Cooperation in the Prisoner's Dilemma with Anonymous Random Matching

Glenn Ellison

RES 1994

Introduction

- Folk Theorem: "cooperative" outcome can be sustained in a sequentail equilibrium of a repeated prisoner's dilemma
- In every period, each player knows his opponent (unique) and what his opponent did before

1,1	$-l, 1+g$
$1+g,-l$	0,0

- However, the result are not applicable to models of social games where a large population of players are randomly matched
- player has limited information about other player's action
- players probably cannot identify his opponent and thus cannot punish a certain deviator

Introduction

- To which extent Folk Theorem-type results may be obtained in such random-matching games?
- Kandori (1992) and Harrington (1991) introduced the idea of "contagious" punishment: you start to cheat once you see cheating
- Kandori showed that in the case of no information processing
- If l is big enough, cooperation is sustainable in a sequentail equilibrium for suffiently patient players with any fixed population size
- Kandori also argued that such an equilibrium is fragile in the sense that a bit noise would cause it to break down
- This paper built on Kandori's arguments
- Introducing public randomization to adjust the severity of punishments
- Cooperation is thus sustainable for general payoffs
- Robust and approximately efficienct with noise
- Extension of the result to a model without public randomization

The Model

- M players indexed by $\{1,2,3, \ldots, M\}$ where $M \geq 4$ is an even number
- In each period $t \in\{1,2,3, \ldots\}$ the players are randomly matched into pairs with player i facing player $o_{i}(t)$
- The pairings are independent over time and uniform:
$\operatorname{Prob}\left\{o_{i}(t)=j \mid h_{t-1}\right\}=\frac{1}{M-1}, \forall j \neq i$
- The stage game is the prisoner's dilemma shown below with positive g and nonnegative /

The Model

- All players have common discount factor $\delta \in(0,1)$
- Later this assumption would be relaxed
- Before players choose their actions in period t, they observe a public random variable q_{t}
- q_{t} is drawn independently over time from $U[0,1]$
- Later the assumption of public randomization would be relaxed

Proposition 1

Theorem

$\exists \underline{\delta}<1$ such that $\forall \delta \in[\underline{\delta}, 1)$ there is a sequential equilibrium $s^{*}(\delta)$ of this random-matching repeated game with public randomizations, where all players play C in every period along the equilibrium path.

- The strategies $s^{*}(\delta)$ are as follows
- Phase I
- Play C in period t
- If (C, C) is the outcome for matched players i and j, both play according to phase I in period $t+1$
- Otherwise, in period $t+1$ both play according to phase II if $q_{t+1} \leq q(\delta)$ and according to phase I if $q_{t+1}>q(\delta)$
- Phase II
- Play D in period t
- In period $t+1$ play according to phase II if $q_{t+1} \leq q(\delta)$ and according to phase I if $q_{t+1}>q(\delta)$
- In period 1 , all players play according to phase I

Proof of Propostion 1

- Let $f(k, \delta, q)$ be player i 's continuation payoff from period t on when all players are playing the strategies above, and player i and $k-1$ others are playing according to phase II
- The continuation payoffs must satisfy two constraints derived from players not having a profitable single-period deviation
- No profitable deviation in phase I:

$$
\begin{equation*}
(1-\delta) g \leq \delta q(\delta)(1-f(2, \delta, q(\delta))) \tag{1}
\end{equation*}
$$

- No profitable deviation in phase II (facing a phase I player):

$$
\begin{equation*}
(1-\delta) g \geq \delta q(\delta) E_{j}[f(j, \delta, q(\delta))-f(j+1, \delta, q(\delta))] \tag{2}
\end{equation*}
$$

- expectation reflects player i 's beliefs over the number of players who will play according to phase II at $t+1$
- it suffices to show it holds pointwise:

$$
(1-\delta) g \geq \delta q(\delta)[f(j, \delta, q(\delta))-f(j+1, \delta, q(\delta))] \quad \forall j \geq 3
$$

Proof of Proposition 1

Lemma

$f(k, \delta, q)$ is convex in k for $k \geq 1$, i.e.
$f(k, \delta, q(\delta))-f(k+1, \delta, q(\delta)) \geq f(k+s, \delta, q(\delta))-f(k+s+1, \delta, q(\delta))$ $\forall s \geq 1$

- The proof of this lemma depends on the fact that the group of phase I players in a future period shrinks as more players play phase II today

$$
\begin{aligned}
& \text { - } f(k, \delta, q)-f(k+1, \delta, q)= \\
& \text { - } \sum_{t=0}^{\infty}(1-\delta) q^{t} \delta^{t}(1+g) \operatorname{Pr}\left\{\omega \in \Omega \mid o_{1}(t, \omega) \in C(t, k, \omega) \cap D(t, \omega)\right\} \\
& \text { (t,k, } \omega) \subseteq C(t, k+s, \omega)
\end{aligned}
$$

- Another fact we need to notice is that when (1) holds with equality, a player in phase I is exactly indifferent between playing C and D in a certain period

$$
\begin{align*}
& (1-\delta) g=\delta q(\delta)(1-f(2, \delta, q(\delta))) \Longleftrightarrow \\
& (1-\delta) g=\delta q(\delta)(f(1, \delta, q(\delta))-f(2, \delta, q(\delta))) \tag{3}
\end{align*}
$$

Proof of Proposition 1

- Now what we need to show is that there exists $\underline{\delta}$ and $q(\delta)$ such that $\forall \delta \in[\underline{\delta}, 1)$, (1) and (3) both holds with equality
- If $q(\delta)=1$, punishments are infinite and all players would eventually be infected with probability 1 if someone already started to play D : $\lim _{\delta \longrightarrow 1} f(2, \delta, 1)=0$
- Thus $\lim _{\delta \rightarrow 1} \frac{\delta}{1-\delta}(1-f(2, \delta, 1))=\infty$ and $\lim _{\delta \rightarrow 0} \frac{\delta}{1-\delta}(1-f(2, \delta, 1))=0$
- By continuity, $\exists \underline{\delta} \in(0,1)$ so that $\frac{\delta}{1-\underline{\delta}}(1-f(2, \underline{\delta}, 1))=g$: for $\underline{\delta}$ and $q(\underline{\delta})=1$, (1) holds with equality and thus (3) holds with equality
- Note that $\left.\frac{\delta q}{1-\delta}(f(k, \delta, q))-f(k+1, \delta, q)\right)=$ $\sum_{t=0}^{\infty}(q \delta)^{t+1}(1+g) \operatorname{Pr}\left\{\omega \in \Omega \mid o_{1}(t, \omega) \in C(t, k, \omega) \cap D(t, \omega)\right\}$, RHS only depends on $q \delta$
- Thus if we define $q(\delta)=\underline{\delta} / \delta$ for all $\delta \in[\underline{\delta}, 1$), then (3) holds with equality for all such δ and $q(\delta)$
- Then (1) holds with equality for all such δ and $q(\delta)$ and (2) also holds by convexity of f

Stability and Efficiency

- This equilibrium obviously satisfies the property of global stability: after any finite history, the continuation payoffs of the players eventually return to the cooperative level (with probability 1)
- due to the introduction of public randomizations
- What if we introduce noise ε ?
- In contrast to Kandori's equilibrium, such sequantial equilibrium is also robust to little noise
- Moreover, this equilibrium is approximately efficient with little noise

Proposition 2

Theorem

$\exists \underline{\delta}^{\prime}<1$ and a set of strategy profiles $s^{*}(\delta)$ for $\delta \in\left[\underline{\delta}^{\prime}, 1\right)$ of the random-matching game with the following three properties:

1. In the game with discount factor $\delta, s^{*}(\delta)$ is a sequential equilibrium with all players playing C on the path in every period.
2. Define $s^{*}(\delta, \varepsilon)$ to be the strategy which at each history assigns probability ε to D and probability $1-\varepsilon$ to the action given by $s^{*}(\delta)$. Then $\exists \bar{\varepsilon}$ such that $\forall \varepsilon<\bar{\varepsilon} s^{*}(\delta, \varepsilon)$ is a sequential equilibrium of the perturbed game where all players are required to play D with probability at least ε at eachi history.
3. For u_{i} defined to player is expected per period payoff, $\lim _{\varepsilon \longrightarrow 0} \lim _{\delta \longrightarrow 1} u_{i}\left(s^{*}(\delta, \varepsilon)\right)=1$.

Outline of Proof

- $s^{*}(\delta)$ can be taken to have the same form as in Proposition 1, but with a slightly larger probablity $q^{\prime}(\delta)$ of continuing in a punishment phase
- The basic idea is that the continuation payoff function f can indeed be shown as strictly convex in k
- Note that generally $C(t, k, \omega) \subset C(t, k+s, \omega)$
- Strict convexity allows us to pick a slightly larger $q^{\prime}(\delta)=\underline{\delta}^{\prime} / \delta$ to let the two constraints hold with strict inequality
- Thus the equilibrium could endure noise ε

Heterogeneity in Time Preferences

- Up to now all the results require the assumption that all players share the same discount factor δ
- Indeed, the equilibrium $s^{*}(\delta)$ depends on δ because we need to define $q(\delta)$
- This seems not plausible when players have heterogeneous time preferences
- Indeed, a strategy profile s^{*} with similar form as before but independent of discount factor can still be a sequantial equilibrium.

Proposition 3

Theorem

There exists a strategy profile s^{*} and a constant $\underline{\delta}^{\prime \prime}<1$ such that $\forall \delta \in\left[\underline{\delta}^{\prime \prime}, 1\right), s^{*}$ is a sequential equilibrium of the repeated game and all players play C in every period on the path of s^{*}.

- Define $q^{\prime \prime}(\delta) \equiv q^{\prime \prime}=\lim _{\delta \rightarrow 1} q^{\prime}(\delta)\left(=\lim _{\delta \rightarrow 1} \underline{\delta}^{\prime} / \delta=\underline{\delta}^{\prime}\right)$ and

$$
\begin{aligned}
& \underline{\delta}^{\prime \prime}=\underline{\delta} / q^{\prime \prime} \\
& \bullet\left.\delta \geq \underline{\delta^{\prime \prime}} \Longrightarrow \delta q^{\prime \prime} \geq \underline{\delta}=\underline{\delta} q(\underline{\delta}) \Longrightarrow \frac{\delta q^{\prime \prime}}{1-\delta}\left(f\left(1, \delta, q^{\prime \prime}\right)\right)-f\left(2, \delta, q^{\prime \prime}\right)\right) \geq \\
&\left.\frac{\delta}{1-\underline{\delta}}(f(1, \underline{\delta}, 1))-f(2, \underline{\delta}, 1)\right)=g \\
& \bullet<1 \Longrightarrow \delta q^{\prime \prime}<q^{\prime \prime}=\underline{\delta^{\prime}}=\underline{\delta^{\prime}} q^{\prime}\left(\underline{\delta}^{\prime}\right) \Longrightarrow \\
&\left.\left.\frac{\delta q^{\prime \prime}}{1-\delta}\left(f\left(2, \delta, q^{\prime \prime}\right)\right)-f\left(3, \delta, q^{\prime \prime}\right)\right)<\frac{\delta^{\prime}}{1-\underline{-}^{\prime}}\left(f\left(2, \underline{\delta}^{\prime}, 1\right)\right)-f\left(3, \underline{\delta}^{\prime}, 1\right)\right)<g
\end{aligned}
$$

- with convexity of f the proof is finished

Proposition 4

- Public randomizations are playing two critical roles here
- A coordination device so that all players can simultaneously return to cooperation at the end of a punishment phase
- simultaneity is important because all players only slightly prefer cooperating when all others are doing so
- To adjust the expected length and hence the severity of punishments
- punishments are not so severe that no one is willing to carry them out
- Without public randomizations, can we still find a sequantial equilibrium to sustain cooperation and endure little noise?

Theorem

The results of Proposition 2 still hold in a model where no public randomizations are available.

Outline of Proof

- Basically, we need to find a sequantial equilibrium with $q \equiv 1$
- Note that for Proposition 2, we have $q^{\prime}\left(\underline{\delta}^{\prime}\right)=1$ and $\underline{\delta}^{\prime}$ for the two constraints to hold with strictly inequality
- By continuity we know that $\exists \delta_{1}>\underline{\delta}^{\prime}$ and the two constraints still hold for any $\delta \in\left[\underline{\delta}^{\prime}, \delta_{1}\right]$ and $q \equiv 1$
- The following lemma will then help us to finish the proof

Lemma

Let $G(\delta)$ be any repeated game of complete information, and suppose that there is a non-empty interval $\left(\delta_{0}, \delta_{1}\right)$ such that $G(\delta)$ has a sequential equilibrium $s^{*}(\delta)$ with outcome a for all $\delta \in\left(\delta_{0}, \delta_{1}\right)$. Then $\underline{\underline{\delta}}<1$ such that $\forall \delta \in(\underline{\delta}, 1)$ we can also define a strategy profile $s^{* *}(\delta)$ which is also a sequantial equilibrium of $G(\delta)$ with outcome a.

- the constructed equilibrium uses infinite periodic punishments
- global stability will not hold in this case although approximate efficiency is still available

Conclusions

- "Contagious" punishments lead to a break down of cooperation, but the convexity of the breakdown process can be exploited
- Stability and limiting efficiency with noise are achievable with public randomizations
- Cooperation is also possible with heterogeneity in time preferences or without public randomizations
- With a stage game not having a dominant strategy equilibrium, whether these results could be further extended remains interesting

Learning, Local Interaction, and Coordination

Glenn Ellison

Econometrica 1993

Introduction

- Game theoretic models all too often have multiple equilibria

A	B	
A	2,2	0,0
B	0,0	1,1

- Why we should expect players to coordinate on a particular equilibrium
- Whether there is any reason to believe that one equilibrium is more likely than the other
- Foster and Young(1990) and Kandori, Mailath and Rob(1993) derived strong predictions on the evolution of play over time
- how players learn their opponents' play and adjust their strategies over time
- $\operatorname{KMR}(1993)$ showed that in the long run limit, players will achieve coordination on the particular "risk dominant" equilibrium
- (A, A) in the example above

Introduction

- This paper built on KMR's work while
- The behavioral assumptions incorporate noise and myopic responses by boundedly rational players
- The rate at which each dynamic process converges is considered
- In reality it is important whether the evolutionary forces would be felt within a reasonable time horizon
- The nature of the interations within a population plays a crucial determinant of play
- KMR used uniform matching rule while two extreme cases described as uniform and local are considered here

Repeated Coordination Games

- A large population of N players
- A repeated coordination game played in periods $t=1,2,3, \ldots$
- $a-d>b-c \Longrightarrow(A, A)$ is "risk dominant" equilibrium

- In each period t, player i chooses an action $a_{i t} \in\{A, B\}$ and his payoff is $u_{i}\left(a_{i t}, a_{-i, t}\right)=\sum_{j \neq i} \pi_{i j} g\left(a_{i t}, a_{j t}\right)$
- payoffs g are those of the 2×2 coordination game above
- $\pi_{i j}$ represents the probability that player i and j are matched in a given period
- independent of t as the matching rule is time consistent

Bounded Rationality and Noise

- Boundedly rational players: $a_{i t} \in \arg \max _{a_{i}} u_{i}\left(a_{i}, a_{-i, t-1}\right)$
- player i is reacting to the distribution of play in period $t-1$, not to the action of his matched opponent
- fairly naive in predicting how his potential opponents would play in period t
- Disturbed by noise
- With probability $1-2 \varepsilon$ player i plays according to the rule above with probability
- With probability 2ε player i chooses an action equally at random

Local and Uniform Matching Rules

- Uniform matching rule: $\pi_{i j}=\frac{1}{N-1} \quad \forall j \neq i$
- With this rule, a myopic player will choose his period t strategy considering only the fraction of the population playing each strategy at time $t-1$
- "Local" matching: each player is likely to be matched only with a small fixed subset of the population
- $2 k$-neighbour matching (players are thought to be spatially distributed around a circle)

$$
\text { - } \pi_{i j}=\frac{1}{2 k-1} l\{i-j \equiv \pm 1, \pm 2, \ldots, \pm k(\bmod N)\}
$$

- Probability assigned to a match is declining with distance
- $\pi_{i j}= \begin{cases}\frac{3}{\pi^{2}} \frac{1}{d^{2}} \\ 1-\frac{3}{\pi^{2}} & \sum_{|i-j| \neq N / 2} \frac{1}{d^{2}} \\ \quad \text { for } d=\min \{|i-j|, N-|i-j|\} \neq \frac{N}{2} \\ \text { otherwise }\end{cases}$

Modelling Dynamics

- Assume that at some point in the past, arbitrary historical factors determined the initial strategies of the players
- the behavior rules then generate a dynamic system which describes the evolution of player's strategy over time
- With uniform matching
- Let q_{i} be the fraction of player i 's opponents who player A in period $t-1$
- Player i will play A in period t iff $q_{i} \geq q^{*} \equiv \frac{b-c}{(a-d)+(b-c)}<\frac{1}{2}$
- The state of the system is denoted as a N-tuple $s_{t} \in S=\{A, B\}^{N}$, and $A\left(s_{t}\right)$ the total number of players playing A at t
- The cutoff of player's response above becomes $A\left(s_{t}\right)>\left\lceil q^{*}(N-1)\right\rceil$
- Without noise, there are two steady states, \vec{A} and \vec{B}, with nearby states jumping to them
- With noise ε, the transitions are governed by a Markov process
- once play approaches either equilibrium it will likely remain nearby for a long period of time

Modelling Dynamics

- With local $2 k$-neighbour matching (set $q^{*}=\frac{1}{3}$ and $k=4$)
- The cutoff becomes whether the number of your 8 neighbours playing A exceed 3
- Without noise, there are at least two steady states, \vec{A} and \vec{B}
- both have a nontrivial attractive basin, but that of \vec{A} is bigger than that of \vec{B}
- with four adjacent players playing A at a time, the dynamic process will eventually goes to \vec{A}
- With noise, the differing sizes of these attracitive basins cause relatively rapid convergence to \vec{A}
- starting from \vec{B}, it is far more likely to see 4 adjacent distrubances than $\lceil(N-1) / 3\rceil$ simultaneous ones when N is large

Further Notations

- We view the time t strategy profiles as the states s_{t} of a Markov process
- The time t probability distribution over the states is represented by an 1×2^{N} vector v_{t}
- The evolution fo the process is governed by $v_{t+1}=v_{t} P(\varepsilon)$
- $P(\varepsilon)$ is the transition matrix with $p_{i j}(\varepsilon)=\operatorname{Pr}\left\{s_{t+1}=j \mid s_{t}=i\right\}$
- Write $P^{u}(\varepsilon)$ for uniform matching and $P^{2 k}(\varepsilon)$ for local matching
- $P(\varepsilon)$ is strictly positive if $\varepsilon>0 \Rightarrow \exists!\mu(\varepsilon)$ such that $\mu(\varepsilon)=\mu(\varepsilon) P(\varepsilon)$
- Let $\mu_{s}(\varepsilon)$ denote the probability assigned to state s by distribution $\mu(\varepsilon)$
- Use O-approximations for the asymptotic behavior of $\mu(\varepsilon)$ as $\varepsilon \rightarrow 0$
- $f(x)=O(g(x))(x \rightarrow 0)$ if $\exists C, c>0$ such that $\operatorname{cg}(x) \leq f(x) \leq C g(x)$ for sufficiently small x

Converging to Risk Dominant Equilibrium

Theorem

For sufficiently large N we have:
(a) $\lim _{\varepsilon \rightarrow 0} \mu_{\vec{A}}^{u}(\varepsilon)=1, \lim _{\varepsilon \rightarrow 0} \mu_{\vec{A}}^{2 k}(\varepsilon)=1$;
(b) $\mu_{\vec{B}}^{u}(\varepsilon)=O\left(\varepsilon^{N-2\lceil q *(N-1)\rceil+1}\right), \mu_{\vec{B}}^{2}(\varepsilon)= \begin{cases}O\left(\varepsilon^{N-2}\right) & \text { for } N \text { even } \\ O\left(\varepsilon^{N-1}\right) & \text { for } N \text { odd }\end{cases}$

- The proof does not rely on the fact that the matching distribution has finite support
- the matching rule with declining probability also works, even with $N \rightarrow \infty$
- The matching rule can not be too concentrated
- If $\pi_{i j}>1-q^{*}$ then the probability of the cycle where i and j alternatively play (A, B) and (B, A)
- The long-run outcome may differ between the two matching rules when we move beyond 2×2 games.

Rates of Convergence

- Theorem 1 implies that if the coordination games are repeated enough times we expect to see the risk dominant equilibrium played almost all the time
- Whether this "eventually" is relevant depends on the rate of convergence
- Let ρ be an arbitrary initial state $\Rightarrow \mu(\varepsilon)=\lim _{t \rightarrow \infty} \rho P(\varepsilon)^{t}$
- Define $\|\mu-v\| \equiv \max _{s \in S}\left|\mu_{s}-v_{s}\right|$
- Define $r^{u}(\varepsilon)=\sup _{\rho \in \Delta} \limsup _{t \rightarrow \infty}\left\|\rho P^{u}(\varepsilon)^{t}-\mu^{u}(\varepsilon)\right\|^{1 / t}$ and
$r^{2}(\varepsilon)=\sup _{\rho \in \Delta} \limsup _{t \rightarrow \infty}\left\|\rho P^{2}(\varepsilon)^{t}-\mu^{2}(\varepsilon)\right\|^{1 / t}$

Theorem

Assume $\left\lceil q^{*}(N-1)\right\rceil<N / 2$, as $\varepsilon \rightarrow 0$ we have:
$1-r^{u}(\varepsilon)=O\left(\varepsilon^{\left\lceil q^{*}(N-1)\right\rceil}\right), 1-r^{2}(\varepsilon)=O(\varepsilon)$.

Rates of Convergence

- Loosely speaking, $\left\|\rho P^{u}(\varepsilon)^{t}-\mu^{u}(\varepsilon)\right\|=O\left(r^{t}\right)$ for some $r<1$
- convergence is approximately at an exponential rate
- $r^{u}(\varepsilon)$ is much closer to 1 than $r^{2}(\varepsilon)$ for small ε, so the rate of convergence with uniform matching is much slower
- An alternate measure:
$W(N, \varepsilon, \alpha)=E\left(\min \left\{t \mid A\left(s_{t}\right) \geq(1-\alpha) N\right\} \mid s_{0}=\vec{B}\right)$
- $W(N, \varepsilon, \alpha)$ is the expected waiting time until at least $1-\alpha$ of the players play A given that eveyone starts off playing B

Theorem

For ε sufficiently small we have:
$W^{u}(N, \varepsilon, \alpha)=O\left(\sqrt{N} e^{\left(\left(q^{*}-\varepsilon\right) / \varepsilon(1-\varepsilon)\right) N}\right), W^{2 k}(N, \varepsilon, \alpha)=O(1)$

Different Matching Rules

	$W^{2 k}(N, \varepsilon, \alpha)$		
	$\varepsilon=0.025$	$\varepsilon=0.05$	$\varepsilon=0.1$
$k=1$	11	8	6
$k=2$	44	23	12
$k=3$	93	25	11
$k=4$	522	45	11

- For small ε, evolution is faster for more concentrated matching rules
- For large ε, evolution can be faster for less concentrated matching rules
- The assumption of players located around the circle is crucial
- This implies a great overlap of the groups of neighbours
- With less overlap(lattice of more dimensions), the evolution may be slower

Heterogeneity

- The players are assumed to have heterogeneous tastes $u_{i}(A, A)$ and $u_{i}(B, B)$ with lognormal distributions
- (A, A) is still better: $u_{i}(A, A) \stackrel{D}{\sim}(17 / 7) u_{i}(B, B)$

	$W^{2 k}(N, \varepsilon, \alpha)$		
$\operatorname{Var}\left(u_{i}(B, B)\right)$	$\varepsilon=0.025$	$\varepsilon=0.5$	$\varepsilon=0.1$
0	522	45	11
0.1	75	19	9
0.2	28	14	7

- Heterogeneity increases the rate of convergence (especially when ε is small)
- Stable clusters for players with great utility from (A, A) is smaller
- When evolution is already rapid for a homogeneous population, heterogeneity only has limited effect

Conclusion

- Boundedly rational players' myopic adjustments creat evolutionary forces which may select among the equilibria
- The nature of the matching rule helps us weight historical factors and evolutionary forces
- With uniform matching among a large population play will reflect arbitrary historical factors for a long period of time
- With local matching evolutionary forces may be felt early in the game

