Repeated Games with Local Monitoring

Developments and Directions

Francesco Nava

London School of Economics

January 2011

Nava (LSE)

Repeated Games with Local Monitoring

Can reputations be established in societies?

Plan for today:

- Introduction & Motivation
- Classical Results:
 - Uniform Random Matching
 - Sequential Interactions
- Recent Developements:
 - Deterministic Matching (Network)
 - Common Knowledge
 - Simultaneous Interactions
- Our (Michele & I) Findings:
 - Deterministic Matching
 - Without Common Knowledge
 - Simultaneous Interactions

Why do should we care about reputations with local information?

- Trade Models with Quality
- Dynamic Pricing Models in Geographical Markets
- Social Norms in Large Societies
- Local Public Goods Games

What one would want?

- Efficient of Equilibrium Payoffs
- Stability to Random Mistakes
- Folk Theorems and/or Anti-Folk Theorems

Classical Results (mid '90s): Typical Model

- Prisoner's Dilemma Game
 - Efficient payoff in strictly dominated strategies
- Uniform Random Matching
 - All players are matched in pairs at each repetition
 - URM generally used for simplicity
 - Need random matching and some symmetry to align incentives
- Sequential Interactions
 - Actions are match-specific
 - A single interaction at any decision instance
- Different Degrees of Information
 - Always information about own past interactions
 - Occasionally information about past play of matched players
- Anonymous Societies
 - No information about identity of matched players [Ellison]

()

- Sequential Rationality [SR]
 - The matching process is always common knowledge
- Global Stability [GS]
 - Any finite history cannot reduce continuation payoffs by much
- Mistake Stability [MS]
 - Small random mistakes cannot reduce continuation payoffs by much

Contagion equilibria:

• Kandori [ReStud1992]

- Information: know all the past play of matched players
- A strategy that sustains cooperation and that satisfies SR + GS exists if δ is sufficiently high
- If players ignore past play of matched players, a strategy that sustains cooperation and satisfying SR is shown to exist for specific parameter values
- Ellison [ReStud 1994]
 - Information: know nothing about matched players
 - A strategy that sustains cooperation and that satisfies SR + MS exists if δ is sufficiently high

Recent Studies

A number of studies has since tried to generalize several aspects:

- Different Types of Games:
 - Variable Stake PD: Nageeb Ali & Miller [2010]
 - Games of Collective Action: Lagunoff & Haag [JET 2007]
 - Public Goods Provision: Wolitzky [2010]
 - General Games: Debb [2008]
 - With Uncooperative players: Ghosh and Ray [1996]
- Different Matching Rules
 - Many-to-Many Deterministic Matching: Nageeb Ali & Miller [2010], Lagunoff & Haag [JET 2007]
- Different Interactions Patterns
 - Actions are not match specific: Ahn [2006]
 - Actions are collective: Wolitzki [2010], Lagunoff Haag JET [2007], Nageeb Ali & Miller [2010]

Nava (LSE)

- Institutions have been added to games:
 - To disclose information: Milgrom [1990], Okuno-Fujiara & Postelwaite [1995], Nowak and Sigmund [1998], Dixit [2003], Takahashi [2009]
 - To allow for communication: Debb [2008]
 - To coordinate behavior with sanctions: Dixit [2004], Grief [2006], Maggi [1999]
- Different Degrees of Information
 - Perfect Monitoring: Lagunoff & Haag [2007], Dal Bo [2007]
 - Local Monitoring: Wolitzki [2010], Nageeb Ali & Miller [2010], Ahn [2006], Rosenthal [1979]
 - Diffusion of Information on Network: Fainmesser-Goldberg [2009], Vega-Redondo [2006]
- Also related to the fast growing literature on private monitoring: Piccione [2002], Ely & Valimaki [2002]...

Nava (LSE)

Image: Image:

Recent Results: More Desired Properties

- Sequential Rationality of Cooperation
- Mistake Stability
- Maximal Average Cooperation at finite discount rates
 - Wolitzki [2010], Lagunoff & Haag [2007], Pecorino [1999], Ghosh and Ray [1996]
- Folk Theorems
 - Debb [2008]
- More than Folk Theorems
 - Dal Bo [2007]
- Relationship between Group Size and Efficiency
 - Lagunoff & Haag [2007], Kranton [1996], Grief [1993]

My Interest in the Topic

Our (Michele & I) paper discusses:

- Asymmetric Prisoner's Dilemma Game
- Fixed Many-to-Many Matching
 - Each player is matched to multiple players at each repetition
 - Such players are called neighbors and do not vary over time
- Simultaneous Interactions
 - Each player engages in multiple interactions at each repetition
 - Actions are local and affect all neighbors
- Information Structure
 - Players only know the actions chosen by they neighbors
 - Monitoring network is not common knowledge
- Non-anonymous Societies
 - Players know their neighbors' identities

Want to find a strategy that sustains cooperation and that satisfies:

- Ex-post Rationality [ER]
 - Want strategy to be optimal for any possible beliefs about the graph
- Finite Time Stability [FTS]
 - Reversion to cooperation in a finite time after any deviation history
- Mistake Stability [MS]
 - Small random mistakes cannot reduce continuation payoffs by much

Current Findings

- 1. A strategy that sustains cooperation and that satisfies:
- ER + FTS + MS exists if $\delta = 1$
- ER + FTS + MS exists if δ is sufficiently high and if only clique acyclic graphs are admissible

These results are robust to:

- heterogeneity of discount rates
- uncertainty about payoffs
- uncertainty about the number of players
- 2. A strategy that sustains cooperation and that satisfies:
 - ER exists if δ is sufficiently high and if players have common preferences in each PD

Nava (LSE)