Cooperation in the Prisoner's Dilemma with Anonymous Random Matching

Glenn Ellison

RES 1994

Min (LSE)

1 / 17

- Folk Theorem: "cooperative" outcome can be sustained in a sequentail equilibrium of a repeated prisoner's dilemma
 - In every period, each player knows his opponent (unique) and what his opponent did before

$$\begin{array}{c|c}
1,1 & -l,1+g \\
1+g,-l & 0,0
\end{array}$$

- However, the result are not applicable to models of social games where a large population of players are randomly matched
 - player has limited information about other player's action
 - players probably cannot identify his opponent and thus cannot punish a certain deviator

- To which extent Folk Theorem-type results may be obtained in such random-matching games?
 - Kandori (1992) and Harrington (1991) introduced the idea of "contagious" punishment: you start to cheat once you see cheating
 - Kandori showed that in the case of no information processing
 - If *I* is big enough, cooperation is sustainable in a sequentail equilibrium for suffiently patient players with any fixed population size
 - Kandori also argued that such an equilibrium is **fragile** in the sense that a bit noise would cause it to break down
- This paper built on Kandori's arguments
 - Introducing public randomization to adjust the severity of punishments
 - Cooperation is thus sustainable for general payoffs
 - Robust and approximately efficienct with noise
 - Extension of the result to a model without public randomization

- *M* players indexed by $\{1, 2, 3, ..., M\}$ where $M \ge 4$ is an even number
- In each period t ∈ {1, 2, 3, ...} the players are randomly matched into pairs with player i facing player o_i(t)
- The pairings are independent over time and uniform: $Prob\{o_i(t) = j | h_{t-1}\} = \frac{1}{M-1}, \forall j \neq i$
- The stage game is the prisoner's dilemma shown below with positive g and nonnegative l

$$\begin{array}{c|c}
C & D \\
C & 1,1 & -l,1+g \\
D & 1+g,-l & 0,0
\end{array}$$

- All players have common discount factor $\delta \in (0,1)$
 - Later this assumption would be relaxed
- Before players choose their actions in period *t*, they observe a **public** random variable *q*_t
 - q_t is drawn independently over time from U[0, 1]
 - Later the assumption of public randomization would be relaxed

 $\exists \underline{\delta} < 1$ such that $\forall \delta \in [\underline{\delta}, 1)$ there is a sequential equilibrium $s^*(\delta)$ of this random-matching repeated game with public randomizations, where all players play C in every period along the equilibrium path.

- The strategies $s^*(\delta)$ are as follows
 - Phase I
 - Play C in period t
 - If (C, C) is the outcome for matched players *i* and *j*, both play according to phase I in period *t* + 1
 - Otherwise, in period t+1both play according to phase II if $q_{t+1} \leq q(\delta)$ and according to phase I if $q_{t+1} > q(\delta)$
 - Phase II
 - Play D in period t
 - In period t+1 play according to phase II if $q_{t+1} \leq q(\delta)$ and according to phase I if $q_{t+1} > q(\delta)$
 - In period 1, all players play according to phase I

- Let $f(k, \delta, q)$ be player *i*'s continuation payoff from period *t* on when all players are playing the strategies above, and player *i* and k 1 others are playing according to phase II
- The continuation payoffs must satisfy two constraints derived from players not having a profitable single-period deviation
 - No profitable deviation in phase I: $(1-\delta)g \le \delta q(\delta)(1-f(2,\delta,q(\delta)))$ (1)
 - No profitable deviation in phase II (facing a phase I player): $(1-\delta)g \ge \delta q(\delta)E_j[f(j,\delta,q(\delta)) - f(j+1,\delta,q(\delta))]$ (2)
 - expectation reflects player i's beliefs over the number of players who will play according to phase II at t+1
 - it suffices to show it holds pointwise:

$$(1-\delta)g \geq \delta q(\delta)[f(j,\delta,q(\delta)) - f(j+1,\delta,q(\delta))] \quad \forall j \geq 3$$

イロト イ理ト イヨト イヨト

Proof of Proposition 1

Lemma

 $\begin{array}{l} f(k,\delta,q) \text{ is convex in } k \text{ for } k \geq 1, \text{ i.e.} \\ f(k,\delta,q(\delta)) - f(k+1,\delta,q(\delta)) \geq f(k+s,\delta,q(\delta)) - f(k+s+1,\delta,q(\delta)) \\ \forall s \geq 1 \end{array}$

- The proof of this lemma depends on the fact that the group of phase I players in a future period shrinks as more players play phase II today
 - $f(k, \delta, q) f(k+1, \delta, q) = \sum_{t=0}^{\infty} (1-\delta)q^t \delta^t (1+g) \Pr\{\omega \in \Omega | o_1(t, \omega) \in C(t, k, \omega) \cap D(t, \omega)\}$ • $C(t, k, \omega) \subseteq C(t, k+s, \omega)$
- Another fact we need to notice is that when (1) holds with equality, a player in phase I is exactly indifferent between playing C and D in a certain period

•
$$(1-\delta)g = \delta q(\delta)(1-f(2,\delta,q(\delta))) \iff$$

 $(1-\delta)g = \delta q(\delta)(f(1,\delta,q(\delta)) - f(2,\delta,q(\delta)))$ (3)

Proof of Proposition 1

- Now what we need to show is that there exists $\underline{\delta}$ and $q(\delta)$ such that $\forall \delta \in [\underline{\delta}, 1)$, (1) and (3) both holds with equality
 - If $q(\delta) = 1$, punishments are infinite and all players would eventually be infected with probability 1 if someone already started to play *D*: $\lim_{\delta \to 1} f(2, \delta, 1) = 0$
 - Thus $\lim_{\delta \to 1} \frac{\delta}{1-\delta} (1-f(2,\delta,1)) = \infty$ and $\lim_{\delta \to 0} \frac{\delta}{1-\delta} (1-f(2,\delta,1)) = 0$
 - By continuity, $\exists \underline{\delta} \in (0, 1)$ so that $\frac{\underline{\delta}}{1-\underline{\delta}}(1-f(2, \underline{\delta}, 1)) = g$: for $\underline{\delta}$ and $q(\underline{\delta}) = 1$, (1) holds with equality and thus (3) holds with equality
 - Note that $\frac{\delta q}{1-\delta}(f(k,\delta,q)) f(k+1,\delta,q)) = \sum_{t=0}^{\infty} (q\delta)^{t+1}(1+g) \Pr\{\omega \in \Omega | o_1(t,\omega) \in C(t,k,\omega) \cap D(t,\omega)\},$ RHS only depends on $q\delta$
 - Thus if we define $q(\delta) = \underline{\delta}/\delta$ for all $\delta \in [\underline{\delta}, 1)$, then (3) holds with equality for all such δ and $q(\delta)$
 - Then (1) holds with equality for all such δ and $q(\delta)$ and (2) also holds by convexity of f

<ロト < 団ト < 団ト < 団ト

- This equilibrium obviously satisfies the property of **global stability**: after any finite history, the continuation payoffs of the players eventually return to the cooperative level (with probability 1)
 - due to the introduction of public randomizations
- What if we introduce noise ε?
 - In contrast to Kandori's equilibrium, such sequantial equilibrium is also robust to little noise
 - Moreover, this equilibrium is approximately efficient with little noise

 $\exists \underline{\delta}' < 1$ and a set of strategy profiles $s^*(\delta)$ for $\delta \in [\underline{\delta}', 1)$ of the random-matching game with the following three properties: 1. In the game with discount factor δ , $s^*(\delta)$ is a sequential equilibrium with all players playing C on the path in every period. 2. Define $s^*(\delta, \varepsilon)$ to be the strategy which at each history assigns probability ε to D and probability $1 - \varepsilon$ to the action given by $s^*(\delta)$. Then $\exists \overline{\varepsilon}$ such that $\forall \varepsilon < \overline{\varepsilon} \ s^*(\delta, \varepsilon)$ is a sequential equilibrium of the perturbed game where all players are required to play D with probability at least ε at each history.

3. For u_i defined to player is expected per period payoff, $\lim_{\varepsilon \to 0} \lim_{\delta \to 1} u_i(s^*(\delta, \varepsilon)) = 1.$

イロト イ理ト イヨト イヨト

- $s^*(\delta)$ can be taken to have the same form as in Proposition 1, but with a slightly larger probablity $q'(\delta)$ of continuing in a punishment phase
- The basic idea is that the continuation payoff function *f* can indeed be shown as **strictly** convex in *k*
 - Note that generally $C(t,k,\omega) \subset C(t,k+s,\omega)$
 - Strict convexity allows us to pick a slightly larger $q'(\delta) = \underline{\delta}' / \delta$ to let the two constraints hold with strict inequality
 - $\bullet\,$ Thus the equilibrium could endure noise $\varepsilon\,$

- \bullet Up to now all the results require the assumption that all players share the same discount factor δ
 - Indeed, the equilibrium $s^*(\delta)$ depends on δ because we need to define $q(\delta)$
 - This seems not plausible when players have heterogeneous time preferences
- Indeed, a strategy profile s* with similar form as before but independent of discount factor can still be a sequantial equilibrium.

There exists a strategy profile s^* and a constant $\underline{\delta}'' < 1$ such that $\forall \delta \in [\underline{\delta}'', 1)$, s^* is a sequential equilibrium of the repeated game and all players play C in every period on the path of s^* .

• Define
$$q''(\delta) \equiv q'' = \lim_{\delta \to 1} q'(\delta) \ (= \lim_{\delta \to 1} \underline{\delta}' / \delta = \underline{\delta}')$$
 and $\underline{\delta}'' = \underline{\delta} / q''$

•
$$\delta \geq \underline{\delta}'' \Longrightarrow \delta q'' \geq \underline{\delta} = \underline{\delta}q(\underline{\delta}) \Longrightarrow \frac{\delta q''}{1-\delta}(f(1,\delta,q'')) - f(2,\delta,q'')) \geq \frac{\underline{\delta}}{1-\underline{\delta}}(f(1,\underline{\delta},1)) - f(2,\underline{\delta},1)) = g$$

• $\delta < 1 \Longrightarrow \delta q'' < q'' = \underline{\delta}' = \underline{\delta}'q'(\underline{\delta}') \Longrightarrow \frac{\delta q''}{1-\delta}(f(2,\delta,q'')) - f(3,\delta,q'')) < \frac{\underline{\delta}'}{1-\underline{\delta}'}(f(2,\underline{\delta}',1)) - f(3,\underline{\delta}',1)) < g$

• with convexity of f the proof is finished

- Public randomizations are playing two critical roles here
 - A coordination device so that all players can **simultaneously** return to cooperation at the end of a punishment phase
 - simultaneity is important because all players only slightly prefer cooperating when all others are doing so
 - To adjust the expected length and hence the severity of punishments
 - punishments are not so severe that no one is willing to carry them out
- Without public randomizations, can we still find a sequantial equilibrium to sustain cooperation and endure little noise?

The results of Proposition 2 still hold in a model where no public randomizations are available.

Outline of Proof

- Basically, we need to find a sequantial equilibrium with $q\equiv 1$
- Note that for Proposition 2, we have $q'(\underline{\delta}') = 1$ and $\underline{\delta}'$ for the two constraints to hold with strictly inequality
 - By continuity we know that $\exists \delta_1 > \underline{\delta}'$ and the two constraints still hold for any $\delta \in [\underline{\delta}', \delta_1]$ and $q \equiv 1$
 - The following lemma will then help us to finish the proof

Lemma

Let $G(\delta)$ be any repeated game of complete information, and suppose that there is a non-empty interval (δ_0, δ_1) such that $G(\delta)$ has a sequential equilibrium $s^*(\delta)$ with outcome a for all $\delta \in (\delta_0, \delta_1)$. Then $\exists \underline{\delta} < 1$ such that $\forall \delta \in (\underline{\delta}, 1)$ we can also define a strategy profile $s^{**}(\delta)$ which is also a sequantial equilibrium of $G(\delta)$ with outcome a.

- the constructed equilibrium uses infinite periodic punishments
- global stability will **not hold** in this case although approximate efficiency is still available

16 / 17

Min (LSE)

- "Contagious" punishments lead to a break down of cooperation, but the convexity of the breakdown process can be exploited
- Stability and limiting efficiency with noise are achievable with public randomizations
- Cooperation is also possible with heterogeneity in time preferences or without public randomizations
- With a stage game not having a dominant strategy equilibrium, whether these results could be further extended remains interesting

Learning, Local Interaction, and Coordination

Glenn Ellison

Econometrica 1993

Min (LSE)

Repeated Game

02/11 1 / 15

Introduction

• Game theoretic models all too often have multiple equilibria

- Why we should expect players to coordinate on a particular equilibrium
 - Whether there is any reason to believe that one equilibrium is more likely than the other
- Foster and Young(1990) and Kandori, Mailath and Rob(1993) derived strong predictions on the **evolution** of play over time
 - how players **learn** their opponents' play and **adjust** their strategies over time
- KMR(1993) showed that in the long run limit, players will achieve coordination on the particular "**risk dominant**" equilibrium
 - (A, A) in the example above

- This paper built on KMR's work while
 - The behavioral assumptions incorporate **noise** and myopic responses by **boundedly rational** players
 - The rate at which each dynamic process converges is considered
 - In reality it is important whether the evolutionary forces would be felt within a reasonable time horizon
 - The **nature of the interations** within a population plays a crucial determinant of play
 - KMR used uniform matching rule while two extreme cases described as **uniform** and **local** are considered here

Repeated Coordination Games

- A large population of N players
- A repeated coordination game played in periods t = 1, 2, 3, ...
 - $a d > b c \Longrightarrow (A, A)$ is "risk dominant" equilibrium

	Α	A B	
Α	a, a	c,d	
В	d, c	b, b	

- In each period t, player i chooses an action a_{it} ∈ {A, B} and his payoff is u_i(a_{it}, a_{-i,t}) = ∑_{j≠i} π_{ij}g(a_{it}, a_{jt})
 - payoffs g are those of the 2 imes 2 coordination game above
 - π_{ij} represents the probability that player i and j are matched in a given period
 - independent of t as the matching rule is time consistent

ヘロト 人間 ト 人 ヨト 人 ヨト

- Boundedly rational players: $a_{it} \in \arg \max_{a_i} u_i(a_i, a_{-i,t-1})$
 - player i is reacting to the distribution of play in period t-1, not to the action of his matched opponent
 - fairly naive in predicting how his potential opponents would play in period \boldsymbol{t}
- Disturbed by noise
 - With probability $1 2\varepsilon$ player i plays according to the rule above with probability
 - With probability 2ε player *i* chooses an action equally at random

Local and Uniform Matching Rules

- Uniform matching rule: $\pi_{ij} = \frac{1}{N-1} \quad \forall j \neq i$
 - With this rule, a myopic player will choose his period t strategy considering only the fraction of the population playing each strategy at time t-1
- "Local" matching: each player is likely to be matched only with a small fixed subset of the population
 - 2*k*-neighbour matching (players are thought to be spatially distributed around a circle)

• $\pi_{ij} = \frac{1}{2k-1} I\{i-j \equiv \pm 1, \pm 2, ..., \pm k \pmod{N}\}$

• Probability assigned to a match is declining with distance

•
$$\pi_{ij} = \begin{cases} \frac{3}{\pi^2} \frac{1}{d^2} & \text{for } d=\min\{|i-j|, N-|i-j|\} \neq \frac{N}{2} \\ 1 - \frac{3}{\pi^2} \sum_{|i-j| \neq N/2} \frac{1}{d^2} & \text{otherwise} \end{cases}$$

Modelling Dynamics

- Assume that at some point in the past, arbitrary historical factors determined the **initial** strategies of the players
 - the behavior rules then generate a dynamic system which describes the evolution of player's strategy over time
- With uniform matching
 - Let q_i be the fraction of player *i*'s opponents who player A in period t-1
 - Player *i* will play A in period t iff $q_i \ge q^* \equiv \frac{b-c}{(a-d)+(b-c)} < \frac{1}{2}$
 - The state of the system is denoted as a N-tuple $s_t \in S = \{A, B\}^N$, and $A(s_t)$ the total number of players playing A at t
 - The cutoff of player's response above becomes $A(s_t) > \lceil q^*(N-1) \rceil$
 - Without noise, there are two steady states, \overrightarrow{A} and \overrightarrow{B} , with nearby states jumping to them
 - With noise ε , the transitions are governed by a Markov process
 - once play approaches either equilibrium it will likely remain nearby for a long period of time

Min (LSE)

- With local 2k-neighbour matching (set $q^* = \frac{1}{3}$ and k = 4)
 - The cutoff becomes whether the number of your 8 neighbours playing A exceed 3
 - Without noise, there are at least two steady states, \overrightarrow{A} and \overrightarrow{B}
 - both have a nontrivial attractive basin, but that of \overrightarrow{A} is bigger than that of \overrightarrow{B}
 - with four adjacent players playing A at a time, the dynamic process will eventually goes to A
 - With noise, the differing sizes of these attracitive basins cause relatively rapid convergence to \overrightarrow{A}
 - starting from \overrightarrow{B} , it is far more likely to see 4 adjacent distrubances than $\lceil (N-1)/3 \rceil$ simultaneous ones when N is large

Further Notations

- We view the time t strategy profiles as the states st of a Markov process
- The time t probability distribution over the states is represented by an 1×2^N vector v_t
- The evolution fo the process is governed by $v_{t+1} = v_t P(\varepsilon)$
 - $P(\varepsilon)$ is the transition matrix with $p_{ij}(\varepsilon) = \Pr\{s_{t+1} = j | s_t = i\}$
 - Write $P^{u}(\varepsilon)$ for uniform matching and $P^{2k}(\varepsilon)$ for local matching
- $P(\varepsilon)$ is strictly positive if $\varepsilon > 0 \Rightarrow \exists! \ \mu(\varepsilon)$ such that $\mu(\varepsilon) = \mu(\varepsilon)P(\varepsilon)$
 - Let $\mu_s(\varepsilon)$ denote the probability assigned to state s by distribution $\mu(\varepsilon)$
- Use $\mathit{O} ext{-approximations}$ for the asymptotic behavior of $\mu(arepsilon)$ as arepsilon o 0
 - $f(x) = O(g(x)) \ (x \to 0)$ if $\exists C, c > 0$ such that $cg(x) \le f(x) \le Cg(x)$ for sufficiently small x

(日) (同) (三) (三) (三)

Converging to Risk Dominant Equilibrium

Theorem

For sufficiently large N we have:
(a)
$$\lim_{\epsilon \to 0} \mu^{u}_{\overrightarrow{A}}(\epsilon) = 1$$
, $\lim_{\epsilon \to 0} \mu^{2k}_{\overrightarrow{A}}(\epsilon) = 1$;
(b) $\mu^{u}_{\overrightarrow{B}}(\epsilon) = O(\epsilon^{N-2\lceil q*(N-1)\rceil+1})$, $\mu^{2}_{\overrightarrow{B}}(\epsilon) = \begin{cases} O(\epsilon^{N-2}) & \text{for } N \text{ even} \\ O(\epsilon^{N-1}) & \text{for } N \text{ odd} \end{cases}$

- The proof does not rely on the fact that the matching distribution has finite support
 - $\bullet\,$ the matching rule with declining probability also works, even with $N
 ightarrow \infty$
- The matching rule can not be too concentrated
 - If $\pi_{ij}>1-q^*$ then the probability of the cycle where i and j alternatively play (A,B) and (B,A)
- The long-run outcome may differ between the two matching rules when we move beyond 2 × 2 games.

Min (LSE)

2/11 10 / 15

- Theorem 1 implies that if the coordination games are repeated enough times we expect to see the risk dominant equilibrium played almost all the time
- Whether this "eventually" is relevant depends on the rate of convergence
- Let ho be an arbitrary initial state $\Rightarrow \mu(arepsilon) = \lim_{t o \infty}
 ho {\cal P}(arepsilon)^t$
- Define $\parallel \mu \nu \parallel \equiv \max_{s \in S} |\mu_s \nu_s|$
- Define $r^{u}(\varepsilon) = \sup_{\rho \in \Delta} \limsup_{t \to \infty} \| \rho P^{u}(\varepsilon)^{t} \mu^{u}(\varepsilon) \|^{1/t}$ and $r^{2}(\varepsilon) = \sup_{\rho \in \Delta} \limsup_{t \to \infty} \| \rho P^{2}(\varepsilon)^{t} - \mu^{2}(\varepsilon) \|^{1/t}$

Assume
$$\lceil q^*(N-1) \rceil < N/2$$
, as $\varepsilon \to 0$ we have:
 $1 - r^u(\varepsilon) = O(\varepsilon^{\lceil q^*(N-1) \rceil}), \ 1 - r^2(\varepsilon) = O(\varepsilon).$

Min (LSE)

- Loosely speaking, $\parallel
 ho {\cal P}^u(arepsilon)^t \mu^u(arepsilon) \parallel = {\cal O}(r^t)$ for some r < 1
 - convergence is approximately at an exponential rate
- $r^u(\varepsilon)$ is much closer to 1 than $r^2(\varepsilon)$ for small ε , so the rate of convergence with uniform matching is much slower
- An alternate measure: $W(N, \varepsilon, \alpha) = E(\min\{t|A(s_t) \ge (1-\alpha)N\}|s_0 = \overrightarrow{B})$
 - $W(N, \varepsilon, \alpha)$ is the expected waiting time until at least 1α of the players play A given that eveyone starts off playing B

For ε sufficiently small we have: $W^{u}(N, \varepsilon, \alpha) = O(\sqrt{N}e^{((q^*-\varepsilon)/\varepsilon(1-\varepsilon))N}), W^{2k}(N, \varepsilon, \alpha) = O(1)$

Different Matching Rules

	$W^{2k}(N,\varepsilon,\alpha)$			
	$\varepsilon = 0.025$	$\varepsilon = 0.05$	$\varepsilon = 0.1$	
k = 1	11	8	6	
<i>k</i> = 2	44	23	12	
<i>k</i> = 3	93	25	11	
k = 4	522	45	11	

• For small ε , evolution is faster for more concentrated matching rules

- For large ε , evolution can be faster for less concentrated matching rules
- The assumption of players located around the circle is crucial
 - This implies a great overlap of the groups of neighbours
 - With less overlap(lattice of more dimensions), the evolution may be slower

Heterogeneity

- The players are assumed to have heterogeneous tastes $u_i(A, A)$ and $u_i(B, B)$ with *lognormal distributions*
 - (A, A) is still better: $u_i(A, A) \stackrel{D}{\sim} (17/7)u_i(B, B)$

	$W^{2k}(N,\varepsilon,\alpha)$			
$Var(u_i(B,B))$	$\varepsilon = 0.025$	$\epsilon = 0.5$	$\epsilon = 0.1$	
0	522	45	11	
0.1	75	19	9	
0.2	28	14	7	

- Heterogeneity increases the rate of convergence (especially when arepsilon is small)
 - Stable clusters for players with great utility from (A, A) is smaller
- When evolution is already rapid for a homogeneous population, heterogeneity only has limited effect

Min (LSE)

2/11 14 / 15

- Boundedly rational players' myopic adjustments creat evolutionary forces which may select among the equilibria
- The nature of the matching rule helps us weight historical factors and evolutionary forces
 - With uniform matching among a large population play will reflect arbitrary historical factors for a long period of time
 - With local matching evolutionary forces may be felt early in the game