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Introduction

Folk Theorem: "cooperative" outcome can be sustained in a
sequentail equilibrium of a repeated prisoner’s dilemma

In every period, each player knows his opponent (unique) and what his
opponent did before

1, 1 −l , 1+ g
1+ g ,−l 0, 0

However, the result are not applicable to models of social games
where a large population of players are randomly matched

player has limited information about other player’s action
players probably cannot identify his opponent and thus cannot punish a
certain deviator
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Introduction

To which extent Folk Theorem-type results may be obtained in such
random-matching games?

Kandori (1992) and Harrington (1991) introduced the idea of
"contagious" punishment: you start to cheat once you see cheating
Kandori showed that in the case of no information processing

If l is big enough, cooperation is sustainable in a sequentail equilibrium
for suffi ently patient players with any fixed population size

Kandori also argued that such an equilibrium is fragile in the sense
that a bit noise would cause it to break down

This paper built on Kandori’s arguments

Introducing public randomization to adjust the severity of punishments
Cooperation is thus sustainable for general payoffs
Robust and approximately effi cienct with noise
Extension of the result to a model without public randomization
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The Model

M players indexed by {1, 2, 3, ...,M} where M ≥ 4 is an even number
In each period t ∈ {1, 2, 3, ...} the players are randomly matched into
pairs with player i facing player oi (t)

The pairings are independent over time and uniform:
Prob{oi (t) = j |ht−1} = 1

M−1 , ∀j 6= i
The stage game is the prisoner’s dilemma shown below with positive
g and nonnegative l

C D
C 1, 1 −l , 1+ g
D 1+ g ,−l 0, 0
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The Model

All players have common discount factor δ ∈ (0, 1)
Later this assumption would be relaxed

Before players choose their actions in period t, they observe a public
random variable qt

qt is drawn independently over time from U [0, 1]
Later the assumption of public randomization would be relaxed
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Proposition 1

Theorem
∃δ < 1 such that ∀δ ∈ [δ, 1) there is a sequential equilibrium s∗(δ) of this
random-matching repeated game with public randomizations, where all
players play C in every period along the equilibrium path.

The strategies s∗(δ) are as follows
Phase I

Play C in period t
If (C ,C ) is the outcome for matched players i and j , both play
according to phase I in period t + 1
Otherwise, in period t + 1both play according to phase II if
qt+1 ≤ q(δ) and according to phase I if qt+1 > q(δ)

Phase II
Play D in period t
In period t + 1 play according to phase II if qt+1 ≤ q(δ) and according
to phase I if qt+1 > q(δ)

In period 1, all players play according to phase I
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Proof of Propostion 1

Let f (k, δ, q) be player i’s continuation payoff from period t on when
all players are playing the strategies above, and player i and k − 1
others are playing according to phase II

The continuation payoffs must satisfy two constraints derived from
players not having a profitable single-period deviation

No profitable deviation in phase I:
(1− δ)g ≤ δq(δ)(1− f (2, δ, q(δ))) (1)
No profitable deviation in phase II (facing a phase I player):
(1− δ)g ≥ δq(δ)Ej [f (j , δ, q(δ))− f (j + 1, δ, q(δ))] (2)

expectation reflects player i’s beliefs over the number of players who
will play according to phase II at t + 1
it suffi ces to show it holds pointwise:
(1− δ)g ≥ δq(δ)[f (j , δ, q(δ))− f (j + 1, δ, q(δ))] ∀j ≥ 3
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Proof of Proposition 1

Lemma
f (k, δ, q) is convex in k for k ≥ 1, i.e.
f (k, δ, q(δ))− f (k + 1, δ, q(δ)) ≥ f (k + s, δ, q(δ))− f (k + s + 1, δ, q(δ))
∀s ≥ 1

The proof of this lemma depends on the fact that the group of phase
I players in a future period shrinks as more players play phase II today

f (k, δ, q)− f (k + 1, δ, q) =
∑∞
t=0(1− δ)qtδt (1+ g)Pr{ω ∈ Ω|o1(t,ω) ∈ C (t, k,ω) ∩D(t,ω)}

C (t, k,ω) ⊆ C (t, k + s,ω)

Another fact we need to notice is that when (1) holds with equality, a
player in phase I is exactly indifferent between playing C and D in a
certain period

(1− δ)g = δq(δ)(1− f (2, δ, q(δ))) ⇐⇒
(1− δ)g = δq(δ)(f (1, δ, q(δ))− f (2, δ, q(δ))) (3)
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Proof of Proposition 1

Now what we need to show is that there exists δ and q(δ) such that
∀δ ∈ [δ, 1), (1) and (3) both holds with equality

If q(δ) = 1, punishments are infinite and all players would eventually
be infected with probability 1 if someone already started to play D:
limδ−→1 f (2, δ, 1) = 0
Thus limδ→1

δ
1−δ (1− f (2, δ, 1)) = ∞ and

limδ→0
δ
1−δ (1− f (2, δ, 1)) = 0

By continuity, ∃δ ∈ (0, 1) so that δ
1−δ (1− f (2, δ, 1)) = g : for δ and

q(δ) = 1, (1) holds with equality and thus (3) holds with equality
Note that δq

1−δ (f (k, δ, q))− f (k + 1, δ, q)) =
∑∞
t=0(qδ)t+1(1+ g)Pr{ω ∈ Ω|o1(t,ω) ∈ C (t, k,ω) ∩D(t,ω)},

RHS only depends on qδ
Thus if we define q(δ) = δ/δ for all δ ∈ [δ, 1), then (3) holds with
equality for all such δ and q(δ)
Then (1) holds with equality for all such δ and q(δ) and (2) also holds
by convexity of f
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Stability and Effi ciency

This equilibrium obviously satisfies the property of global stability:
after any finite history, the continuation payoffs of the players
eventually return to the cooperative level (with probability 1)

due to the introduction of public randomizations

What if we introduce noise ε?

In contrast to Kandori’s equilibrium, such sequantial equilibrium is also
robust to little noise
Moreover, this equilibrium is approximately effi cient with little noise
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Proposition 2

Theorem

∃δ′ < 1 and a set of strategy profiles s∗(δ) for δ ∈ [δ′, 1) of the
random-matching game with the following three properties:
1. In the game with discount factor δ, s∗(δ) is a sequential equilibrium
with all players playing C on the path in every period.
2. Define s∗(δ, ε) to be the strategy which at each history assigns
probability ε to D and probability 1− ε to the action given by s∗(δ). Then
∃ε̄ such that ∀ε < ε̄ s∗(δ, ε) is a sequential equilibrium of the perturbed
game where all players are required to play D with probability at least ε at
eachi history.
3. For ui defined to player is expected per period payoff,
limε−→0 limδ−→1 ui (s∗(δ, ε)) = 1.

Min (LSE) Repeated Game 02/11 11 / 17



Outline of Proof

s∗(δ) can be taken to have the same form as in Proposition 1, but
with a slightly larger probablity q′(δ) of continuing in a punishment
phase

The basic idea is that the continuation payoff function f can indeed
be shown as strictly convex in k

Note that generally C (t, k,ω) ⊂ C (t, k + s,ω)
Strict convexity allows us to pick a slightly larger q′(δ) = δ′/δ to let
the two constraints hold with strict inequality
Thus the equilibrium could endure noise ε
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Heterogeneity in Time Preferences

Up to now all the results require the assumption that all players share
the same discount factor δ

Indeed, the equilibrium s∗(δ) depends on δ because we need to define
q(δ)
This seems not plausible when players have heterogeneous time
preferences

Indeed, a strategy profile s∗ with similar form as before but
independent of discount factor can still be a sequantial equilibrium.
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Proposition 3

Theorem

There exists a strategy profile s∗ and a constant δ′′ < 1 such that
∀δ ∈ [δ′′, 1), s∗ is a sequential equilibrium of the repeated game and all
players play C in every period on the path of s∗.

Define q′′(δ) ≡ q′′ = limδ→1 q′(δ) (= limδ→1 δ′/δ = δ′) and
δ′′ = δ/q′′

δ ≥ δ′′ =⇒ δq′′ ≥ δ = δq(δ) =⇒ δq ′′
1−δ (f (1, δ, q

′′))− f (2, δ, q′′)) ≥
δ
1−δ (f (1, δ, 1))− f (2, δ, 1)) = g
δ < 1 =⇒ δq′′ < q′′ = δ′ = δ′q′(δ′) =⇒
δq ′′
1−δ (f (2, δ, q

′′))− f (3, δ, q′′)) < δ′

1−δ′
(f (2, δ′, 1))− f (3, δ′, 1)) < g

with convexity of f the proof is finished
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Proposition 4

Public randomizations are playing two critical roles here

A coordination device so that all players can simultaneously return to
cooperation at the end of a punishment phase

simultaneity is important because all players only slightly prefer
cooperating when all others are doing so

To adjust the expected length and hence the severity of punishments

punishments are not so severe that no one is willing to carry them out

Without public randomizations, can we still find a sequantial
equilibrium to sustain cooperation and endure little noise?

Theorem
The results of Proposition 2 still hold in a model where no public
randomizations are available.
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Outline of Proof

Basically, we need to find a sequantial equilibrium with q ≡ 1
Note that for Proposition 2, we have q′(δ′) = 1 and δ′ for the two
constraints to hold with strictly inequality

By continuity we know that ∃δ1 > δ′ and the two constraints still hold
for any δ ∈ [δ′, δ1 ] and q ≡ 1
The following lemma will then help us to finish the proof

Lemma
Let G (δ) be any repeated game of complete information, and suppose that there
is a non-empty interval (δ0, δ1) such that G (δ) has a sequential equilibrium s∗(δ)
with outcome a for all δ ∈ (δ0, δ1). Then ∃δ < 1 such that ∀δ ∈ (δ, 1) we can
also define a strategy profile s∗∗(δ) which is also a sequantial equilibrium of G (δ)
with outcome a.

the constructed equilibrium uses infinite periodic punishments
global stability will not hold in this case although approximate
effi ciency is still available
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Conclusions

"Contagious" punishments lead to a break down of cooperation, but
the convexity of the breakdown process can be exploited

Stability and limiting effi ciency with noise are achievable with public
randomizations

Cooperation is also possible with heterogeneity in time preferences or
without public randomizations

With a stage game not having a dominant strategy equilibrium,
whether these results could be further extended remains interesting
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Introduction

Game theoretic models all too often have multiple equilibria

A B
A 2, 2 0, 0
B 0, 0 1, 1

Why we should expect players to coordinate on a particular
equilibrium

Whether there is any reason to believe that one equilibrium is more
likely than the other

Foster and Young(1990) and Kandori, Mailath and Rob(1993) derived
strong predictions on the evolution of play over time

how players learn their opponents’play and adjust their strategies over
time

KMR(1993) showed that in the long run limit, players will achieve
coordination on the particular "risk dominant" equilibrium

(A,A) in the example above
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Introduction

This paper built on KMR’s work while

The behavioral assumptions incorporate noise and myopic responses by
boundedly rational players
The rate at which each dynamic process converges is considered

In reality it is important whether the evolutionary forces would be felt
within a reasonable time horizon

The nature of the interations within a population plays a crucial
determinant of play

KMR used uniform matching rule while two extreme cases described as
uniform and local are considered here
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Repeated Coordination Games

A large population of N players

A repeated coordination game played in periods t = 1, 2, 3, ...

a− d > b− c =⇒ (A,A) is "risk dominant" equilibrium

A B
A a, a c , d
B d , c b, b

In each period t, player i chooses an action ait ∈ {A,B} and his
payoff is ui (ait , a−i ,t ) = ∑j 6=i πijg(ait , ajt )

payoffs g are those of the 2× 2 coordination game above
πij represents tthe probability that player i and j are matched in a
given period

independent of t as the matching rule is time consistent
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Bounded Rationality and Noise

Boundedly rational players: ait ∈ argmaxai ui (ai , a−i ,t−1)
player i is reacting to the distribution of play in period t − 1, not to the
action of his matched opponent

fairly naive in predicting how his potential opponents would play in
period t

Disturbed by noise

With probability 1− 2ε player i plays according to the rule above with
probability
With probability 2ε player i chooses an action equally at random
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Local and Uniform Matching Rules

Uniform matching rule: πij =
1

N−1 ∀j 6= i
With this rule, a myopic player will choose his period t strategy
considering only the fraction of the population playing each strategy at
time t − 1

"Local" matching: each player is likely to be matched only with a
small fixed subset of the population

2k-neighbour matching (players are thought to be spatially distributed
around a circle)

πij =
1

2k−1 I{i − j ≡ ±1,±2, ...,±k (mod N)}

Probability assigned to a match is declining with distance

πij = {
3

π2
1
d2

for d=min{|i−j |,N−|i−j |}6= N
2

1− 3
π2 ∑
|i−j |6=N/2

1
d2

otherwise
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Modelling Dynamics

Assume that at some point in the past, arbitrary historical factors
determined the initial strategies of the players

the behavior rules then generate a dynamic system which describes the
evolution of player’s strategy over time

With uniform matching
Let qi be the fraction of player i’s opponents who player A in period
t − 1
Player i will play A in period t iff qi ≥ q∗ ≡ b−c

(a−d )+(b−c ) <
1
2

The state of the system is denoted as a N-tuple st ∈ S = {A,B}N ,
and A(st ) the total number of players playing A at t

The cutoff of player’s response above becomes A(st ) > dq∗(N − 1)e

Without noise, there are two steady states,
−→
A and

−→
B , with nearby

states jumping to them
With noise ε, the transitions are governed by a Markov process

once play approaches either equilibrium it will likely remain nearby for a
long period of time
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Modelling Dynamics

With local 2k-neighbour matching (set q∗ = 1
3 and k = 4)

The cutoff becomes whether the number of your 8 neighbours playing
A exceed 3
Without noise, there are at least two steady states,

−→
A and

−→
B

both have a nontrivial attractive basin, but that of
−→
A is bigger than

that of
−→
B

with four adjacent players playing A at a time, the dynamic process
will eventually goes to

−→
A

With noise, the differing sizes of these attracitive basins cause
relatively rapid convergence to

−→
A

starting from
−→
B , it is far more likely to see 4 adjacent distrubances

than d(N − 1)/3e simultaneous ones when N is large
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Further Notations

We view the time t strategy profiles as the states st of a Markov process

The time t probability distribution over the states is represented by an
1× 2N vector vt
The evolution fo the process is governed by vt+1 = vtP(ε)

P(ε) is the transition matrix with pij (ε) = Pr{st+1 = j |st = i}
Write Pu(ε) for uniform matching and P2k (ε) for local matching

P(ε) is strictly positive if ε > 0 ⇒ ∃! µ(ε) such that µ(ε) = µ(ε)P(ε)

Let µs (ε) denote the probability assigned to state s by distribution µ(ε)

Use O-approximations for the asymptotic behavior of µ(ε) as ε→ 0

f (x) = O(g(x)) (x → 0) if ∃C , c > 0 such that cg(x) ≤ f (x) ≤ Cg(x)
for suffi ciently small x
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Converging to Risk Dominant Equilibrium

Theorem
For suffi ciently large N we have:
(a) limε→0 µu−→

A
(ε) = 1, limε→0 µ2k−→

A
(ε) = 1;

(b) µu−→
B
(ε) = O(εN−2dq∗(N−1)e+1), µ2−→

B
(ε) = {O (ε

N−2) for N even
O (εN−1) for N odd

The proof does not rely on the fact that the matching distribution has
finite support

the matching rule with declining probability also works, even with N → ∞

The matching rule can not be too concentrated

If πij > 1− q∗ then the probability of the cycle where i and j alternatively
play (A,B) and (B,A)

The long-run outcome may differ between the two matching rules when we
move beyond 2× 2 games.
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Rates of Convergence

Theorem 1 implies that if the coordination games are repeated enough
times we expect to see the risk dominant equilibrium played almost all the
time

Whether this "eventually" is relevant depends on the rate of convergence

Let ρ be an arbitrary initial state ⇒ µ(ε) = limt→∞ ρP(ε)t

Define ‖ µ− ν ‖≡ maxs∈S |µs − νs |

Define ru(ε) = supρ∈∆ lim sup
t→∞

‖ ρPu(ε)t − µu(ε) ‖1/tand

r2(ε) = supρ∈∆ lim sup
t→∞

‖ ρP2(ε)t − µ2(ε) ‖1/t

Theorem
Assume dq∗(N − 1)e < N/2, as ε→ 0 we have:
1− ru(ε) = O(εdq∗(N−1)e), 1− r2(ε) = O(ε).
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Rates of Convergence

Loosely speaking, ‖ ρPu(ε)t − µu(ε) ‖= O(r t ) for some r < 1

convergence is approximately at an exponential rate

ru(ε) is much closer to 1 than r2(ε) for small ε, so the rate of convergence
with uniform matching is much slower

An alternate measure:
W (N, ε, α) = E (min{t|A(st ) ≥ (1− α)N}|s0 =

−→
B )

W (N, ε, α) is the expected waiting time until at least 1− α of the players
play A given that eveyone starts off playing B

Theorem
For ε suffi ciently small we have:
W u(N, ε, α) = O(

√
Ne((q

∗−ε)/ε(1−ε))N ), W 2k (N, ε, α) = O(1)
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Different Matching Rules

W 2k (N, ε, α)
ε = 0.025 ε = 0.05 ε = 0.1

k = 1 11 8 6
k = 2 44 23 12
k = 3 93 25 11
k = 4 522 45 11

For small ε, evolution is faster for more concentrated matching rules

For large ε, evolution can be faster for less concentrated matching rules

The assumption of players located around the circle is crucial

This implies a great overlap of the groups of neighbours

With less overlap(lattice of more dimensions), the evolution may be slower
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Heterogeneity

The players are assumed to have heterogeneous tastes ui (A,A) and
ui (B,B) with lognormal distributions

(A,A) is still better: ui (A,A)
D∼ (17/7)ui (B,B)

W 2k (N, ε, α)
Var(ui (B,B)) ε = 0.025 ε = 0.5 ε = 0.1

0 522 45 11
0.1 75 19 9
0.2 28 14 7

Heterogeneity increases the rate of convergence (especially when ε is small)

Stable clusters for players with great utility from (A,A) is smaller

When evolution is already rapid for a homogeneous population,
heterogeneity only has limited effect
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Conclusion

Boundedly rational players’myopic adjustments creat evolutionary forces
which may select among the equilibria

The nature of the matching rule helps us weight historical factors and
evolutionary forces

With uniform matching among a large population play will reflect arbitrary
historical factors for a long period of time

With local matching evolutionary forces may be felt early in the game
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