Theory Reading Group: "Dynamic Wars" Abreu and Gul: "Bargaining and Reputation" (Emca 2000)

Sebastian Kodritsch

London School of Economics and Political Science

January 17, 2012

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Introduction

A War of Attrition with Irrational Types

From Discrete Bargaining to Continuous-Time War of Attrition

Multiple Irrational Types and Further Results

Conclusion

Summary

- Interested in bargaining outcomes as time between offers becomes arbitrarily small
- Incomplete information of particular form: each player may mimick a commitment type, so-called "irrational" type
- Study game where initially players pick a type and then enter a war of attrition where either continue to mimick or concede: uniqueness of sequential equilibrium outcome distribution
- Show that this is the unique continuous-time limit of any sequence of outcome distributions obtained from sequential equilibria of discrete-time bargaining games in which the time distance between offers approaches zero
- Comparative statics in terms of relative patience or irrationality or commitment opportunities (and limits thereof)

Outline

- 1. Continuous-time War of Attrition with complete information
- 2. Add one irrational type per player (reputation), uniqueness of sequential equilibrium, hence also outcome distribution
- 3. Consider discrete-time bargaining and support unique outcome distribution of previous game as limiting outcome of bargaining: irrespective of how the continuous-time limit is approached in terms of the bargaining protocols' details this unique equilibrium outcome distribution is the limiting distribution
- 4. (Most likely) Only mention generalisation, comparative statics, complete-rationality limit

Recall War of Attrition (1)

- Generalises idea of "chicken"
- Dynamic game with infinite horizon (discrete or continuous time)
- At any point in time each of two players chooses whether to concede or continue
- Once one player concedes the game ends (if other concedes before you then you "win")
- Payoffs are such that:
 - winning is best, and prefer to win sooner rather than later
 - continuation is costly (many variants, stationary and non-stationary)
- Pure strategy: a "stopping-time" (given the game is still on)

WoA (2)

- Equilibrium characterisation for continuous-time WoA under complete information (Hendricks et al. IER 1988):
 - at most one player concedes at time 0 with positive probability (i)
 - after time 0 each player concedes at a constant hazard rate which makes the opponent indifferent between concession and continuation (ii)
 - unless one player concedes at time 0 with probability one, there is no point in time until which one of the players will concede with certainty (iii)

► Applications: actual warfare, patent race, all-pay auction etc.

Introduction

A War of Attrition with Irrational Types

From Discrete Bargaining to Continuous-Time War of Attrition

Multiple Irrational Types and Further Results

Conclusion

The Game

- ▶ Two players 1 and 2, continuous time so $t \in \mathbb{R}_+$
- Each player i may be "irrational" (probability zⁱ)
- Continuous-time WoA where at each t each i may concede or insist
 - rational types choose strategically, irrational types always insist
 - ▶ a strategy for a rational *i* is a cdf on the time domain \mathbb{R}_+ : map it into unconditional $F^i(t) = \Pr(i \text{ concedes no later than } t)$ where $\lim_{t\to\infty} F^i(t) \le 1 - z^i$
- Payoffs (interpret α^i as *i*'s demand, assume $\alpha^1 + \alpha^2 > 1$):
 - if *i* concedes at *t* and before *j*: exp $(-r^i t) (1 \alpha^j)$ and exp $(-r^j t) \alpha^j$
 - if both concede at the same time t: exp $\left(-r^{i}t\right)\frac{\alpha'+(1-\alpha')}{2}$ for $\{i,j\} = \{1,2\}$

Special Case of Complete Information

Consider first the case of zⁱ = 0 for both i, i. e. complete information, earlier characterisation (i)-(iii): (F¹, F²) is a sequential equilibrium if and only if

$$\begin{aligned} F^{i}(t) &= 1 - c^{i} \exp\left(-\lambda^{i} t\right) \\ c^{i} &= 1 - F^{i}(0) \\ \lambda^{i} &= r^{j} \frac{1 - \alpha^{i}}{\alpha^{j} - (1 - \alpha^{i})} \\ 0 &= (1 - c^{1})(1 - c^{2}) \end{aligned}$$

► Note: λⁱ is the constant hazard rate and Fⁱ is increasing for cⁱ > 0

Proof

- Define $c^i \equiv 1 F^i(0)$ as probability that *i* continues at 0
- (i) is then equivalent to $0 = F^1(0) F^2(0) = (1 c^1) (1 c^2)$
- Define the constant hazard rate of F^i as λ^i
- (ii) implies

$$F^{i}(t) = 1 - (1 - F^{i}(0)) \exp(-\lambda^{i}t)$$

$$\lambda^{i} = r^{j} \frac{1 - \alpha^{i}}{\alpha^{j} - (1 - \alpha^{i})}$$

 (iii) implies that if cⁱ > 0 then Fⁱ is increasing for all t ∈ ℝ₊ so support of Fⁱ is entire ℝ₊ (no bite here)

Aside (1): Indifference and Hazard Rate

- Heuristic derivation of the hazard rate λ^i
- Indifference of *j* between conceding now and waiting another small amount Δ > 0 of time and concede then
 - conceding now yields $1 \alpha^i$ (current value)
 - postponing concession to Δ from now (current value)

$$\lambda^{i}\Delta\exp\left(-r^{j}\Delta\right)\alpha^{j}+\left(1-\lambda^{i}\Delta\right)\exp\left(-r^{j}\Delta\right)\left(1-\alpha^{i}\right)$$

equalising and rearranging

$$\lambda^{i} = \frac{\exp\left(r^{j}\Delta\right) - 1}{\Delta} \cdot \frac{1 - \alpha^{i}}{\alpha^{j} - (1 - \alpha^{i})}$$

• now $\lim_{\Delta \to 0^+} \frac{\exp(r^j \Delta) - 1}{\Delta} = r^j$ using L'Hôpital's Rule • note that $\lambda^i > 0$

うつつ ボート・ (ボッ・(型)・ (ロ)・

Aside (2): Constant Hazard Rate and Exponential Distribution

Suppose cdf F has a constant hazard rate $\lambda > 0$, i. e.

$$\frac{F'(x)}{1 - F(x)} = \lambda \quad \Leftrightarrow \quad F'(x) + \lambda F(x) = \lambda$$
$$\Leftrightarrow \quad \frac{d(F(x)\exp(\lambda x))}{dx} = \lambda \exp(\lambda x)$$

Integrating from 0 to t and rearranging

$$F(t) = 1 - (1 - F(0)) \exp(-\lambda t)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Discussion

- Multiplicity: for cⁱ's, apart from them having to be probabilities only the last equation as restriction
- Examples:
 - c¹ = 1, c² = 0 and vice versa, so mixed ones no surprise
 c¹ = c² = 1
- Welfare:
 - efficiency has one $c^i = 0$ (no delay)
 - *i*'s equilibrium payoff $F^{j}(0) \alpha^{i} + (1 F^{j}(0)) (1 \alpha^{j})$
 - ▶ payoffs when c¹ = c² = 1 are 1 − αⁱ for each i (individually, same as if conceded immediately and other insisted)

Unique Equilibrium (1)

- In present game however have irrational types; however
 - ► (i) and (ii) carry over
 - ► (iii) is replaced by: there exists a time T⁰ < ∞ at which the posterior probability of irrationality reaches one for both players simultaneously and concessions stop (iii')</p>
- ▶ Proposition 1: this game has a unique sequential equilibrium given by (F
 ¹, F
 ²) characterised by

$$orall t \leq T^{0}, ar{F}^{i}(t) = 1 - c^{i} \exp(-\lambda^{i}t)$$

 $ar{F}^{i}(T^{0}) = 1 - z^{i}$
 $c^{i} = 1 - ar{F}^{i}(0)$
 $\lambda^{i} = r^{j} rac{1 - lpha^{i}}{lpha^{j} - (1 - lpha^{i})}$
 $0 = (1 - c^{1})(1 - c^{2})$

Unique Equilibrium (2)

Combining the first two lines, we obtain cⁱ = zⁱ exp (λⁱ T⁰) whence

$$ar{F}^{i}\left(t
ight)=1-z^{i}\exp\left(\lambda^{i}\left(T^{0}-t
ight)
ight)$$

- ▶ Now note that $c^i < 1 \Leftrightarrow T^0 < -\frac{\ln(z^i)}{\lambda^i}$, define $T^i \equiv -\frac{\ln(z^i)}{\lambda^i}$
- From the last line, there is *i* such that $c^i = 1$ so from above $T^0 = T^i$
- ► Therefore T⁰ = min {T¹, T²}, and Tⁱ < T^j implies cⁱ = 1 > c^j so with some positive probability j concedes immediately

Some Intuition

- "This noise" picks unique equilibrium; crucial element: (iii')
- Intuition for necessity of (iii') given (i) and (ii):
 - if *i* known to be irrational earlier than *j*, say at τⁱ, then *j* would surely concede at τⁱ so *j*'s conceding at τⁱ would have positive probability
 - ▶ but then *i* would stop conceding at $\tau^i \epsilon$ for sufficiently small $\epsilon > 0$, contradicting (ii) (constant hazard rate), hence $\tau^i = \tau^j \equiv T^0$
 - (i) says cⁱ = 1 for at least one i, this player i's probability of irrationality then reaches one at Tⁱ which solves
 Fⁱ(Tⁱ) = 1 − zⁱ ⇔ Tⁱ = − ln(zⁱ)/λⁱ < ∞
 at most one player has cⁱ < 1 so T⁰ = min {T¹, T²}

(日) (伊) (日) (日) (日) (0) (0)

Proof Outline

- Sequential equilibrium will imply properties of strategies that uniquely pin them down to the above (uniqueness), below
- To finish the argument only need to verify that the proposed strategies constitute a sequential equilibrium (existence)
- ► For the second part:
 - pure strategies are a fixed time t_c of concession
 - ▶ given \overline{F}^i , player $j \neq i$ is indifferent among all pure strategies with $0 < t_c \leq T^0$
 - therefore any mixture on this support is a best response, in particular \bar{F}^j

ション ふゆ く 山 マ チャット しょうくしゃ

Discussion (1)

- ► *i*'s equilibrium payoff is $\overline{F}^{j}(0) \alpha^{i} + (1 \overline{F}^{j}(0)) (1 \alpha^{j})$ so *i* "stronger" if
 - more patient (*j* concedes at faster rate)
 - more likely to be irrational ex ante (concede less often at 0)
- Why is e. g. $(c^1, c^2) = (1, 0)$ not an equilibrium?
 - 1's belief at t > 0 would be that 2 is irrational so concession probability jumps to one
 - 2's best response is not to concede at 0
 - note that as beliefs unavoidably change over time whenever not both always insist (not an equilibrium), non-stationarity guaranteed
- Stationary and sequential equilibrium:
 - complete-information equilibria stationary for t > 0 so sequentiality requirement no issue
 - here non-stationary equilibrium so what about beliefs and sequential rationality?

Discussion (2)

• Imagine in equilibrium the game has reached t > 0:

- let ωⁱ (t) denote j's belief that i is irrational conditional on her not having conceded until t
- ► then $\omega^{i}(t) = \frac{z^{i}}{1 F^{i}(t)}$ by Bayes' Rule so substituting for F^{i} gives $\omega^{i}(t) = \exp(-\lambda^{i}(T^{0} t))$
- replace zⁱ's with ωⁱ (t)'s and compute sequential equilibrium as before (with hats); beliefs indeed guarantee that it coincides with the continuation strategies; check

$$orall t > 0, -rac{\ln\left(\omega^{1}\left(t
ight)
ight)}{\lambda^{1}} = -rac{\ln\left(\omega^{2}\left(t
ight)
ight)}{\lambda^{2}} = T^{0} - t$$

(日) (伊) (日) (日) (日) (0) (0)

yields $\hat{T}^1 = \hat{T}^2 = T^0 - t$ and $\hat{c}^1 = \hat{c}^2 = 1$

Proving Uniqueness (1)

- Take any sequential equilibrium, say (F¹, F²), and define
 - uⁱ (t) as i's expected utility if i deviated to pure strategy "insist until t and then concede with certainty"
 - ► $A^{i} \equiv \left\{ t \in \mathbb{R}_{+} \mid u^{i}\left(t\right) = \max_{s \in \mathbb{R}_{+}} \left\{ u^{i}\left(s\right) \right\} \right\}$, note $A^{i} \neq \emptyset$
 - ► $\tau^{i} \equiv \inf \left\{ t \in \mathbb{R}_{+} \mid F^{i}(t) = \lim_{s \to \infty} F^{i}(s) \right\}$ where $\inf \emptyset \equiv \infty$

ション ふゆ く 山 マ チャット しょうくしゃ

Proving Uniqueness (2)

- Steps, where $\{i, j\} = \{1, 2\}$:
 - $\tau^1 = \tau^2 \equiv \tau$ (a rational player will surely concede if she knows her opponent will never do so)
 - F^i jumps at $t \Rightarrow$
 - F^j does not jump at t (j would move any positive mass to slightly after t) and
 - ► F^j is constant on (t e, t) for some e > 0 small (j does not concede to not lose "discrete bonus")
 - F^i continuous at $t \Rightarrow u^j$ is continuous at t because

$$u^{j}(t) = \int_{0}^{t} \exp\left(-r^{j}x\right) \alpha^{j} dF^{i}(x) + \left(1 - F^{i}(t)\right) \exp\left(-r^{j}t\right) \left(1 - \alpha^{i}\right)$$

Proving Uniqueness (3)

- Further steps, where $\{i, j\} = \{1, 2\}$:
 - There are no (t', t'') with $0 \le t' < t'' \le \tau$ such that both $F^{i's}$ are constant on (t', t'') (if F^{i} constant then optimal to have F^{j} constant, but by continuity somewhat longer, true for both, cannot be)
 - t' < t" < τ ⇒ Fⁱ(t") > Fⁱ(t') (if one were constant then the other too, contradiction to previous)
 - Fⁱ continuous at any t > 0 (if it jumped then F^j were constant on some (t ε, t), contradiction to previous)
 - *uⁱ* constant on (0, *τ*] (from before *Aⁱ* is dense in [0, *τ*] and *uⁱ* continuous for *t* > 0)
 - differentiate expression for uⁱ to obtain Fⁱ with cⁱ undetermined (solve differential equation)
 - pin c^i down from $T^0 = \tau$ (argue as in intuition)

Introduction

A War of Attrition with Irrational Types

From Discrete Bargaining to Continuous-Time War of Attrition

Multiple Irrational Types and Further Results

Conclusion

Bargaining

- Two players 1 and 2 decide on how to share a cake of size one
- Protocol (extensive form), where identify offer with 1's share:
 - $g:\mathbb{R}_+
 ightarrow \{0,1,2,3\}$ where
 - g(t) = 0 means no one makes an offer at t
 - g(t) = i for i ∈ {1,2} means player i makes an offer at t to
 which other player immediately responds by accepting or
 rejecting; game ends once respondent accepts
 - ▶ g(t) = 3 means both make simultaneous offers at t, game ends once the offers are compatible

▶ defining $I^i \equiv \{t \in \mathbb{R}_+ \mid g(t) \in \{i,3\}\}$, assume I^i infinite and for any $t < \infty$, $I^i \cap [0, t]$ finite (discrete time)

Payoffs:

- an outcome is x at t, or (x, t)
- payoffs exp $(-r^1t) x$ and exp $(-r^2t) (1-x)$

Irrational Types

- With probability zⁱ, player i is "irrational" and insists on a share αⁱ forever
- Assume $\alpha^1 + \alpha^2 > 1$ so the two irrational types never agree
- Reputation: by mimicking the irrational type a player may maintain a "tough" image
- Generalised to multiple irrational types of above behaviour
 - ► each identified with a share, Cⁱ ⊂ (0, 1) finite set of i's irrational types

- distribution on C^i so $\pi(\alpha^i) = \Pr(i \text{ is type } \alpha^i \mid i \text{ is irrational})$
- assume max $C^i + \min C^j > 1$

Continuous-Time Limit

- ▶ Take a sequence of discrete bargaining games $(g_n)_{n=1}^{\infty}$
- Say it converges to continuous time if ∀ε > 0∃N < ∞ such that</p>

$$\forall n \geq N, t \geq 0, i \in \{1, 2\} : i \in g_n([t, t + \epsilon])$$

- Let σ_n denote a sequential equilibrium of bargaining game g_n and θ_n the associated random variable that is its outcome (x, t)
- ▶ Denote by $\bar{\theta}$ the random variable which is the outcome of the unique sequential equilibrium
- Proposition 4: if (g_n)[∞]_{n=1} converges to continuous time then any θ_n converges to θ in distribution.

Main Ingredient

- "Coasian effect": when one player known to be rational and the other irrational with positive probability then there is no delay in the continuous-time limit (Myerson, Coase conjecture)
- Suppose *i* is known to be rational at time *t*; by above
 - either *i* gives in to *j*'s demand so *j* obtains α^j
 - ▶ j concedes "right afterwards", revealing rationality as well, but to do this j must obtain at least a^j (if equilibrium then also at most)
- But then, by maintaining a belief in one's irrationality, a player obtains
 - her own preferred split with no delay if opponent reveals rationality
 - otherwise at least the opponent's preferred split (can guarantee that by conceding)
- This means revealing rationality turns into conceding, a WoA

Introduction

A War of Attrition with Irrational Types

From Discrete Bargaining to Continuous-Time War of Attrition

Multiple Irrational Types and Further Results

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

WoA with Multiple Irrational Types

- Generalisation of the initial game
- ▶ At time 0, in sequential order
 - ▶ P1 chooses $\alpha^1 \in C^1$ and P2 updates beliefs
 - P2 ends game by agreeing, with payoffs α¹ and 1 − α¹, or P2 chooses α² ∈ C² with α¹ + α² > 1 and P1 updates beliefs
 - \blacktriangleright P1 ends game by agreeing, with payoffs $1-\alpha^2$ and $\alpha^2,$ or a WoA ensues
- Proposition 2: sequential equilibrium exists, and all sequential equilibria yield the same outcome distribution.
- Proposition 3: holding other things constant along the sequence
 - ▶ as both players become perfectly patient, if $\frac{r_i}{r_j} \rightarrow 0$ then *i* extracts all surplus (lim inf of *i*'s equilibrium payoffs no less than $(1 z^i) \max C^i$)
 - as probaility of i's irrationality approaches one

Comparative statics

- Proposition 3: take a sequence of such games B_n where vⁱ_n is the corresponding sequence of a rational i's (unique) equilibrium payoffs; holding other parameters constant along the sequence,
 - lim rⁱ_n = 0 implies lim inf vⁱ_n ≥ (1 − z^j) max Cⁱ and lim sup v^j_n ≤ 1 − (1 − zⁱ) max Cⁱ (rational j concedes immediately so rational i demands max Cⁱ)
 similarly, for lim zⁱ = 1

(日) (伊) (日) (日) (日) (0) (0)

similarly, for lim zⁱ_n = 1

Limit Result with Multiple Irrational Types

- The equilibrium outcome distribution is still unique
- Proposition 4 generalises provided that the same player moves first in every g_n of the sequence considered
- Remarks:
 - while, contrary to existing complete information theories, limit outcome independent of how details of the protocol such as intervals between offers approach the limit...

うして ふゆう ふほう ふほう うらつ

- this is not true about the identity of the initial proposer
- still, have very particular behavioural types

Complete Rationality

- "In the limit of complete rationality...
- Proposition 5: ...get close to efficiency, the closer the richer type spaces"
- Proposition 6: ..., generically, even when types spaces are not rich, there is no delay and thus efficiency is restored"

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Introduction

A War of Attrition with Irrational Types

From Discrete Bargaining to Continuous-Time War of Attrition

Multiple Irrational Types and Further Results

Conclusion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusion

- Recap:
 - Add reputation incentives to obtain uniqueness for the continuous-time limit of a rather general sequence of discrete bargaining games
 - While reputation effects overwhelming in one-sided case (Myerson, Coase conjecture) relative patience still matters in two-sided case

うして ふゆう ふほう ふほう うらつ

- Highlight interesting relationship between bargaining and WoA!
- Comparison to "non-reputation models" of incomplete-information bargaining?
- Predictions?
- Richer type spaces?