Micro Theory Reading Group

Can Celiktemur

London School of Economics

18 February 2011

Can Celiktemur (London School of Economics)

Outline

Today's Papers

- Relevance to Topic
- Methodology Differences

2 Takahashi - Community Enforcement with 1st Order Info

- Summary
- Model
- Equilibria
- Discussion & Extensions

Wolitzky - Repeated Public Good Provision

- Summary
- Model
- Results
- Comparative Statics
- Discussion & Extensions

• Repeated games \Rightarrow cooperation possible.

- When game played over a population, could extend "folk theorem" results.
- Monitoring is crucial.
- In large populations, public monitoring might be infeasible/impossible.
- Could "community" provide correct incentives?

- Repeated games \Rightarrow cooperation possible.
- When game played over a population, could extend "folk theorem" results.
- Monitoring is crucial.
- In large populations, public monitoring might be infeasible/impossible.
- Could "community" provide correct incentives?

- Repeated games \Rightarrow cooperation possible.
- When game played over a population, could extend "folk theorem" results.
- Monitoring is crucial.
- In large populations, public monitoring might be infeasible/impossible.
- Could "community" provide correct incentives?

- Repeated games \Rightarrow cooperation possible.
- When game played over a population, could extend "folk theorem" results.
- Monitoring is crucial.
- In large populations, public monitoring might be infeasible/impossible.
- Could "community" provide correct incentives?

- Repeated games \Rightarrow cooperation possible.
- When game played over a population, could extend "folk theorem" results.
- Monitoring is crucial.
- In large populations, public monitoring might be infeasible/impossible.
- Could "community" provide correct incentives?

What They Ask and How They Ask

Both papers use "Prisoner's Dilemma" situation stage games.

In Takahashi, concentrate on equilibria construction.

- Provide necessary & sufficient conditions (in terms of δ).
- Check robustness and analyze properties of equilibria.

• In Wolitzky, however, look at equilibrium outcomes.

- Which strategy within set of equilibria provide "maximal" outcomes?
- How do these maximal outcomes change in parameters of game?

What They Ask and How They Ask

- Both papers use "Prisoner's Dilemma" situation stage games.
- In Takahashi, concentrate on equilibria construction.
 - Provide necessary & sufficient conditions (in terms of δ).
 - Check robustness and analyze properties of equilibria.
- In Wolitzky, however, look at equilibrium outcomes.
 - Which strategy within set of equilibria provide "maximal" outcomes?
 - How do these maximal outcomes change in parameters of game?

What They Ask and How They Ask

- Both papers use "Prisoner's Dilemma" situation stage games.
- In Takahashi, concentrate on equilibria construction.
 - Provide necessary & sufficient conditions (in terms of δ).
 - Check robustness and analyze properties of equilibria.
- In Wolitzky, however, look at equilibrium outcomes.
 - Which strategy within set of equilibria provide "maximal" outcomes?
 - How do these maximal outcomes change in parameters of game?

Repeated prisoner's dilemma played over matched pairs in a community.

- Results for continuum of players. (finite population as an extension)
- No network structure. (random matching)
- Personal vs. community enforcement (small vs. large community)
- First-order information: record of current partner's past play.
- Is first-order info is enough for cooperation in large community?
- e.g. Consumer credit histories or online feedback (such as eBay reviews).
 - Why no higher order info?
 - Costly to store/transmit.
 - O Cognitively more demanding to processes
- N.B. Without higher-order info, can't tell apart cheaters from punishers.

- Repeated prisoner's dilemma played over matched pairs in a community.
- Results for continuum of players. (finite population as an extension)
- No network structure. (random matching)
- Personal vs. community enforcement (small vs. large community)
- First-order information: record of current partner's past play.
- Is first-order info is enough for cooperation in large community?
- e.g. Consumer credit histories or online feedback (such as eBay reviews).
 - Why no higher order info?
 - Costly to store/transmit:
 - O Cognitively more demanding to processes
- N.B. Without higher-order info, can't tell apart cheaters from punishers.

- Repeated prisoner's dilemma played over matched pairs in a community.
- Results for continuum of players. (finite population as an extension)
- No network structure. (random matching)
- Personal vs. community enforcement (small vs. large community)
- First-order information: record of current partner's past play.
- Is first-order info is enough for cooperation in large community?
- e.g. Consumer credit histories or online feedback (such as eBay reviews).
 - Why no higher order info?
 - Costly to store/transmit
 - Cognitively more demanding to process

- Repeated prisoner's dilemma played over matched pairs in a community.
- Results for continuum of players. (finite population as an extension)
- No network structure. (random matching)
- Personal vs. community enforcement (small vs. large community)
- First-order information: record of current partner's past play.
- Is first-order info is enough for cooperation in large community?
- e.g. Consumer credit histories or online feedback (such as eBay reviews).
 - Why no higher order info?
 - Costly to store/transmit:
 - Cognitively more demanding to processes
- N.B. Without higher-order info, can't tell apart cheaters from punishers.

- Repeated prisoner's dilemma played over matched pairs in a community.
- Results for continuum of players. (finite population as an extension)
- No network structure. (random matching)
- Personal vs. community enforcement (small vs. large community)
- First-order information: record of current partner's past play.
- Is first-order info is enough for cooperation in large community?
- e.g. Consumer credit histories or online feedback (such as eBay reviews).Why no higher order info?
 - Costly to store/transmit
 - Cognitively more demanding to processes
- N.B. Without higher-order info, can't tell apart cheaters from punishers.

- Repeated prisoner's dilemma played over matched pairs in a community.
- Results for continuum of players. (finite population as an extension)
- No network structure. (random matching)
- Personal vs. community enforcement (small vs. large community)
- First-order information: record of current partner's past play.
- Is first-order info is enough for cooperation in large community?
- e.g. Consumer credit histories or online feedback (such as eBay reviews).Why no higher order info?
 - Costly to store/transmit
 - Cognitively more demanding to process.

- Repeated prisoner's dilemma played over matched pairs in a community.
- Results for continuum of players. (finite population as an extension)
- No network structure. (random matching)
- Personal vs. community enforcement (small vs. large community)
- First-order information: record of current partner's past play.
- Is first-order info is enough for cooperation in large community?
- e.g. Consumer credit histories or online feedback (such as eBay reviews).
 - Why no higher order info?
 - Costly to store/transmit
 - Cognitively more demanding to processes
- N.B. Without higher-order info, can't tell apart cheaters from punishers.

- Repeated prisoner's dilemma played over matched pairs in a community.
- Results for continuum of players. (finite population as an extension)
- No network structure. (random matching)
- Personal vs. community enforcement (small vs. large community)
- First-order information: record of current partner's past play.
- Is first-order info is enough for cooperation in large community?
- e.g. Consumer credit histories or online feedback (such as eBay reviews).
 - Why no higher order info?
 - Costly to store/transmit
 - 2 Cognitively more demanding to process

- Repeated prisoner's dilemma played over matched pairs in a community.
- Results for continuum of players. (finite population as an extension)
- No network structure. (random matching)
- Personal vs. community enforcement (small vs. large community)
- First-order information: record of current partner's past play.
- Is first-order info is enough for cooperation in large community?
- e.g. Consumer credit histories or online feedback (such as eBay reviews).
 - Why no higher order info?
 - Costly to store/transmit
 - 2 Cognitively more demanding to process

- Repeated prisoner's dilemma played over matched pairs in a community.
- Results for continuum of players. (finite population as an extension)
- No network structure. (random matching)
- Personal vs. community enforcement (small vs. large community)
- First-order information: record of current partner's past play.
- Is first-order info is enough for cooperation in large community?
- e.g. Consumer credit histories or online feedback (such as eBay reviews).
 - Why no higher order info?
 - Costly to store/transmit
 - 2 Cognitively more demanding to process

- Repeated prisoner's dilemma played over matched pairs in a community.
- Results for continuum of players. (finite population as an extension)
- No network structure. (random matching)
- Personal vs. community enforcement (small vs. large community)
- First-order information: record of current partner's past play.
- Is first-order info is enough for cooperation in large community?
- e.g. Consumer credit histories or online feedback (such as eBay reviews).
 - Why no higher order info?
 - Costly to store/transmit
 - 2 Cognitively more demanding to process
- **N.B.** Without higher-order info, can't tell apart cheaters from punishers.

Main Findings

Consider two classes of equilibria to sustain cooperation:

Strict Equilibria (grim-trigger strategy)

- When strictly supermodular (g < l) then strict equil. sustains cooperation.
- When submodular (g ≥ I) then only D, D forever is strict.
- Independent and Indifferent Equilibria (IIE)
 - Players choose actions independently of own records of play.
 - Players are indifferent between *C* and *D* at all histories.
 - With this equil. notion we can sustain cooperation for any g, l > 0.

Main Findings

- Consider two classes of equilibria to sustain cooperation:
- Strict Equilibria (grim-trigger strategy)
 - When strictly supermodular (g < l) then strict equil. sustains cooperation.
 - When submodular $(g \ge l)$ then only D, D forever is strict.
- Independent and Indifferent Equilibria (IIE)
 - Players choose actions independently of own records of play.
 - Players are indifferent between *C* and *D* at all histories.
 - With this equil. notion we can sustain cooperation for any g, l > 0.

Main Findings

- Consider two classes of equilibria to sustain cooperation:
- Strict Equilibria (grim-trigger strategy)
 - When strictly supermodular (g < l) then strict equil. sustains cooperation.
 - When submodular $(g \ge l)$ then only D, D forever is strict.
- Independent and Indifferent Equilibria (IIE)
 - Players choose actions independently of own records of play.
 - Players are indifferent between *C* and *D* at all histories.
 - With this equil. notion we can sustain cooperation for any g, l > 0.

- IIE notion from Piccione (2002) and Ely & Välimäki (2002).
- Ely et. al (2005) extend construction to general games; belief-free equil.
- IIE in repeated games with random matching ↔ belief-free equil.
- Repeated games with random matching:
 - Public monitoring; Kandori (1992), Dal B6 (2007).
 - Private monitoring; Ellison (1994), Deb (2003)
 - ii.8. Common feature: $\underline{\delta}$ depends on n and $\lim_{n\to\infty} \underline{\delta} = 1$
 - Players with status variable (a summary statistic of into at unboundedly high order beliefs); Okuno-Fujheara & Postleweite (1995)
 - First-order info only.

- IIE notion from Piccione (2002) and Ely & Välimäki (2002).
- Ely et. al (2005) extend construction to general games; belief-free equil.
- IIE in repeated games with random matching $\stackrel{\ell}{\leftrightarrow}$ belief-free equil.
- Provide the second state of the second stat
 - s Puele monitoring; kanaan (1992), Dat (2007) S Résete constantes: Elisan (1992), Dat (2007)

 - Playors with status variable (a summary statistic of into of unboundedly high
 - order beliets); Okuno-Fujiwara & Postlewaite (1995)
 - Eirst-order info only.

Repeated games with private monitoring:

- IIE notion from Piccione (2002) and Ely & Välimäki (2002).
- Ely et. al (2005) extend construction to general games; belief-free equil.
- IIE in repeated games with random matching $\stackrel{?}{\leftrightarrow}$ belief-free equil.

Provide the second state of the second stat

- Public monitoring; Kandori (1992), Dal Bó (2007).
- s. Privais monitoring, Editori (1994), Usb (2003)
- $Common feature: \underline{o} oppends on transformation in the second se$
 - Players with status variable (a surplinary statistic of into of wrised indexity high order beliets); Okuno-Fajiwara & Postlewaite (1995)
 - Eirst-order info only.

Repeated games with private monitoring:

- IIE notion from Piccione (2002) and Ely & Välimäki (2002).
- Ely et. al (2005) extend construction to general games; belief-free equil.
- IIE in repeated games with random matching [?]→ belief-free equil.

Provide the second state of the second stat

- Public monitoring; Kandori (1992), Dal Bó (2007).
- Private monitoring; Ellison (1994), Deb (2003)
- **N.B.** Common feature: $\underline{\delta}$ depends on *n* and $\lim_{n\to\infty} \underline{\delta} = 1$
 - Players with status variable (a summary statistic of info of unboundedly high order beliefs); Okuno-Fujiwara & Postlewaite (1995)
 - First-order info only.

- IIE notion from Piccione (2002) and Ely & Välimäki (2002).
- Ely et. al (2005) extend construction to general games; belief-free equil.
- IIE in repeated games with random matching $\stackrel{?}{\leftrightarrow}$ belief-free equil.
- Provide the second state of the second stat
 - Public monitoring; Kandori (1992), Dal Bó (2007).
 - Private monitoring; Ellison (1994), Deb (2003)
 - **N.B.** Common feature: $\underline{\delta}$ depends on *n* and $\lim_{n\to\infty} \underline{\delta} = 1$
 - Players with status variable (a summary statistic of info of unboundedly high order beliefs); Okuno-Fujiwara & Postlewaite (1995)
 - First-order info only.

- Repeated games with private monitoring:
 - IIE notion from Piccione (2002) and Ely & Välimäki (2002).
 - Ely et. al (2005) extend construction to general games; belief-free equil.
 - IIE in repeated games with random matching $\stackrel{?}{\leftrightarrow}$ belief-free equil.
- Provide the second state of the second stat
 - Public monitoring; Kandori (1992), Dal Bó (2007).
 - Private monitoring; Ellison (1994), Deb (2003)
 - **N.B.** Common feature: $\underline{\delta}$ depends on *n* and $\lim_{n\to\infty} \underline{\delta} = 1$
 - Players with status variable (a summary statistic of info of unboundedly high order beliefs); Okuno-Fujiwara & Postlewaite (1995)
 - First-order info only.

- Repeated games with private monitoring:
 - IIE notion from Piccione (2002) and Ely & Välimäki (2002).
 - Ely et. al (2005) extend construction to general games; belief-free equil.
 - IIE in repeated games with random matching $\stackrel{?}{\leftrightarrow}$ belief-free equil.
- Provide the second state of the second stat
 - Public monitoring; Kandori (1992), Dal Bó (2007).
 - Private monitoring; Ellison (1994), Deb (2003)
 - **N.B.** Common feature: $\underline{\delta}$ depends on *n* and $\lim_{n\to\infty} \underline{\delta} = 1$
 - Players with status variable (a summary statistic of info of unboundedly high order beliefs); Okuno-Fujiwara & Postlewaite (1995)
 - First-order info only.

- Repeated games with private monitoring:
 - IIE notion from Piccione (2002) and Ely & Välimäki (2002).
 - Ely et. al (2005) extend construction to general games; belief-free equil.
 - IIE in repeated games with random matching $\stackrel{?}{\leftrightarrow}$ belief-free equil.
- Provide the second state of the second stat
 - Public monitoring; Kandori (1992), Dal Bó (2007).
 - Private monitoring; Ellison (1994), Deb (2003)
 - **N.B.** Common feature: $\underline{\delta}$ depends on *n* and $\lim_{n\to\infty} \underline{\delta} = 1$
 - Players with status variable (a summary statistic of info of unboundedly high order beliefs); Okuno-Fujiwara & Postlewaite (1995)
 - First-order info only.

- Repeated games with private monitoring:
 - IIE notion from Piccione (2002) and Ely & Välimäki (2002).
 - Ely et. al (2005) extend construction to general games; belief-free equil.
 - IIE in repeated games with random matching $\stackrel{?}{\leftrightarrow}$ belief-free equil.
- Provide the second state of the second stat
 - Public monitoring; Kandori (1992), Dal Bó (2007).
 - Private monitoring; Ellison (1994), Deb (2003)
 - **N.B.** Common feature: $\underline{\delta}$ depends on *n* and $\lim_{n\to\infty} \underline{\delta} = 1$
 - Players with status variable (a summary statistic of info of unboundedly high order beliefs); Okuno-Fujiwara & Postlewaite (1995)
 - First-order info only.

Setup and Definitions

- Continuum of population [0, 1].
- Matching $m : [0, 1] \to [0, 1]$ with $\forall i \in [0, 1], m(m(i)) = i \neq m(i)$.
- m_t drawn "uniformly" and independently across time.
- *i*'s total payoff is $(1 \delta) \sum_{t=1}^{\infty} \delta^{t-1} u(a_{it}, a_{m_t(i)}, t)$.
- $\delta \in (0, 1)$ is common discount factor.

Setup and Definitions

- Let $a_i^t = (a_{i1}, a_{i2}, \dots, a_{it})$ be sequence of *i*'s actions upto *t*.
- "History repository" honestly keeps track of all players' actions over time.
- At *t* after m_t is realized each $i \in [0, 1]$ has 3-fold information:
 - She knows $(a_{is}, a_{m_s(i)}, s)$ for $s \le t 1$.
 - 3 She observes $a_{m_t(i)}^{t-1}$ from history repository for **free**.
 - She knows $a_{m_s(i)}^s$ for all $s \le t 1$ where:
 - $a_{m_s(i),s}$ by own observation,
 - $a_{m_s(i)}^{s-1}$ from repository back in period *s*.
- Let $a_i^t = (a_{i1}, a_{i2}, \dots, a_{it})$ be sequence of *i*'s actions upto *t*.
- "History repository" honestly keeps track of all players' actions over time.
- At *t* after m_t is realized each $i \in [0, 1]$ has 3-fold information:
 - She knows $(a_{is}, a_{m_s(i)}, s)$ for $s \leq t 1$.
 - She observes $a_{m,(i)}^{t-1}$ from history repository for **free**.
 - She knows $a_{m_s(i)}^s$ for all $s \le t 1$ where:
 - *a_{m_s(i),s}* by own observation,
 - $a_{m_s(i)}^{s-1}$ from repository back in period *s*.

- WLOG assume that *i* uses only a_i^{t-1} and $a_{m_t(i)}^{t-1}$ for choosing action at *t*.
- $a_{m_s(i)}^s$ for $s \le t 1$ not used due to indep. of $m_{t'}(i)$'s strategies for $t' \ge t$.
- For simplicity assume strategies are ex ante symmetric.
- Behavior strategy $\sigma_t : A^{2t-2} \to \Delta(A)$ where $\sigma_t(a^{t-1}, \bar{a}^{t-1})$.
- a^{t-1} is own record of play, \bar{a}^{t-1} is current partner's record of play.

- For $t \ge 1$ and $a^t \in A^t$, let $\mu_t(a^t)$ be fraction of players with records a^t .
- Given strategy σ , sequence of distributions of records $\mu = {\mu_t}$ is:

$$\mu_1(a_1) = \sigma_1(\emptyset)(a_1),$$

$$\mu_t(a^t) = \mu_{t-1}(a^{t-1}) \sum_{\bar{a}^{t-1} \in \mathcal{A}^{t-1}} \mu_{t-1}(\bar{a}^{t-1}) \sigma_t(a^{t-1}, \bar{a}^{t-1})(a_t)$$

- Along equilibrium path, players believe distribution of records of play equal μ_t with certainty.
- Assume same beliefs for off-equilibrium paths, due to "trembling hands".

• Continuation payoff for a player following σ when all other follow $\bar{\sigma}$ is:

$$U_t(\sigma,\bar{\sigma}|\boldsymbol{a}^{t-1},\bar{\boldsymbol{a}}^{t-1},\mu) = \sum_{\boldsymbol{a}_t \in A} \sigma_t(\boldsymbol{a}^{t-1},\bar{\boldsymbol{a}}^{t-1})(\boldsymbol{a}_t) \Big((1-\delta)\boldsymbol{u}(\boldsymbol{a}_t,\bar{\sigma}_t(\bar{\boldsymbol{a}}^{t-1},\boldsymbol{a}^{t-1})) \\ + \delta \sum_{\bar{\boldsymbol{b}}^t \in A^t} U_{t+1}(\sigma,\bar{\sigma}|\boldsymbol{a}^t,\bar{\boldsymbol{b}}^t,\mu)\mu_t(\bar{\boldsymbol{b}}^t) \Big)$$

• By one-shot deviation principle, σ^* is equilibrium if $\forall t \ge 1$, every $a^{t-1}, \bar{a}^{t-1} \in A^{t-1}$ and every σ it holds that: $U_t(\sigma^*, \sigma^* | a^{t-1}, \bar{a}^{t-1}, \mu^*)$ $\ge (1 - \delta)u(a_t, \sigma^*_t(\bar{a}^{t-1}, a^{t-1})) + \delta \sum_{\bar{b}^t \in A^t} U_{t+1}(\sigma^*, \sigma^* | a^t, \bar{b}^t, \mu^*)\mu^*_t(\bar{b}^t)$ (1)

Definition 1

Equilibrium σ^* is **strict** if, at any history, each player strictly prefers the action prescribed by equilibrium to one-shot deviation; i.e. (1) holds with strict inequality whenever $a_t \neq \sigma_t^*(a^{t-1}, \bar{a}^{t-1})$.

Pairwise grim-trigger strat:
$$\sigma_t(a^{t-1}, \bar{a}^{t-1}) = \begin{cases} C & \text{if } a^{t-1} = \bar{a}^{t-1} = (C, \dots, C) \\ D & \text{otherwise} \end{cases}$$

Lemma

Pairwise grim-trigger strategy is a strict equilibrium iff $\frac{g}{(1+g)} < \delta < \frac{l}{(1+l)}$.

- If *i* and $m_t(i)$ have played *C* only, then PGTS prescribes *C* to both.
- In order to do so, need δ to be sufficiently large. (lower bound)
- If *i* played *C* only, but $m_t(i)$ played *D* in past, PGTS prescribes *D* to both.
- For *i* to do so, need δ to not be too high. (upper bound)

Lemma

Pairwise grim-trigger strategy is a strict equilibrium iff $\frac{g}{(1+g)} < \delta < \frac{l}{(1+l)}$.

- If *i* and $m_t(i)$ have played *C* only, then PGTS prescribes *C* to both.
- In order to do so, need δ to be sufficiently large. (lower bound)
- If *i* played *C* only, but $m_t(i)$ played *D* in past, PGTS prescribes *D* to both.
- For *i* to do so, need δ to not be too high. (upper bound)

Strict Equilibria

Proposition

- If g < l and $\delta > \frac{g(1+l)}{(1+q)l}$, then there exists a strict equil. w/ sym. payoff 1.
- 2 If $g \ge I$, then there is no strict equil. other than repetition of *D*.
 - To show existence of strict equilibrium in 1st part, use Ellison trick.
 - Divide game into subgames where in each use earlier lemma.
 - For 2nd part, pursue contradiction by assuming a nontrivial strict equil.
 - Conclude that l > g has to hold contradicting with $g \ge l$ (submodularity).

Definition 2

 σ^* satisfies:

- Independence of own play if $\sigma_t^*(a^{t-1}, \bar{a}^{t-1}) = \sigma_t^*(b^{t-1}, \bar{a}^{t-1})$ for all $t \ge 1$ and $a^{t-1}, b^{t-1}, \bar{a}^{t-1} \in A^{t-1}$
- Indifference at all histories if (1) holds with equality for all t > 1, a^{t-1} , $\bar{a}^{t-1} \in A^{t-1}$ and $a_t \in A$.

 σ^* is IIE if σ^* satisfies both independence and indifference.

- By independence $U_t(\sigma^*, \sigma^* | a^{t-1}, \bar{a}^{t-1}, \mu)$ is independent of \bar{a}^{t-1} and μ as $m_t(i)$ does not care about \bar{a}^{t-1} .
- But same reason implies *i* has no strict incentives to take \bar{a}^{t-1} into consideration.
- For C to be played, need indifference between C and D at some histories.
- Author requires indifference at all histories for simplicity.

Proposition

Suppose that $\delta \geq \max(\frac{g}{(1+\alpha)}, \frac{l}{(1+\beta)})$. Then there is an IIE with symmetric payoff x iff $x \in [0, 1]$.

- If g l < 1 then [0, 1] is set of feasible payoffs under sym. strategies.
- Thus concentrating on IIE is WLOG then.
- If g l > 1, however, \exists other equil. alternating between (C, D) and (D, C)to sustain x > 1 in equil.
- So "only if" part applies exclusively to IIE when g l > 1!

For any $x \in [0, 1]$, construct IIE by following algorithm:

- At *t*, for record a^{t-1} assign "target payoff" $V_t(a^{t-1})$. [Set $V_1(\emptyset) = x$]
- Given $m_t(i)$'s record \bar{a}^{t-1} , *i* chooses *C* w/ prob $p_t(\bar{a}^{t-1})$.
- $V_{t+1}(a^t)$ is computed recursively from $V_t(a^{t-1})$ and a_t .

To implement above use indifference condition:

$$V_t(a^{t-1}) \stackrel{\text{indif.}}{=} (1-\delta)u(C, p_t(a^{t-1})) + \delta V_{t+1}(a^{t-1}, C) \quad \text{if play } C$$

 $\underbrace{=}_{\text{indif.}} (1-\delta)u(D, p_t(a^{t-1})) + \delta V_{t+1}(a^{t-1}, D) \quad \text{if play } D$

Note above has 3 unknowns in 2 equations!

For any $x \in [0, 1]$, construct IIE by following algorithm:

- At *t*, for record a^{t-1} assign "target payoff" $V_t(a^{t-1})$. [Set $V_1(\emptyset) = x$]
- Given $m_t(i)$'s record \bar{a}^{t-1} , *i* chooses *C* w/ prob $p_t(\bar{a}^{t-1})$.
- $V_{t+1}(a^t)$ is computed recursively from $V_t(a^{t-1})$ and a_t .

To implement above use indifference condition:

$$V_t(a^{t-1}) \underbrace{\stackrel{\text{indif.}}{=}}_{\text{indif.}} (1-\delta)u(C, p_t(a^{t-1})) + \delta V_{t+1}(a^{t-1}, C) \quad \text{if play } C$$
$$\underbrace{=}_{\text{indif.}} (1-\delta)u(D, p_t(a^{t-1})) + \delta V_{t+1}(a^{t-1}, D) \quad \text{if play } D$$

Note above has 3 unknowns in 2 equations!

Lemma

If $\delta \ge max(\frac{g}{(1+g)}, \frac{l}{(1+l)})$, then $\forall t \ge 1$, every $a^{t-1} \in A^{t-1}$ and every $V_t(a^{t-1}) \in [0, 1], \exists p_t(a^{t-1}) \in [0, 1]$ and $V_{t+1}(a^{t-1}, C), V_{t+1}(a^{t-1}, D) \in [0, 1]$ s.t. algorithm construction possible.

$$p_t(a^{t-1}) = V_t(a^{t-1})$$

$$V_{t+1}(a^{t-1}, C) = \frac{V_t(a^{t-1})}{\delta} - \frac{1-\delta}{\delta}u(C, p_t(a^{t-1}))$$

$$V_{t+1}(a^{t-1}, D) = \frac{V_t(a^{t-1})}{\delta} - \frac{1-\delta}{\delta}u(D, p_t(a^{t-1}))$$

IIE vs. Belief-free Equil

Definition 3

 $(\tilde{\sigma}_1^*, \tilde{\sigma}_2^*)$ a *belief-free equil.* of 2-player repeated prisoner's dilemma with perfect monitoring if *i*'s continuation strategy $\sigma_i^* | (a_i^{t-1}, a_j^{t-1})$ is a BR to *j*'s continuation strategy $\sigma_i^* | (b_j^{t-1}, b_i^{t-1})$ for all $i \in \{1, 2\}, j \neq i, t \ge 1$ and $a_i^{t-1}, a_j^{t-1}, b_i^{t-1}, b_j^{t-1} \in A^{t-1}$.

IIE vs. Belief-free Equil

- Repository also stores second-order info: $(a_{m_s(m_t(i)),s})_{s=1}^{t-1}$
- Then $\hat{\sigma}_t(a^{t-1}, b^{t-1}, \bar{a}^{t-1}, \bar{b}^{t-1})$ is mixed action at *t*.
- *a*^{*t*-1} is own record of play.
- b^{t-1} past partners' play.
- \bar{a}^{t-1} current partner's record.
- \bar{b}^{t-1} current partner's past partners' play.
- $\hat{\sigma}$ satisfies independence if $\hat{\sigma}_t(a^{t-1}, b^{t-1}, \bar{a}^{t-1}, \bar{b}^{t-1})$ is independent of (a^{t-1}, b^{t-1}) .

IIE vs. Belief-free Equil

Proposition

 $(\tilde{\sigma}^*, \tilde{\sigma}^*)$ is a sym. belief-free equil. in 2-player repeated prisoner's dilemma w/ perfect monitoring iff $\hat{\sigma}^*$ is a continuum-population equil. w/ independence of own observations in the random matching repeated prisoner's dilemma w/ info up to 2nd order where $\forall t \geq 1$ and $a^{t-1}, b^{t-1}, \bar{a}^{t-1}, \bar{b}^{t-1} \in A^{t-1}$:

$$\hat{\sigma}_t^*(a^{t-1}, b^{t-1}, \bar{a}^{t-1}, \bar{b}^{t-1}) = \tilde{\sigma}^*(\bar{b}^{t-1}, \bar{a}^{t-1})$$

- Note above relationship holds when we have 2nd order info.
- For equivalence with only 1st order info, need strategies to have independence of own play in 2-player case
- Piccione maintains above \Rightarrow all equil. in Piccione translated to Takahashi.

Linear IIE, Long-Run Stability

- In IIE algorithm shown, $p_t(a^{t-1})$ is linear in $V_t(a^{t-1})$.
- Linear IIE has nice qualitative properties.
- Fix an equil. with C forever and strategy σ^* .
- Ask if (small) positive mass mistakenly deviate, will it ruin cooperation?
- Add a shock at end of $T (\mu_T \neq \mu_T^*)$ and from T + 1, back to σ^* .

$$P_t = \sum_{a^{t-1}, \bar{a}^{t-1} \in A^{t-1}} \mu_{t-1}(a^{t-1}) \mu_{t-1}(\bar{a}^{t-1}) \sigma_t^*(a^{t-1}, \bar{a}^{t-1})(C)$$

- If $P_t \rightarrow 1$ as $t \rightarrow \infty$ then σ^* sustains cooperation in long-run.
- Letting σ^* be IIE w/ sym. payoff $x \in (0, 1]$:

$$\fbox{0}$$
 If $g < I$, then $P_t o$ 1 as $t o \infty$

② If
$$g>l$$
, then $P_t o 0$ as $t o\infty$

3 If g = I, then P_t is constant over t

Linear IIE, Long-Run Stability

- In IIE algorithm shown, $p_t(a^{t-1})$ is linear in $V_t(a^{t-1})$.
- Linear IIE has nice qualitative properties.
- Fix an equil. with C forever and strategy σ^* .
- Ask if (small) positive mass mistakenly deviate, will it ruin cooperation?
- Add a shock at end of T ($\mu_T \neq \mu_T^*$) and from T + 1, back to σ^* .

$$P_{t} = \sum_{a^{t-1}, \bar{a}^{t-1} \in A^{t-1}} \mu_{t-1}(a^{t-1}) \mu_{t-1}(\bar{a}^{t-1}) \sigma_{t}^{*}(a^{t-1}, \bar{a}^{t-1})(C)$$

- If $P_t \rightarrow 1$ as $t \rightarrow \infty$ then σ^* sustains cooperation in long-run.
- Letting σ^* be IIE w/ sym. payoff $x \in (0, 1]$:
 - **1** If g < I, then $P_t \to 1$ as $t \to \infty$
 - 2 If g > l, then $P_t \to 0$ as $t \to \infty$
 - 3 If g = I, then P_t is constant over t

Finite Population

Proposition

If a continuum-population equil. strategy satisfies independence of own play, then strategy combined w/ any consistent belief system forms a sequential equil. of finite-population model of any size.

Table 1 Discount factor δ sufficient to sustain cooperation: $g = 1$.				
Popul. size	Contagious eqm $l > 0$	Indep. & indiff. eq $0 < l \leq 1$	qm <i>l</i> = 2	<i>l</i> = 10
2	0.50	0.50	0.67	0.91
4	0.68	0.50	0.67	0.91
10	0.79	0.50	0.67	0.91
100	0.89	0.50	0.67	0.91
1000	0.93	0.50	0.67	0.91

The column for contagious equilibria is taken from Ellison [8, Table 1].

- Matchings need not be uniform.
- $\underline{\delta}$ is independent of *n*.
- First-order info helpful if *n* large and/or *l* (relative to *g*) is small.

Noise, Bounded Records

- Noise could be in actions and/or in records. (due to mistakes etc.)
- Set of IIE payoffs changes continuously w.r.t. noise levels.
- What happens if strategy uses a bounded period length of records?
 - ① If $g \neq I$, then \nexists IIE w/ bounded records.
 - 2 g = l and $\delta \ge \frac{g}{(1+g)}$, then for any $x \in [0, 1]$, \exists IIE that has records of length 1 w/ sym. payoff x.
 - If g < I and δ ≥ g(1+I)/(1+g)I, then ∃ strict equil. that has records of length T w/ sym. payoff 1 where T satisfies δ^T ≤ 1/(1+I).
- For last part, divide to mini-games and use solution in each. (Ellison trick)

Noise, Bounded Records

- Noise could be in actions and/or in records. (due to mistakes etc.)
- Set of IIE payoffs changes continuously w.r.t. noise levels.
- What happens if strategy uses a bounded period length of records?
 - If $g \neq I$, then \nexists IIE w/ bounded records.
 - ② g = l and $\delta \ge \frac{g}{(1+g)}$, then for any $x \in [0, 1]$, ∃ IIE that has records of length 1 w/ sym. payoff *x*.
 - So If g < I and $\delta \ge \frac{g(1+I)}{(1+g)I}$, then ∃ strict equil. that has records of length *T* w/ sym. payoff 1 where *T* satisfies $\delta^T \le \frac{I}{(1+I)}$.
- For last part, divide to mini-games and use solution in each. (Ellison trick)

Endogenous Asymmetry, Cheap Talk

- Suppose g l > 1. For any $x \in [0, \frac{1+g-l}{2})$, $\exists \underline{\delta} < 1$ s.t. for any $\delta > \underline{\delta} \exists$ equil. w/ sym. payoff x.
- To get above, construct an equil. alternating between (C, D) and (D, C).

What happens if we allow cheap talk?

If $g \ge I$, then only strict equil. is repetition of D, independent of messages.

If $g \neq I$, then \nexists IIE w/ bounded records, even if cheap talk allowed.

Endogenous Asymmetry, Cheap Talk

- Suppose g l > 1. For any $x \in [0, \frac{1+g-l}{2})$, $\exists \underline{\delta} < 1$ s.t. for any $\delta > \underline{\delta} \exists$ equil. w/ sym. payoff x.
- To get above, construct an equil. alternating between (C, D) and (D, C).
- What happens if we allow cheap talk?
 - If $g \ge I$, then only strict equil. is repetition of *D*, independent of messages.
 - 2 If $g \neq I$, then \nexists IIE w/ bounded records, even if cheap talk allowed.

N-player repeated public good provision game w/ community enforcement.

- Stage game is like prisoner's dilemma. (0 contribution dominant)
- "All-or-nothing" monitoring. (not imperfect)
- Given common δ define maximum equil. level of public good (MELP).
- What strategies support MELP?
- How does MELP change (comparative statics exercise) in:
 - Type of public good (pure vs. divisible).
 - Group sizes
 - Monitoring technologies
- **e.g.** Construction of infrastructure projects (repeated) in a village where each villager observes only contributions of her "neighbors".

- *N*-player repeated public good provision game w/ community enforcement.
- Stage game is like prisoner's dilemma. (0 contribution dominant)
- "All-or-nothing" monitoring. (not imperfect)
- Given common δ define maximum equil. level of public good (MELP).
- What strategies support MELP?
- How does MELP change (comparative statics exercise) in:
 - Type of public good (pure vs. divisible)
 - Group sizes
 - Monitoring technologies
- **e.g.** Construction of infrastructure projects (repeated) in a village where each villager observes only contributions of her "neighbors".

- *N*-player repeated public good provision game w/ community enforcement.
- Stage game is like prisoner's dilemma. (0 contribution dominant)
- "All-or-nothing" monitoring. (not imperfect)
- Given common δ define maximum equil. level of public good (MELP).
- What strategies support MELP?
- How does MELP change (comparative statics exercise) in:
 - Type of public good (pure vs. divisible)
 - Group sizes
 - Monitoring technologies
- **e.g.** Construction of infrastructure projects (repeated) in a village where each villager observes only contributions of her "neighbors".

- N-player repeated public good provision game w/ community enforcement.
- Stage game is like prisoner's dilemma. (0 contribution dominant)
- "All-or-nothing" monitoring. (not imperfect)
- Given common δ define maximum equil. level of public good (MELP).
- What strategies support MELP?
- How does MELP change (comparative statics exercise) in:
 - Type of public good (pure vs. divisible).
 - Group sizes
 - Monitoring technologies
- **e.g.** Construction of infrastructure projects (repeated) in a village where each villager observes only contributions of her "neighbors".

- *N*-player repeated public good provision game w/ community enforcement.
- Stage game is like prisoner's dilemma. (0 contribution dominant)
- "All-or-nothing" monitoring. (not imperfect)
- Given common δ define maximum equil. level of public good (MELP).
- What strategies support MELP?
- How does MELP change (comparative statics exercise) in:
 - Type of public good (pure vs. divisible)
 - Monitoring technologies
- **e.g.** Construction of infrastructure projects (repeated) in a village where each villager observes only contributions of her "neighbors".

- *N*-player repeated public good provision game w/ community enforcement.
- Stage game is like prisoner's dilemma. (0 contribution dominant)
- "All-or-nothing" monitoring. (not imperfect)
- Given common δ define maximum equil. level of public good (MELP).
- What strategies support MELP?
- How does MELP change (comparative statics exercise) in:
 - Type of public good (pure vs. divisible)
 - Group sizes
 - Monitoring technologies
- **e.g.** Construction of infrastructure projects (repeated) in a village where each villager observes only contributions of her "neighbors".

- *N*-player repeated public good provision game w/ community enforcement.
- Stage game is like prisoner's dilemma. (0 contribution dominant)
- "All-or-nothing" monitoring. (not imperfect)
- Given common δ define maximum equil. level of public good (MELP).
- What strategies support MELP?
- How does MELP change (comparative statics exercise) in:
 - Type of public good (pure vs. divisible)
 - Group sizes
 - Monitoring technologies
- e.g. Construction of infrastructure projects (repeated) in a village where each villager observes only contributions of her "neighbors".

- *N*-player repeated public good provision game w/ community enforcement.
- Stage game is like prisoner's dilemma. (0 contribution dominant)
- "All-or-nothing" monitoring. (not imperfect)
- Given common δ define maximum equil. level of public good (MELP).
- What strategies support MELP?
- How does MELP change (comparative statics exercise) in:
 - Type of public good (pure vs. divisible)
 - Group sizes
 - Monitoring technologies
- **e.g.** Construction of infrastructure projects (repeated) in a village where each villager observes only contributions of her "neighbors".

- *N*-player repeated public good provision game w/ community enforcement.
- Stage game is like prisoner's dilemma. (0 contribution dominant)
- "All-or-nothing" monitoring. (not imperfect)
- Given common δ define maximum equil. level of public good (MELP).
- What strategies support MELP?
- How does MELP change (comparative statics exercise) in:
 - Type of public good (pure vs. divisible)
 - Group sizes
 - Monitoring technologies

e.g. Construction of infrastructure projects (repeated) in a village where each villager observes only contributions of her "neighbors".

- *N*-player repeated public good provision game w/ community enforcement.
- Stage game is like prisoner's dilemma. (0 contribution dominant)
- "All-or-nothing" monitoring. (not imperfect)
- Given common δ define maximum equil. level of public good (MELP).
- What strategies support MELP?
- How does MELP change (comparative statics exercise) in:
 - Type of public good (pure vs. divisible)
 - Group sizes
 - Monitoring technologies
- **e.g.** Construction of infrastructure projects (repeated) in a village where each villager observes only contributions of her "neighbors".

"All-or-nothing" Monitoring

- General representation of many monitoring scenarios.
- Also provides super tractability. (Characterize MELP for any $\delta < 1$)
- At all t, player i either perfectly observes j's actions or not.
- N.B. Not imperfect monitoring!
 - Examples are:
 - Uniform monitoring
 - Quasi-public monitoring
 - 8 Random matching
 - Arbitrary fixed network

Main Results

- MELP is sustained in "grim-trigger" strategies, σ*.
- In particular reward schemes are not better.
- Symmetic σ* under weak symmetry of monitoring. ("equal observability")
- Under equal observability, incentives to contribute depend only on:
 - Effective contagiousness: $\sum_{t=0}^{\infty} \delta^t \mathbb{E}[\#D(t,\Gamma)]$
 - 2 Rivalness of public good: $\alpha(\Gamma)$
- Comparative statics exercise by changing:
 - Group size (N) / monitoring structure (1st effect)
 - Public good type (2nd effect).
- Drop equal observability and assume fixed network.
- Contributions change in "centrality" of players and structure of network.
- Extend to local public goods and revisit results from equal obs.

- *N* players every period simultaneously choose $x_i \ge 0$.
- $\alpha \sum_{j=1}^{N} x_j c(x_i)$ where $\alpha \in (0, 1]$ is common benefit.

•
$$c'(\cdot) > 0, c''(\cdot) > 0$$

•
$$c(0) = 0, c'(0) \in (\alpha, \alpha N)$$

•
$$\lim_{x\to\infty} c'(x) > \alpha N$$
.

- By above, one-shot game like prisoner's dilemma. ($x_i = 0$ is dominant)
- Common δ for all.
- Define rand. var. O(i, t) s.t. if $j \in O(i, t)$, then *j* monitors *i* at *t*.
- From realizations O(i, t) for all i, create monitoring list at t, denoted h_i,t.
- $h_i^t \equiv (h_{i,0}, h_{i,1}, ..., h_{i,t-1})$ is *i*'s history at *t*.
- Strategy $\sigma_i(h_i^t)$. (monitoring structure details captured in h_i^t)
- Define D(τ, t, i) to be set of players in period τ who have observed a player who observed a player who has observed... player i since time t.
- By assumed regularities, $D(\tau, t, i) = D(\tau t, 0, i)$ for all *i*, *t* and τ .
- $D(\tau, i) = D(\tau, 0, i)$ is set of players who may learn about deviation within τ periods.
- Equal observability: $\mathbb{E}[\#D(\tau, j)] = \mathbb{E}[\#D(\tau, k)]$ for all j, k and τ .

- Define rand. var. O(i, t) s.t. if $j \in O(i, t)$, then *j* monitors *i* at *t*.
- From realizations O(i, t) for all i, create monitoring list at t, denoted h_{j,t}.
- $h_i^t \equiv (h_{i,0}, h_{i,1}, ..., h_{i,t-1})$ is *i*'s history at *t*.
- Strategy $\sigma_i(h_i^t)$. (monitoring structure details captured in h_i^t)
- Define D(τ, t, i) to be set of players in period τ who have observed a player who observed a player who has observed... player i since time t.
- By assumed regularities, $D(\tau, t, i) = D(\tau t, 0, i)$ for all *i*, *t* and τ .
- $D(\tau, i) = D(\tau, 0, i)$ is set of players who may learn about deviation within τ periods.
- Equal observability: $\mathbb{E}[\#D(\tau, j)] = \mathbb{E}[\#D(\tau, k)]$ for all j, k and τ .

- Define rand. var. O(i, t) s.t. if $j \in O(i, t)$, then *j* monitors *i* at *t*.
- From realizations O(i, t) for all *i*, create monitoring list at *t*, denoted $h_{j,t}$.
- $h_i^t \equiv (h_{i,0}, h_{i,1}, ..., h_{i,t-1})$ is *i*'s history at *t*.
- Strategy σ_i(h^t_i). (monitoring structure details captured in h^t_i)
- Define D(τ, t, i) to be set of players in period τ who have observed a player who observed a player who has observed... player i since time t.
- By assumed regularities, $D(\tau, t, i) = D(\tau t, 0, i)$ for all *i*, *t* and τ .
- $D(\tau, i) = D(\tau, 0, i)$ is set of players who may learn about deviation within τ periods.
- Equal observability: $\mathbb{E}[\#D(\tau, j)] = \mathbb{E}[\#D(\tau, k)]$ for all j, k and τ .

• Consider set of sequential equilibria, Σ_{SE} .

Definition 1

MELP is:

$$X^* \equiv \sup_{\sigma \in \Sigma_{SE}} \alpha (1 - \delta) \mathbb{E} \left[\sum_{t=0}^{\infty} \delta^t \sum_{i=1}^{N} \sigma_i(h_i^t) \right]$$

Definition 2

Maximum equilibrium contribution of an individual player is:

$$\hat{x}_i \equiv \sup_{\sigma \in \Sigma_{SE}} (1 - \delta) \mathbb{E} \left[\sum_{t=0}^{\infty} \delta^t \sigma_i(h_i^t) \right]$$

Definition 3

 σ is a grim trigger strategy profile if there are contributions $\{x_i^*\}_{i=1}^N$ s.t.

- $\sigma_i(h_i^t) = 0$ if *i* has ever observed *j* choose $x_j \neq x_i^*$ at h_i^t
- $\sigma_i(h_i^t) = x_i^*$ otherwise.

N.B. σ is symmetric grim trigger profile if $x_i^* = x^*$ for all *i*.

MELP Sustained in Grim-Trigger Strategies

Theorem 1

- There exists a unique grim-trigger profile, σ* that sustains MELP.
- Any other equil. sustaining MELP has same equil. path w/ $\sigma^*.$
- σ^* also maxes x_i^* , so $x_i^* = \hat{x}_i$ and $X^* = \alpha \sum_i x_i^*$.
- $\forall i \in N$, condition that pins down x_i^* 's is:

$$\underbrace{c(x_{i}^{*})}_{\text{Cost}} = \underbrace{\alpha(1-\delta)\sum_{t=0}^{\infty} \delta^{t} \sum_{i=1}^{N} \mathbb{P}(j \in D(t,i))x_{j}^{*}}_{\text{Benefit}}$$

Symmetric Grim-Trigger Strategies to Sustain MELP

Theorem 2

- Under equal observability, \exists a unique symmetric σ^* that sustains X^* .
- $X^* = \alpha N x^*$ where $x^* = \hat{x}_i$ for all *i*.
- If no equal observability, then set of δ's in [0, 1] for which X* > 0 and grim trigger σ* to maintain X* is symmetric has measure 0.
- Without equal observability, no symmetric equilibrium, except trivial one $(\hat{x}_i = 0 \text{ for all } i)$.

Assumption for Positive Contributions

$$lpha(1-\delta)\sum_{t=0}^{\infty}\delta^t\sum_{j=1}^{N}\mathbb{P}(j\in D(t,i))>c'(0)$$

- Under above assumption, $\hat{x}_i > 0$.
- This allows us to make *strict* statements in comparative statics analysis.

Comparative Statics Under Equal Observability

- Γ satisfies equal observability.
- So symmetric grim-trigger strategy σ^* to sustain X^* exists.
- Let $\mathbb{E}[\#D(t,\Gamma)] \equiv \mathbb{E}[\#D(t,i,\Gamma)] = \mathbb{E}[\#D(t,j,\Gamma)]$ by equal obs.
- Then max per capita level of public good provision (also \hat{x}_i) is:

$$\alpha(\Gamma)(1-\delta)\sum_{t=0}^{\infty}\delta^{t}\mathbb{E}[\#D(t,\Gamma)]x-c(x)=0$$

- Above expression on LHS is concave in x.
- So if $x^* > 0$ then $x^*(\Gamma) > x^*(\Gamma')$ if $\forall x$:

$$lpha(\Gamma')(1-\delta)\sum_{t=0}^{\infty}\delta^{t}\mathbb{E}[\#D(t,\Gamma')]x - c(x) > lpha(\Gamma)(1-\delta)\sum_{t=0}^{\infty}\delta^{t}\mathbb{E}[\#D(t,\Gamma)]x - c(x)$$

Comparative Statics Under Equal Observability

• Then main result is:

Theorem 3

Given Γ' and Γ , two games, $x^*(\Gamma') > x^*(\Gamma)$ iff

$$\alpha(\Gamma')\sum_{t=0}^{\infty}\delta^{t}\mathbb{E}[\#D(t,\Gamma')] > \alpha(\Gamma)\sum_{t=0}^{\infty}\delta^{t}\mathbb{E}[\#D(t,\Gamma)]$$

- Result depends on two terms:
 - "Rivalness" term, $\alpha(\Gamma)$.
 - ² "Effective Contagiousness" term, $\sum_{t=0}^{\infty} \delta^t \mathbb{E}[\#D(t,\Gamma)]$.

Comparative Statics Under Equal Observability

• Assume game can be indexed by group size N:

•
$$\alpha(\Gamma) \equiv \alpha(N)$$

- $\sum_{t=0}^{\infty} \delta^t \mathbb{E}[\#D(t,\Gamma)] \equiv \sum_{t=0}^{\infty} \delta^t \mathbb{E}[\#D(t,N)]$
- Now for given δ can do comparative statics of MELP in *N*.
- Can also ask what is optimal N* to max MELP?

Corollary

If public good is pure ($\alpha(N) = 1$), then $x^*(N)$ is strictly increasing when:

$$\forall t \quad \frac{\partial \mathbb{E}[\#D(t,N)]}{\partial N} \ge 0 \qquad (>) \text{ for some } t.$$

Corollary

If public good is divisible ($\alpha(N) = 1/N$), then $x^*(N)$ is strictly increasing when:

$$/t \quad \frac{\partial [\mathbb{E}[\#D(t,N)]/N]}{\partial N} \ge 0 \qquad (>) \text{ for some } t.$$

Can Celiktemur (London School of Economics)

• Perform comparative statics for different configurations:

Different All-or-nothing Configurations

- **Output** Uniform monitoring: $\exists p \in (0, 1]$ s.t. $j \in O(i, t)$ w/ p ind. across i, j, t.
- **Quasi-public monitoring:** $\exists p(N) \in (0, 1]$ s.t. $j \in O(i, t)$ for all $j \le w/p(N)$ ind. across i, t. (Observe all players or no one)
- Sandom matching: ∀t, all players randomly paired & j ∈ O(i, t) iff i, j paired. (Kandori, Ellison Takahashi etc. setup w/ global benefits)
- Monitoring on a Circle: All on a fixed circle and ∃k ≥ 1 s.t. j ∈ O(i, t) iff dist. between i, j is ≤ k. (Equally observable fixed networks)

Different Public Good Types

- O Pure Public Good: o(N) = 1
- O Divisible Public Good: $\alpha(N) = 1/N$

• Perform comparative statics for different configurations:

Different All-or-nothing Configurations

- **O** Uniform monitoring: $\exists p \in (0, 1]$ s.t. $j \in O(i, t)$ w/ p ind. across i, j, t.
- **Quasi-public monitoring:** $\exists p(N) \in (0, 1]$ s.t. $j \in O(i, t)$ for all $j \le p(N)$ ind. across i, t. (Observe all players or no one)
- **Bandom matching:** $\forall t$, all players randomly paired & $j \in O(i, t)$ iff i, j paired. (Kandori, Ellison Takahashi etc. setup w/ global benefits)
- Solution Monitoring on a Circle: All on a fixed circle and ∃k ≥ 1 s.t. j ∈ O(i, t) iff dist. between i, j is ≤ k. (Equally observable fixed networks)

Different Public Good Types

O Pure Public Good: $\alpha(N) = 1$

○ Divisible Public Good: α(N) = 1/N.

• Perform comparative statics for different configurations:

Different All-or-nothing Configurations

- **O** Uniform monitoring: $\exists p \in (0, 1]$ s.t. $j \in O(i, t)$ w/ p ind. across i, j, t.
- **Quasi-public monitoring:** $\exists p(N) \in (0, 1]$ s.t. $j \in O(i, t)$ for all $j \le w/p(N)$ ind. across i, t. (Observe all players or no one)
- Sandom matching: $\forall t$, all players randomly paired & $j \in O(i, t)$ iff i, j paired. (Kandori, Ellison Takahashi etc. setup w/ global benefits)

Monitoring on a Circle: All on a fixed circle and ∃k ≥ 1 s.t. j ∈ O(i, t) iff dist. between i, j is ≤ k. (Equally observable fixed networks)

Different Public Good Types

• Pure Public Good: $\alpha(N) = 1$

• Perform comparative statics for different configurations:

Different All-or-nothing Configurations

- **O** Uniform monitoring: $\exists p \in (0, 1]$ s.t. $j \in O(i, t)$ w/ p ind. across i, j, t.
- **Quasi-public monitoring:** $\exists p(N) \in (0, 1]$ s.t. $j \in O(i, t)$ for all $j \le w/p(N)$ ind. across i, t. (Observe all players or no one)
- Sandom matching: $\forall t$, all players randomly paired & $j \in O(i, t)$ iff i, j paired. (Kandori, Ellison Takahashi etc. setup w/ global benefits)
- Solution Monitoring on a Circle: All on a fixed circle and ∃k ≥ 1 s.t. j ∈ O(i, t) iff dist. between i, j is ≤ k. (Equally observable fixed networks)

Different Public Good Types

• Pure Public Good: $\alpha(N) = 1$

Divisible Public Good: $\alpha(N) = 1/N$

• Perform comparative statics for different configurations:

Different All-or-nothing Configurations

- **O** Uniform monitoring: $\exists p \in (0, 1]$ s.t. $j \in O(i, t)$ w/ p ind. across i, j, t.
- **Quasi-public monitoring:** $\exists p(N) \in (0, 1]$ s.t. $j \in O(i, t)$ for all $j \le p(N)$ ind. across i, t. (Observe all players or no one)
- Sandom matching: $\forall t$, all players randomly paired & $j \in O(i, t)$ iff i, j paired. (Kandori, Ellison Takahashi etc. setup w/ global benefits)
- Solution Monitoring on a Circle: All on a fixed circle and ∃k ≥ 1 s.t. j ∈ O(i, t) iff dist. between i, j is ≤ k. (Equally observable fixed networks)

Different Public Good Types

1 Pure Public Good: $\alpha(N) = 1$

Divisible Public Good: $\alpha(N) = 1/N$

• Perform comparative statics for different configurations:

Different All-or-nothing Configurations

- **O** Uniform monitoring: $\exists p \in (0, 1]$ s.t. $j \in O(i, t)$ w/ p ind. across i, j, t.
- **Quasi-public monitoring:** $\exists p(N) \in (0, 1]$ s.t. $j \in O(i, t)$ for all $j \le w/p(N)$ ind. across i, t. (Observe all players or no one)
- Sandom matching: $\forall t$, all players randomly paired & $j \in O(i, t)$ iff i, j paired. (Kandori, Ellison Takahashi etc. setup w/ global benefits)
- Solution Monitoring on a Circle: All on a fixed circle and ∃k ≥ 1 s.t. j ∈ O(i, t) iff dist. between i, j is ≤ k. (Equally observable fixed networks)

Different Public Good Types

- **9** Pure Public Good: $\alpha(N) = 1$
- **2** Divisible Public Good: $\alpha(N) = 1/N$

- Results vary.
- Details are left for reading.

- Now fix group size, *N*.
- $\alpha(N)$ is fixed since N fixed.
- We will change $\sum_{t=0}^{\infty} \delta^t \mathbb{E}[\#D(t, N)]$ in this exercise.
- What happens to MELP if we change monitoring structure?
- Which monitoring is better:

- Latter is less uncertain so SOSD former in #D(t, N) for all $i \in N$.
- Hence $\sum_{t=0}^{\infty} \delta^t \mathbb{E}[\#D(t, N)]$ is larger.
- Under broad conditions, MELP strictly higher when monitoring structure less uncertain.
- **N.B.** Conditions cover 3 of 4 "all-or-nothing" structures (except circle).

- Now fix group size, *N*.
- $\alpha(N)$ is fixed since N fixed.
- We will change $\sum_{t=0}^{\infty} \delta^t \mathbb{E}[\#D(t, N)]$ in this exercise.
- What happens to MELP if we change monitoring structure?
- Which monitoring is better:

- Latter is less uncertain so SOSD former in #D(t, N) for all $i \in N$.
- Hence $\sum_{t=0}^{\infty} \delta^t \mathbb{E}[\#D(t, N)]$ is larger.
- Under broad conditions, MELP strictly higher when monitoring structure less uncertain.
- **N.B.** Conditions cover 3 of 4 "all-or-nothing" structures (except circle).

- Now fix group size, *N*.
- $\alpha(N)$ is fixed since N fixed.
- We will change $\sum_{t=0}^{\infty} \delta^t \mathbb{E}[\#D(t, N)]$ in this exercise.
- What happens to MELP if we change monitoring structure?
- Which monitoring is better:

- Latter is less uncertain so SOSD former in #D(t, N) for all $i \in N$.
- Hence $\sum_{t=0}^{\infty} \delta^t \mathbb{E}[\#D(t, N)]$ is larger.
- Under broad conditions, MELP strictly higher when monitoring structure less uncertain.
- **I.B.** Conditions cover 3 of 4 "all-or-nothing" structures (except circle).

- Now fix group size, *N*.
- $\alpha(N)$ is fixed since N fixed.
- We will change $\sum_{t=0}^{\infty} \delta^t \mathbb{E}[\#D(t, N)]$ in this exercise.
- What happens to MELP if we change monitoring structure?
- Which monitoring is better:

- Latter is less uncertain so SOSD former in #D(t, N) for all $i \in N$.
- Hence $\sum_{t=0}^{\infty} \delta^t \mathbb{E}[\#D(t, N)]$ is larger.
- Under broad conditions, MELP strictly higher when monitoring structure less uncertain.
- N.B. Conditions cover 3 of 4 "all-or-nothing" structures (except circle).

- Drop equal observability assumption.
- Ask what happens if we have a general (asymmetric) monitoring network.
- Introduce a new notion of "centrality".

Theorem

If *i* is (strictly) more central than *j* then $\hat{x}_i(>) \ge \hat{x}_j$.

• Intuition is:

- Defection by more central players leads to other central players to defect.
- Hence central players are less inclined to deviate.
- Centrality measure calculation is arduous.
- Graph-theoretic tools to exploit/simplify "centralness" assessment.

- Drop equal observability assumption.
- Ask what happens if we have a general (asymmetric) monitoring network.
- Introduce a new notion of "centrality".

Theorem

If *i* is (strictly) more central than *j* then $\hat{x}_i(>) \ge \hat{x}_j$.

- Intuition is:
 - Defection by more central players leads to other central players to defect.
 - Hence central players are less inclined to deviate.
- Centrality measure calculation is arduous.
- Graph-theoretic tools to exploit/simplify "centralness" assessment.

- Drop equal observability assumption.
- Ask what happens if we have a general (asymmetric) monitoring network.
- Introduce a new notion of "centrality".

Theorem

If *i* is (strictly) more central than *j* then $\hat{x}_i(>) \ge \hat{x}_j$.

- Intuition is:
 - Defection by more central players leads to other central players to defect.
 - Hence central players are less inclined to deviate.
- Centrality measure calculation is arduous.
- Graph-theoretic tools to exploit/simplify "centralness" assessment.

- To overcome difficulty of comparing 3 with 6 or 7, exploit symmetry.
- 3 and 5 similar just like 1,2,6 and 7 are.
- Letting $c(x) = x + x^3$ we have:

If
$$\delta = 0.9$$
 $x_1^* \sim 2.167, x_3^* \sim 2.215, x_4^* \sim 2.225$
If $\delta = 0.4$ $x_1^* \sim 1.068, x_3^* \sim 1.182, x_4^* \sim 1.177$

N.B. 3 and 4 are *NOT* more central than each other! **N.B.** 3 has more dist-1 neighbors (low δ), 4 has more dist-2 neighbors (high δ).

- What is the impact of adding or removing links on MELP?
- Better connected societies provide more public good is verified.
- Additional link *ij* increases both players' contributions (by making defection costlier).
- In turn, all players path-connected to *i*, *j* contribute more in equil.

Theorem

Let L' and L be undirected networks s.t.

•
$$I_{k,k'} = I'_{k,k'}$$
 for all $(k,k') \neq (i,j)$

Let *C* be connected component of *L'* containing *i* and *j*. Then $\forall k \in C, x_k^*$ is strictly higher under *L'* than under *L*.

- What if players benefit asymmetrically from each other's contributions?
- Generalize model for local goods. ("global" goods is a subcase)
- Benefits to be accrued only from observed players' contributions.
- Relevant for applications such as:
 - Cooperation in decentralized trade
 - Effort exertion in team projects for large organizations.
 - Pricing in differentiated market where subset of firms compete at a given *t*.
- One relevant setup is: $\alpha_{i,j} = 1$ whenever $i \in O(j, t)$ and 0 otherwise.
- With random matching, it is precisely setup in Ellison, Kandori etc.

- What if players benefit asymmetrically from each other's contributions?
- Generalize model for local goods. ("global" goods is a subcase)
- Benefits to be accrued only from observed players' contributions.
- Relevant for applications such as:
 - Cooperation in decentralized trade
 - Effort exertion in team projects for large organizations.
 - Pricing in differentiated market where subset of firms compete at a given *t*.
- One relevant setup is: $\alpha_{i,j} = 1$ whenever $i \in O(j, t)$ and 0 otherwise.
- With random matching, it is precisely setup in Ellison, Kandori etc.

- What if players benefit asymmetrically from each other's contributions?
- Generalize model for local goods. ("global" goods is a subcase)
- Benefits to be accrued only from observed players' contributions.
- Relevant for applications such as:
 - Cooperation in decentralized trade
 - Effort exertion in team projects for large organizations.
 - Pricing in differentiated market where subset of firms compete at a given *t*.
- One relevant setup is: $\alpha_{i,j} = 1$ whenever $i \in O(j, t)$ and 0 otherwise.
- With random matching, it is precisely setup in Ellison, Kandori etc.

Proposition

Fix $N \ge 4$ and even.

- With global public goods, \hat{x}_i for all *i* is greater under random matching than fixed partnership.
- With local public goods as above, x
 _i is greater under fixed partnership than random matching.
- $\forall t, \mathbb{E}[\#D(t)]$ is higher under random matching than fixed partnerships.
- So defecting is more costly under random matching.
- This is desirable if good is global.
- But if good is local, then want to incentivize certain players.
- It is best to be always monitoring those players.

Proposition

Fix $N \ge 4$ and even.

- With global public goods, \hat{x}_i for all *i* is greater under random matching than fixed partnership.
- With local public goods as above, x
 _i is greater under fixed partnership than random matching.
- $\forall t, \mathbb{E}[\#D(t)]$ is higher under random matching than fixed partnerships.
- So defecting is more costly under random matching.
- This is desirable if good is global.
- But if good is local, then want to incentivize certain players.
- It is best to be always monitoring those players.