0

For these equations to hold when applied to a riskless asset with time
t return , for example, it is enough that pricing is not asymptoticallyR f,t

risk neutral, so . Suppose that this is so and that the risklessM R r� 1t f,t

rate is constant, . Furthermore, suppose that the investor isR p Rf,t f

sufficiently patient that . Then (2) implies that . In′bR ≥ 1 u (C ) r 0f t

particular, if satisfies the Inada conditions, then consumption tendsu(7)
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to infinity in the long run.5 This is a result of Chamberlain and Wilson
(2000)—see also the textbook treatment of Ljungqvist and Sargent
(2004)—but here the result emerges as a special case of the more gen-
eral result 1. Moreover, the link between almost-sure convergence to
zero and explosions in appears to be new. Con-t ′ ′ …b [u (C )/u (C )]R Rt 0 1 t

versely, if the investor is impatient, , then we can conclude frombR ≤ 1f

(3) that ; equivalently, .′ ′�[max u (C )] p � �[u (min C )] p �t t

II. Conclusion

This paper bears on a collection of superficially unrelated observations
that can be summarized loosely as follows.

i. Latané, Breiman, Markowitz, Algoet and Cover, and others: The
growth-optimal portfolio outperforms any non-growth-optimal
portfolio by an arbitrary amount in the long run.

ii. Chamberlain and Wilson: The consumption of patient utility-
maximizing investors tends to infinity in the long run.

iii. Weitzman: Tail events exert an extraordinary influence on long-
run interest rates (under particular assumptions about the driving
stochastic process and agents’ utility functions).

iv. Buffett: The Black-Scholes model makes apparently strange pre-
dictions for long-dated put option prices.

The results of the paper unify and extend these observations. The
growth-optimal portfolio result i—reformulated as the equivalent state-
ment that for a particular SDF, namely, the reciprocal of theX r 0t

growth-optimal return—is extended to generic SDFs; result ii is an im-
mediate corollary. Observations iii and iv are the flip side of i and ii:
tail events exert an extraordinary influence on long-run discount rates
for hedge assets.

My results support Weitzman’s basic position without requiring the
strong assumptions to which Nordhaus (2011) objects. They also show
that the phenomenon Buffett discusses is less puzzling than it might
seem and, in particular, is not a quirk of the Black-Scholes model.

The starting point of the paper is that despite the fact that the absence
of arbitrage implies that expected risk-adjusted returns on all assets
equal one at all horizons, realized risk-adjusted returns tend to zero
unless (i) the asset in question is asymptotically growth optimal and (ii)
the SDF is asymptotically the reciprocal of the growth-optimal return.
The key ingredient of this result is a theorem of Kakutani (1948). For
economic applications, the flip side of this result is more interesting:

5 In fact, applying (2) to the growth-optimal asset, we have the stronger result that
.t ′…b R* R*u (C ) r 01 t t
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realized risk-adjusted returns occasionally explode. Such explosions in
risk-adjusted returns must be due to one of two sources that have sharply
differing implications: either asset-specific good news (large R) or ag-
gregate disaster (large M).

Aggregate disasters are the relevant consideration for hedge assets
such as put options, riskless indexed bonds, or climate change–miti-
gation projects. (I also argue that bad news is the relevant consideration
when valuing a long-dated claim on the market, as a result of the em-
pirical fact that the market’s Sharpe ratio is higher than its volatility.)
It follows that cost-benefit analyses of long-dated assets, such as the
payoffs to environmental projects, should pay special attention to worst-
case scenarios to avoid underestimating the value of such projects. There
is a stark contrast between the typical sample paths visible in figure 1B
and the rare, extreme sample paths, visible in figure 1A, that are the
dominant influence on long-run pricing.

Appendix A

The proof of result 1 divides into two steps. The first is a straightforward ad-
aptation of a result of Kakutani (1948).6 The goal is to establish that if

, then , whereas if , for some con-� ��Var M R p � X p 0 �Var M R ! Kt�1 t t � t�1 t t

stant K, then . Since is a key diagnostic, I refer to it as��X p 1 �Var M R� t�1 t t

the variance criterion. The second step shows that if , thenM R r� 1t t

.��Var M R p �t�1 t t

Proof of Result 1

Step 1: Let . By the absence of arbitrage, , so the�a { � M R � M R p 1t t�1 t t t�1 t t

conditional form of Jensen’s inequality implies that . Also, we trivially havea ≤ 1t

. Define the random variables , and note that is a…�a 1 0 Y p X /(a a ) Yt t t 1 t t

martingale.
First, suppose that ; equivalently, . It follows,2��Var M R p � � (1 � a ) p �t�1 t t t

by a standard result—see, for example, theorem 15.5 of Rudin (1987, 300)—
that , and hence . (Conversely, if for some finite2 2�a p 0 �a p 0 � [1 � a ] ! Kt t t

constant K, then , for some . This fact is used below.) By the mar-2�a 1 d d 1 0t

tingale convergence theorem, almost surely has a finite limit . But sinceY Yt �

and , it must be the case that . We must also have�Y p X /�a �a p 0 X p 0� � t t �

: if not, would be uniformly integrable and we would have� maxX p � Xt t

.�X p 1�

Alternatively, suppose that for some constant ; equiv-��Var M R ! K K ! �t�1 t t

alently, . So , for some . We then have ,2 2 2� (1 � a ) ! K �a 1 d d 1 0 �Y ≤ 1/d ! �t t t

so the martingale is uniformly bounded in second moment. As a result,Yt

, the second inequality being the2 2 2�(max X ) ≤ �(max Y ) ≤ 4 max �(Y ) ! � Lt t t t t t

6 The textbook of Williams (1995) provides a particularly clear treatment of this result.
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inequality of Doob (1953, 317). Since dominates , it follows that ismax X X Xt t t t

uniformly integrable, so .�X p 1�

Step 2: I will prove the contrapositive: if , then .��Var M R ! � M R r 1t�1 t t t t

Suppose, then, that . The conditional version of Chebyshev’s��Var M R ! �t�1 t t

inequality implies that for ar-2� � �� (F M R � � M R F ≥ �) ≤ (1/� ) Var M Rt�1 t t t�1 t t t�1 t t

bitrary , so� 1 0

�
� �� Var M Rt�1 t ttp1� �� (F M R � � M R F ≥ �) ≤ ! �.� t�1 t t t�1 t t 2�tp1

By the generalized Borel-Cantelli lemma (see, e.g., Neveu 1975, 152), it follows
that for all sufficiently large t. Since was arbitrary,� �F M R � � M R F ! � � 1 0t t t�1 t t

we have established that

� �M R � � M R r 0. (A1)t t t�1 t t

Furthermore, if , we have , so since� ��Var M R ! � �� M R 1 0t�1 t t t�1 t t

, we must have�� M R ≤ 1t�1 t t

�� M R r 1. (A2)t�1 t t

If not, it would have to be the case that for infinitely many t, �� M R ! 1 �t�1 t t

for some , and hence . But then2 2�d d � (0, 1) (� M R ) ! 1 � 2d � d ! 1 � dt�1 t t

for infinitely many t, which contradicts the assumption that�Var M R 1 dt�1 t t

.��Var M R ! �t�1 t t

It follows from (A1) and (A2) that , and hence .�M R r 1 M R r 1t t t t

For the second part of the result, observe that since is convex,7f(x) { (x logx)�

is a submartingale by Jensen’s inequality, and so(X logX )t t �

max �(X logX ) p lim �(X logX ) .t t � tr� t t �

But then, by results IV-2-10 and IV-2-11 of Neveu (1975), the second part of the
result holds with replacing . It remains to check�[(X logX ) ] �[X log (1 � X )]t t � t t

that is infinite iff is infinite. This followslim �[X log (1 � X )] lim �[(X logX ) ]t t t t �

from two facts: (i) if , thenX ≥ 1t

X logX ≤ (1 � X ) log (1 � X ) ≤ 2X log (2X );t t t t t t

and (ii) , since . QED� log (1 � X ) ≤ �X p 1 log (1 � x) ≤ xt t

Proof of Result 2

By Doob’s (1953, 314) submartingale inequality, ,N �(max X ≥ N ) ≤ �X p 1t≤T t T

so . The first statement follows by the monotone con-�(max X ≥ N ) ≤ 1/Nt≤T t

vergence theorem, because as .1[max X ≥ N ] F 1[max X ≥ N ] T F �t≤T t t t

Suppose that the second statement were false. Then there would be an � 1

(to be thought of as small) and (to be thought of as large) such that0 C ! �
for all , and we would have1���(maxX ≥ N ) ≤ 1/N N ≥ Ct

7 I am using the notation .x { max {x, 0}�
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�

� maxX p �(maxX ≥ N )dNt � t
0

C �

p �(maxX ≥ N )dN � �(maxX ≥ N )dN� t � t
0 C

�
1≤ C � dN ! �.� 1��NC

But this would contradict result 1. QED

Proof of Result 4

We have , so2�(l �j )Z �(l �j ) /2t�1 t�1 t t�1 t�1M R p et t

2�(l �j ) /4t�1 t�1�Var M R p [1 � e ].� �t�1 t t

Since , the variance criterion is infinite, so without specifying anythingl � j 1 �t t

further about the properties of and , we have . (In practice, wel j X p 0t�1 t�1 �

might want and to be high following realizations of or thatl j Z j Zt�1 t�1 t�1 t�2 t�1

are negative and large in absolute value.) By result 1, we have .� maxX p �t

Since , is large only if is negative, so explosions inl � j 1 0 M R Z Xt�1 t�1 t t t t

correspond unambiguously to bad news at the aggregate level (high )…M M1 t

rather than good news at the idiosyncratic level (high ). That is, pricing…R R1 t

is driven by the possibility of extremely bad outcomes. QED

Proof of Result 5

The assumption about the form taken by the SDF implies that
a 1�g a /g 1�(1/g )t t t t tM R p e R p e M .t�1 t�1 t�1 t�1

Dividing through by conditional means, we have
1�g 1�(1/g )t tR Mt�1 t�1M R p p .t�1 t�1 1�g 1�(1/g )t t� R � Mt t�1 t t�1

Now and , so by Jensen’s inequality 1�gt1 � g ! 0 1 � 1/g � (0, 1) � R ≥t t t t�1

and . The result follows. QED1�g 1�(1/g ) 1�(1/g )t t t(� R ) � M ≤ (� M )t t�1 t t�1 t t�1
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