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General Motivation

We consider environments in which each player:

@ interacts repeatedly with a subset of players

@ has to choose a common action for all his neighbors

© is privately informed of the players with whom he interacts
@ observes only the actions chosen by such players

@ and cannot communicate

The leading examples are:

@ decentralized markets

@ local public goods games
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Complications

Characterizing Sequential Equilibria in such games is hard because:

© Trigger strategies may not work:

@ Cycles of punishments may lead to deviant behavior.
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Equilibrium Properties

The analysis discusses some properties of sequential equilibria [SE]:

@ Efficiency [C]
Cooperative behavior along the equilibrium path

@ Invariance |[l]
Behavior is independent of beliefs about the monitoring structure

© Stability [9]
Reversion to full cooperation in a finite time after any history
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All results are developed for symmetric two-action games.

The main result for patient players shows that:

1. SE satisfying C, | and S exist.

The main results for impatient players instead, show that:

2. SE exist satisfying C, | and S, if monitoring is acyclic;

3. SE exist satisfying C and |, if beliefs have full support.

Classical techniques apply only to specific Prisoner's Dilemma games.
For such games we establish that SE satisfying C and | always exist.
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Related Literature

The paper fits within the literature on community enforcement.

Contributions to this literature include: Ahn (1997), Ali and Miller (2009),
Ben-Porath and Kaneman (1996), Deb (2009), Ellison (1994), Fainmesser
(2010), Fainmesser and Goldberg (2011), Jackson et al (2010), Kandori
(1992), Kinateder (2008), Lippert and Spagnolo (2008), Mihm, Toth and
Lang (2009), Renault and Tomala (1998), Takahashi (2008),
Vega-Redondo (2006), Wolitzky (2011), Xue (2011).

Most of these studies:

@ invoke strong assumptions on the monitoring structure;
@ assume that the environment is symmetric;

@ restrict attention to Prisoner’s Dilemmas;

@ allow the strategy to depend on prior beliefs.

Wolitzky (2011) considers similar monitoring structure, but imposes more
stringent assumptions about observability.
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Stage Game: Information and Actions

Consider a game played by a set NV of players.
An undirected graph (N, G) defines the information network.

Player i only observes players in his neighborhood N;.

Players are privately informed about their neighborhood.

Beliefs regarding the information network are derived from a common prior

Let A; = {C, D} denote set of actions of player i.

Players choose a single action for all their neighbors.
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Stage Game: Payoffs

The payoff of player i is separable and satisfies:

vi(ai, an,) = Ljen, 1;uij(ai aj)

The payoff of i in relationship ij, ujj(aj, a;), is given by:

i\j| ¢ D
C 1
D |1+g O

Assumption Al: Assume that:

@ it is efficient to cooperate, g — | < 1;

@ it is privately beneficial to defect when others cooperate, g > 0.

Nava & Piccione (LSE)

April 2013 8 /68



Repeated Game

The network is realized prior to the game and remains constant.

Players discount the future by 6 < 1.

Repeated game payoffs conditional on graph G are defined as

(1-6)r2, 0 vi(atay) if 6<1
U,'(O’N|G) =

A ((1/t)2§:1 v,-(af,af\,l_)) if 6=1

where A; (-) denotes the Banach-Mazur limit of a sequence.
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Desired Properties

Definition [C]: A strategy profile is collusive if, along the equilibrium
path, all the players always play C for any realized network G.

Definition [I1-1]: A strategy profile is a I1-invariant equilibrium, if it is a
sequential equilibrium for any prior beliefs in IT.

Definition [I1-S]: A strategy profile satisfies I1-stability, if for any
information network G which has positive probability for some prior belief
in I'T and for any history h, there exists a period Tg such that all the
players play C in all periods greater than Tg.
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Patient Players

IT# be the set of priors for which posterior beliefs are well defined.

If A1 holds and § = 1, there exists a strategy satisfies C, T1*-1, and ITA-S.

The proof proceeds by arguing that:

@ a contagion-annhilation strategy that satisfies C & ITA-S exists;

@ complying with this strategy is a best response when others do for
any network G [without recourse to the one-deviation property];

o the strategy thus, satisfies IT4-I.
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A Contagion-Annihilation Strategy

The strategy employs two state variables (dj;, dj;) for each link ij.

Both variables (dj;, dji) depend only on the history of play within the
relationship, and are thus common knowledge for / and ;.

The state variables are constructed so that in each relationship:

@ unilateral deviations to D are punished with an extra D by the enemy;
@ unilateral deviations to C are punished with an extra D by both;

@ simultaneous deviations to D are not punished.

One may interpret dj; as the number of D's that i and j require from i to
return to the initial state.
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A Contagion-Annihilation Strategy

The transition rule for (dj;, dji) is defined as follows:

@ in the first period d; = d;; = 0;

o thereafter, if actions (aj, a;) are played:

i [0 0 0 0|0 O 0O O |+ + + +
i |0 0 0 0|+ + + + |+ + + +
aj b b CC/bDDTZCTC|D D CC
g |[D C D C|D C D C|D C D C
Ad;j 1o 0 1 0(0 1 0 1|-1 0 1 O
Ad; 1o 1.0 0|0 2 -1 1 |-1 1 0 0
pif fo -1 1 0(0 -1 1 0|0 -1 1 0

The interim strategy satisfies:

g (h) o C if maX;c py; d,'j (h,) =0
s D if maxX;e p; d,J (h,) >0
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A Contagion-Annihilation Strategy: Examples

To build some intuition, consider the following cases:

Example I: player 1 deviates to D in the first period.

Example 11

Example Il
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Preliminary Definitions

Define the excess defection on link ij as:
ej = dj — dji
Fix G, and for any h € H and any path T = (j1, ..,,jm) define:
ET( — ym-—1

k=1 Cikjk+1

Let Pjs be the set of paths with initial node i/ and terminal node f

Let S(h) denote the set of sources of punishments in the network:

S(h)={i € N:Ez(h) <0 forany 7t € Py, for any f € N}
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Preliminary Result

Lemma (1)
Consider a network G. For any h € H and any a € Ay:

(1) If T € P
aj D D C C
af D C D C
AE;(h,a) |0 -1 1 0
(2) If 3¢ € Pj;
E.(h) =0

(3) If T, 7' € Py

(4) S(h) is non-empty.

v

Prove it!
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Intuition Theorem 1

The proof first establishes IT4-S by showing that the set S (h) always
expands in equilibrium:

(A) S(h) C S(h*)
(B) S(h*) C S(hi*k) for some k > 0 if S(ht) C N

Since ITA-S holds and § = 1, the payoff in every relationship converges to
1.

To prove ITA-1, we show that no player can deviate to play infinitely more
D’s than his opponents, as any deviation leading to the play of (D, C) in a
relationship is met by a punishment of (C, D) in same relationship.

Prove it!
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Robustness & Comments

Theorem 1 is robust with respect to:

@ uncertainty in the number of players;
@ heterogeneity in payoffs if Al holds in all relationships;

@ uncertainty in payoffs as long as Al is met in all realizations.

Arbitrary patience is required, since histories exist for which ; is not IC:

e for any history such that (djj, dji) = (0, M) for any large M;
e if 6 <1andn; >0, onecan find M such that J; is not IC for /.

However, (djj, dji) must grow unbounded to prevent D’s from cycling.
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Impatient Players

This section circumvents the problem of defections growing unbounded by
restricting the class of admissible priors.

As before, the proposed equilibrium strategy ¢;:

@ relies on two state variables (djj, dji) for each relationship ij

@ requires a player / to defect iff at least one of his dj; is positive

The transition rule differs and depends on the sign of the parameter /.

Changes take place mainly off the equilibrium path and imply that dj; is
bounded by 2 for any history.
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Transition Rule

If / > 0, the transitions satisfy:

dj; 0O 0 0 0|0 O 0 0 + + + +
di |0 0 0 0|+ + + + [+ + + +
aj D bDC C|D D C C|D D C C
a; D ¢ b C|D C D C|D C D C
Ad;[o 0o 2 00 d; 0 di|[-1 0 0 0
Ad; {0 2 0 0(0 O -1 0 |-1 0 0 O
If I < 0, the transitions satisfy:
d; o o 0o 0[O0 0 O O [+ + + +
i |0 0 0 O+ + + + |+ + + +
ai | D D C C|D D C cC |D D C C
ag |D C D C|D CD C |D C D C
Ad,'j 0O 0 1 0|0 0 O 2 -1 2dj 2-dj  2-djj
AdJ 0O 1 0 0]-1 -1 -1 2dj|-1 2dj 2d; 2-dj

If | = 0, choose either transition.
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A Contagion Strategy: Examples

To build some intuition, consider the following cases:

Example I: player 1 deviates to D in the first two periods and / > 0.
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A Contagion Strategy: Examples
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A Contagion Strategy: Examples

To build some intuition, consider the following cases:
Example |

Example 11

Example 111

Example IV: player 1 deviates to D in the first period, player 2 deviates
to C in the second period and / < 0.

Nava & Piccione (LSE) April 2013 22/



A Contagion Strategy: Examples

To build some intuition, consider the following cases:
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Preliminary Result

The next result shows that player i never expects his neighbors to play D
due to past play in relationships to which he does not belong, if:

@ all deviations have occurred in player i's neighborhood,;

@ no two neighbors of player i are linked by a path.

For a history h and a network G let D (G, h) denote the set of players who
deviated in the past.

Lemma (3)

Consider a network G, a player i € N, and a history h € H such that:

(i) D(G. h) € N;U{i};

(it) Ifj € D(G, h), link ij is a bridge in G.

Then, djx (h) = 0 for any j € N; and k € N;\{i}. Prove it!

v
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Intuition Lemma 3

Consider j € D (G, h) and the component to which j belongs. No other
player in D (G, h) belongs to the component by (ii).

Partition players in the component based on distance from j: N0 {}
and NZ consists of players whose shortest path to j contains z I|nks

Since only j defects in the component, for any z > 0 and r € N?:

0 if ke NA\AN
d’k(h)_{ b.(h) if ke N v

N, Ny N
-- b4 0 % ...
[ ~ j2 ’
» —-('_“
- 0 ‘ 0
e ) 1" -
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Impatient Players and Acyclic Graphs

First restrict the class of priors so that only acyclic graphs are feasible.

Let TINC be the set of prior beliefs such that if f(G) > 0, then G is
acyclic.

If A1 holds and if § is sufficiently high, the strategy profile ¢, satisfies C,
ITNC-/, and TINC-S.

TTVC_S is proven by induction on the number of players:

@ it holds trivially with only two players;
@ adding a link delays reversion to C by at most 2 periods.

Prove it!
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Intuition Theorem 2

To prove TTNC-|, set off-equilibrium beliefs so that player i at each history
h; attributes any observed deviation only to his neighbors:

‘B(G,h’h,‘)>0 = D(G,h)g/\//U{i}

To do so, set trembles so that any finite # of deviations to D is:

@ infinitely more likely than 1 deviation to C;

@ infinitely more likely than 1 earlier deviation to D.

Beliefs in TINC imply that Lemma 2 holds. So, for any history i believes:
° djk =0 forj € Njand k € NJ\{I},

@ the action of j € N; is solely determined by dj;.

For such beliefs, the strategy is proven to be sequentially rational.
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Robustness & Comments

All robustness checks of the previous section are met provided that the
ordinal properties of the games are the same across relationships:

@ uncertainty about the number of player
@ heterogeneity in payoffs satisfying Al
@ uncertainty about payoffs satisfying Al.

The strategy is also robust to heterogeneity in discount rates.

Properties obtain since defections cannot cycle on any admissible graph.
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Impatient Players and Generic Beliefs

Next we extend the results obtained for acyclic networks to any
environment in which players’ beliefs have full support.

Let TIF° be the set of prior beliefs such that f(G) > 0 for any G.

If A1 holds and if § is sufficiently high, the strategy profile ¢, satisfies C
and T1F>-/.

The proof proceeds by showing:
@ how to construct trembles for which:
B(G,hlhj) >0 = D(G,h) C N U{i}

@ that for such trembles the same argument of Theorem 2 applies.

Although stability fails here, players will always believe in reversion to full
cooperation in a finite time.
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April 2013 28 / 68



Intuition Theorem 3

The proof develops consistent beliefs for which i believes that:

|. player j's neighborhood contains only i whenever i observes a
deviation from j;

[1. all deviations are local.

Trembles are constructed so that:

@ deviations by a players with n; = 1 are infinitely more likely;

@ more recent deviations are infinitely more likely than less recent ones.

If A3 holds, there exist beliefs B consistent with ¢, such that, for any
player i and observed history h;, B (G, h|h;) = 0:

(a) if i observes a deviation from j and n; > 1;
(b) if D(G,h) & N;U{i}. Prove it!
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Robustness & Comments

Provided that the ordinal properties of the game coincide across
relationships, all robustness checks of the previous section are met:

@ uncertainty about the number of player
@ heterogeneity in payoffs satisfying Al
@ uncertainty about payoffs satisfying Al

@ heterogeneity in discount rates

Properties obtain, since players expect defections not to cycle.
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Impatient Players and General Graphs

When / > 0 and ¢ < 1:

@ trigger strategies sustain cooperation for § € (é, 5);
o such strategies satisfy IT*-l and C;
@ cooperation can be extended to § € (6/8,1) by partitioning the game
into independent games.
The proof is an adaptation of an argument first used by Ellison (1994).

A similar argument was developed independently by Xue (2011) in a model
in which the network is common knowledge and players can communicate.

Theorem (4)

If A1 holds, | > 0 and if ¢ is sufficiently high, a strategy profile that
satisfies C and T1A-/ exists. Prove it!
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Robustness & Comments

Theorem 4 is robust to uncertainty about the number of players.

@ Theorem 4 is not robust to heterogeneity in &.

Theorem 4 is not robust to heterogeneity in payoffs, since g must be
common to all relationships.

Similarly, the values of / and 17; can be private information.

@ Theorem 4 violates TTA-S, since no player ever reverts to full
cooperation after observing a deviation.
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Conclusions

The main result for patient players shows that:

1. SE satisfying C, | and S exist.

The main results for impatient players instead, show that:
2. SE exist satisfying C, | and S, if monitoring is acyclic;
3. SE exist satisfying C and |, if beliefs have full support;

4. SE exist satisfying C and |, in specific PD games.

An impossibility result for C, | and S with general graphs and impatience
lies within future objectives.
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Banach-Mazur Limits

Let /o, denote the set of bounded sequences of real numbers

A Banach-Mazur limit is a linear functional A : £ — R such that:
QO Ale)=1ife={1,1,...}
QO A(xE X%, ) = A(x?,x3,..) for V{x'} € Lo

It can be shown that, for any sequence {x'} € lo:

liminf x! < A (xt) < limsup x*

For simplicity, we restrict players to use pure strategies. This ensures that
expectation of the Banach-Mazur limit is the same as the Banach-Mazur
limit of the expectation. Our analysis can be extended to mixed strategies
with infinite supports by medial limits, which can be shown to exists under
the continuum hypothesis (see Abdou and Mertens (1989)).
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Intuition Lemma 1

To prove (1) observe that transitions always satisfy:

aj D D C C
aj D C D C
Aej |0 -1 1 0

Thus a simple counting argument establishes (1) for any path.

Given (1), two simple induction arguments establish (2) and (3).
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Intuition Lemma 1

To prove (1) observe that transitions always satisfy:

a; D D C C
aj D C D C
Aej |0 -1 1 0

Thus a simple counting argument establishes (1) for any path.

Given (1), two simple induction arguments establish (2) and (3).
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Intuition Lemma 1

Also (4) is proven by induction on the history length:

1. The claim holds for the empty history.
2. Suppose that S(h) is non-empty for h.
3. Consider W = (h,a) and i € S(h).

4. If i € S(H'), the claim holds.

5. If i ¢ S(H'), there exists a player s such that:
o Eis(h) =0, since i € S(h);
o Eis(0)=1,sincei ¢ S(H).

6. If so, s € S(K') and the claim still holds.
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Intuition Lemma 1

Observe that i € S(h) implies:

Fi=EL+F,<0

P } .\.\‘\_
i f)
E.=0 s~ E.<0
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Intuition Theorem 1

The strategy profile () satisfies [T1A-S. Prove It!

The proof shows that the set S (h) always expands in equilibrium:

(A) S(h*) € S(h)
(B) S(ht) C S(ht*k) for some k > 0 if S(ht) C N

The intuition follows by observing that:
@ if i € S(h), then (dj, dji) declines for j € N;
Q@ if i€ S(h), and (dj, djj) = (0,0), then player j € S (h)
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Intuition Theorem 1

By ITA-S, the payoff in every relationship converges to 1.

To prove IT#-1 we show that no player can deviate to play infinitely more
D’s than his opponents.

Let nf:(a;, a;| T) denote the number of times in which (a;, ;) is played on
link ij between periods t and t+ T.
Let A*(T) = ni(D, C|T) — n};(C,D|T) and observe that:

T+1 > nf(C,C|T)+n§(C,D|T)+ni(D, C|T)
= nj(C,C|T)+2nj(C,D|T)+AY(T)

Nava & Piccione (LSE)
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Intuition Theorem 1

By Al, the payoff of player i in relationship ij satisfies:

Y (6,2 = nl(C.CIT)+(1+g—1)nl(C,D|T)+ (1+g)AY(T)

nt(C,C|T)+2n5(C,D|T) + (14 g)AH(T)
(T+1)+gA'(T)

IA A

Note that:
_ =1 4T,
Q@ AY(T) = & e s
+1
Q@ ¢ < 0 implies that j plays D and thus eS > e

© hence A'(T) is bounded above since ej*T > —1.

Since A'(T) is bounded At ( a u,-J-(G;,gj-’)/T—I— 1) <1
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Proof Lemma 3

Consider any player j € D (G, h) \{i}.
Let (N(Gj), Gj) denote the component of G\ {ij} to which j belongs.
By (ii), such component cannot include i and players in N;\ {/}.

Partition N(G;j) based on the distance from j:
0 _ f;1.
o Ny ={j}

° I\ljZ consists of players whose shortest path to j contains z links.
We show that, since D (G;, h) = {j}, forany z >0, r € N7, and rk € G;:

0 if ke N\NL
= ,]
(k) { b,(h) if ke N7 ()
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Proof Lemma 3

Condition (1) holds if h = @, as dy (D) = 0 for any rk € G;.

Observe that for z > 0 and m € NJ-Z:
o N, C sz—l U N7 U sz+1
o Ny NNFH £

We show that if (1) holds for a history h of length up to T,
it holds for the history (h, a) of length T + 1.

Forany z> 0 and any r € N/:
a, = D & dy(h) > 0 for k € N7 (2)

since r ¢ D (G, h) and since d,,(h) = 0 for any k € N,\NJ.Z*l.
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Proof Lemma 3

Thus, all players in sz choose the same action since Nfil NN, #Q@.

Hence, for any player r € N7 and any link rk € G;:

dw(h,a) = 0 ifkeNf and z>0
dy(h,a) = 0 if keNjZ“ and z>0

_ . z—1
dw(h,a) = by(ha) ifke N; and z>0

where the three conditions respectively hold since:
@ d(h) = di(h) =0 and a, = a.
@ di«(h) =0, and because (2) implies that d,(h, a) = 0.

© d(h) = b,(h), and because a; = a,, for any I, m € N? for s > 0.
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Proof Lemma 3

Thus, (1) holds for any history in which only j has deviated in G;.
Thus, (i) and (i) imply djx (h) =0 for j € D (G, h)\{i} and k € N;\{i}.
To conclude the proof consider players in N;\D (G, h).

Denote by (N(G;), G;) the component of the graph to which i belongs
when links between i and players in D (G, h) have been removed from G.

Clearly, N\D (G, h) C N(G;) and D (G;, h) = {i}.

Hence, the previous argument applies and dj (h) = 0 for any
J € N\D (G, h) and any k € N;\{i}. [ |
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Proof Theorem 2

The strategy profile &, satisfies TTV €s

Consider any tree G and any history.

If players adhere to ¢, the transitions are:

>0 1<0
d,‘j 0O 0 0O 0|0 O |+ 0 0 0 0j0 O]+
dj,' 0O 0 0O O |+ + |+ 0O 0 0 O+ + |+
aj D D C C|D C|D D D C C/ D C|D
aj D C b C|D D|D D C b C/ D D|D
Ad,‘j 0 0 2 0]0 0 ]-1 0 0 1 0|0 O]-1
Adj,' 0 2 0 0|0 -1]-1 0o 1 0 O0f-1 -1]-1

Nava & Piccione (LSE) April 2013 46 / 68



Proof Theorem 2

The claim is proven by induction on the number of players:

e TINC-S holds for n = 2. So, suppose that n > 2.

Consider a terminal node j and his unique neighbor /.

e If djj = 0, it remains so for the remainder of the game.

If so, relationship ij is superfluous for the play of i:
=D & dix>0for ke N\{j}

o By induction TTNC-S holds in the network G\ {ij}.

o Thus, ITNC-S must hold also in G as dj; < 2.

e If dj >0, dj = 0 in two periods, as j's only neighbor is i.

@ And the above argument applies again. |
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Proof Theorem 2

C is obvious. To prove ITVC-|, set off-equilibrium beliefs so that i at each
history h; attributes any observed deviation only to players in N;.

Such beliefs can be derived by assuming that the recent deviations to D
are infinitely more likely than earlier deviations, eg:

@ if max; dj = 0, a deviation to D by i in period t occurs with
probability € for a € (0,1/(n+1))

@ if max; dj; > 0, a deviation to C by / in period t occurs with
probability &2
As ¢ — 0, any finite # of deviations to D is infinitely more likely:

@ than 1 deviation to C;

@ than 1 earlier deviation to D.

Nava & Piccione (LSE)
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Proof Theorem 2

Let B denote the system of beliefs obtained as ¢ — 0.
For any history h; observed by i € N:

B(G, hlhj) >0 = D(G,h) CNU{i}
The latter observation and A2 imply that Lemma 3 holds.
Hence, for any history h, player i believes:

o dj(h) =0 for j € Nj and k € N)\{i};

o the action of j € N; is solely determined by dj;(h).
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Proof Theorem 2

First suppose that / > 0.
Only seven states are possible since dj; € {0, 1,2}.

If max; djj(hj) = 0 and J is high, i prefers to comply and play C since his
expected payoff with any j € N; satisfies:

Equilibrium: C Deviation: D

(dij.dji) t o t+l t42 t t+l 42
(0,0) 1 1 1 1+g -l -1
(0,1) -l 1 1 0 -l 1
(0,2) -l 1 0 -l -1

Player i strictly prefers to comply with any neighbor.
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Proof Theorem 2

If max; djj(hj) =1 and ¢ is high, i prefers to comply since:

Equilibrium: D Deviation: C
(djj.dji) t t+l t42  t43 t t+1 t+2 t43
(0,0) 1+g -l -l 1 1+g -l -l
(0,1) 0 -l 1 1 - 14g -l -l
(1,0) 1+g 1 1 0 1
(1,1) 0 1 -l 0 1
(0,2) 0 -l -l 1 -l 0 -l

The first and the last stream converge.
Equilibrium is strictly preferred in the remaining scenarios.

Since max; djj(h;) = 1, a neighbor exists with whom player i strictly loses,
when §J is close to 1.
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Proof Theorem 2

If max; djj(hj) =2 and ¢ is high, i prefers to comply since:

Equilibrium: D Deviation: C
(d’./ d_]l) t t+1 t+2 t+3 t+4 t t+1 t+2 t+3 t+4
(0,0) g 0 - -| 1 1 lig 0 - -|
(0,1) 0 0 - 1 1 4 1+g 0 - -
(1,0) l+g  l+g o 1 1 0 i+g -l o
(1,1) 0 l+g -l - 1 40 1tg A -
(0,2) 0 0 - - 1 40 0 - 1
(2,0) l+g  1+g 1 1 1 1 0 0 1 1
(2,2) 0 0 1 1 1 40 0 1 1

An argument similar to the preceding applies.

The strategy profile ¢, thus trivially satisfies EP, since the incentives to
comply are not affected by the beliefs about the graph.
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Proof Theorem 2

Now suppose that / < 0.
Only five states are possible since dj; € {0, 1, 2}.

If max; djj(hj) =0 and ¢ is high, i prefers to comply and play C since his
expected payoff with any j € N; satisfies:

Equilibrium: C Deviation: D

(djj.dji) t o t+1 t42 t t+l 42
(0,0) 1 1 1 1+g - 1
(0,1) -l 1 1 0 1 1

Player i weakly prefers to comply with any neighbor.

Nava & Piccione (LSE) April 2013 53 / 68



Proof Theorem 2

If max; djj(hj) =1 and J is high, i prefers to comply since:

Equilibrium: D Deviation: C
(dij.dji) t t+l t4+2  t43 t t+l t+2  t43
(0,0) 1+g -l 1 1 1+g O 1
(0,1) 0 1 1 1 4 14g 0 1
(1,0) 1+g 1 1 1 1 0 0 1
(1.1) 0 1 1 40 0 1

Equilibrium is weakly preferred in state (0, 0).
Equilibrium is strictly preferred in the remaining scenarios.

Since max; djj(h;j) = 1, a neighbor exists with whom player / strictly loses,
when ¢ is close to 1.
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Proof Theorem 2

If max; djj(hj) =2 and ¢ is high, i prefers to comply since:

Equilibrium: D Deviation: C
(dij.dji) t t+l t4+2  t43 t t+l t+2 t+3
(0,0) 1+g O 1 1 1+g O 1
(0,1) 0 1+g -l 1 - 1+4g O 1
(1,0) 1+g 1+g -l 1 1 0 0 1
(11) 0 1+g -l 1 40 0 1
(2.2) 0 0 11 4 0 0 1

An argument similar to the preceding applies.

The strategy profile ¢, thus trivially satisfies EP, since the incentives to
comply are not affected by the beliefs about the graph. |
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Proof Lemma 6

For any /, consider trembles such that a deviation in period t occurs:
(i) with probability €', if n; = 1, for « < 1/(n+1);
(i) with probability €2, if n; > 1.
Let 6°(G, h) be the probability of node (G, h).
The conditional belief of node (G, h) € U (h;) is:
6¢(G, h)
Y6 wyeu(n) 0 (G 1)
Let B (G, hlh;) = lime_o B (G, h|h;).

Let G denote incomplete star network (with i/ as hub and N; periphery)
and a disjoint totally connected component.

B (G, hlh;) =

Let h* (h;) be the history in which players not in N; U {i} always plays
according to Gy .
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Proof Lemma 6

To establish (a), consider any h; and j € D (G, h* (h;)).

Since at (G, h* (h;)) all deviations are of type (i):

0 (G, h* (hi)) > F(G)(1—¢)"" e, since ny_;af <1.

Consider (G, h) € U (h;) such that n; > 1:

1. If j € D (G, h), j's deviation is of type (ii) and 6° (G, h) < 2.
Thus, for € close to zero there exists g > 0 such that:

6°(G, h)

B (G, hlh;) < 65(G7, h* (hy))
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Proof Lemma 6

2. if j & D (G, h), let t* denote the first period in which:
D (G, h* (hi).t) #D(G,h,t).
Part 1 and Lemma 5 then yield D (G*, h* (h;),t*) C D (G, h, t*).
If K (t) denotes # of players in D (G, h, t):
0° (G, h) < eLici K(t)at
6 (G (h)) = £ (67) (1—e)" e (ome)e i
Thus, for € close to zero there exists kK > 0 such that:

0°(G,h) _ el
<
— 0GB (ki) T k
This establishes (a) and implies that:
ﬁ(G,h‘h,) >0 = D(G,h) - N,'U{i}

—0

B (G, hlhi) <
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Proof Lemma 6

To prove (b), observe that by (a) we can focus on networks such that:
nj =1 forany j € D(G h*(h))\{i}

We prove the claim by contradiction.

Let t* be the earliest period t such that

D (G, h* (hi),t) #D (G, h,t).
Observe that the argument in (a) implies that

D (G, h* (hi),t") CD(G, ht*)

and the claim is proved analogously. |
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Proof Theorem 4

Consider a profile of grim trigger strategies such that:

@ player i plays C if Vj € N; played C in every previous period,;
@ player i plays D otherwise.

Consider the sets C; C N;, D; = N;\C;, and J such that

(1-6)(1+g) (a)
(1+5(1+g))2jec,‘ TIU_/EjeD,- Ui (b)

(a) = if all players are in state 1, no player prefers to deviate from state 1.

1 >

(b) = if a player believes that players in C; are in state 1 and players in D;
and himself are in state 2, he prefers not to deviate from state 2.
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Proof Theorem 4

The two inequalities reduce to:

I op 17
& 58 y<Di 1
g+1 g+l (g+1)Ljecny

The upper-bound is decreasing in } ;cc, 77; and increasing in } jcp, 17;;.

Recall that, 7, > 0 for any ij, i # j and let:

minjicg 1;;

= (n—1) maxjicg 1;

and suppose that

g & Iy
o€ , + 3
<g+1g+1 (g+D) G)
If so, if a player believes that D; # @, playing D is strictly optimal;

otherwise, playing C is strictly optimal.
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Proof Theorem 4

The above strategy is a sequential equilibrium, since consistent beliefs are
such that:

i. if every player j € N; played C in every previous period, player i
believes that all players in the graph are in state 1;

ii. if a player j € N; played D in a previous period, player i believes that
at least one of his neighbors is in state 2.

The strategy satisfies IT-S, since it is optimal for any belief about the
underlying information network.

The theorem is proven, if the upper bound of the interval in (3) is greater
or equal to one.

Otherwise...
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Proof Theorem 4

Otherwise, consider an open interval (a, b) C (0,1).
If 6 € (% 1), then 67 € (a, b) for some positive integer T.

g In
and b = + )
g1 g+l (g+1)

If so, partitioning the game into T — 1 independent games played every T
periods (as in Ellison (1994)) yields a discount rate:

In
(STG g , g )
<g+1 g+1+(g+1)

Thus, the modified strategy satisfies IT*-1 and C when players are
sufficiently patient.

Let a =

Naturally, cooperation is sustained at the expense of ITA-S.

A player defecting in one of the T games never returns to full cooperation.
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Proof Lemma 2

Fix a network G and a history h of length z.
Suppose that players comply with {,, after h.

In any relationship ij, the states transition according to:

di [0 0 0o 00 0+
di |0 0 0o 0|+ + |+
aa |D D C C|[D C|D )
ai |D C D C|D D|D
Adjlo o 1 o]0 0 [-1
Ad; o 1 0 0]0 -1]-1

Let T(h) = maxjicg {min {dj(h), d;i(h)}}.

Let h* denote the history t — z periods longer than h generated by .
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Proof Lemma 2

If players comply with the strategy after h for any t > T(h) and ij:

min {d,jdf,} =0

Therefore, if for any t > T(h)

(A) St C St+l

(B) St # Stk for some k > 0 if St # N
then TTA-S holds, since St = N for some t > T (h) implies

max{d,-j-, df,} =0.
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Proof Lemma 2

(A) holds, since i € S*\S*™ implies that:
e EL =0and El.ffl =1 for some f;
e thus {f = D and df, > 0 for some k;

@ which contradicts i € St.

B =Estef >0

—~ Ry

.’/'/ ‘\‘.
o :':\\i ifE*L, =1 k/',".
=0 - f "."e:.-y_ =d%>0
D

(B) holds, since i € S* implies df: = 0 for any j and thus
° a'jt’.Jr1 = max{d} — 1,0};

@ j € S'Z for z large enough.
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Proof Lemma 5

Lemma (5)
Consider a node (G, h) € U (h;) where history h is of length T. If

(i) D(G} h* (hi),t) =D (G, h,t) forany t < T, and
(i) N;j ={i} foranyj € D (G, h" 1) \{i},
then D (G*, h* (h;), T) CD(G,hT).

Proof
For h € H, let h* denote the sub-history of length t < T.
Suppose that (i) and (ii) hold and recall that:
D (G, h* (h;),t) € N;U{i}.
Lemma 3 applies and establishes that for t < T and for any j € N;:
dix (h*) =0 for k € N;\{i}
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Proof Lemma 5

Moreover, for any t < T and j € N,

dji (h) = dji (h" (hi)") and dj (h") = dj (h" (hi)").

Thus, i€ D(G*, h* (h;)), T) = ieD(G hT).

Instead, if j € D (G*, h* (hj), T)\{i} and if, at period T, j plays:

o C then dj (h* (h,-)T*) >0,
and j € D (G, h, T) since d;i (h 1) > 0;

o D then d; (h (h)" 1) =0,
and j € D (G, h, T) since djx (h" 1) =0 for k € N;. [
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