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Abstract

Does economic activity relocate away from areas that are at high risk of recurring shocks?
We examine this question in the context of floods, which are among the costliest and most
common natural disasters. Over the past thirty years, floods worldwide killed more than
500,000 people and displaced over 650,000,000 people. This paper analyzes the effect of
large scale floods, which displaced at least 100,000 people each, in over 1,800 cities in 40
countries, from 2003-2008. We conduct our analysis using spatially detailed inundation
maps and night lights data spanning the globe’s urban areas, which we use to measure
local economic activity. We find that low elevation areas are about 3-4 times more likely to
be hit by large floods than other areas, and yet they concentrate more economic activity
per square kilometer. When cities are hit by large floods, these low elevation areas also
sustain damage, but like the rest of the flooded cities they recover rapidly, and economic
activity does not move to safer areas. Only in more recently populated urban areas, flooded
areas show a larger and more persistent decline in economic activity. Our findings have
important policy implications for aid, development and urban planning in a world with
rapid urbanization and rising sea levels.
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1 Introduction

Does economic activity within cities readjust in response to major shocks, which are poten-
tially recurrent, and which disproportionately threaten specific neighborhoods? We examine
this question in the context of floods, which are among the costliest and most recurring natural
disasters.

According to media reports collated by the Dartmouth Flood Observatory, from 1985-2014 floods
worldwide killed more than 500,000 people, displaced over 650,000,000 people and caused damage
in excess of US$800 billion, adjusted using the CPI for 2000 USDs (Brakenridge 2015). Other
datasets tell of even farther reaching impacts: according to the International Disaster Database
(EM-DAT – see Guha-Sapir, Below and Hoyois, 2015), in 2010 alone 178 million people were
affected by floods and total losses exceeded US$40 billion. To these direct costs we should add
longer term costs due to disruptions of schooling, increased health risks, and disincentives to
invest.

If there were perfect housing markets one might argue that these risks must be balanced by
gains to be had from living in flood-prone areas. But as Kydland and Prescott (1977) show in
their Nobel-prize winning contribution, flood plains are likely to be overpopulated, because the
cost of building flood defenses tends to be borne in part by people who reside in safer areas.
This problem is exacerbated by the fact that reconstruction costs in the aftermath of floods are
usually also borne in part by non-residents.1 This situation creates potential for misallocation
of resources, and forces society to answer difficult distributional questions. Our paper examines
how prevalent it is for economic activity to concentrate in flood-prone areas, and whether cities
adapt to major floods by relocating economic activity to safer areas.

To frame our analysis, we outline a simple model, which considers how a large flood may affect
an individual’s decision to locate in safe or risky locations. The model predicts that flooding
may cause people to relocate away from risky areas because of either Bayesian updating on the
probability of a flood, or because floods destroy sunk investments, thereby reducing the cost of
moving relative to staying. At the same time, the model suggests that even large floods may
induce little new relocation of economic activity if past adaptation means that recent flooding
conveys relatively little new information.

In our empirical analysis we study the local impact of large-scale urban floods. We use new
data from spatially disaggregated inundation maps of 53 large floods, which took place from
2003-2008. The floods that we study affected 1,868 cities in 40 countries around the globe, but
mostly in developing countries. These floods were all ruinous, displacing over 100,000 people
each. We study the economic impact of the floods using satellite images of night lights at an
annual frequency.

Our data show that the global exposure of urban areas to large scale flooding is substantial,
with low elevation urban areas flooded much more frequently. Globally, the average annual risk
of a large flood hitting a city is about 1.3 percent for urban areas more than 10 meters above
sea level, and 4.9 percent for urban areas less than 10 meters above sea level. These estimates

1In some poor countries insurance markets are dysfunctional, so it is understandable that the government
takes on some role in providing flood insurance. But even in those circumstances people who live on flood plains
place a burden on taxpayers who live elsewhere.
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likely represent a lower bound on urban flood risk since we do not have detailed flood maps for
all the large flood events in the period we study. Of course, this average risk masks considerable
variation across locations. Local flood risk results from a complex combination of local climate,
permeation, and topography, among other factors. Some urban areas – even if located at low
elevation – will flood rarely, if ever, while others are exposed to recurrent flooding. For example,
even in our relatively short sample period (January 2003 to May 2008), a substantial number
of cities were flooded repeatedly in our data. Out of 34,545 cities in the world a little over 5
percent (1,868 cities) get flooded at least once in our data. Conditional on being flooded, about
16 percent were flooded in more than one year. This is consistent with systematically higher
risk of flooding in these locations.

In spite of their greater exposure to large flood events, we find that across the globe, urban
economic activity, as proxied by night light intensity, is concentrated disproportionately in low
elevation areas.2 This disproportionate concentration of economic activity in flood-prone areas
is found even for areas that are prone to extreme precipitation.

When we analyze the local economic impact of large floods, we find that on average they reduce
a city’s economic activity, as measured by night time lights, by between 2 and 8 percent in the
year of the flood. The larger estimates come from using measures of extreme precipitation, rather
than flood maps. The fact that we find similar patterns with extreme precipitation is reassuring
that our results on floods are not driven by selection of particularly devastating floods, or by the
omission of floods that we cannot observe for lack of inundation maps.3

Our results also show that recovery is relatively quick – lights typically recover fully within a year
of a major flood, even in low elevation areas. This suggests that there is no significant adaptation,
at least in the sense of a relocation of economic activity away from the most vulnerable locations.4

With economic activity fully restored in vulnerable locations, the scene is then set for the next
round of flooding.5

Some readers may contend that this pattern of rapid recovery shows that the expected damage
reflected in our estimates is somehow tolerable. But the actual damage caused by floods is
in all likelihood substantially larger than the temporary loss of economic activity, when one
takes account of for example the cost of restoring damaged infrastructure, the opportunity
cost of adults pulled away from productive work, and the loss of human capital as children
are withdrawn from schooling and exposed to an unhealthy flooded environment. The longer-
term costs of disruptions to human capital formation in particular could represent a multiple of
immediate damages and death tolls from disasters (Antilla-Hughes and Hsiang, 2013).

A possible motivation for restoring vulnerable locations is to take advantage of the trading

2Below and in the Online Appendix we discuss in considerable detail the relationship between night lights and
economic activity at the local level.

3We know that the floods (at least temporarily) displaced population, so it is highly unlikely that the effects
we find are purely due to power outages.

4One possibility is that as some people permanently move to the safer parts of cities following the floods,
newcomers (arriving for example from surrounding rural areas), take their place. However, we may expect such
a pattern to increase population density - and therefore night light intensity - in the safer parts of flooded cities,
which is not what we observe.

5We cannot rule out adaptation in the form of new or improved flood defenses. But most of the world’s flooded
urban areas are too poor to finance substantial flood defenses. Even where such defenses are built, they often
represent a publicly funded solution, rather than private adaptation.
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opportunities – and amenity value – offered by water-side locations. But we find that economic
activity, as measured by night time lights, is fully restored even in low elevation locations that
do not enjoy the offsetting advantages of being near a river or coast. Our results are also robust
to excluding cities that are entirely less than 10m above sea level, where movement to higher
ground within the existing urban area in response to a flood is not an option.

While we find that in most cities economic activity does not shift permanently in response to
large floods, there is one important exception. We find a stronger and more lasting shift in
response to floods in newly populated parts of cities. These areas, which we define as unlit
during the first year that we observe night lights (1992), account for just 13 percent of the
urban areas that we study. We find that in these recently populated urban areas, flooded areas
show a larger and more persistent decline in night light intensity, indicating a stronger and more
persistent relocation of economic activity in response to flooding. These results might be due
to information updating about the riskiness of these locations; or it may be because fewer sunk
investments were made in these locations.

In an attempt to distinguish learning from sunk costs (path dependence) we also compare areas
that were unlit in 1992 to areas that were poorly lit in 1992. We think that it is plausible
to assume that in both types of areas (the poorly lit and the unlit) there was very little sunk
investment. But the two types of areas likely differ more in the information that people had
about the risk of flooding. We think that unlit areas are more likely to have been uninhabited.
Newly arrived residents to these areas would have less information available to them on the local
flood history of the area. As a consequence there were more opportunities to learn from realized
flooding in those areas. In contrast, poorly lit areas are more likely to have been inhabited for
longer (prior to 1992). Residents of these areas would have a longer history of experience with
local flooding to draw from, and therefore less scope to learn from a new flood realization. The
results of this comparison suggest that the effect of flooding in unlit areas is significantly stronger
and more persistent than in poorly lit areas. But there also seems to be an effect in poorly lit
areas, which is a little larger than for the average area (which is better lit). Taken together,
these results suggest that there may be a role for both learning and sunk costs, as our model
suggests.

Our results are important for a number of reasons.

First, our findings contribute to a broader literature on urban responses to large scale shocks
(e.g. Davis and Weinstein 2002). Much of this literature has focused on one-off shocks (e.g. due
to war), whereas we examine the effects of large recurrent shocks. Moreover, our data allow us to
combine global coverage with localized (within city) analysis. In the context of floods, Gallagher
(2014) describes movements in the insurance market after rare flood events. While most of the
literature has interpreted the recovery from shocks in a positive way, our finding of rapid recovery
is not necessarily such a positive message, given the recurrent risk of flooding.

Second, the trend towards increased global urbanization is ongoing; presently, just over half of
the world’s population lives in urban areas, and this is expected to rise (United Nations 2008).
As urbanization progresses, it is important to know whether cities have ways to adapt and
avoid dangerous areas. Our results suggest that flooding poses an important challenge for urban
planning because adaptation away from flood-prone locations cannot be taken for granted even
in the aftermath of large and devastating floods.
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Third, floods disproportionately affect poor countries. Given the scale of human devastation, and
its potential to affect the formation of human capital (for example disruptions to study or health
damages) this is an important issue for growth and development. Specifically, in developing
countries planning and zoning laws and their enforcement are weak. Globally, it is estimated
that more than 860 million people live in slums (Marx et al. 2013), which tend to develop
on cheap land with poor infrastructure, including on flood-prone land (Handmer, Honda et al
2012). Our finding that low elevation areas concentrate much of the economic activity even in
poor urban areas that are prone to extreme rainfall highlights the tragedy of the recurring crisis
imposed by flooding.

Fourth, global warming and especially rising sea levels are expected to further exacerbate the
problem of flooding. The threat of rising sea levels is not confined to developing countries and
small island nations. Based on the extent of sea level rise that we now expect given cumulative
emissions through 2015, Strauss, Kulp and Levermann (2015) identify 414 US municipalities that
would see over half of their population-weighted area below future high tide levels. For continued,
business-as-usual emissions scenarios, by 2100 this estimate rises to some 1,540 municipalities,
which currently are home to more than 26 million people. Hallegatte et al. (2013) find that
global average annual flood losses of US$6 billion in 2005 could reach US$52 billion by 2050.
Under a scenario characterized by climate change and subsidence but no adaptation this amount
could increase to US$1 trillion or more per year.

Work by Weitzman (2009) and Barro (2015) also argues that the costs of climate change could
be high due to an increase in the odds of rare disasters. Our findings inform these studies in two
ways. One positive message is that the economic impact of large-scale floods during our period
of study was largely contained and localized. But the more negative implication is that a lack of
adaptation could set the scene for more catastrophic events in the future, if sea levels rise and
flooding becomes more widespread and devastating.

Understanding the extent to which people relocate away from stricken areas is important not
only for assessing costs of flooding, but also for estimating the likely future global concentration
of economic activity (Desmet and Rossi Hansberg 2013, Kahn and Walsh 2014). In a related
paper Desmet et al (2015) analyze optimal migration responses to coastal flooding, with a view
to the long run of gradual shifts in fundamentals. If sea levels rise considerably, and technological
solutions (e.g. coastal barriers) are impractical, then people may eventually abandon some urban
areas. If people interpret future flooding as indicating increased risk they may take measures
to adapt. But our results indicate that even large and devastating floods do not permanently
displace population, so it may prove challenging to convince people to leave as sea levels rise. In
other words, in the medium run, adaptation may be painfully slow.6

Fifth, recovery assistance after flooding is an important part of international aid. While there
are good reasons to restore some urban areas when they flood, we find that economic activity
resumes even in poor locations with high risk of future flooding and without clear offsetting
advantages (such as proximity to rivers and coasts). This suggests that those engaged in aid and

6While the period of our study is too short to separate the effect of recurrent shocks from permanent changes
in locational fundamentals, one historical example may illustrate a painfully slow adaptation process. Dunwich,
on England’s eastern coast, was one of the country’s largest towns in 1086. But it was subjected to repeated
flooding and land losses, and its population, which peaked at around 5,000, declined by more than 95 per cent.
However, this decline took centuries to unfold, and even today it remains a populated village (Sear et al. 2011,
Patel 2009).
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reconstruction should consider moving economic activity away from some of the most dangerous
locations, in order to mitigate the risk of recurrent humanitarian disasters, and reduce the costs
of bailing out future flood victims.

Finally, our results are relevant for discussions of the costly effects of path dependence (Bleakly
and Lin 2012, Michaels and Rauch 2018). Our findings suggests that cities and parts of cities,
which are built in flood-prone areas, may be locking in exposure to flood risk for a long time,
even when circumstances and the global climate change.

The remainder of the paper is structured as follows. We outline a simple framework that allows
us to consider how individuals may respond to a large flood in Section 2, discuss related literature
in Section 3, describe the data in Section 4, present our main results in Section 5 and conclude
in Section 6.

2 Theory

To frame our empirical investigation, we begin with a simple framework that allows us to consider
how individuals may respond to a large flood. The framework, which is outlined in Online
Appendix A, considers a discrete-time model, where people choose between two locations, which
differ in their flood risk.

In the model, there are several factors that affect people’s locational choice, including preferences
over locations; the risk of floods multiplied by the net loss from floods (which also reflects the
transfers that they receive in the aftermath of floods); and non-residential consumption. Rental
costs may differ by location, and individuals moving - and those hit by floods - have to pay
an additional cost. The model also includes an element of Bayesian updating: in any period
a flood occurs (or does not), people increase (decrease) their assessment of the risk of future
floods.

If people do update and some want to move from the risky area to the safe one, then the
population or the prices in the safe area (or both) will increase relative to the risky area. If
housing supply is inelastic, then the price of housing in the safe areas will increase relative to
the risky areas, but there will be no change in the population ratio between the two locations
and we might not detect any change in night time light intensity. But if housing supply is not
completely fixed, then we expect both the price of housing and the population of the safe area
to increase relative to the risky area so that updating will result in changes in economic activity
as reflected by night time lights.

This simple model guides our empirical investigation in the following ways. First, we investigate
the link between risk and low elevation locations. Anticipating and quantifying flood risk in
the real world is a complicated endeavor, but we ask specifically how much more susceptible to
large scale flooding are low elevation locations, compared to high elevation ones. Second, we ask
whether people generally reside in riskier low elevation urban areas. In the model, the benefits to
living in risky areas, or moving costs, might make it prohibitively expensive to relocate. Third,
floods may cause people to leave the riskier areas because of either Bayesian updating, or because
floods reduce the cost of moving to safer areas (relative to staying in the riskier ones). Our paper
examines the extent to which large floods move economic activity away from risky areas towards
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safer ones. Fourth, the model suggests that there will be more updating in newly populated
urban areas. In the empirical analysis we examine whether there is more relocation from riskier
to safer areas in the aftermath of a flood in urban areas that concentrated no (measurable)
economic activity until recently. Finally, we examine whether the presence of higher risk of
flooding due to climatic factors shifts people towards safer areas, as our model suggests.

In addition to the issues raised by our model, an important question is whether rising sea levels
and a changing climate will affect the aggregate global concentration of economic activity in
flood prone areas. Of course, rising sea levels may increase the risk of flooding both in low
elevation areas and in other areas that are currently safer. But it seems plausible to assume
that at least in the near future, it is in the low elevation areas that rising sea levels will have a
greater effect. In our analysis we will shed some light on the aggregate concentration of urban
economic activity in low elevation areas over a longer period of time.

Another normative issue is how much ex-post transfers should victims receive, and in what form.
In the model, higher compensation to flood victims makes movement away from risky areas less
likely. From the perspective of a donor, if a property is frequently flooded, the costs of repeatedly
paying compensation might be high. In developing countries where institutions are weak, finding
private flood insurance may be a difficult challenge, especially for the poor. Ex-post disaster
relief, including from large scale floods, is therefore a task that governments and non-government
organizations around the world engage in from time to time. The main policy issue that we raise
is whether it should be possible, in certain circumstances, to concentrate public reconstruction
efforts towards safer areas, in order to avoid the high risk of recurrent disasters.

3 Related Literature

This paper contributes to a number of active strands of literature in urban economics, economic
development, and the economics of disasters and climate change.

First, our paper speaks to the literature on the economic impact of floods and other natural
disasters. Closely related to our study is Boustan, Kahn, and Rhode (2012), who look at the
migration response to natural disasters in the US during the early twentieth century. They find
movement away from areas hit by tornadoes but towards areas prone to flooding, possibly due
to early efforts to build flood mitigation infrastructure. In a more modern setting, differences
in migration responses by disaster type were also observed in research by Mueller, Gray and
Kosec (2014) on determinants of out-of village migration in Pakistan. They find that heat
stress, and not high precipitation or flooding, is associated with long-term migration. Elliott
et al. (2015) study the effect of typhoons on night lights, and find a significant but short term
effect. Also closely related is Hornbeck and Naidu (2014), who examine the Mississippi Flood
of 1927, which led to out-migration of African Americans and a switch to more capital intensive
farming. Our paper differs from most of these studies in its scope (we examine areas around the
world, especially in developing countries), its timing (we examine much more recent floods), and
its focus on urban areas and recurrent shocks. Our findings are also different, indicating that
persistence of economic activity in risky areas is a concern.

A related strand of literature examines the updating of beliefs and changes in risk perceptions in
the aftermath of natural disasters. Turner (2012) presents a model of Bayesian learning, where
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individuals update their risk assessments based on recent experience of disasters. Using data on
US county level population, Turner finds evidence that population declines are more pronounced
following a larger than previously experienced hurricane. Related papers include Cameron and
Shah (2010) who find evidence of increased risk aversion among individuals in rural Indonesia
who had over the past three years experienced first-hand a flood or an earthquake. Similarly,
Eckel et al. (2006) note, based on interviews with a sample of Hurricane Katrina evacuees, that
psychological factors such as levels of stress in the aftermath of an event influence individual
risk aversion. Other related case studies include papers on the effect of Hurricane Katrina on
the development of New Orleans and its residents (Glaeser 2005, Basker and Miranda 2014,
Deryugina, Kawano and Levitt 2014), on the consequences of the Tsunami of 2004 (de Mel,
McKenzie and Woodruff 2012), and Typhoons in China (Elliott et al. 2015). Also related
are studies of the effect of flooding on house prices in the Netherlands (Bosker, Garretsen et
al. 2015). Global studies include Hsiang and Jina (2014), who study the effect of cyclones on
long run economic growth worldwide, and Cavallo et al (2013), who study the effect of natural
disasters on GDP. Floods are generally more difficult to locate with great precision than, say,
earthquakes or tropical storms.7 Our innovation is to combine detailed inundation maps with
information on elevation, which is well measured globally and at high resolution. This approach
allows us to conduct within-city analysis at the global level - the first such analysis for floods
that we are aware of.

Second, our study is related to the broader analysis of urban responses to large scale shocks. Two
other recent papers that analyze the adaptation that takes place within cities in response to large
scale shocks are Hornbeck and Keniston (2014), who analyze the recovery of Boston from the
fire of 1872, and Ahlfeldt et al. (2015), who analyze the reorganization of Berlin in response to
its division and reunification. Both are important case studies of large once-off shocks, whereas
the shocks we study are more recurrent. Several other papers investigate urban destruction and
recovery in the aftermath of wars, epidemics and other calamities (Davis and Weinstein 2002,
Brakman et al 2004, Miguel and Roland 2011, Paskoff 2008, Beeson and Troesken 2006). Our
study adds both a global perspective, since we analyze shocks around the world, but also a
more localized perspective, since we examine what happens within cities. Whereas most of this
literature has interpreted the recovery from shocks in a positive way, our finding that there is no
shift in economic activity towards higher ground is not necessarily such a positive message.

Third, our study relates to a growing literature on urbanization in developing countries (Barrios
et al. 2006, Marx et al 2013, Henderson et al 2015, and Jedwab et al 2015). Our paper also
relates to a literature on the use of night lights data for empirical analysis of economic growth
(Henderson et al 2012, Michalopoulos and Papaioannou 2014). The correlation between lights
and economic activity in the cross section has long been noted (Donaldson and Storeygard,
2016), while Henderson et al. (2012) were perhaps the first to formally test the relationship
between changes in lights and economic growth, using GDP data at the national level. Since
then numerous studies have used the lights data as a proxy for economic activity or prosperity at
a local (sub-national) level (Ghosh et al. 2013 and Donaldson and Storeygard 2016, summarize

7Of course, flooding is sometimes the result of tropical storms – as is the case for 10 of the 53 large flood
events included in our sample. These storms include hurricanes, cyclones, and typhoons, which are different
names given to the same type of tropical storm that occurs in different parts of the world. While wind field
models, combined with detailed storm track data, can allow precise estimation of the location and intensity of
winds associated with tropical cyclones (see e.g. Strobl 2011), this method may not identify the precise extent
of associated flooding.
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some of these applications). A number of studies have noted truncation of the night lights data,
both at the lower and upper ends of the spectrum, resulting in weak predictive power in settings
with little economic activity (e.g. rural areas, particularly in developing countries - see Chen
and Nordhaus 2011) and where lights are saturated (e.g. in urban areas in rich country settings -
see Mellander et al. 2015). However, recent verification exercises on the lights-GDP relationship
using regional, city and prefecture level data (e.g. Hodler and Raschky 2014, Storeygard 2016)
show a close correspondence with the central lights-GDP estimate from Henderson et al. (2012).
Further discussion of this literature is included in Online Appendix B.

Local GDP is often preferred as a measure of local economic activity, even though it is measured
for coarser geographies than night lights and often suffers from measurement error. To further
examine the relationship between local GDP, night lights, and floods using within-country varia-
tion, we focus on the case of India, and we report our results in Online Appendix C. In summary,
the relationship between night lights and GDP (both in logarithms) in India is strong both in
a cross-section and in a panel of districts. This relationship is of a similar order of magnitude
to what the above-mentioned literature finds. At the same time, our results show that variation
within only one country gives an imprecise relationship between floods and both GDP and night
lights. Nevertheless, the confidence intervals that we find using the Indian data are quite wide,
possibly because Indian districts are large and populous, while the flooding measures we discuss
below are more geographically precise. In the rest of the analysis we therefore focus on night
lights as an outcome, since they can be measured at a fine spatial scale and with greater consis-
tency across the world’s cities, even when GDP data is unavailable or poorly measured.

We acknowledge that a limitation with the use of night lights is that the effect of disasters
on power plants may be hard to distinguish from the destruction of buildings and other in-
frastructure. For this reason, we are cautious in interpreting the magnitudes of our regression
coefficients, despite the close relationship between night lights and GDP at the local level, as
discussed above.

Finally, our paper also relates to the literature estimating the costs of climate change and sea
level rise (Hanson et al 2011, Hallegatte et al 2013, Desmet et al. 2015, Tessler et al. 2015).
Coastal cities feature prominently in this large literature, given their current and future exposure
to flooding in particular. One important factor in assessing the long term impact of flooding is
adaptation, or the degree to which people move away from environmentally dangerous locations.
Our study suggests that adaptation responses may be inadequate, and consequently the costs of
increases in future flooding may be higher than anticipated.

4 Data

The dataset that we compile for our empirical analysis comprises data on flood locations, physical
characteristics of locations (including elevation and distance to rivers and coasts), precipitation,
urban extents, population density and night light intensity, all mapped onto an equal area
one kilometer-squared grid covering the entire world (using the Lambert cylindrical equal area
projection). The data are drawn from a number of sources as detailed below.

Floods
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The primary data for our analysis are the flood maps that we use to identify flooded locations.
These come from the Dartmouth Flood Observatory (DFO) archive (Brakenridge 2015). The
DFO database includes information on the location, timing, duration, damage, and other out-
comes for thousands of flood events worldwide from 1985-2015. These data were compiled from
media estimates and government reports. While we use this database to derive general statistics
about floods, our paper is focused mostly on a subset of floods for which DFO provides detailed
inundation maps (which we discuss in more detail below). These maps were produced predomi-
nantly for the period 2003-2008, and even for that period they do not cover all large floods (see
below).8

In this paper we focus on the most devastating flood events, which (according to DFO) displaced
at least 100,000 people each, to which we sometimes refer in short as “large floods”.9 Our focus
on large floods with available inundation maps, left us with a sample of 53 large flood events
that affected 1,868 cities in 40 countries worldwide from 2003-2008. This sample represents
a majority (55 percent) of displacement-weighted events, which took place during this period,
according to the DFO database (see Table 1). Table 1 also provides a count of events displacing
more than 100,000 people per year, based on the complete DFO database. The table suggests
that the period of our main sample (2003 - 2008) was one with a particularly high number of
large flood events. The higher frequency of large floods during our period of analysis compared to
other periods could reflect an actual change in flood devastation over time and/or more intensive
documentation by DFO, as suggested by the availability of detailed inundation maps for this
period.

The locations of the large flood events in our sample are illustrated on the world map in Figure 1.
The map shows all urban areas in the world (in light grey). City sizes are inflated – even more so
for flooded cities – in order to make them more clearly visible on a map of the entire world. The
map shows locations that were affected by large floods, with darker shades representing higher
frequencies of flooding. The number of floods in the legend refers to the number of years during
our main sample period (2003-2008) in which each city was affected by a flood that displaced a
total of 100,000 people or more. As the map illustrates, large urban floods are especially common
in South and East Asia, but they also afflict parts of Africa and the Americas.10

The patterns that the map reveals are not coincidental. Large-scale flooding usually involves
heavy precipitation, so it mostly occurs in tropical or humid sub-tropical areas. Of course other
areas are not immune from large floods due to tropical storms (e.g. hurricane Sandy in the New
York area in 2012) and tsunamis (the 2011 Tsunami in Japan), which fall outside our period of
analysis. Large-scale urban flooding also typically occurs more often in densely populated areas,
such as the basins of the Ganges, Yangtze, and Yellow rivers. Finally, large-scale flooding more

8Some maps for earlier and more recent events exist on the DFO website, which were less detailed and/or not
fully processed and were therefore not directly comparable.

9For comparability we used displaced as indicator of intensity instead of the traditional 1 in 10 year flood,
1 in 100 year flood, etc. Our choice is motivated by our interest in floods that are devastating to human lives
in an absolute sense, and not just relative to local precipitation patterns. We also note that DFO ‘displaced’
figures are an attempt to estimate the number of people who were evacuated from their homes due to floods.
These estimates are not exact, and may cover both temporary displacement and events where people’s homes
were permanently destroyed. Even though the overall human cost from this sample of floods is enormous we refer
to them as ‘large floods’ to emphasize that the effect on each affected flooded city need not be such.

10Europe and Australia are also not immune from large floods, but during the period that we examine they
were not affected by large floods covered by DFO inundation maps.
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commonly occurs in developing countries, where flood defences are weaker (or non-existent).
But again the examples mentioned above, and the large flooding events in Louisiana and Florida
(shown on our map) show that rich nations are by no means immune.

The DFO flood maps are constructed from satellite images. Flood outlines based on satellite
imagery are translated by DFO into Rapid Response Inundation maps showing the extent of area
that is flooded – often for different days during a given flood event. It is very likely that the DFO
maps understate the true extent of flooding in each event, in part due to cloud cover obstructing
the view from the satellites, or in part because the extent of flooding is not documented for every
point in time. Furthermore, as explained above, some large flood events do not appear on any
inundation maps. For this reason, cities that never appear in the database might nonetheless be
flooded in a given year, and we restrict most of our analysis to cities that appear as flooded in
at least one inundation map. Since we are concerned that the documented high water marks of
floods within cities might understate the actual one, we do not use information on the extent of
flooding within cities. Instead, we define a city as flooded in a given year if at least one gridpoint
within it is flooded (by a large flood) in that year. An example of one of our flood maps, in this
case the flooding associated with Hurricane Katrina in the city of New Orleans and its environs
in 2005, is given in Panel A of Figure 2.11

Several types of extreme events caused the 53 large floods that we analyze: heavy precipitation
(42 events, of which 12 are due to monsoonal rain), tropical storms (10 events), and a tidal surge
(the 2004 Tsunami). Since tropical storms can cause damage from wind as well as flooding, we
discuss regression results showing that precipitation, rather than wind damage, is likely the main
driver of our results. Taken together, DFO estimates suggest that the 53 flood events displaced
almost 90 million people, of which 40 million were displaced in the 2004 floods in India and
Bangladesh.

Night-time light data

To identify the economic effects of floods at a fine spatial scale, we use data on night lights as a
proxy for economic activity. These data are collected by satellites under the US Air Force Defense
Meteorological Satellite Program Operational Linescan System (DMSP-OLS). The satellites cir-
cle the earth 14 times each day, recording the intensity of Earth-based lights. Each satellite
observes every location on the planet every night at some instant between 8:30 and 10:00 pm
local time (Henderson et al. 2012). NOAA’s (National Oceanic and Atmospheric Adminis-
tration) National Geophysical Data Center (NGDC) processes the data and computes average
annual light intensity for every location in the world. An average 39.2 (s.d. 22.0) nights are used
for each satellite-year dataset. Light intensity can be mapped on approximately one-kilometer
squares and are thus available at much higher spatial resolution than standard output measures.
The data are available annually from 1992 - 2013. For some years more than one dataset is

11This and other DFO inundation maps are available as image files from http://floodobservatory.

colorado.edu/Archives/MapIndex.htm. Different color codes are used in these images to indicate flood ex-
tents at different points in time (and also across flood events). Our approach to digitizing these images captures
the mainly red and pink hues used by DFO to show the flooded areas. Specifically, we use the following code
to capture flood extents: ((“MAPid.jpg − Band1” > 240)&(“MAPid.jpg − Band2” < 180)&(“MAPid.jpg −
Band3” < 180))|((“MAPid.jpg − Band1” > 80)&(“MAPid.jpg − Band2” < 10)&(“MAPid.jpg − Band3” <
10))|((“MAPid.jpg − Band1” > 245)&(“MAPid.jpg − Band2” < 215)&(“MAPid.jpg − Band3” < 215)). We
georeferenced each map in ArcGIS to identify its location, enabling the creation of a digital shape file identifying
locations affected by each of the events included in our sample.
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available. Where this is the case, we chose datasets so as to minimize the number of different
satellites used to collect the data.12

While these data are well suited for studying local economic developments on a global scale,
they are not without limitations. One concern is that the use of different satellites for different
years may result in measurement error. We address this concern by including year fixed effects
in all our specifications. Another limitation is that the lights data range from 0-63, where 63
is a top-coded value. While imperfect, we note that most of the floods that we analyze affect
developing countries where much of the light activity is below the top-coded level, and this point
emerges clearly from the descriptive statistics.13 For our main sample of cities affected by at
least one of the large floods the proportion of top-coded cells varies from just 1.4 percent to 5
percent over the period 2003-2008. Lastly, we note that the lights datasets also include light
related to gas flares. Our data processing included the removal of gas flaring grid points from
the data (as in Elvidge, Ziskin, Baugh et al. 2009).14

An example of a light intensity map for the city of New Orleans and its environs is provided for
the years 2004, 2005 and 2006 in Panels B, C and D of Figure 2. The three panels illustrate how
light intensity in the city looked in the year prior to the flood caused by Hurricane Katrina (2004
- Panel B), in the year of the flood (2005 - Panel C) and in the year following the flood (2006
- Panel D). One can see a distinct dimming of the lights in the year of the flood (2005 - Panel
C), relative to the previous year (2004 - Panel B). This pattern is particularly pronounced in
the North-Eastern parts of the city, corresponding to the worst affected areas, according to the
DFO flood map in Panel A of Figure 2. The light intensity map in Panel D of Figure 2 (2006)
appears to show a restoration of light intensity in the city to levels that are fairly close to those
observed prior to the flood. The example of Hurricane Katrina also demonstrates that despite
the top-coding and any measurement error, even in a rich country such as the US, the effects
of floods are visible from light activity. Nevertheless, we should emphasize that New Orleans is
atypical of our data; the vast majority of the large flood events that we analyze take place in
poorer countries.

Urban extents

We focus our analysis on urban areas, as defined by the Global Rural-Urban Mapping Project
(GRUMP) urban extent grids from the Center for International Earth Science Information Net-
work (CIESIN) at Columbia University, for the year 1995 (GRUMPv1, 2015). To keep the
analysis tractable, we treat these boundaries as fixed. Urban extents are defined either on the
basis of contiguous lighted cells using night-time light data or using buffers for settlement points
with population counts in 1995 greater than 5,000 persons (CIESIN 2011). For our analysis we
split urban areas that span multiple countries into distinct units, so that we can assign each
urban area to the country in which it lies. This gives us a total of 34,545 urban areas. We
can assess to what degree lighting correlates with population growth. We estimate regressions
where the dependent variable is population growth from 1995-2000 (once in levels and once in

12We use data from Satellite F10 for 1992-1993; from Satellite F12 for 1994-1999; from Satellite F15 for 2000-
2007; from Satellite F16 for 2008-2009; and from Satellite F18 for 2010- 2012.

13Aside from top-coding, the specification of the light intensity measure involves low levels of light set to zero.
This might be a further source of measurement error, although is less likely a concern for our analysis, given
the focus on urban areas. In our data there are only about 5.5 percent of observations coded zero, which is not
surprising given how urban extents are identified in the GRUMP data (see subsection).

14Only 0.0057 of gridpoints fall in this category.
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logarithms), and the regressor of interest is the level of lights in 2010 for areas that were unlit in
1992, since by construction the level of light in the base period here is zero. In both regressions
we control for country fixed effects and cluster the standard errors by country. Both regression
estimates are positive and statistically significant. However, for our main specifications, we re-
strict our analysis to urban areas that were hit at least once by a large flood in our data - a
sample of 1,868 cities. We also take population density data at one-kilometer square resolution
from the same source.15

Other data

In our analysis we also use data on elevation (in meters above sea level), which are taken from the
US Geological Survey (USGS), and data on distance to (nearest) coasts and rivers (in kilometers)
from the same source. The elevation data come from the GTOPO30, a global digital elevation
model.16 The data on elevation are spaced at 30-arc seconds and cover the entire globe. As
with all our data these are projected from geographical coordinates to an equal area projection
(Lambert cylindrical equal area) and fitted onto our 1 square kilometer grid.

We also obtain monthly precipitation data on a 0.5 x 0.5 degree cells resolution from the Climatic
Research Unit (CRU) at the University of East Anglia (Jones and Harris, 2013).17 We use
these data to construct extreme precipitation indicators for locations that experience monthly
precipitation in excess of 500mm (or 1000mm) at least once in a given year.18 Although extreme
precipitation is by no means a perfect predictor of flooding for a particular location, it has
the advantage of being an exogenous source of variation in flood location and timing. We use
these extreme precipitation indicators as alternative explanatory variables to mitigate against
endogeneity concerns with respect to our flood indicator.

5 Results

We begin with a cross-sectional analysis of flood exposure and the concentration of economic
activity, by location, using the full sample of all urban areas in the world.

We first examine the nature of global urban flood risk, using information from our inundation
maps. In Table 2 we test how exposure to large urban flooding (events that displace at least
100,000 people) depends upon location characteristics. We regress a measure of the frequency
of flooding on an indicator for low elevation (being no more than 10 meters above sea level) and
controls, for the full sample of all urban areas. The regressions reported in Table 2 are of the

15We use population density data adjusted to match UN total estimates (“ag”) not national censuses (“g”).
16GTOPO30 is the product of collaboration among various national and international organizations under the

leadership of the U.S. Geological Survey’s EROS Data Center. See https://lta.cr.usgs.gov/GTOPO30.
17A 0.5 x 0.5 degree cell measures approximately 60km x 60km at the equator. At higher latitudes the East-

West dimension of these cells becomes smaller. For example, the highest latitude city in our main sample is
located at about 39 degrees North. At this latitude, a 0.5 x 0.5 degree cell measures roughly 42km (East to
West).

18These are relatively rare events. About 15 percent of urban gridpoints in the world have experienced monthly
precipitation exceeding 500mm at least once during the period 1992-2012, while only 1.2 percent of urban grid-
points in the world experienced monthly precipitation exceeding 1000mm at least once during the period 1992-
2012.
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following form:

FloodFreqik = β11 + β12(Elev < 10m)i + β13Riveri + β14Coasti + Countryk + εik. (1)

The left hand side represents the frequency of flooding for a given location, measured as the
number of years during our main sample in which each location is hit by at least one large flood
event, divided by the length of the sample.19 The sample here is all urban gridpoints in the
world, based on the 1995 GRUMP definitions, discussed above. The right hand side includes
dummy variables for locations that are less than 10m above sea level (Elev < 10mi), less than
10km from the nearest river (Riveri) or coast (Coasti). Columns (5) to (8) include country fixed
effects. To account for spatial correlation, we cluster the standard errors by country, which is a
more conservative approach than that taken in most of the literature.

We find that globally, urban flood risk by this measure is around 1.3 percent per year for areas
at least 10m above sea level (based on the intercept of Column 1). Low elevation areas are
substantially more likely to be in a city affected by flooding. For urban areas less than 10m
above sea level, the annual risk of being hit by a large flood rises to about 4.9 percent20, i.e.
an annual probability of almost one in 20 of being hit by a flood that displaces at least 100,000
people. That is likely an underestimate of global flood risk, since there may on (rare) occasions
be more than one event per city per year, and also because we only have inundation maps for
fewer than half the events in our sample period (January 2003 - May 2008). At the same time,
it is possible that the period we study may have been especially bad. From the information in
Table 1 it does appear that 2003-2008 was a period with a relatively high number of large flood
events.

Looking beyond the means, cities close to coastlines or rivers do not appear to face significantly
higher flood risk than other urban areas, according to our data, although the estimates for rivers
are non-trivial in magnitude and marginally significant; see Columns (2)–(4), and (6)–(8) of
Table 2. We also note that the estimated effect of elevation is a bit less precise when we control
for country fixed effects, although the magnitude is fairly similar to the estimates without fixed
effects.

We next investigate whether economic activity concentrates disproportionately in flood-prone
urban areas – specifically locations that are low elevation, and those that are exposed to extreme
precipitation, or both. To investigate this question, we regress light intensity at each gridpoint
(in 2012) on an indicator for low elevation (being less than 10m above sea level), an indicator
for being exposed to high levels of precipitation in a single month, an interaction of the two, and
controls, for the full sample of all urban areas. The precise specifications reported in Table 3 are
of the following form:

ln(Yilk) = β21 + β22(Elev < 10m)i + β23Precipl + β24Precipl× (Elev < 10m)i +Countryk + εilk,
(2)

19In practice, we only have data on floods up to May 2008, so that our sample spans five years and five months.
To capture the likelihood of flooding per year for a given location, the dependent variable here is generated by
dividing the number of years (2003-2008) in which a location is hit by a large flood, by the length of the sample,
i.e. five years and five months (or 65/12).

20Summing the intercept and the coefficient on the low elevation indicator, i.e. 0.013 + 0.036.
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where the left hand side is the natural log of mean light intensity (in 2012) at each gridpoint i
(located in grid cell l, in country k).21 The right hand side includes the low elevation indicator,
an indicator for areas that have experienced extreme precipitation in a single month at least
once in the period 1992-2012, and the interaction of these two indicators. Each specification also
includes country fixed effects. Columns (4), (7) and (10) add city fixed effects. Columns (3), (4),
(6), (7), (9) and (10) add river and coast dummies, defined above. We include three different
versions of the extreme precipitation indicator: These indicate locations that experience more
than 1000mm (500mm) of precipitation in a single month at least once in the period 1992–2012,
or monthly precipitation of 500mm or more at least twice during that period.

The results reported in Table 3 show that low elevation areas are more lit relative to country
averages – as indicated by the coefficients on the elevation dummy (in the first row), which
are all positive (and significant in Columns 1–3, 5–6 and 8–9). These results suggest a greater
concentration of economic activity in low elevation areas. These areas are also, as we might
expect, more vulnerable to large floods – i.e. they get hit more frequently – as demonstrated
in the previous analysis (described above and reported in Table 2). Even in the specifications
that include city fixed effects (Columns 4, 7 and 10), the coefficients on the elevation dummy
are positive, although only in one of them (Column 4) is the estimate precise at conventional
levels.

Looking at the interactions between the low elevation indicator and the extreme precipitation
indicators (in Columns 2–10), we find again that even in areas that experience monthly precip-
itation exceeding 500mm at least once, low elevation areas are still more lit relative to country
averages (Columns 5 and 6), and no less lit than city averages (Column 7). For areas that
experience monthly precipitation exceeding 500mm at least twice, low elevation areas are again
found to be more lit relative to country averages (Columns 8 and 9), and no less lit than city
averages (Column 10). For areas exposed to monthly precipitation exceeding 1000mm at least
once, low elevation areas are no less lit than country or city averages (Columns 2–4). All of
these findings are also robust to including controls for proximity to the nearest river or coast
(Columns 3, 4, 6, 7, 9 and 10).

Taken in the aggregate, the results in Table 3 indicate that globally, urban economic activity
as measured by night light intensity is concentrated disproportionately in low elevation areas,
which are more prone to flooding, and this is even true in regions that are prone to extreme
rainfall.

We also experiment with variations of the specifications presented in Table 3 to investigate if
certain types of countries are better at avoiding concentrating economic activity in low elevation,
flood-prone locations. Specifically, we examine the effects of national income and democracy on
the location of economic activity, as proxied by the intensity of night lights. The results are
reported in Table A1, and they suggest that democracies (classified as having a Polity IV score
in 2008 greater than or equal to five) are better at avoiding concentrating economic activity
in flood-prone locations. On the other hand, we find that richer countries are not significantly
different from poorer ones in avoiding flood-prone areas.

We next move to the panel analysis of the local economic impacts of large urban floods. Here the
dataset consists of a panel of gridpoints (i) located in city (j) in country (k) with time dimension

21Precipitation is measured at the grid cell level, where cells measure 0.5 x 0.5 degrees.
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(t). In order to focus the analysis on changes over time within areas that are prone to large-scale
flooding, we restrict the sample to gridpoints in cities that are affected by a large flood at least
once in the sample, excluding other cities, many of which may be qualitatively different and may
never flood.

In our analysis, we use variation over time in the occurrence of flooding (and later, also extreme
precipitation), by estimating equations of the form:

ln(Yijkt) = β31 + β32Floodjt+s +Gridpointi + Y eart + Countryk × Trendt + εit, (3)

where Yijkt is mean light intensity in gridpoint i (located in city j, in country k) in year t and
Floodjt+s is a flood dummy, indicating whether or not city j was hit by a large flood in year
t+ s. We include gridpoint and year fixed effects and country-specific trends.22 As a robustness
check, we re-estimate our regressions with dynamic panel specifications, which include a lagged
dependent variable, instrumented by a second lag (Arellano and Bond 1991).23

Estimation results of equation 3 are reported in Table 4. Column (1) of Table 4 shows that a
flooded city darkens in the year in which it is flooded. This effect is also present when controlling
for the instrumented lagged dependent variable, in Column (4). The magnitude is similar in both
specifications, at −0.021 and −0.023, respectively, and statistically significant at the five percent
level in both cases. This can be interpreted as a 2.1 (or 2.3) percent reduction in average light
intensity of urban gridpoints in the year of the flood. Although we note that this represents the
average effect for all gridpoints in a flooded city, including areas that are unaffected by the flood.
Flooded gridpoints are likely to experience greater changes in light intensity, but the quality of
our flood maps only allows us to use variation in flooding at the city level – and later interact it
with measures of flood-proneness due to low elevation.

How should we interpret the magnitude of these estimates? Henderson, Storeygard and Weil
(2012) relate the change in lights to changes in economic activity. Their main estimate of the
GDP to lights elasticity is between 0.3 and 1. Based on this range of estimates, the percentage
reductions in light intensity associated with floods that we estimate could be interpreted as per-
centage reductions in economic activity, although the relationship between lights and economic
activity estimated by Henderson et al. (2012) could be different at the local level. A number
of papers have estimated the lights-GDP relationship using sub-national data, finding a similar
elasticity of GDP to lights as Henderson et al. (2012). The evidence in Online Appendix C is
also broadly consistent with Henderson et al. (2012).

Our estimates of the effects of flooding focus on the reduction in economic activity captured by
the night lights. These do not include the costs of rebuilding houses and other infrastructure.
In fact, if reconstruction efforts temporarily increase night time lights – and these efforts occur
in the same year as the flood – this could mask the true economic impact of the flood, which
could be larger than we estimate.

22These country trends account for the differences across the world in the changes in lit areas.
23Our main specification is a panel with fixed effects, which controls for country-specific trends. Nevertheless,

since our dataset is a short panel of the type “small T, large N”, this may bring up concerns of a potential Nickell
bias (Nickell 1981). To mitigate this potential concern we use the Generalized Method of Moments (GMM)
estimator developed by Arellano and Bond (1991). As we explain in the footnotes to the relevant tables, our
implementation uses the second lag of the dependent variable as an instrument for the first lag.
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Some readers may be concerned about possible endogeneity of our flood indicators, with respect
to economic activity, given that we identified large floods as those that displaced at least 100,000
people. To mitigate such concerns, Table 4 also includes results using extreme precipitation
indicators, in place of the flood dummy. The extreme precipitation indicators, Precipljt, indicate
whether or not grid cell l in city j experienced monthly precipitation exceeding 500mm (or
1000mm) in year t. These are not common occurrences; about 15 percent of urban gridpoints
in the world have experienced monthly precipitation exceeding 500mm at least once during the
period 1992-2012, while only 1.2 percent of urban gridpoints in the world experienced monthly
precipitation exceeding 1000mm at least once during the period 1992-2012.

The results of these specifications are reported in Columns 2–3 and 5–6 of Table 4. The effect
of an episode of monthly precipitation exceeding 500mm is similar in magnitude to that of a
large flood, at between −0.025 and −0.027 (Columns 2 and 5). The rarer event of monthly
precipitation exceeding 1000mm has a substantially larger effect on light intensity in affected
cities, leading to average dimming of between −0.080 and −0.083 (Columns 3 and 6). The
coefficients on the extreme precipitation indicators are statistically significant at the one percent
level in each of these specifications.24

We also repeat our main analysis at the city-wide level, aggregating the data to city level, with
observations weighted by city population. At the city level the specification becomes:

ln(Yjkt) = β41 + β42Floodjt+s + Cityj + Y eart + Countryk × Trendt + εjt. (4)

which is essentially the same as 3 but with city fixed effects now replacing gridpoint fixed
effects.

The estimation results for this specification, now across rather than within cities, are reported in
Table A2. We find a similar pattern of results as before. The effect of a large flood on city-wide
light intensity is still statistically significant at the five percent level, albeit slightly smaller in
magnitude at between −0.017 and −0.019 (Columns 1 and 4). Episodes of extreme precipitation
also reduce light intensity at the city-wide level, with the effects significant at the one percent
level in each case (see results in Columns 2–3 and 5–6 of Table A2).

We next investigate patterns of recovery of urban economic activity in the aftermath of floods.
In Table 5 we report the results of estimating versions of Equation 3 including lagged versions
of the flood indicator (up to t − 4) – i.e. testing the effects of large floods on light intensity at
up to four years after the flood. Columns (1) and (6) of Table 5 repeat Columns (1) and (4) of
Table 4 for ease of comparison. The remaining Columns of Table 5 show that the statistically
significant impact of the flood on light intensity in the year of the event disappears at t− 1 and
does not reappear at further lags.25 These results indicate that urban economic activity is fully

24We do not use extreme rainfall to instrument for flooding, because extreme rainfall can adversely affect a
city’s economic fortunes even if far fewer than 100,000 people are displaced. In technical terms, this amounts to
a violation of the exclusion restriction. This problem, coupled with the relative rarity of large floods (a small first
stage), implies that 2SLS estimates of the effects of large floods using extreme rainfall as an instrument are much
larger than the OLS estimates that we report in the paper. We therefore prefer to focus on the OLS estimates,
which we find more credible.

25In the Online Appendix we include an event study (Figure A1) showing the coefficients reported in Table 5,
and two additional years before the flood, not shown in the table. The figure illustrates that the shock of the
flood is concentrated in the year in which it took place.
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restored just one year after a large flood strikes a city. This pattern of rapid recovery is also
found for cities affected by episodes of extreme precipitation (see results in Tables A3 and A4).
We also test for recovery at the city-wide level, running versions of Equation 4 with lags of the
flood indicator (results presented in Table A5). Again, we find a similar pattern, with the effect
of the flood on city-wide light intensity disappearing after just one year.

We next consider heterogeneity of floods’ effects within cities. In particular, we are interested in
the differential effect of large floods by elevation. We test this by interacting the flood indicator
with an elevation band indicator. Returning to the panel of gridpoint-years, the regression
specification now becomes:

ln(Yijkht) = β51 +Σhβ52hFloodjt+s×Elevationh+Gridpointi+Y eart+Countryk×Trendt+ εit,
(5)

where Elevationh is a dummy for elevation band h. In practice we interact the flood indicator
with an indicator for urban locations that are less than 10m above sea level (and an indicator for
areas that are 10m or more above sea level). The results of these specifications are reported in
Table 6. As before, these regressions include year and gridpoint fixed effects, as well as country-
specific trends (in Columns 1–6). In Columns (7) to (8) we replace the country-specific trends
with city-specific trends, to account for different city-specific changes in light intensity over
time. We also re-estimate our main regressions using the dynamic panel specification described
previously (results reported in Columns 4–6).

The results in Columns (1) and (4) show that low elevation areas within cities are hit harder
than other areas when a city is struck by a large flood. The effect on light intensity for areas
less than 10m above sea level is estimated at between −0.027 and −0.028. This effect is even
slightly stronger (−0.030) when accounting for city-specific trends in Column (7). These effects
are statistically significant at the one percent level. The estimated effects for areas more than
10m above sea level are smaller in magnitude, and not statistically significant in Columns (1)
and (4). When we include city-by-year fixed effects, the finding that low elevation areas are
hit harder does not survive this more demanding specification, which only uses variation in
elevation within cities exposed to floods in a given year. Similar specifications, where instead
of elevation we interacted floods with indicators for distance to nearest river or coast, found no
such significant pattern of heterogeneity.26

The effects at low elevation are even stronger when using extreme precipitation to identify
affected locations. Specifically, the results in Table A6 show that light intensity for locations
less than 10m above sea level is reduced by up to −0.122 in years with episodes of monthly
precipitation in excess of 1000mm.27

The interaction of the flood indicator with an indicator for low elevation areas captures the
impact of floods on the riskiest parts of cities. As we might expect the effects identified for low-
elevation areas are both stronger in magnitude and more precisely estimated than the average
effects reported in Table 4. However, as pointed out previously, the effects we report are still

26These alternative specifications are not reported in this version of the paper. Results available on request.
27A similar analysis for episodes of monthly precipitation in excess of 500mm did not find any significant

heterogeneity by elevation. Results not reported here, but available on request.
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average effects across all gridpoints (in this case, all gridpoints less than 10m above sea level)
in affected cities. The effects for gridpoints experiencing the worst actual flooding could well be
stronger again than those reported here.

We know that the floods in our sample (at least temporarily) displaced population, so it is highly
unlikely that the effects we find are purely due to power outages. The heterogeneous impacts
by elevation that we identify here would seem to support this conclusion. Damage to energy
infrastructure would likely reduce light across the city, in both its higher and lower elevation
neighborhoods. The heterogeneous impact is suggestive that lights within cities indeed correlate
with local economic activity.

Table 6 also shows the pattern of recovery following a flood event for urban locations at different
elevations. Again the effects of the flood disappear just one year after the event, even for the
harder hit low elevation areas (those less than 10m above sea level) – as demonstrated by the
results in Columns (2), (5) and (8) of Table 6. The positive and significant coefficients on the
interaction of the floodt−2 indicator with the elev < 10m indicator in Columns (3), (6) and (9)
of Table 6 indicate some over-shooting in the recovery of low elevation areas. Two years after
a flood event, the light intensity in the hardest hit areas of flooded cities is above its (country-
specific or city-specific) trend. A similar specification, where instead of the flood indicator we
interacted elevation with an indicator of extreme precipitation, found a temporary increase in
light intensity one year after experiencing monthly precipitation of 1000mm or more. However,
this increase disappears in the following year, which might have to do with aid and reconstruction
efforts.28

The pattern of results presented in Table 6 – both the heterogeneous impacts by elevation and
the rapid recovery of even the harder hit low elevation areas – is robust both to the exclusion of
locations within 10km of rivers and coasts (see Table A7) and to the exclusion of cities that are
entirely less than 10m above sea level (see Table A8). The rapid recovery of low-elevation areas,
even when excluding locations within 10km of rivers and coasts, suggests that this recovery
process is not simply being driven by the attractiveness or greater productivity of water-side
locations. Similarly, the rapid recovery of low-elevation areas is observed even when we exclude
(the small number of) cities that are entirely less than 10m above sea level – where relocating
economic activity to higher ground (within the city) is unfeasible. In other words, people in
flooded areas typically have the option to move to higher ground even within their own city, but
either cannot afford the move or choose not to do so. This result supports our conclusion that
this process is being driven by an important economic problem, and not simply a technical or
geographic constraint on adaptation.

We also test for differential effects of floods within cities by newly populated versus existing
locations. These specifications are similar to Equation 5, but instead of an elevation dummy,
here we interact the flood indicator with a dummy for newly populated areas (locations that
were dark, with lights = 0 in 1992) and a dummy for existing areas (those that were not dark
in 1992). The results of these regressions are reported in Table 7.

The results show larger and more persistent impacts of flooding on newly populated areas, with
the negative effect of the flood on lights persisting, and intensifying, for about three to four years
after the event. As before, we have also tested versions of the specification reported in Table

28This alternative specification is not reported in this version of the paper. Results are available on request.
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7 including city-by-year fixed effects. In this case, the main results reported in Columns 1-3
of Table 7 do survive the more demanding specification, either at the 5 percent or 10 percent
level.29 These findings are in line with the predictions of our model; because updating decreases
in t (where t is the length of the sample of information that an individual has on past flooding),
we expect that there will be more updating in newly populated urban areas.

The persistent negative effect of floods in areas that were not lit in 1992 stands in contrast with
the return to pre-existing conditions elsewhere in cities. The negative effect of floods in new
areas is (from the year after the flood) roughly an order of magnitude larger than in the areas
that were settled in 1992. And the negative effects are significant at the 5-10 percent levels for
four years. Even five years after the flood, and despite the limitations of our short panel and
conservative inference, the point estimate of the flood is still larger than in the year of impact.
These results suggest that there is some adaptation to floods, but only in areas that are newly
populated, where the risk of flooding may not have been fully realized, and substantial sunk
investments may not yet have been made.

We also compare newly lit areas with areas that were poorly lit in the first year we observe night
lights (1992). For comparison the mean night lights intensity in urban areas in our sample in
1992 was close to 21. We think that it is plausible to assume that in both types of areas (the
poorly lit and the unlit) there was very little sunk investment. But the two types of areas likely
differ more in the information that people had about the risk of flooding. We think that unlit
areas are more likely to have been uninhabited. Newly arrived residents to these areas would
have less information available to them on the local flood history of the area. As a consequence
there were more opportunities to learn from realized flooding in those areas. In contrast, poorly
lit areas are more likely to have been inhabited for longer (prior to 1992). Residents of these
areas would have a longer history of experience with local flooding to draw from, and therefore
less scope to learn from a new flood realization. The results of this comparison suggest that the
effect of flooding in unlit areas is significantly stronger and more persistent than in poorly lit
areas. But there also seems to be an effect in poorly lit areas, which is a little larger than for
the average area (which is better lit). Taken together, these results suggest that there may be a
role for both learning and sunk costs, as our model suggests. These additional specifications are
reported in Appendix Figure A2.

Finally, we examine whether rising sea levels are gradually shifting aggregate urban economic
activity away from flood prone areas irrespective of the incidence of large-scale floods. According
to the IPCC mean global sea levels rose about 20cm over the 20th century (Myhre et al 2013).
In fact, we find that the share of economic activity concentrated in areas less than 10 meters
above sea level is fairly constant and close to 10 percent throughout the 20 years from 1992
to 2012, suggesting that gradual adjustment to climate change is not what we observe in our
data.30

29These results are not reported in this version of the paper, but are available on request.
30In a separate exercise, not reported in the paper, we add up the light intensity for low lying urban areas

(those less than 10 meters above sea level) and compare this to higher elevation urban areas. We find that the
share of lights in the low lying areas barely changed from 1992 (when it was 0.1038) to 2012 (when it was 0.1040).
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6 Discussion and conclusions

In this paper we study the effect of large floods on local economic activity in cities worldwide. In
particular, we examine (i) whether economic activity concentrates disproportionately in flood-
prone urban areas; (ii) whether higher risks of extreme precipitation affect the concentration of
economic activity in areas with higher risk of flood; and (iii) whether large floods cause economic
activity to shift to safer urban areas or safer parts within the same urban area.

Our analysis indicates that urban areas globally face substantial flooding risk. In particular, in
our data, low elevation urban areas – those less than 10m above sea level – on average face a
one in 20 risk of a large scale flood, displacing at least 100,000 people, hitting their city. This
is likely an underestimate of the true risk, given that we have incomplete coverage of the events
that meet this criterion during our main sample period (January 2003 to May 2008).31 We also
find that large scale flooding represents a recurrent risk for certain urban locations. Of the 1,868
cities affected by a large flood in our data, about 16 percent get hit in more than one year
during our brief sample period. In spite of the greater vulnerability of low elevation areas to
flood risk, we find that global urban economic activity as measured by night light intensity is
disproportionately concentrated in these areas.32 This concentration of urban economic activity
in flood-prone areas is found to hold even in regions that are prone to extreme precipitation.

Urban flood risk is likely to increase with trends such as population growth and urbanization,
which are more intensive in areas currently most at risk – e.g. South Asia and sub-Saharan Africa
– along with the potentially exacerbating effects of climate change and rising sea levels.

When we analyze the local economic impact of large floods, we find that on average they reduce
the intensity of night lights by between 2 and 8 percent in the year of the flood, depending on
the method used to identify affected locations. Our results also show that recovery is relatively
quick, with lights fully recovered in the year after the flood. These results – which are consistent
across our various specifications and robust to excluding areas within 10km of the nearest river
or coast, and to excluding cities that are entirely less than 10m above sea level – indicate a lack
of adaptation, in the sense of a movement of economic activity away from the most vulnerable
locations within cities. One exception to this appears to be in newly populated areas, where the
observed decline in light intensity is both stronger and more persistent.

Projections of future losses associated with climate change rest heavily on assumptions about
the degree of adaptation we can expect in response to changing risk profiles. While the potential
for human and economic systems to adapt may be high, our results indicate that even large
and devastating floods do not permanently displace population, so it may prove challenging to
convince people to leave as sea levels rise. In other words, in the medium run, adaptation may
be painfully slow.

Defensive investments, involving the building of more robust infrastructure and flood protec-
tion schemes, may mitigate some of the risks associated with extreme precipitation and coastal

31Although this may have been an especially destructive period, as suggested by the data in Table 1.
32This concentration in vulnerable locations also appears to have intensified over time. Looking at changes

in light intensity from 2000-2012, we find that low elevation areas have grown more rapidly relative to average
country trends (but less rapidly relative to city trends). Looking at city averages, low elevation cities have also
grown faster relative to country trends. Results of this analysis available on request. See also Ceola, Laio and
Montanari (2014).
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flooding. However, these are not costless.33 Moreover, it is often the case that money and effort
are more readily expended in disaster recovery than prevention.34 Motivating the latter faces
political challenges. Aside from the issue of political myopia, it has also been shown that vot-
ers are more likely to reward highly visible recovery efforts than preventive actions (Healy and
Malhotra, 2009).

Our findings highlight the costs associated with the path dependence of urban locations, and
stress the existence of barriers to change in the spatial distribution of economic activity across
cities. From a policy perspective, this suggests that incorporating flood risk (and adaptation)
into development and urban planning is an important challenge. Making progress on this front is
most urgent in developing countries where rapid population growth and urbanization, combined
with weak planning and zoning laws, contribute to the high levels of flood risk.

33Nor are fiscal costs of natural disasters low. When non-disaster government transfers are added to disaster-
specific aid fiscal costs of exogenous shocks in US counties increase almost three-fold (Deryugina 2013).

34It has been estimated that $7 of international aid flows are spent on disaster recovery for every $1 spent on pre-
vention (Kellett and Caravani, 2014). Following the 2014 floods in the UK, Prime Minister David Cameron stated
that “money is no object in this relief effort” (“Flood simple: the UK flooding crisis explained”, Guardian, 13
February 2014, http://www.theguardian.com/uk-news/2014/feb/13/uk-floods-essential-guide accessed
on 29 April 2015.
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Figure 1: Map of all urban areas in the world showing the locations of cities affected by our sample of large flood events. City sizes
are inflated in order to make them visible on a map of the entire world. Smaller dots correspond to cities not affected by any of the
floods in our sample. The number of floods in the legend refers to the number of years from 2003-2008 during which each city was
affected by a flood that displaced a total of 100,000 people or more. This map uses the Mercator (WGS 1984) projection. The rest
of the analysis in the paper uses equal area projections.
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Figure 2: Inundation and light intensity maps for Hurricane Katrina, New Orleans. Panel A shows a detail from one of the inundation
maps associated with Hurricane Katrina, concentrated on the area around the city of New Orleans. The map displays in red and pink
the areas that were inundated during the flooding. Panels B, C and D show the average annual light intensity in 2004, 2005, 2006
respectively, for the city of New Orleans. There is a notable dimming of lights city-wide in 2005. This is particularly pronounced in
the eastern parts of the city, which were worst affected by the flood. In Panel D a recovery of light intensity is apparent. We are
unable to observe any decline in light intensity in the range above the top coded light intensity level of 63. However, New Orleans
is rich compared with the rest of our sample, where top coding tends to be less frequent.
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Table 1: Flood events displacing at least 100,000 people, by year (1988-2014)

Millions
Number of people

Year of events (in our sample) displaced (in our sample)
1988 22 19.1
1989 20 8.0
1990 18 14.2
1991 21 16.9
1992 12 12.6
1993 16 34.2
1994 15 7.8
1995 24 47.4
1996 18 12.1
1997 21 5.6
1998 23 41.7
1999 22 56.4
2000 20 49.2
2001 13 9.4
2002 16 19.0
2003 16 (13) 20.6 (19.9)
2004 19 (15) 50.0 (49.1)
2005 30 (8) 21.8 (5.8)
2006 25 (7) 16.7 (5.2)
2007 30 (9) 33.2 (8.2)
2008 24 (1) 20.7 (1.5)
2009 17 7.8
2010 17 19.8
2011 14 6.9
2012 12 5.1
2013 14 6.2
2014 9 3.1
Total 508 (53) 565.6 (89.6)

Notes: Data from the Dartmouth Flood Observatory (DFO) database.
Our sample refers to the 53 flood events from the DFO database
for which we have detailed inundation maps, as discussed in the text.
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Table 2: Flood odds by location characteristics

(1) (2) (3) (4) (5) (6) (7) (8)
FloodFreqik FloodFreqik FloodFreqik FloodFreqik FloodFreqik FloodFreqik FloodFreqik FloodFreqik

Elev < 10mi 0.036 0.041 0.033 0.034
(0.017) (0.018) (0.018) (0.019)

Riveri 0.010 0.009 0.009 0.009
(0.006) (0.006) (0.006) (0.006)

Coasti -0.001 -0.010 0.007 -0.001
(0.007) (0.003) (0.006) (0.001)

Constant 0.013 0.014 0.016 0.012
(0.005) (0.004) (0.005) (0.004)

Observations 3,807,799 3,807,799 3,807,799 3,807,799 3,807,799 3,807,799 3,807,799 3,807,799
Country fixed effects No No No No Yes Yes Yes Yes

Notes: The regressions reported in this Table correspond to Equation 1, and include the full global sample of all urban areas.
The dependent variable FloodFreqik measures the odds of flooding per year for a given location, defined as the
number of years during our main sample in which each location is hit by at least one large flood event,
divided by the length of the sample (five years and five months).
Elev < 10mi is a dummy variable for locations that are less than 10m above sea level.
Riveri and Coasti indicate locations that are less than 10km from the nearest river or coast, respectively.
Robust standard errors, clustered by country, in parentheses.
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Table 3: Light intensity by elevation and exposure to extreme precipitation

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
ln(Yilk) ln(Yilk) ln(Yilk) ln(Yilk) ln(Yilk) ln(Yilk) ln(Yilk) ln(Yilk) ln(Yilk) ln(Yilk)

Elev < 10mi 0.182 0.184 0.137 0.059 0.157 0.110 0.038 0.172 0.125 0.047
(0.037) (0.037) (0.032) (0.027) (0.033) (0.028) (0.033) (0.034) (0.029) (0.028)

Elev < 10mi × Precip > 1000mml -0.034 -0.032 -0.030
(0.075) (0.075) (0.048)

Precip > 1000mml -0.063 -0.081 -0.021
(0.079) (0.074) (0.054)

Elev < 10mi × Precip > 500mml 0.113 0.112 0.078
(0.044) (0.048) (0.064)

Precip > 500mml -0.043 -0.054 -0.078
(0.064) (0.062) (0.054)

Elev < 10mi 0.067 0.065 0.049
×Precip > 500mm(twice)l (0.026) (0.028) (0.038)

Precip > 500mm(twice)l -0.050 -0.066 -0.114
(0.075) (0.073) (0.056)

Observations 3,642,083 3,642,083 3,642,083 3,642,083 3,642,083 3,642,083 3,642,083 3,642,083 3,642,083 3,642,083
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
City FE No No No Yes No No Yes No No Yes
River & Coast FE No No Yes Yes No Yes Yes No Yes Yes

Prec > 1000mm Mean 0.012
Prec > 500mm Mean 0.153
Prec > 500mm(twice) Mean 0.111

Notes: The regressions reported in this Table correspond to Equation 2 and include the full global sample of all urban areas.
The dependent variable in all regressions ln(Yilk) is the natural log of mean light intensity (measured in 2012) at each gridpoint i (located in
grid cell l, in country k).
Elev < 10mi is a dummy variable for locations that are less than 10m above sea level.
Precip > 1000mml (> 500mml) indicates locations that have experienced monthly precipitation of 1000mm (500mm) or more at least once,
and in the case of Precip > 500mm(twice)l monthly precipitation of 500mm or more at least twice, in the period 1992-2012.
Regressions with river and coast controls include dummies for locations within 10km of the nearest river or coast.
Robust standard errors, clustered by country, in parentheses.
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Table 4: Main effects of flood on light, gridpoint year panel

(1) (2) (3) (4) (5) (6)
ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt)

Floodjt -0.021 -0.023
(0.010) (0.010)

Precip > 500mmlt -0.025 -0.027
(0.008) (0.008)

Precip > 1000mmlt -0.080 -0.083
(0.018) (0.018)

ln(lightt−1) Yes Yes Yes

Observations 1,422,018 1,422,018 1,422,018 1,392,501 1,392,501 1,392,501
No. of gridpoints 243,303 243,303 243,303 235,460 235,460 235,460

Notes: The results presented in this Table correspond to Equation 3 and use the sample
of cities affected by at least one of the large flood events in our data.
The dependent variable in all regressions ln(Yijkt) is the natural log of mean light
intensity at each gridpoint i (located in city j in country k) in year t.
Floodjt is a dummy indicating whether or not city j was hit by a large flood in year t.
Precip > 1000mmlt (> 500mmlt) indicates locations that experienced monthly precipitation
of 1000mm (500mm) or more in year t.
All regressions include year fixed effects, gridpoint fixed effects and country-specific trends.
Columns (4) to (6) corrected by the Arellano-Bond methodology using ln(lightst−2)
as an instrument for ln(lightst−1).
Robust standard errors, clustered by country, in parentheses.
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Table 5: Recovery, gridpoint year panel

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt)

Floodjt -0.021 -0.023
(0.009) (0.011)

Floodjt−1 -0.003 -0.021
(0.012) (0.014)

Floodjt−2 0.017 0.017
(0.015) (0.015)

Floodjt−3 0.005 -0.002
(0.004) (0.007)

Floodjt−4 0.001 0.001
(0.004) (0.005)

ln(lightt−1) Yes Yes Yes Yes Yes

Observations 1,422,018 1,414,781 1,417,877 1,421,167 1,420,548 1,392,501 1,386,261 1,380,492 1,375,245 1,374,842
No. of gridpoints 243,303 243,292 244,256 245,077 245,018 235,460 235,421 235,302 234,838 234,962

Notes: The results presented in this Table correspond to Equation 3 and use the sample of cities affected by at least one of the large
flood events in our data.
The dependent variable in all regressions ln(Yijkt) is the natural log of mean light intensity at each gridpoint i (located in city j
in country k) in year t.
Floodjt+s is a dummy indicating whether or not city j was hit by a large flood in year t + s.
All regressions include year fixed effects, gridpoint fixed effects and country-specific trends.
Columns (6) to (10) corrected by the Arellano-Bond methodology using ln(lightst−2) as an instrument for ln(lightst−1).
Robust standard errors, clustered by country, in parentheses.
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Table 6: Interactions with elevation

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt)

Floodjt × elev<10i -0.027 -0.028 -0.030
(0.006) (0.006) (0.005)

Floodjt × elev10+i -0.019 -0.021 -0.017
(0.012) (0.013) (0.007)

Floodjt−1 × elev<10i 0.009 -0.014 0.003
(0.009) (0.009) (0.011)

Floodjt−1 × elev10+i -0.007 -0.023 -0.006
(0.014) (0.018) (0.012)

Floodjt−2 × elev<10i 0.042 0.043 0.036
(0.016) (0.017) (0.020)

Floodjt−2 × elev10+i 0.008 0.007 0.011
(0.011) (0.011) (0.010)

ln(lightt−1) Yes Yes Yes

Country-specific trends Yes Yes Yes Yes Yes Yes
City-specific trends Yes Yes Yes

Observations 1,422,018 1,414,781 1,417,877 1,392,501 1,386,261 1,380,492 1,422,018 1,414,781 1,417,877
No. of gridpoints 243,303 243,292 244,256 235,460 235,421 235,302 243,303 243,292 244,256

Notes: The results presented in this Table correspond to Equation 5 and use the sample of cities affected by at least one of
the large flood events in our data.
The dependent variable in all regressions ln(Yijkt) is the natural log of mean light intensity at each gridpoint i (located in
city j in country k) in year t.
Floodjt+s is a dummy indicating whether or not city j was hit by a large flood in year t+ s.
Elevationh is a dummy for elevation band h, where h is either less than 10m above sea level, or 10m or more above sea level.
All regressions include year fixed effects and gridpoint fixed effects. Columns (1) to (6) include country-specific trends
and Columns (7) to (9) include city-specific trends.
Columns (4) to (6) corrected by the Arellano-Bond methodology using ln(lightst−2) as an instrument for ln(lightst−1).
Robust standard errors, clustered by country, in parentheses.
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Table 7: Flood impacts by newly populated vs existing locations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt)

Floodjt ×Newi -0.023 -0.026
(0.007) (0.012)

Floodjt ×Oldi -0.021 -0.022
(0.010) (0.011)

Floodjt−1 ×Newi -0.065 -0.078
(0.025) (0.019)

Floodjt−1 ×Oldi 0.003 -0.016
(0.011) (0.014)

Floodjt−2 ×Newi -0.073 -0.067
(0.032) (0.021)

Floodjt−2 ×Oldi 0.025 0.023
(0.014) (0.015)

Floodjt−3 ×Newi -0.094 -0.074
(0.043) (0.032)

Floodjt−3 ×Oldi 0.014 0.003
(0.005) (0.009)

Floodjt−4 ×Newi -0.072 -0.066
(0.040) (0.034)

Floodjt−4 ×Oldi 0.008 0.005
(0.007) (0.006)

Floodjt−5 ×Newi -0.039 -0.033
(0.025) (0.020)

Floodjt−5 ×Oldi 0.004 0.004
(0.007) (0.007)

ln(lightt−1) Yes Yes Yes Yes Yes Yes

Observations 1,422,018 1,414,781 1,417,877 1,421,167 1,420,548 1,185,258 1,392,501 1,386,261 1,380,492 1,375,245 1,374,842 1,141,486
No. of gridpoints 243,303 243,292 244,256 245,077 245,018 244,711 235,460 235,421 235,302 234,838 234,962 233,110

Notes: The results presented in this Table are variations on Equation 5 and use the sample of cities affected by at least one of the large flood events in our data.
The dependent variable in all regressions ln(Yijkt) is the natural log of mean light intensity at each gridpoint i (located in city j in country k) in year t.
Floodjt+s is a dummy indicating whether or not city j was hit by a large flood in year t + s.
Newi is a dummy for locations that were unlit (lights = 0) in 1992. Oldi is a dummy for locations that were lit (lights > 0) in 1992.
All regressions include year fixed effects, gridpoint fixed effects and country-specific trends.
Columns (7) to (12) corrected by the Arellano-Bond methodology using ln(lightst−2) as an instrument for ln(lightst−1).
Robust standard errors, clustered by country, in parentheses.
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7 Online Appendix A: Theory

To frame our empirical investigation, we outline a simple framework that allows us to consider
how individuals may respond to a large flood. We consider a discrete-time model, where a
person has to choose between two locations, one to which we refer as “Risky” (indexed by R)
and another which we will for simplicity consider “Safe” (indexed by S).

The person in question resides initially in the risky location, and considers whether to relocate
to the safe location. The period utility of the person from the risky location is

UR = VR − PF (DF − TF ) + u(c), (6)

where VR is the utility from residing in the risky location; PF is the assessed probability of a
flood, which we discuss below; DF and TF are the damage from a flood and the transfers received
in the aftermath of a flood, expressed in utility terms; and u(c) is the utility from non-residential
consumption. We drop time subscripts to increase simplicity. The period utility from the safe
location is

US = VS + u(c), (7)

where VS is the utility from residing in the safe location. But in order to move the person has
to pay relocation costs M , which capture the cost of moving. We also assume that once a flood
has hit the person has to pay the cost M regardless of whether they move or stay, since the
flood implies paying costs of renovating over and above those captured by DF . The point of
this simplifying assumption is that when a flood hits, the cost of moving (compared to staying)
is lower than in the absence of the flood. We assume that non-residential consumption is a
numeraire good, whose price is normalized to one. The budget constraint is therefore:

I = p(L) + c+M × 1move,

where I is income (which we assume to be constant);35 p(L) is the rental price of residing in
location L ∈ {R, S}, which is paid to absentee landlords; and 1move is an indicator for moving.
The choice over relocation represents an infinite horizon problem, with discount rate θ. Given
the simple structure of the model, and holding prices fixed, our individual relocates from the
risky to the safe location if VS − VR + PF (DF − TF ) is sufficiently large. An important factor
in this model is how the person assesses the probability of a flood. Following Turner (2012) we
model flooding through a Beta-Bournoulli Bayesian learning model.36 We assume that the risk
of a flood (by which we mean a large flood) in a given year is x. Our resident’s prior is that x is

35We could assume that income depends on location, but this would not substantively change the model.
36Gallagher (2014) provides evidence of Bayesian learning in the context of floods. As we explain below this is

a simplification, since this probability can rise with climate change, or decline with public investment to address
climate change.
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distributed according to a Beta distribution: x ∼ β(α, β). The probability distribution function
is:

f (x|α, β) =
1

B (α, β)
xα−1 (1− x)β−1 , x ∈ [0, 1] , α > 0, β > 0, (8)

where the normalization constant is the Beta function:

B (α, β) =

∫ 1

0

xα−1 (1− x)β−1 dx. (9)

The prior probability of a flood is therefore

PF = E [x] =
α

α + β
. (10)

After observing t years, during which a flood has occurred St times, the updated posterior
is:

E [x|t, St] =
α + St
α + β + t

. (11)

In other words, for an individual who has information on flood events in the past t years, the
expected probability of a flood next year increases by 1/(t+α+β) if a flood took place in year t
compared to the case where it did not. As t approaches infinity there is no updating. The model
captures the intuition of Bayesian learning: as t approaches infinity there is no more updating,
since the degree of risk is known.

If as a result of the flood people update the risk of flooding, some of them may want to relocate
from the risky area to the safe one. Similarly, if there is no flood and people update, there may
be movement in towards the risky areas. But without loss of generality we will focus on the case
where a flood does occur.

If people do update and some want to move from the risky area to the safe one, then the
population or the prices in the safe area (or both) will increase relative to the risky area. If
housing supply is inelastic, then the price of housing in the safe areas will increase relative to
the risky areas, but there will be no change in the population ratio between the two locations
and we might not detect any change in night time light activity. But if housing supply is not
completely fixed, then we expect both the price of housing and the population of the safe area
to increase relative to the risky area so that updating will result in changes in economic activity
as reflected by night time lights.

This simple model guides our empirical investigation in the following ways. First, we investigate
the link between risk and low elevation locations. Anticipating and quantifying flood risk in
the real world is a complicated endeavor, but we ask specifically how much more susceptible to
large scale flooding are low elevation locations, compared to high elevation ones. This informs
us about the approximate magnitude of PF .
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Second, we ask whether people generally reside in riskier low elevation urban areas. In the model,
the benefits to living in risky areas (if VR > VS), or moving costs, M , might make it prohibitively
expensive to relocate. One set of advantages for risky areas could be that living near coasts or
rivers makes seaborne activities, such as trade and fishing, less costly. At the same time, living
in flood prone areas may be the legacy of historical lock-in (Bleakly and Lin 2012; Michaels and
Rauch 2013).

Third, floods may cause people to leave the riskier areas because of either Bayesian updating, or
because floods reduce the cost of moving to safer areas (relative to staying in the riskier ones).
Our paper examines the extent to which large floods move economic activity away from risky
areas towards safer ones.

Fourth, because updating decreases in t, we expect that there will be more updating in newly
populated urban areas. In the empirical analysis we examine whether there is more relocation
from riskier to safer areas in the aftermath of a flood in urban areas that concentrated no
(measurable) economic activity until recently.

Fifth, we examine whether the presence of higher risk of flooding due to climatic factors shifts
people towards safer areas. In our model, an increase in PF holding all else constant, shifts
people away from risky low elevation areas.

In addition to the issues raised by our model, an important question is whether rising sea levels
and a changing climate will affect the aggregate global concentration of economic activity in
flood prone areas. Of course, rising sea levels may increase the risk of flooding both in low
elevation areas and in other areas that are currently safer. But it seems plausible to assume
that at least in the near future, it is in the low elevation areas that rising sea levels will have a
greater effect. In our analysis we will shed some light on the aggregate concentration of urban
economic activity in low elevation areas over a longer period of time.

Our analysis also touches upon a number of normative considerations. As Kydland and Prescott
(1977) note, flood protection may exacerbate the moral hazard problem of living on the flood
plains. By spending public money to reduce the risk borne by those living in flood prone areas,
such flood protection involves a cost. At the same time, as our paper shows, people may be
reluctant to relocate away from risky areas. As sea levels rise and the world becomes richer, the
tradeoffs between flood protection and the relocation of economic activity to safer areas are likely
to become an important issue for public debate (see Strauss, Kulp and Levermann, 2015).

Another normative issue is how much ex-post transfers should victims receive, and in what
form. In the model, a larger value of TF makes movement away from risky areas less likely.
From the perspective of a donor, if a property is frequently flooded, the costs of repeatedly
paying compensation might be high. In developing countries where institutions are weak, finding
private flood insurance may be a difficult challenge, especially for the poor. Ex-post disaster
relief, including from large scale floods, is therefore a task that governments and non-government
organizations around the world engage in from time to time. The main policy issue that we raise
is whether it should be possible, in certain circumstances, to concentrate public reconstruction
efforts towards safer areas, in order to avoid the high risk of recurrent disasters.
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8 Online Appendix B: What do variations in night lights

capture?

Our aim in this paper is to examine how prevalent it is for economic activity to concentrate
in flood-prone areas, and whether cities adapt to major floods by relocating economic activity
to safer areas. In particular, we ask does economic activity within cities readjust in response
to major shocks, which are potentially recurrent, and which disproportionately threaten specific
neighborhoods? This research question requires data on economic activity (or a reasonable proxy
thereof), with temporal variation, high spatial resolution, and global coverage. In our analysis
we observe variations in night light intensity on a 1km grid, in more than 1800 cities in 40
countries around the world in response to large-scale flooding (or extreme precipitation) events.
We undertake the usual data cleaning exercises as described in the data section.

As Donaldson and Storeygard (2016) point out, the correlation between lights and economic
activity in the cross section has long been noted (see for example Croft 1973; Doll, Muller,
and Morley 2006), while Henderson et al. (2012) were perhaps the first to formally test the
relationship between changes in lights and economic growth, using GDP data at the national
level. Since then numerous studies have used the lights data as a proxy for economic activity
or prosperity at a local (sub-national) level. An example closely related to our paper, in terms
of the challenge of finding income data at the city level or finer spatial resolution is Storeygard
(2016) who uses lights to proxy for economic activity for a sample of cities in Africa. Lights data
offer the opportunity to study variation in economic activity where traditional economic data
(especially on income and especially in a panel) are generally not available - as is the case at the
city level in Africa.

Ghosh et al. (2013) provide a relevant summary of the various ways in which night time light
data have been used to measure human wellbeing at the subnational level, while Donaldson and
Storeygard (2016) highlight a number of novel uses of night lights data as a proxy for economic
activity within small geographic units. They note that “[lights data] can plausibly be used as a
proxy for economic activity under the assumption that lighting is a normal good” (p.183).

In spite of the increasing prevalence of studies exploiting the night lights data as a proxy for local
economic activity, an important question is how lights respond to changes in economic activity
over various spatial and temporal scales.

Using annual data for a panel of countries from 1992 to 2008, Henderson, Storeygard and Weil
(2012) find evidence of a linear relationship between lights and GDP, with an estimated lights-
GDP elasticity of around 0.3. The estimated relationship is of similar magnitude for a restricted
sample of low and middle-income countries. At national level, some light emission growth vari-
ables correlate stronger with growth of GDP, non-agricultural GDP and manufacturing value-
added (Addison and Stewart 2015).

More relevant to us are studies that examine the relationship between lights and economic
activity at subnational scales. An early example is Sutton, Elvidge and Ghosh (2007) who find
that “night lights track economic output” at the state or province level, for four countries (China,
India, Turkey and the USA).

Taking a global perspective, Chen and Nordhaus (2011) compare night lights to economic output
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measured on a 1-degree grid (approx. 100km by 100km). They find a strong positive relationship
between luminosity and output at the grid cell level globally. They note that the relationship
is weak at the low end of the output/luminosity spectrum, specifically for log output density of
less than -9, which is equivalent to about $100,000 per sq km. They conclude that estimates of
income are only substantially improved for countries or regions within countries with relatively
weak or non-existent traditional economic statistics.

Hodler and Raschky (2014) also estimate the relationship between lights and GDP at the regional
level using a broader panel dataset of regional GDP (assembled by Gennaioli et al. 2013), which
includes data for 1,503 regions in 82 countries. Similarly to Henderson et al. (2012) they find
a lights-GDP elasticity of around 0.3, with a slightly larger estimate (0.386) for the short-run
relationship than for the long-run relationship (0.227). Their evidence also points to a roughly
linear relationship between lights and GDP at the regional level. Hodler and Raschky (2014)
conclude “the relationship between night-time light and GDP is linear and thereby similar across
regions with different nighttime light intensity and income levels” (p. 1030).

As mentioned above, a more closely related study, in terms of the data challenges that we
face, is Storeygard (2016) who uses lights data to proxy for city-level income for a sample of
cities in Africa, where income data are unavailable. As a verification exercise, Storeygard tests
the relationship between lights and city (or prefecture) level GDP using Chinese data, finding
that the elasticity of GDP with respect to light is significant and positive for a long difference
specification (from 1990/92 - 2005). The point estimate (of around 0.25) is very similar (using
either the city or prefecture data) to that found for the global sample at the country level.

As part of our own robustness tests, we estimated a lights-GDP elasticity of 0.2 for an annual
panel of Indian districts over our study period of 2003-2008, which is again quite similar to the
findings in Henderson et al. (2012), Hodler and Raschky (2014) and Storeygard (2016). The
consistency of this finding is encouraging.

Mellander et al. (2015) examine the strength of the relationship between night time lights and
economic activity using fine-grained official socio-economic data on individuals and establish-
ments in Sweden (on a 250m grid for urban areas and 1000m for rural areas). They find that
night time light has a relatively weak relationship with economic activity as measured by people’s
wages (consumption) or wages by establishment (production), but a relatively strong relation
with population density, at this fine spatial scale. Their findings clearly indicate the limitations
of the lights data for analyses in high income countries, where top-coding in the lights data
becomes an important constraint. As most of our sample is in low to middle income countries,
the share of top coded cells in our dataset is small (see discussion in the data section).

The relationship between lights and income or wealth has also been tested at the micro level for
developing countries, for example using data from the Demographic and Health Survey (DHS),
e.g. Weidmann and Schutte 2017 (see also Michalopoulos and Papaioannou 2013). Weidmann
and Schutte (2017) use the DHS data to compare lights to a wealth index constructed at the
household level (based on assets) for a sample of 34,047 clusters (typically a village or neigh-
borhood within a city) from 56 surveys in 39 countries for the years 2003 and 2012. They find
a correlation between lights and the wealth index that averages 0.73 across all 56 surveys in-
cluded. While some of this correlation is accounted for by the differences across rural and urban
locations, they also estimate the relationship for rural and urban locations separately, finding
that the average correlation between lights and wealth is slightly higher for urban clusters (0.62)
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compared to rural clusters (0.42). They also test the relationship between predictive accuracy
and the size of the buffer around the cluster location point used to measure the light intensity
associated with that point; the minimum is 2km for urban clusters and 5km for rural clusters,
reflecting the random artificial error introduced to the location information in the DHS data (for
the sake of preserving anonymity of survey respondents). Weidmann and Schutte also experi-
ment with buffer radii of 5km, 10km and 20km. They find that buffer size matters a lot - as
they increase the minimum radius there is an increase in prediction error, which they interpret
as “a clear indication that the local levels of night lights - and not the emissions across a region
- seem to matter for prediction [of wealth]” (p.131).
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9 Online Appendix C: The relationship between night

lights, GDP, and floods in India

The evidence that we present in the paper focuses on the effect of large floods on night time
lights. As we discuss in the literature survey (in Part B of this Online Appendix), a recent
literature confirms that there is a strong relationship between night lights and economic activity.
This makes night time lights a useful measure of GDP, since it is available at the local-annual
level around the globe, even in locations where local GDP is missing or mis-measured. This
strongly suggests that our results reflect the effect of floods on economic activity around the
world’s flooded cities.

In this section we further explore the relationship between night time lights, GDP, and floods,
using data from one particular country - India. We focus on India because its cities were affected
by large floods covered in our dataset in five of the six years from 2003-2008. No other country in
our dataset of global cities was affected for more than three years. In addition, over the period of
our study, large floods affected districts in roughly three quarters of India’s states. This means
that India, in addition to its size and population, exhibited a fair degree of temporal and spatial
variation in the occurrence of large floods, making it an interesting case study.

Data

We obtain GDP data on Indian districts from the Indian government’s planning commission
(http://planningcommission.nic.in/plans/stateplan/index.php?state=ssphdbody.htm).
We complement these with administrative boundary shapefiles from the GADM database of
Global Administrative Areas (http://www.gadm.org).

Starting with the GDP data, we note that there were changes in districts in some states over
time. To harmonize district definitions we made the following changes, which involved merging
districts (listed below by state): Assam: Bongaigaon includes Chirang; Barpet includes Baksa
(an imperfect match); Darrang includes Udalguri. Haryana: Gurgaon includes Mewat (an imper-
fect match). Jharkhand: Dumka includes Jamtara; Gumla includes Simdega; Palamu includes
Latehar; Singhbhum includes Saraykela Kharsawa. West Bengal: Midnapore covers Midnapore
East and Midnapore West.

Next, we merge the GDP data to the administrative boundary shapefile. This involved the
following steps. We start with district-level outcomes on 24 states. One state’s name was
changed from Orissa to Odisha. Another state, Telangana, was later created out of Andhra
Pradesh. We are missing district GDP data for some states, most of which have relatively small
population (by India’s standards). The states and Union Territories (UTs) for which we miss
district data are, in alphabetical order: Chhattisgarh, Dadra and Nagar Haveli, Daman and
Diu, Goa, Gujarat, Jammu and Kashmir, Lakshadweep, Nagaland, NCT of Delhi, Puducherry,
and Tripura. Nevertheless, the states that we do have information on cover 87.5% of India’s
population, 71% of Indian GDP and 89.7% of its area in 2000.

After dropping the 11 states and UTs for which we have no GDP data, the remaining 25 states
and UTs contain a total of 581 districts, according to the GADM administrative boundaries.
The GDP data for the same 25 states and UTs contain a total of 522 districts.

An initial computer match of the GADM and GDP data, based on matching district and state
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names (using the reclink command in Stata), returned 403 exact matches, and a further 59
matches (using a minscore=0.95). A further iteration of this process (dropping the minscore to
the default 0.6) returned a further 22 matches. These computer matches were checked manually
line-by-line to ensure they were accurate and no false positives were kept.

The remaining districts were matched manually - many were identifiable from variations in the
district name, while others (some 44) involved districts that had been newly created in the years
after the end of our short time series of GDP data (which covers the period 2000-2008). Only two
districts in the GADM data remained unmatched: Balod and Surajpur (combined population of
approx. 1.5m), both in the state of Chhattisgarh.

Having matched the district-year GDP data to the GIS map, we now proceed to match in the
night lights and flooding data. We define a flood indicator to take a value of 1 if any point in
a district and year was flooded. We take the mean light intensity value of all the pixels in a
district as the light variable. The accounting year for population and GDP does not overlap with
calendar years. For this reason, and following the accounting year dates, we compute a weighted
average that gives three quarter weight to the current year population, and one quarter to last
year’s. GDP and population data are provided at district level. We also have a district map
that we use to get flood and light data via GIS. We can match the districts on the map with the
districts in the census data with a few corrections of abbreviated or slightly differently spelled
names.

We combine all these data to construct a panel of district-year observations. We have a balanced
panel for 519 districts in the years 2000-2004 inclusive. Because of missing data this number
becomes 452 in 2005, 196 in 2006 and 105 in 2007. For 2008 we only have 13 observations in the
dataset.

Results

We begin to use our dataset by examining the relationship between night lights and GDP in
Indian districts as reported in Appendix Table A9. In Column (1) we regress the logarithm of
night lights on the logarithm of GDP at the district level.37 The regression estimates for the first
year of our study, 2003, give a precisely estimated coefficient of 0.44, with a standard error of
about 0.04. This coefficient is quite stable when we add state fixed effects (Column (2)), and is
broadly similar for other years. When we reverse the order of the left hand side and right hand
side variables of interest, regressing the logarithm of GDP on the logarithm of light, we get a
coefficient of about 1.11 (s.e. 0.12) without state fixed effects and 0.93 (s.e. 0.1) with state fixed
effects. All these regressions suggest a strong correlation between GDP and night light activity
at the district level in India.

We next examine the same relationship using panel data, and controlling for district and year
fixed effects. The panel of lights and GDP data covers the period 2000-2008 (Columns 5-6). The
panel of lights, GDP and floods covers the period 2003-2007 (Columns 7-10). The regression
coefficient from this regression is around 0.19, with a standard error of around 0.05. When we
now reverse the order of the variables of interest, however, we get an imprecise estimate of 0.17
with a standard error of 0.12 (Columns (3) and (4)). Taken together these results still suggest
that local GDP and night lights, which are both measured with error, do tend to co-move in

37While in the main part of the paper we cluster the standard errors by country, here we have only one country,
so we cluster the standard errors by state.
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panel data, but the relationship between them is not as precise. It seems plausible that the
elasticity of GDP with respect to night lights in India is around 1, but there is quite a bit of
uncertainty about this magnitude.

When we then use the Indian district-level panel to regress the logarithm of night lights on the
flood indicator, again controlling for district and year fixed effects and clustering by state, the
coefficient estimate is around -0.02 with a standard error of around 0.014. In other words, the
point estimate is quite similar to what we find in our main regressions, but it is less precise.
We think that this lower precision is reasonable, since we are only using a fraction of the data
that we use in the main analysis. When we repeat the regression with lagged floods we get an
imprecisely estimated coefficient of -0.02. When we repeat the analysis using the logarithm of
GDP instead of the logarithm of lights as the dependent variable, the coefficients are -0.005 and
0.015 for the flood indicator and the lagged flood indicator, respectively.

Taken together, these results suggest that in India night lights and GDP tend to co-move, as the
literature finds. But using variation across districts in India alone, we do not have enough power
to detect effects of floods on night lights or local GDP. This is perhaps unsurprising, since our
regression estimates using all the world’s cities fall well within the standard confidence intervals
estimated using the Indian data.
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10 Appendix Tables
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Table A1: Light intensity by elevation, democracy and income levels

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ln(Yik) ln(Yik) ln(Yik) ln(Yik) ln(Yik) ln(Yik) ln(Yik) ln(Yik) ln(Yik)

Elev < 10mi 0.182 0.309 0.272 0.053 0.390 0.364 -0.028 0.004 0.024
(0.037) (0.060) (0.056) (0.012) (0.389) (0.410) (0.267) (0.270) (0.209)

Elev < 10mi ×DemocracyIndicatork -0.175 -0.191 0.007 0.009 -0.225
(0.067) (0.076) (0.037) (0.029) (0.078)

Elev < 10mi × ln(GDPpercapita)k -0.021 -0.023 0.009 0.005 0.028
(0.037) (0.040) (0.029) (0.029) (0.023)

Observations 3,642,083 3,610,249 3,610,249 3,610,249 3,562,613 3,562,613 3,562,613 3,543,409 3,543,409
Country FE Yes Yes Yes No Yes Yes No No Yes
City FE No No No Yes No No Yes Yes No
River and Coast FE No No Yes Yes No Yes Yes Yes Yes

Notes: The regressions reported in this Table are variations on Equation 2 and include the full global sample of all urban areas.
The dependent variable in all regressions ln(Yik) is the natural log of mean light intensity (measured in 2012) at each gridpoint i (located in
in country k).
Elev < 10mi is a dummy variable for locations that are less than 10m above sea level.
ln(GDPpercapita)k is the natural log of GDP per capita (in 2011) in country k (data are from the Penn World Tables v8).
DemocracyIndicatork is a dummy for countries with a Polity IV score (in 2008) greater than or equal to 5.
Regressions with river and coast controls include dummies for locations within 10km of the nearest river or coast.
Robust standard errors, clustered by country, in parentheses.
Robust standard errors are clustered by country.
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Table A2: Main effects of flood on light, city-year panel

(1) (2) (3) (4) (5) (6)
ln(Yjkt) ln(Yjkt) ln(Yjkt) ln(Yjkt) ln(Yjkt) ln(Yjkt)

Floodjt -0.017 -0.019
(0.007) (0.006)

Precip > 500mmlt -0.039 -0.040
(0.011) (0.015)

Precip > 1000mmlt -0.057 -0.058
(0.014) (0.014)

ln(lightt−1) Yes Yes Yes

Observations 10,363 10,363 10,363 9,878 9,878 9,878
No. of urban areas 1,817 1,817 1,817 1,702 1,702 1,702

Notes: The results presented in this Table correspond to Equation 4 and use
the sample of cities affected by at least one of the large flood events in our data.
The dependent variable in all regressions ln(Yjkt) is the natural log of mean light
intensity for each city j (located in country k) in year t.
Floodjt is a dummy indicating whether or not city j was hit by a large flood
in year t.
Precip > 1000mmlt (> 500mmlt) indicates locations that experienced monthly
precipitation of 1000mm (500mm) or more in year t.
All regressions include year fixed effects, city fixed effects and
country-specific trends.
Columns (4) to (6) corrected by the Arellano-Bond methodology using
ln(lightst−2) as an instrument for ln(lightst−1).
Robust standard errors, clustered by country, in parentheses.
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Table A3: Recovery, gridpoint year panel, extreme precipitation (500mm) indicator

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt)

Precip > 500mmjt -0.025 -0.027
(0.008) (0.008)

Precip > 500mmjt−1 0.004 0.003
(0.012) (0.011)

Precip > 500mmjt−2 0.002 0.003
(0.006) (0.007)

Precip > 500mmjt−3 -0.013 -0.012
(0.012) (0.012)

Precip > 500mmjt−4 -0.009 -0.009
(0.010) (0.010)

ln(lightt−1) Yes Yes Yes Yes Yes

Observations 1,422,018 1,422,018 1,422,018 1,422,018 1,422,018 1,392,501 1,392,501 1,392,501 1,392,501 1,392,501
No. of gridpoints 243,303 243,303 243,303 243,303 243,303 235,460 235,460 235,460 235,460 235,460

Notes: The results in this Table are variations on Equation 3 and use the sample of cities affected by at least one of the large
flood events in our data.
The dependent variable in all regressions ln(Yijkt) is the natural log of mean light intensity at each gridpoint i (located in city j
in country k) in year t.
Floodjt+s is a dummy indicating whether or not city j was hit by a large flood in year t + s.
Precip > 500mmjt+s indicates locations that experienced monthly precipitation of 500mm or more in year t + s.
All regressions include year fixed effects, gridpoint fixed effects and country-specific trends.
Columns (6) to (10) corrected by the Arellano-Bond methodology using ln(lightst−2) as an instrument for ln(lightst−1).
Robust standard errors, clustered by country, in parentheses.
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Table A4: Recovery, gridpoint year panel, extreme precipitation (1000mm) indicator

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt)

Precip > 1000mmjt -0.080 -0.083
(0.018) (0.018)

Precip > 1000mmjt−1 0.054 0.053
(0.033) (0.034)

Precip > 1000mmjt−2 0.004 0.002
(0.020) (0.019)

Precip > 1000mmjt−3 0.002 0.004
(0.013) (0.012)

Precip > 1000mmjt−4 0.001 0.003
(0.029) (0.028)

ln(lightt−1) Yes Yes Yes Yes Yes

Observations 1,422,018 1,422,018 1,422,018 1,422,018 1,422,018 1,392,501 1,392,501 1,392,501 1,392,501 1,392,501
No. of gridpoints 243,303 243,303 243,303 243,303 243,303 235,460 235,460 235,460 235,460 235,460

Notes: The results in this Table are variations on Equation 3 and use the sample of cities affected by at least one of the large
flood events in our data.
The dependent variable in all regressions ln(Yijkt) is the natural log of mean light intensity at each gridpoint i (located in city j
in country k) in year t.
Floodjt+s is a dummy indicating whether or not city j was hit by a large flood in year t + s.
Precip > 1000mmjt+s indicates locations that experienced monthly precipitation of 1000mm or more in year t + s.
All regressions include year fixed effects, gridpoint fixed effects and country-specific trends.
Columns (6) to (10) corrected by the Arellano-Bond methodology using ln(lightst−2) as an instrument for ln(lightst−1).
Robust standard errors, clustered by country, in parentheses.

51



Table A5: Recovery, city-year panel

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
ln(Yjkt) ln(Yjkt) ln(Yjkt) ln(Yjkt) ln(Yjkt) ln(Yjkt) ln(Yjkt) ln(Yjkt) ln(Yjkt) ln(Yjkt)

Floodjt -0.017 -0.019
(0.007) (0.006)

Floodjt−1 -0.003 -0.008
(0.014) (0.019)

Floodjt−2 0.017 0.017
(0.016) (0.015)

Floodjt−3 0.004 -0.008
(0.009) (0.021)

Floodjt−4 0.014 0.014
(0.009) (0.011)

ln(lightt−1) Yes Yes Yes Yes Yes

Observations 10,363 10,281 10,315 10,352 10,338 9,878 9,869 9,833 9,785 9,796
No. of urban areas 1,817 1,814 1,820 1,818 1,819 1,702 1,707 1,707 1,703 1,712

Notes: The results presented in this Table correspond to Equation 4 and use the sample of cities affected by at least one
of the large flood events in our data.
The dependent variable in all regressions ln(Yjkt) is the natural log of mean light intensity in each city j (located in
country k) in year t.
Floodjt+s is a dummy indicating whether or not city j was hit by a large flood in year t + s.
All regressions include year fixed effects, city fixed effects and country-specific trends.
Columns (6) to (10) corrected by the Arellano-Bond methodology using ln(lightst−2) as an instrument for ln(lightst−1).
Robust standard errors, clustered by country, in parentheses.

52



Table A6: Interactions with elevation, extreme precipitation (1000mm) indicator

(1) (2) (3) (4) (5) (6) (7) (8) (9)
ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt)

Precip > 1000mmjt × elev<10i -0.120 -0.122 -0.100
(0.019) (0.020) (0.016)

Precip > 1000mmjt × elev10+i -0.052 -0.056 -0.031
(0.022) (0.021) (0.011)

Precip > 1000mmjt−1 × elev<10i 0.111 0.111 0.117
(0.015) (0.016) (0.017)

Precip > 1000mmjt−1 × elev10+i 0.020 0.018 0.033
(0.035) (0.035) (0.030)

Precip > 1000mmjt−2 × elev<10i 0.006 0.007 -0.022
(0.009) (0.014) (0.011)

Precip > 1000mmjt−2 × elev10+i 0.003 0.001 -0.005
(0.028) (0.026) (0.023)

ln(lightt−1) Yes Yes Yes

Observations 1,422,018 1,422,018 1,422,018 1,392,501 1,392,501 1,392,501 1,422,018 1,422,018 1,422,018
No. of gridpoints 243,303 243,303 243,303 235,460 235,460 235,460 243,303 243,303 243,303

Notes: The results presented in this Table correspond to Equation 5 and use the sample of cities affected by at least one of
the large flood events in our data.
The dependent variable in all regressions ln(Yijkt) is the natural log of mean light intensity at each gridpoint i (located in
city j in country k) in year t.
Precip > 1000mmlt+s indicates locations that experienced monthly precipitation of 1000mm or more in year t+ s.
Elevationh is a dummy for elevation band h, where h is either less than 10m above sea level, or 10m or more above sea level.
All regressions include year fixed effects and gridpoint fixed effects.
Columns (1) to (6) include country-specific trends. Columns (7) to (9) include city-specific trends.
Columns (4) to (6) corrected by the Arellano-Bond methodology using ln(lightst−2) as an instrument for ln(lightst−1).
Robust standard errors, clustered by country, in parentheses.
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Table A7: Interactions with elevation, excluding locations within 10km of rivers and coasts

(1) (2) (3) (4) (5) (6)
ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt)

Floodjt × elev<10i -0.030 -0.032
(0.007) (0.006)

Floodjt × elev10+i -0.020 -0.021
(0.013) (0.014)

Floodjt−1 × elev<10i 0.015 -0.009
(0.011) (0.011)

Floodjt−1 × elev10+i -0.001 -0.016
(0.012) (0.017)

Floodjt−2 × elev<10i 0.037 0.038
(0.017) (0.017)

Floodjt−2 × elev10+i 0.017 0.017
(0.014) (0.014)

ln(lightt−1) Yes Yes Yes

Observations 814,294 810,524 812,476 795,536 792,801 790,097
No. of gridpoints 139,712 139,683 140,298 134,640 134,600 134,474

Notes: The results presented in this Table correspond to Equation 5 and use the
sample of cities affected by at least one of the large flood events in our data,
restricted to exclude gridpoints within 10km of the nearest river or coast.
The dependent variable in all regressions ln(Yijkt) is the natural log of mean light
intensity at each gridpoint i (located in city j in country k) in year t.
Floodjt+s is a dummy indicating whether or not city j was hit by a large flood
in year t+ s.
Elevationh is a dummy for elevation band h, where h is either
less than 10m above sea level, or 10m or more above sea level.
All regressions include year fixed effects and gridpoint fixed effects
and country-specific trends.
Columns (4) to (6) corrected by the Arellano-Bond methodology using ln(lightst−2)
as an instrument for ln(lightst−1).
Robust standard errors, clustered by country, in parentheses.
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Table A8: Interactions with elevation, excluding cities entirely less than 10m above sea level

(1) (2) (3) (4) (5) (6)
ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt) ln(Yijkt)

Floodjt × elev<10i -0.021 -0.022
(0.006) (0.007)

Floodjt × elev10+i -0.019 -0.020
(0.012) (0.012)

Floodjt−1 × elev<10i 0.012 -0.006
(0.008) (0.010)

Floodjt−1 × elev10+i -0.007 -0.022
(0.014) (0.018)

Floodjt−2 × elev<10i 0.046 0.045
(0.016) (0.016)

Floodjt−2 × elev10+i 0.007 0.007
(0.011) (0.011)

ln(lightt−1) Yes Yes Yes

Observations 1,379,280 1,372,088 1,375,024 1,351,484 1,345,342 1,339,592
No. of gridpoints 235,874 235,861 236,793 228,408 228,358 228,261

Notes: The results presented in this Table correspond to Equation 5 and use the
sample of cities affected by at least one of the large flood events in our data,
restricted to exclude cities that are entirely less than 10m above sea level.
The dependent variable in all regressions ln(Yijkt) is the natural log of mean light
intensity at each gridpoint i (located in city j in country k) in year t.
Floodjt+s is a dummy indicating whether or not city j was hit by a large flood
in year t + s.
Elevationh is a dummy for elevation band h, where h is either
less than 10m above sea level, or 10m or more above sea level.
All regressions include year fixed effects and gridpoint fixed effects
and country-specific trends.
Columns (4) to (6) corrected by the Arellano-Bond methodology using ln(lightst−2)
as an instrument for ln(lightst−1).
Robust standard errors, clustered by country, in parentheses.
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Table A9: Lights, GDP and floods for a panel of Indian districts

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Ln light Ln light Ln GDP Ln GDP Ln light Ln GDP Ln light Ln light Ln GDP Ln GDP

Ln GDP 0.441 0.481 0.189
(0.039) (0.027) (0.051)

Ln light 1.108 0.932 0.168
(0.117) (0.104) (0.121)

Floodt -0.020 -0.005
(0.014) (0.013)

Floodt − 1 -0.023 0.015
(0.027) (0.017)

Year 2003 only Yes Yes Yes Yes
State f.e. Yes Yes
District f.e. Yes Yes Yes Yes Yes Yes
Year f.e. Yes Yes Yes Yes Yes Yes
Observations 491 491 491 491 3,157 3,157 1,683 1,192 1,804 1,285

Notes: This table shows the correlation between log lights and log GDP in the year 2003 (Columns 1-4), and for an annual
panel (2003-2008, columns 5-6) at the level of districts in India. The Table also reports results of regressions of log light
and log GDP on a flood indicator using the district level panel data for India (Columns 7-10).
The light variable gives the mean light measure for each district. Flood is a dummy variable indicating
if any gridpoint in the district was subject to one of the floods in our dataset in each year.
Robust standard errors are clustered at the level of state throughout the table.
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Figure A1: This figure shows the coefficients from Columns 1-5 from Table 5, and their 95
percent confidence intervals. The figure includes additional years before the flood not shown in
the table. Year 0 indicates the year of the flood.
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Figure A2: This figure shows the impact of a flood observed at time 0 separately for urban areas in our sample that we define as
New, and poorly lit (“Poorlit”) as follows: “New” areas are defined as having light = 0 in the year 1992. “Poorlit” is defined as
areas with light > 0 and <= some cutoff in the year 1992. In Panels A and B we chose arbitrary, round numbers as light cutoffs (10
and 20) for poorly lit areas. In Panel C we chose the cutoff such that the resulting number of observations is close to the number
of observations in the “new” category. This turns out to be at <= 8. Median light intensity in our main dataset of urban areas is
14, the 25th percentile value is 7 and the 75th percentile 31. The regression specification to which these coefficients correspond is
similar to the specification used for Table 7. The figure includes additional years before the flood not shown in the table.
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