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1. Introduction 

The fundamental insight of intertemporal asset pricing

theory is that long-term investors should care just as much

about the returns they earn on their invested wealth as

about the level of that wealth. In a simple model with a

constant rate of return, for example, the sustainable level

of consumption is the return on wealth multiplied by the

level of wealth, and both terms in this product are equally

important. In a more realistic model with time varying

investment opportunities, long-term investors with rela-

tive risk aversion greater than one (conservative long-term

investors) seek to hold intertemporal hedges, assets that

perform well when investment opportunities deteriorate.
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Merton’s (1973) intertemporal capital asset pricing model

(ICAPM) shows that such assets should deliver lower aver-

age returns in equilibrium if they are priced from conser-

vative long-term investors’ first-order conditions. 

Investment opportunities in the stock market can de-

teriorate either because expected stock returns decline or

because the volatility of stock returns increases. The rela-

tive importance of these two types of intertemporal risk is

an empirical question. In this paper, we estimate an econo-

metric model of stock returns that captures time varia-

tion in both expected returns and volatility and permits

tractable analysis of long-term portfolio choice. The model

is a vector autoregression (VAR) for aggregate stock re-

turns, realized variance, and state variables, restricted to

have scalar affine stochastic volatility so that the volatili-

ties of all shocks move proportionally. 

Using this model and the first-order conditions of an

infinitely lived investor with Epstein and Zin ( 1989, 1991 )

preferences, who is assumed to hold an aggregate stock in-

dex, we calculate the risk aversion needed to make the in-

vestor content to hold the market index instead of over-

weighting value stocks that offer higher average returns.

We find that a moderate level of risk aversion, around 7,
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is sufficient to dissuade the investor from a portfolio tilt 

toward value stocks. Growth stocks are attractive to a mod- 

erately conservative long-term investor because they hedge 

against both declines in expected market returns and in- 

creases in market volatility. These considerations would 

not be relevant for a single-period investor. 

We obtain similar results for several other equity port- 

folio tilts, including tilts to portfolios of stocks sorted by 

their past betas with market returns. High-beta stocks 

are attractive to a conservative long-term investor because 

they have hedged against increases in volatility during the 

past 50 years. In this way, our model helps to explain 

the well-known puzzle that the cross-sectional reward for 

market beta exposure has been low in recent decades. 

We also consider managed portfolios that vary equity 

exposure in response to state variables. The conservative 

long-term investor we consider would find it attractive to 

hold a managed portfolio that varies equity exposure in 

response to time variation in expected stock returns. The 

reason is that we estimate only a weak correlation be- 

tween expected returns and volatility, so a market timing 

strategy does not lead to an undesired volatility exposure. 

Following Merton (1973) , one could interpret the con- 

servative long-term investor we consider in this paper as a 

representative investor who trades freely in all asset mar- 

kets. However, this interpretation has two obstacles. First, 

our model does not explain why such an agent would not 

vary equity exposure with the level of the equity premium. 

Borrowing constraints can fix equity exposure at 100% 

when they bind, but we estimate that they will not bind 

at all times in our historical sample. Second, the aggre- 

gate stock index we consider here may not be an adequate 

proxy for all wealth, a point emphasized by many papers, 

including Campbell (1996) , Jagannathan and Wang (1996) , 

Lettau and Ludvigson (2001) , and Lustig et al. (2013) . 

For both these reasons, we interpret our results in mi- 

croeconomic terms, as a description of the intertemporal 

considerations that limit the desire of conservative long- 

term equity investors (including institutions such as pen- 

sion funds and endowments) to follow value strategies and 

other equity strategies with high average returns. These 

considerations can contribute to the explanation of cross- 

sectional patterns in stock returns in a general equilibrium 

setting with heterogeneous investors, even if they do not 

provide a complete explanation in themselves. 

Our empirical model provides a novel description of 

stochastic equity volatility that is of independent inter- 

est. Our VAR system includes not only stock returns and 

realized variance, but also other financial indicators in- 

cluding the price-smoothed earnings ratio and the de- 

fault spread, the yield spread of low-rated over high-rated 

bonds. We find low-frequency movements in volatility tied 

to these variables. While this phenomenon has received lit- 

tle attention in the literature, we argue that it is a nat- 

ural outcome of investor behavior. Because risky bonds 

are short the option to default over long maturities, in- 

vestors in those bonds incorporate information about the 

long-run component of volatility when they set credit 

spreads. Univariate volatility forecasting methods that fil- 

ter only the information in past stock returns fail to extract 

this low-frequency component of volatility, which is of 
key importance to long-horizon investors who care mostly 

about persistent changes in their investment opportunity 

set. 

The organization of our paper is as follows. 

Section 2 reviews related literature. Section 3 presents the 

first-order conditions of an infinitely lived Epstein-Zin in- 

vestor, allowing for a specific form of stochastic volatility, 

and shows how they can be used to estimate preference 

parameters. Section 4 presents data, econometrics, and 

VAR estimates of the dynamic process for stock returns 

and realized volatility. This section shows the empirical 

success of our model in forecasting long-run volatility. Sec- 

tion 5 introduces our basic set of test assets: portfolios of 

stocks sorted by value, size, and estimated risk exposures 

from our model. This section estimates the betas of these 

portfolios with news about the market’s future cash flows, 

discount rates, and volatility and the preferences of a 

long-term investor that best fit the cross section of excess 

returns on the test assets. This section also summarizes 

the history of the investor’s marginal utility implied by 

our model. Section 6 considers a larger set of equity and 

non-equity anomalies and asks how much the model of 

Section 5 contributes to explaining them. Section 7 ex- 

plores alternative specifications, including the model of 

Bansal et al. (2014) , an alternative representation of our 

model in terms of consumption, and additional empirical 

implementations of our approach. Section 8 concludes. An 

Online Appendix to the paper provides supporting details 

including a battery of robustness tests. 

2. Literature review 

Since Merton (1973) first formulated the ICAPM, a large 

empirical literature has explored the relevance of intertem- 

poral considerations for the pricing of financial assets in 

general and the cross-sectional pricing of stocks in partic- 

ular. One strand of this literature uses the approximate ac- 

counting identity of Campbell and Shiller (1988b) and the 

first-order conditions of an infinitely lived investor with 

Epstein-Zin preferences to obtain approximate closed-form 

solutions for the ICAPM’s risk prices ( Campbell, 1993 ). 

These solutions can be implemented empirically if they 

are combined with vector autoregressive estimates of as- 

set return dynamics. Campbell and Vuolteenaho (2004) , 

Campbell et al. (2010) , and Campbell et al. (2013) use this 

approach to argue that value stocks outperform growth 

stocks on average because growth stocks hedge long-term 

investors against declines in the expected return on the ag- 

gregate stock market. 

A weakness of these papers is that they ignore the time 

variation in the volatility of stock returns that is evident 

in the data. We remedy this weakness by augmenting the 

VAR system with a scalar affine stochastic volatility model 

in which a single state variable governs the volatility of 

all shocks to the VAR. Because the volatility of the volatil- 

ity process itself decreases as volatility approaches zero, 

this specification reduces the probability that the volatility 

becomes negative compared with a homoskedastic volatil- 

ity process, especially as the sampling frequency increases. 

We explore this advantage of our specification via simu- 
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lations in the Online Appendix. 1 We extend the approxi-

mate closed-form ICAPM to allow for this type of stochas-

tic volatility, and we derive three priced risk factors corre-

sponding to three important attributes of aggregate market

returns: revisions in expected future cash flows, discount

rates, and volatility. 

An attractive feature of our model is that the prices of

these three risk factors depend on only one free parame-

ter, the long-horizon investor’s coefficient of risk aversion.

This feature protects our empirical analysis from the cri-

tique of Daniel and Titman ( 1997, 2012 ) and Lewellen et al.

(2010) that models with multiple free parameters can spu-

riously fit the returns to a set of test assets with a low-

order factor structure. Our use of risk-sorted test assets fur-

ther protects us from this critique. 

Our work is complementary to recent research on the

long-run risk model of asset prices ( Bansal and Yaron,

2004 ), which can be traced back to insights in Kandel

and Stambaugh (1991) . Both the approximate closed-form

ICAPM and the long-run risk model start with the first-

order conditions of an infinitely lived Epstein-Zin investor.

As originally stated by Epstein and Zin (1989) , these

first-order conditions involve both aggregate consumption

growth and the return on the market portfolio of aggregate

wealth. Campbell (1993) points out that the intertempo-

ral budget constraint could be used to substitute out con-

sumption growth, turning the model into a Merton-style

ICAPM. Restoy and Weil ( 1998, 2011 ) use the same logic

to substitute out the market portfolio return, turning the

model into a generalized consumption capital asset pric-

ing model (CAPM) in the style of Breeden (1979) . Bansal

and Yaron (2004) add stochastic volatility to the Restoy-

eil model, and subsequent theoretical and empirical re-

search in the long-run risk framework increasingly empha-

sizes the importance of stochastic volatility ( Bansal et al.,

2012; Beeler and Campbell, 2012; Hansen, 2012 ). In this

paper, we give the approximate closed-form ICAPM the

same ability to handle stochastic volatility that its cousin,

the long-run risk model, already possesses. 2 

BKSY (2014), a paper written contemporaneously with

the first version of this paper, explores the effects of

stochastic volatility in the long-run risk model. Like us,

they find stochastic volatility to be an important feature of

the time series of equity returns. BKSY propose a different

benchmark asset pricing model in which a homoskedas-

tic process drives volatility. This homoskedastic volatility

process has two disadvantages. First, volatility becomes

negative more frequently than when volatility follows a
1 Affine stochastic volatility models date back at least to Heston 

(1993) in continuous time. Similar models have been applied in the long- 

run risk literature by Eraker (2008) and Hansen (2012) , among others. A 

continuous-time affine stochastic volatility process is guaranteed to re- 

main positive if the drift is always positive at zero volatility, which is 

the case in a univariate specification. Our stochastic volatility process can 

go negative, albeit with low probability, because our richer multivariate 

specification allows the drift to be negative at zero volatility for certain 

configurations of the state variables. 
2 Two unpublished papers by Chen (2003) and Sohn (2010) also at- 

tempt to do this. As we discuss in detail in the Online Appendix, these 

papers make strong assumptions about the covariance structure of vari- 

ous news terms when deriving their pricing equations. 
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heteroskedastic process of the sort we assume. Second,

BKSY’s asset pricing solution under homoskedasticity re-

quires an additional assumption about the covariance of

news terms that is not supported by the data. The differ-

ent modeling assumptions and several differences in em-

pirical implementation account for our contrasting empir-

ical results: BKSY estimate that volatility risk has little

impact on cross-sectional risk premia and that a value-

minus-growth bet has a positive beta while the aggregate

stock market has a negative beta with volatility news. We

find that volatility risk is very important in explaining the

cross section of stock returns, that a value-minus-growth

portfolio always has a negative beta with volatility news,

and that the aggregate stock market’s volatility beta has

changed sign from negative to positive in recent decades.

Section 7 presents a detailed comparison of our results

with those of BKSY. 

Stochastic volatility has been explored in other

branches of the finance literature that we summarize in

the Online Appendix. Most obviously, stochastic volatility

is a prime concern of the field of financial econometrics.

However, the focus has mostly been on univariate mod-

els, such as the generalized autoregressive conditional

heteroskedasticity (GARCH) class of models ( Engle, 1982;

Bollerslev, 1986 ), or univariate filtering methods that use

realized high-frequency volatility ( Barndorff-Nielsen and

Shephard, 20 02; Andersen et al., 20 03 ). A much smaller

literature has, like us, looked directly at the information in

other economic and financial variables concerning future

volatility ( Schwert, 1989; Christiansen et al., 2012; Paye,

2012; Engle et al., 2013 ). 

3. An intertemporal model with stochastic volatility 

In this section, we derive an expression for the log

stochastic discount factor (SDF) of the intertemporal CAPM

that allows for stochastic volatility. We then discuss the

properties of the model, including the requirements for a

solution to exist, the implications for asset pricing, and

methods for estimation. 

3.1. The stochastic discount factor 

We begin by deriving the log SDF of the ICAPM with

stochastic volatility. 

3.1.1. Preferences 

We consider an investor with Epstein–Zin preferences

and write the investor’s value function as 

 t = 

[ 
( 1 − δ) C 

1 −γ
θ

t + δ
(
E t 

[
V 

1 −γ
t+1 

])1 /θ
] θ

1 −γ

, (1)

where C t is consumption and the preference parameters

are the discount factor δ, risk aversion γ , and the elasticity

of intertemporal substitution (EIS) ψ . For convenience, we

define θ = (1 − γ ) / (1 − 1 /ψ) . 

The corresponding stochastic discount factor can be

written as 

M t+1 = 

(
δ
(

C t 

C t+1 

)1 /ψ 

)θ(
W t − C t 

W t+1 

)1 −θ

, (2)
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4 Campbell (1993) briefly considers the heteroskedastic case, noting 

that, when γ = 1 , Var t [ m t+1 + r t+1 ] is a constant. This implies that N RISK 

does not vary over time, so the stochastic volatility term disappears. 

Campbell claims that the stochastic volatility term also disappears when 

ψ = 1 , but this is incorrect. When limits are taken correctly, N RISK does 

not depend on ψ (except indirectly through the loglinearization parame- 

ter, ρ). 
where W t is the market value of the consumption stream 

owned by the agent, including current consumption C t . 
3 

We study risk premia and are therefore concerned with 

innovations in the SDF. We also assume that asset re- 

turns and the SDF are conditionally jointly lognormally 

distributed. Because we allow for changing conditional 

moments, we are careful to write both first and second 

moments with time subscripts to indicate that they can 

vary over time. Defining the log return on wealth r t+1 = 

ln ( W t+1 / ( W t − C t ) ) and the log consumption-wealth ratio 

h t+1 = ln ( W t+1 /C t+1 ) (denoted by h because this is the 

variable that determines intertemporal hedging demand), 

we can write the innovation in the log SDF as 

m t+1 − E t m t+1 

= − θ

ψ 

(�c t+1 − E t �c t+1 ) + ( θ − 1 ) (r t+1 − E t r t+1 ) 

= 

θ

ψ 

(h t+1 − E t h t+1 ) − γ (r t+1 − E t r t+1 ) . (3) 

The second equality uses the identity r t+1 − E t r t+1 = 

( �c t+1 − E t �c t+1 ) + ( h t+1 − E t h t+1 ) to substitute con- 

sumption out of the SDF, replacing it with the wealth- 

consumption ratio and the log return on the wealth 

portfolio. 

3.1.2. Solving the SDF forward 

The Online Appendix shows that by using Eq. (3) to 

price the wealth portfolio and by taking a loglinear ap- 

proximation of the wealth portfolio return (that is perfectly 

accurate when the elasticity of intertemporal substitution 

equals one), we obtain a difference equation for the in- 

novation in h t+1 that can be solved forward to an infinite 

horizon: 

h t+1 − E t h t+1 

= (ψ − 1)( E t+1 − E t ) 
∞ ∑ 

j=1 

ρ j r t+1+ j 

+ 

1 

2 

ψ 

θ
( E t+1 − E t ) 

∞ ∑ 

j=1 

ρ j Var t+ j 
[
m t+1+ j + r t+1+ j 

]
= (ψ − 1) N DR,t+1 + 

1 

2 

ψ 

θ
N RISK,t+1 , (4) 

where ρ is a parameter of loglinearization related to the 

average consumption-wealth ratio that is somewhat less 

than one. The second equality in Eq. (4) follows CV (2004) 

and uses the notation N DR (news about discount rates) for 

revisions in expected future returns. In a similar spirit, we 

write revisions in expectations of future risk (the variance 

of the future log return plus the log stochastic discount 

factor) as N RISK . 

Substituting Eq. (4) into Eq. (3) and simplifying, we ob- 

tain: 

m t+1 − E t m t+1 

= −γ [ r t+1 − E t r t+1 ] − (γ − 1) N DR,t+1 + 

1 

N RISK,t+1 

2 

3 This notational convention is not consistent in the literature. Some 

authors exclude current consumption from the definition of current 

wealth. 
= −γ N CF,t+1 − [ −N DR,t+1 ] + 

1 

2 

N RISK,t+1 . (5) 

The first equality in Eq. (5) expresses the log SDF in terms 

of the market return and news about future variables. It 

identifies three priced factors: the market return (with 

price of risk γ ), negative discount-rate news (with price 

of risk γ − 1 ), and news about future risk (with price of 

risk − 1 
2 ). This is a heteroskedastic extension of the ho- 

moskedastic ICAPM derived by Campbell (1993) , with no 

reference to consumption or the elasticity of intertemporal 

substitution ψ . 4 

The second equality rewrites the model, following CV 

(2004), by breaking the market return into cash-flow news 

and discount-rate news. Cash-flow news N CF,t+1 is de- 

fined by N CF,t+1 = r t+1 −E t r t+1 + N DR,t+1 . The price of risk

for cash-flow news is γ times greater than the unit price 

of risk for negative discount-rate news. Hence, CV call be- 

tas with cash-flow news “bad betas” and those with neg- 

ative discount-rate news “good betas.” The third term in 

Eq. (5) shows the risk price for exposure to news about 

future risks and did not appear in CV’s model, which as- 

sumed homoskedasticity. Not surprisingly, the model im- 

plies that an asset providing positive returns when risk ex- 

pectations increase offers a lower return on average. Equiv- 

alently, the log SDF is high when future volatility is antici- 

pated to be high. 

Because the elasticity of intertemporal substitution has 

no effect on risk prices in our model, we do not iden- 

tify this parameter and, therefore, do not face the recent 

critique of Epstein et al. (2014) that models with a large 

wedge between risk aversion and the reciprocal of the EIS 

imply an unrealistic willingness to pay for early resolution 

of uncertainty. 5 However, the EIS does influence the im- 

plied behavior of the investor’s consumption, a topic we 

explore further in Section 7.2 . 

3.1.3. From news about risk to news about volatility 

The risk news term N RISK,t+1 in Eq. (5) represents news 

about the conditional variance of returns plus the stochas- 

tic discount factor, Var t [ m t+1 + r t+1 ] . Therefore, risk news 

depends on the SDF and its innovations. To close the model 

and derive its empirical implications, we must make as- 

sumptions concerning the nature of the data generating 

process for stock returns and the variance terms that al- 

low us to solve for Var t [ m t+1 + r t+1 ] and N RISK,t+1 . 

We assume that the economy is described by a first- 

order VAR 

x t+1 = x̄ + �( x t − x̄ ) + σt u t+1 , (6) 
5 We use the standard terminology to describe the two parameters of 

the Epstein–Zin utility function, γ as risk aversion and ψ as the elastic- 

ity of intertemporal substitution. Garcia et al. (2006) and Hansen et al. 

(2007) , however, point out that this interpretation perhaps is not correct 

when γ differs from the reciprocal of ψ . 
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value function ceases to exist. 

6 In the Online Appendix, we show that existence of the solution for 

ω also imposes a lower bound on γ : γ ≥ 1 − (1 / (ρn + 1) σc f σv ) . We do 

not focus on this lower bound on γ because in our case, it lies far below 

zero, at −6.8. 
where x t+1 is an n × 1 vector of state variables that has

r t+1 as its first element, σ 2 
t+1 as its second element, and

n − 2 other variables that help to predict the first and sec-

ond moments of aggregate returns. x̄ and � are an n × 1

vector and an n × n matrix of constant parameters, and

u t+1 is a vector of shocks to the state variables normalized

so that its first element has unit variance. We assume that

u t+1 has a constant variance-covariance matrix �, with el-

ement 	11 = 1 . We also define n × 1 vectors e 1 and e 2 , all

of whose elements are zero except for a unit first element

in e 1 and second element in e 2 . 

The key assumption here is that a scalar random vari-

able, σ 2 
t , equal to the conditional variance of market re-

turns, also governs time variation in the variance of all

shocks to this system. Both market returns and state vari-

ables, including variance itself, have innovations whose

variances move in proportion to one another. This assump-

tion makes the stochastic volatility process affine, as in

Heston (1993) , and implies that the conditional variance of

returns plus the stochastic discount factor is proportional

to the conditional variance of returns themselves. 

Given this structure, news about discount rates can be

written as 

N DR,t+1 = e ′ 1 ρ�( I − ρ�) 
−1 σt u t+1 , (7)

while implied cash-flow news is 

N CF,t+1 = 

(
e ′ 1 + e ′ 1 ρ�(I − ρ�) −1 

)
σt u t+1 . (8)

Our loglinear model makes the log SDF a linear func-

tion of the state variables, so all shocks to the log SDF are

proportional to σ t , and Var t [ m t+1 + r t+1 ] = ωσ 2 
t for some

constant parameter ω. Our specification implies that news

about risk, N RISK , is proportional to news about market re-

turn variance, N V : 

N RISK,t+1 = ωρe ′ 2 ( I − ρ�) 
−1 σt u t+1 = ωN V,t+1 . (9)

The parameter ω is a nonlinear function of the coeffi-

cient of relative risk aversion γ , as well as the VAR param-

eters and the loglinearization coefficient ρ , but it does not

depend on the elasticity of intertemporal substitution ψ 

except indirectly through the influence of ψ on ρ . In the

Online Appendix, we show that ω solves 

ωσ 2 
t = (1 − γ ) 2 Var t [ N CF,t+1 ] 

+ ω(1 −γ ) Cov t [ N CF,t+1 , N V,t+1 ] + ω 

2 1 

4 

Var t [ N V,t+1 ] .

(10)

γ affects ω through two main channels. First, a higher

risk aversion, given the underlying volatilities of all shocks,

implies a more volatile stochastic discount factor m and,

therefore, higher risk. This effect is proportional to (1 −
γ ) 2 , so it increases rapidly with γ . Second, a feedback ef-

fect exists on current risk through future risk: ω appears

on the right-hand side of the equation as well. Given that

in our estimation we find Cov t 
[
N CF,t+1 , N V,t+1 

]
< 0 , this

second effect makes ω increase even faster with γ . 

The quadratic Eq. (10) has two solutions, but the On-

line Appendix shows that one of them can be disregarded.

The false solution is easily identified by its implication that

ω becomes infinite as volatility shocks become small. The
Online Appendix also shows how to write Eq. (10) directly

in terms of the VAR parameters. 

Finally, substituting Eq. (9) into Eq. (5) , we obtain an

empirically testable expression for the SDF innovations in

the ICAPM with stochastic volatility: 

m t+1 − E t m t+1 = −γ N CF,t+1 − [ −N DR,t+1 ] + 

1 

2 

ωN V,t+1 , 

(11)

where ω solves Eq. (10) . 

3.2. Properties and estimation of the model 

We now discuss the main properties of our model and

describe our estimation method. 

3.2.1. Existence of a solution 

With constant volatility, our model can be solved for

any level of risk aversion. However, in the presence of

stochastic volatility, the model admits a solution only for

values of risk aversion consistent with the existence of a

real solution to the quadratic equation, Eq. (10) . Given our

VAR estimates of the variance and covariance terms, the

Online Appendix plots ω as a function of γ and shows that

a real solution for ω exists when γ lies between zero and

7.2. 

The Online Appendix also shows that existence of a real

solution for ω requires γ to satisfy the upper bound: 

γ ≤ 1 − 1 

(ρn − 1) σc f σv 
, (12)

where σ cf is the standard deviation of the scaled cash-flow

news N CF,t+1 /σt , σv is the standard deviation of the scaled

variance news N V,t+1 /σt , and ρn is the correlation between

these two scaled news terms. 

To develop the intuition behind these equations fur-

ther, the Online Appendix studies a simple example in

which the link between the existence to a solution for

Eq. (10) and the existence of a value function for the rep-

resentative agent can be shown analytically. The example

assumes ψ = 1 , as we can then solve directly for the value

function without any need for a loglinear approximation of

the return on the wealth portfolio ( Tallarini, 20 0 0; Hansen

et al., 2008 ). We find in the example that the condition

for the existence of the value function coincides precisely

with the condition for the existence of a real solution to

the quadratic equation for ω. This result shows that the

possible nonexistence of a solution to the quadratic equa-

tion for ω is a deep feature of the model, not an artifact

of our loglinear approximation to the wealth portfolio re-

turn, which is not needed in the special case in which

ψ = 1 . The problem arises because the value function be-

comes ever more sensitive to volatility as the volatility of

the value function increases, and this sensitivity feeds back

into the volatility of the value function, further increasing

it. When this positive feedback becomes too powerful, the
6 
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7 A related but distinct modeling choice is that, by contrast with BKSY 

(2014), we do not use ICAPM restrictions on unconditional test asset re- 

turns in estimating our VAR system. Such restrictions involve a similar 

trade-off between efficiency if the model is correctly specified and bias if 

it is misspecified. In earlier work on the two-beta ICAPM, we found that 

using moment conditions implied by unconditional ICAPM restrictions to 

estimate a VAR model is computationally challenging and can lead to nu- 

merical instability ( Campbell et al., 2013 ). 
In our empirical analysis, we take seriously the con- 

straint implied by the quadratic equation, Eq. (10) , and re- 

quire that our parameter estimates satisfy this constraint. 

As a consequence, given the high average returns to risky 

assets in historical data, our estimate of risk aversion is of- 

ten close to the estimated upper bound of 7.2. 

3.2.2. Asset pricing equation and risk premia 

To explore the implications of the model for risk pre- 

mia, we use the general asset pricing equation under con- 

ditional lognormality, 

0 = ln E t exp { m t+1 + r i,t+1 } 
= E t [ m t+1 + r i,t+1 ] + 

1 

2 

Var t [ m t+1 + r i,t+1 ] . (13) 

Combining this with the approximation 

E t r i,t+1 + 

1 

2 

σ 2 
it � ( E t R i,t+1 − 1 ) , (14) 

which links expected log returns (adjusted by one-half 

their variance) to expected gross simple returns R i,t+1 , and 

subtracting Eq. (13) for any reference asset j (which could 

be but does not need to be a true risk-free rate) from the 

equation for asset i , we can write a moment condition de- 

scribing the relative risk premium of i relative to j as 

E t 

[
R i,t+1 − R j,t+1 + (r i,t+1 − r j,t+1 )(m t+1 − E t m t+1 ) 

]
= E t 

[
R i,t+1 − R j,t+1 − (r i,t+1 − r j,t+1 )(γ N CF,t+1 

+ [ −N DR,t+1 ] − 1 

2 

ωN V,t+1 ) 
] 

= 0 , (15) 

where the second equality uses Eq. (11) . This expression is 

our main pricing equation, containing all conditional impli- 

cations of the model for any pair of assets i and j . In gen- 

eral, the model does not restrict the covariances between 

the various assets’ returns and the news terms. These are 

measured in the data and not derived from the theory 

(with the exception of the market portfolio itself). 

We can alternatively write the moment conditions in 

covariance form: 

E t 

[
R i,t+1 − R j,t+1 

]
= γ Cov t 

[
r i,t+1 − r j,t+1 , N CF,t+1 

]
+ Cov t 

[
r i,t+1 − r j,t+1 , −N DR,t+1 

]
− 1 

2 

ω Cov t 
[
r i,t+1 − r j,t+1 , N V,t+1 

]
. (16) 

As in CV (2004), this equation breaks an asset’s overall co- 

variance with unexpected returns on the wealth portfolio, 

r t+1 − E t r t+1 = N CF,t+1 − N DR,t+1 , into two pieces, the first 

of which has a higher risk price than the second whenever 

γ > 1. Importantly, it also adds a third term capturing the 

asset’s covariance with shocks to long-run expected future 

volatility. 

3.2.3. Conditional and unconditional implications of the 

model 

The moment condition in Eq. (15) summarizes the con- 

ditional asset pricing implications of the model. That ex- 

pression can be conditioned down to obtain the model’s 

unconditional implications, replacing the conditional ex- 

pectation in Eq. (15) with an unconditional expectation. 
A special conditional implication of the model can be 

obtained when we focus on the wealth portfolio and the 

real risk-free interest rate R f . In this case, because both 

r t+1 and m t+1 are linear functions of the VAR state vector, 

their conditional covariance is proportional to the stochas- 

tic variance term σ 2 
t : 

E t 

[
R t+1 − R f,t+1 

]
= −Cov t [ r t+1 , m t+1 ] ∝ σ 2 

t . (17) 

The model implies that the risk premium on the market 

over a risk-free real asset varies in proportion with the 

one-period conditional variance of the market. 

This conditional restriction has some implications for 

the relation between news terms, in particular N DR and N V . 

While the restriction does not tie the two terms precisely 

together (because N DR also reflects news about the risk- 

free rate), it suggests that the two should be highly corre- 

lated unless the risk-free rate is highly variable. In the spe- 

cial case in which the risk-free rate is constant, the model 

predicts N DR,t+1 ∝ N V,t+1 . 

For several reasons, we, like BKSY (2014), do not impose 

the conditional restriction Eq. (17) on the VAR. We want, 

methodologically, to let the data speak about the dynam- 

ics of returns and risks. Although imposing Eq. (17) could 

improve efficiency if the market is priced exactly in line 

with our model, our estimates would be distorted if our 

model is misspecified. 7 

We do not assume that we observe the riskless real re- 

turn R 
f 
t+1 

. The standard empirical proxy, the nominal Trea- 

sury bill return, is not riskless in real terms, and recent 

papers have argued that this return is affected by the spe- 

cial liquidity of a Treasury bill, which makes it near-money 

( Krishnamurthy and Vissing-Jørgensen, 2012; Nagel, 2016 ). 

Such a pricing distortion implies that no model of risk 

and return correctly prices Treasury bills in relation to 

equities. Consistent with this, a large empirical literature 

has already rejected the restriction Eq. (17) on equity and 

Treasury bill returns ( Campbell, 1987 ; Harvey, 1989, 1991 ; 

Lettau and Ludvigson, 2010 ), and we find that our empiri- 

cal measure of σ 2 
t , EVAR , does not significantly forecast ag- 

gregate stock returns in our unrestricted VAR. 

Even though we do not impose the conditional restric- 

tion Eq. (17) on the VAR, in our empirical analysis we do 

test conditional asset pricing implications of the model by 

performing our generalized method of moments (GMM) 

estimation using as instruments conditioning variables im- 

plied by the model (specifically, σ 2 
t ). We also include a 

Treasury bill in the set of test assets so that we can eval- 

uate the severity of Treasury bill mispricing relative to our 

model. 

3.2.4. Estimation 

Estimation via GMM is straightforward in this model 

given the moment representation of asset pricing Eq. (15) . 
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9 
Conditional on the news terms, the model is a linear fac-

tor model (with the caveat that both level and log returns

appear), which is easy to estimate via GMM even though

it imposes nonlinear restrictions on the factor risk prices.

The model has only one free parameter, γ , that determines

the risk prices as γ for N CF , 1 for −N DR , and −ω(γ ) / 2 for

N V , where ω( γ ) is the solution of quadratic Eq. (10) corre-

sponding to γ and the estimated news terms. 

We estimate the VAR parameters and the news terms

separately via ordinary least squares (OLS) and we use

GMM to estimate the preference parameter γ . Thus, our

GMM standard errors for γ condition on the estimated

news terms. In theory, estimating both the dynamics and

the moment conditions via GMM is possible in one step.

However, as discussed in CGP (2013), this estimation is in-

volved and numerically unstable given the large number of

parameters. 

The moment condition Eq. (15) holds for any two assets

i and j . If an inflation-indexed Treasury bill were available

(whose return we would refer to as R f ), it would be a con-

ventional choice for the reference asset j . In our empiri-

cal analysis, we use the value-weighted market portfolio

as the reference asset. This is a natural choice for the refer-

ence asset as it is the portfolio that our long-term investor

is assumed to hold. We also include a nominal Treasury

bill return as a test asset. 

Finally, we perform our GMM estimation using a pre-

specified diagonal weighting matrix W whose elements are

the inverse of the variances of the excess returns of the

test assets over the market portfolio. This approach ensures

that the GMM estimation is not focusing on some extreme

linear combination of the assets, while still taking into ac-

count the different variances of individual moment condi-

tions. We have repeated our analysis using one-step and

two-step efficient estimation, and the qualitative results in

the paper continue to hold in these cases. 

4. Predicting aggregate stock returns and volatility 

In this section, we present our estimates of the VAR and

discuss its predictive ability for returns and volatility. 

4.1. State variables 

Our full VAR specification of the vector x t+1 contains

six state variables, four of which are among the five vari-

ables in CGP (2013). To those four variables, we add the

Treasury bill rate R Tbill (using it instead of the term yield

spread used by CGP) and an estimate of conditional volatil-

ity. 8 The data are all quarterly, from 1926:2 to 2011:4. 

The first variable in the VAR is the log real return on

the market, r M 

, the difference between the log return on

the Center for Research in Security Prices (CRSP) value-

weighted stock index and the log return on the Consumer

Price Index. This portfolio is a standard proxy for the ag-

gregate wealth portfolio. In the Online Appendix, we con-
8 The switch from the term yield spread to the Treasury bill rate was 

suggested by a referee of an earlier version of this paper. With either vari- 

able, our results are qualitatively and quantitatively similar. 
sider alternative proxies that delever the market return by

combining it in various proportions with Treasury bills. 

The second variable is expected market variance ( EVAR ),

which is meant to capture the variance of market returns,

σ 2 
t , conditional on information available at time t , so that

innovations to this variable can be mapped to N V . To con-

struct EVAR t , we first create a series of within-quarter re-

alized variance of daily returns for each time t , RVAR t . We

then run a regression of RVAR t+1 on lagged realized vari-

ance ( RVAR t ) as well as the other five state variables at

time t . This regression generates a series of predicted val-

ues for RVAR at each time t + 1 , which depend on informa-

tion available at time t : ̂ RVAR t+1 . Finally, we define our ex-

pected variance at time t to be exactly this predicted value

at t + 1 : 

EV AR t ≡ ̂ RV AR t+1 . (18)

Although we describe our methodology in a two-step fash-

ion in which we first estimate EVAR and then use EVAR in a

VAR, this is only for interpretability. This approach to mod-

eling EVAR can be considered a simple renormalization of

equivalent results we would find from a VAR that included

RVAR directly. 9 

The third variable is the log of the Standard & Poor’s

(S&P) 500 price-smoothed earnings ratio ( PE ) adapted

from Campbell and Shiller (1988a) , where earnings are

smoothed over ten years, as in CGP (2013). The fourth is

the yield on a three-month Treasury bill ( R Tbill ) from CRSP.

The fifth is the small-stock value spread ( VS ), constructed

as described in CGP. 

The sixth and final variable is the default spread ( DEF ),

defined as the difference between the log yield on Moody’s

BAA and AAA bonds, obtained from the Federal Reserve

Bank of St. Louis, Missouri. We include the default spread

in part because that variable is known to track time se-

ries variation in expected real returns on the market port-

folio ( Fama and French, 1989 ) and because shocks to the

default spread should to some degree reflect news about

aggregate default probabilities, which in turn should reflect

news about the market’s future cash flows and volatility. 

4.2. Short-run volatility estimation 

For the regression model that generates EVAR t to be

consistent with a reasonable data generating process for

market variance, we deviate from standard OLS in two

ways. First, we constrain the regression coefficients to pro-

duce fitted values (i.e., expected market return variance)

that are positive. Second, given that we explicitly con-

sider heteroskedasticity of the innovations to our vari-

ables, we estimate this regression using weighted least

squares (WLS), in which the weight of each observation

pair ( RVAR t+1 , x t ) is initially based on the previous pe-

riod’s realized variance, RVAR −1 . However, to ensure that
Because we weight observations based on RVAR in the first stage and 

then re-weight observations using EVAR in the second stage, our two- 

stage approach in practice is not exactly the same as a one-stage ap- 

proach. In the Online Appendix, we explore many different ways to es- 

timate our VAR, including using a RVAR -weighted, single-step estimation 

approach. 
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Fig. 1. Forecasting realized variance: This figure shows the results from forecasting realized variance. Panel A plots quarterly observations of realized 

within-quarter daily return variance over the sample period 1926:2–2011:4 and the expected variance implied by the model estimated in Table 1 , Panel A. 

Panel B shows the full scatter plot corresponding to the regression in Table 1 , Panel A. The R 2 from this regression is 38%. Panel C is similar to Panel B but 

zooms in on forecasts from 0 to 0.02. 
the ratio of weights across observations is not extreme, 

we shrink these initial weights toward equal weights. We 

set our shrinkage factor large enough so that the ratio of 

the largest observation weight to the smallest observation 

weight is always less than or equal to five. Though admit- 

tedly somewhat ad hoc, this bound is consistent with rea- 

sonable priors on the degree of variation over time in the 

expected variance of market returns. More important, our 

results are robust to variation in this bound (see the On- 

line Appendix). Both the constraint on the regression’s fit- 

ted values and the constraint on WLS observation weights 

bind in the sample we study. 

The first-stage regression generating the state variable 

EVAR t is reported in Table 1 , Panel A. Not surprisingly, past 

realized variance strongly predicts future realized variance. 

More important, the regression shows that an increase in 

either PE or DEF predicts higher future realized volatility. 

Both of these results are strongly statistically significant 

and are a novel finding of the paper. The predictive power 

of very persistent variables such as PE and DEF indicates a 

potentially important role for lower-frequency movements 

in stochastic volatility. 

We argue that these empirical patterns are sensible. In- 

vestors in risky bonds incorporate their expectation of fu- 

ture volatility when they set credit spreads, as risky bonds 

are short the option to default. Therefore, we expect higher 

DEF to predict higher RVAR . The positive predictive relation 

between PE and RVAR can seem surprising at first, but one 

has to remember that the coefficient indicates the effect of 

a change in PE holding constant the other variables, in par- 
ticular the default spread DEF . Because the default spread 

should also generally depend on the equity premium and 

because most of the variation in PE is due to variation in 

the equity premium, we can regard PE as purging DEF of 

its equity premium component to reveal more clearly its 

forecast of future volatility. We discuss this interpretation 

further in Section 4.4 . 

The R 2 of the variance forecasting regression is nearly 

38%. We illustrate this fit in several ways in Fig. 1 . Panel 

A of the figure shows the movements of RVAR t and EVAR t 
over time (both variables plotted at time t ), illustrat- 

ing their common low-frequency variation. This graphic 

also highlights occasional spikes in realized variance RVAR , 

which generate high subsequent forecasts but are not 

themselves predicted by EVAR . Panel B plots the realized 

values at each time t , RVAR t , against the forecast obtained 

using time t − 1 information, EVAR t−1 , over the whole 

range of the data. Panel C shows the observations for 

which both RVAR t and EVAR t−1 are less than 0.02 (the bot- 

tom left corner of Panel B). Fig. 1 clearly shows predictable 

variation in variance that is captured by our model as well 

as the trade-off between frequent small over-predictions of 

variance and infrequent large under-predictions, caused by 

the skewness of realized variance. 

4.3. Estimation of the VAR and the news terms 

In this subsection, we report our VAR estimates, then 

show the implied cash-flow, discount-rate, and volatility 

news series. 
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Table 1 

Vector autoregression (VAR) estimation. 

The table shows the weighted least squares (WLS) parameter estimates for a first-order VAR model. The state variables in the VAR are the log 

real return on the Center for Research in Security Prices (CRSP) value-weight index ( r M ), the realized variance ( RVAR ) of within-quarter daily 

simple returns on the CRSP value-weight index, the log ratio of the Standard & Poor’s (S&P) 500’s price to the S&P 500’s ten-year moving 

average of earnings ( PE ), the log three-month Treasury bill yield ( r Tbill ), the default yield spread ( DEF ) in percentage points, measured as the 

difference between the log yield on Moody’s BAA bonds and the log yield on Moody’s AAA bonds, and the small-stock value spread ( VS ), the 

difference in the log book-to-market ratios of small-value and small-growth stocks. The small-value and small-growth portfolios are two of 

the six elementary portfolios constructed by Davis et al. (20 0 0) . For the sake of interpretation, we estimate the VAR in two stages. Panel A 

reports the WLS parameter estimates of a first-stage regression forecasting RVAR with the VAR state variables. The forecasted values from this 

regression are used in the second stage of the estimation procedure as the state variable EVAR , replacing RVAR in the second-stage VAR. Panel 

B reports WLS parameter estimates of the full second-stage VAR. Initial WLS weights on each observation are inversely proportional to RVAR t 
and EVAR t in the first and second stage, respectively, and are then shrunk to equal weights so that the maximum ratio of actual weights used is 

less than or equal to five. In addition, the forecasted values for both RVAR and EVAR are constrained to be positive. In Panels A and B, Columns 

1–7 report coefficients on an intercept and the six explanatory variables, and Column 8 shows the implied R 2 statistic for the unscaled model. 

Bootstrapped standard errors that take into account the uncertainty in generating EVAR are in parentheses. Panel C reports the correlation 

(“Corr/std”) matrices of both the unscaled and scaled shocks from the second-stage VAR, with shock standard deviations on the diagonal. Panel 

D reports the results of regressions forecasting the squared second-stage residuals from the VAR with EVAR t . For readability, the estimates in 

the regression forecasting r Tbil l ,t+1 with EVAR t ar e multiplied b y ten thousand. Bootstrap standard errors that take into account the uncertainty 

in generating EVAR are in parentheses. The sample period for the dependent variables is 1926:3–2011:4, with 342 quarterly data points. 

Panel A: Forecasting quarterly realized variance ( RVAR t+1 ) 

Constant r M , t RVAR t PE t r Tbill , t DEF t VS t R 2 

(1) (2) (3) (4) (5) (6) (7) (8) 

−0.020 −0.005 0.374 0.006 −0.042 0.006 0.0 0 0 37.80% 

(0.009) (0.005) (0.066) (0.002) (0.057) (0.001) (0.003) 

Panel B: VAR estimates 

Second stage Constant r M , t EVAR t PE t r Tbill , t DEF t VS t R 2 

(1) (2) (3) (4) (5) (6) (7) (8) 

r M,t+1 0.221 0.041 0.335 −0.042 −0.810 0.010 −0.051 3.36% 

(0.113) (0.063) (2.143) (0.032) (0.736) (0.022) (0.035) 

EVAR t+1 −0.016 −0.002 0.441 0.005 −0.021 0.004 0.001 60.78% 

(0.007) (0.001) (0.057) (0.002) (0.046) (0.001) (0.002) 

PE t+1 0.155 0.130 0.674 0.961 −0.399 −0.001 −0.024 94.29% 

(0.113) (0.062) (2.112) (0.032) (0.734) (0.022) (0.035) 

r Tbil l ,t+1 0.001 0.002 −0.084 0.001 0.948 0.001 −0.001 94.07% 

(0.004) (0.002) (0.075) (0.001) (0.024) (0.001) (0.001) 

DEF t+1 0.194 −0.293 11.162 −0.118 4.102 0.744 0.175 88.22% 

(0.309) (0.176) (5.838) (0.086) (1.925) (0.062) (0.094) 

V S t+1 0.147 0.069 2.913 −0.017 −0.253 −0.004 0.932 93.93% 

(0.111) (0.065) (2.169) (0.031) (0.705) (0.022) (0.034) 

Panel C: Correlations and standard deviations 

Corr/std r M EVAR PE r Tbill DEF VS 

unscaled 

r M 0.105 −0.509 0.907 −0.041 −0.482 −0.039 

EVAR −0.509 0.004 −0.592 −0.163 0.688 0.106 

PE 0.907 −0.592 0.099 −0.004 −0.598 −0.066 

r Tbill −0.041 −0.163 −0.004 0.003 −0.111 0.013 

DEF −0.482 0.688 −0.598 −0.111 0.287 0.323 

VS -0.039 0.106 -0.066 0.013 0.323 0.086 

scaled 

r M 1.138 -0.494 0.905 -0.055 -0.367 0.022 

EVAR -0.494 0.044 -0.570 -0.178 0.664 0.068 

PE 0.905 -0.570 1.047 -0.014 -0.479 0.005 

r Tbill -0.055 -0.178 −0.014 0.041 -0.160 -0.001 

DEF -0.367 0.664 -0.479 -0.160 2.695 0.273 

VS 0.022 0.068 0.005 -0.001 0.273 0.996 

Panel D: Heteroskedastic shocks 

Squared, second-stage, 

unscaled residual Constant EVAR t R 2 

r M,t+1 -0.002 1.85 20.43% 

(0.003) (0.283) 

EVAR t+1 0.0 0 0 0.004 6.36% 

(0.0 0 0) (0.001) 

PE t+1 -0.004 1.89372 19.75% 

(0.003) (0.289) 

r Tbil l ,t+1 0.111 0.283 -0.29% 

(0.054) (4.542) 

DEF t+1 -0.113 27.166 27.50% 

(0.041) (3.411) 

V S t+1 0.004 0.472 5.57% 

(0.002) (0.133) 
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4.3.1. VAR estimates 

We estimate a first-order VAR as in Eq. (6) , where x t+1 

is a 6 × 1 vector of state variables ordered as follows: 

x t+1 = [ r M,t+1 EVAR t+1 P E t+1 R T bil l ,t+1 DEF t+1 V S t+1 ] , (19) 

so that the real market return r M,t+1 is the first element 

and EVAR is the second element. x̄ is a 6 × 1 vector of the 

means of the variables, and � is a 6 × 6 matrix of constant 

parameters. Finally, σt u t+1 is a 6 × 1 vector of innovations, 

with the conditional variance-covariance matrix of u t+1 a 

constant �, so that the parameter σ 2 
t scales the entire 

variance-covariance matrix of the vector of innovations. 

The first-stage regression forecasting realized market 

return variance described in Section 4.2 generates the vari- 

able EVAR . The theory in Section 3 assumes that σ 2 
t , prox- 

ied for by EVAR , scales the variance-covariance matrix of 

state variable shocks. Thus, as in the first stage, we es- 

timate the second-stage VAR using WLS, in which the 

weight of each observation pair ( x t+1 , x t ) is initially based 

on (EVAR t ) 
−1 . We continue to constrain both the weights 

across observations and the fitted values of the regression 

forecasting EVAR . 

Table 1 , Panel B, presents the results of the VAR esti- 

mation for the full sample (1926:2 to 2011:4). 10 We report 

bootstrap standard errors for the parameter estimates of 

the VAR that take into account the uncertainty generated 

by forecasting variance in the first stage. Consistent with 

previous research, we find that PE negatively predicts fu- 

ture returns, though the t -statistic indicates only marginal 

significance. The value spread has a negative but not sta- 

tistically significant effect on future returns. In our speci- 

fication, a higher conditional variance, EVAR , is associated 

with higher future returns, though the effect is not statis- 

tically significant. The relatively high degree of correlation 

among PE , DEF , VS , and EVAR complicates the interpretation 

of the individual effects of those variables. As for the other 

novel aspects of the transition matrix, both high PE and 

high DEF predict higher future conditional variance of re- 

turns. High past market returns forecast lower EVAR , higher 

PE , and lower DEF . 11 

Panel C of Table 1 reports the sample correlation matri- 

ces of both the unscaled residuals σt u t+1 and the scaled 

residuals u t+1 . The correlation matrices report standard 

deviations on the diagonals. A comparison of the standard 

deviations of the unscaled and scaled market return resid- 

uals provides a rough indication of the effectiveness of our 

empirical solution to the heteroskedasticity of the VAR. 
The scaled return residuals should have unit standard devi- 

10 In our robustness test, we show that our findings continue to hold 

if we either estimate our model’s news terms out-of-sample or allow the 

coefficients in the first two regressions of the VAR to vary across the early 

and modern subsamples. 
11 One worry is that many elements of the transition matrix are esti- 

mated imprecisely. Though these estimates can be zero, their nonzero but 

statistically insignificant in-sample point estimates, in conjunction with 

the highly nonlinear function that generates discount-rate and volatility 

news, can result in misleading estimates of risk prices. However, the On- 

line Appendix shows that we continue to find an economically significant 

negative volatility beta for value-minus-growth bets if we instead employ 

a partial VAR in which, via a standard iterative process, only variables 

with t -statistics greater than 1.0 are included in each VAR regression. 
ation, and our implementation results in a sample standard 

deviation of 1.14. 12 

Panel D reports the coefficients of a regression of the 

squared unscaled residuals σt u t+1 of each VAR equation on 

a constant and EVAR . These results are broadly consistent 

with our assumption that EVAR captures the conditional 

volatility of the market return and other state variables. 

The coefficient on EVAR in the regression forecasting the 

squared market return residuals is 1.85, not the theoreti- 

cally expected value of one, but this coefficient is sensi- 

tive to the weighting scheme used in the regression. We 

can reject the null hypothesis that all six regression coef- 

ficients are jointly zero or negative. This evidence is con- 

sistent with the volatilities of all innovations being driven 

by a common factor, as we assume, although, empirically, 

other factors also can influence the volatilities of certain 

variables. 

4.3.2. News terms 

Panels A and B of Table 2 present the variance- 

covariance matrix and the standard deviation and corre- 

lation matrix of the news terms, estimated as described 

above. We find, consistent with previous research, that 

discount-rate news is nearly twice as volatile as cash-flow 

news. 

The interesting new results in this table concern the 

variance news term N V . News about future variance has 

significant volatility, with nearly a third of the variability of 

discount-rate news. Variance news is negatively correlated 

( −0 . 12 ) with cash-flow news. As one could expect from 

the literature on the leverage effect ( Black, 1976; Christie, 

1982 ), news about low cash flows is associated with news 

about higher future volatility. N V is close to uncorrelated 

( −0 . 03 ) with discount-rate news. 13 The net effect of these 

correlations, in Panel C of Table 2 , is a correlation close to 

zero (again −0 . 03 ) between our measure of volatility news 

and contemporaneous market returns. 

Panel D of Table 2 reports the decomposition of 

the vector of innovations σt u t+1 into the three terms 

N CF,t+1 , N DR,t+1 , and N V,t+1 . As shocks to EVAR are just 

a linear combination of shocks to the underlying state 

variables, which includes RVAR , we unpack EVAR to ex- 

press the news terms as a function of r M 

, PE , R Tbill , VS ,

DEF , and RVAR . The panel shows that innovations to RVAR 

are mapped more than one-to-one to news about future 

volatility. However, several of the other state variables also 

drive news about volatility. Specifically, innovations in PE , 

DEF , and VS are associated with news of higher future 

volatility. Panel D also indicates that all state variables 

with the exception of R Tbill are statistically significant in 

terms of their contribution to at least one of the three 

news terms. We choose to leave R in the VAR, though 
Tbill 

12 A comparison of the unscaled and scaled autocorrelation matrices, in 

the Online Appendix, reveals in addition that much of the sample auto- 

correlation in the unscaled residuals is eliminated by our WLS approach. 
13 Though the point estimate of this correlation is negative, the large 

standard error implies that we cannot reject the volatility feedback effect 

( Campbell and Hentschel, 1992; Calvet and Fisher, 2007 ), which generates 

a positive correlation. For related research, see French et al. (1987) . 
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Table 2 

Cash-flow, discount-rate, and variance news for the market portfolio. 

The table shows the properties of cash-flow news ( N CF ), discount-rate 

news ( N DR ), and volatility news ( N V ) implied by the vector autoregres- 

sion (VAR) model of Table 1 . Panel A shows the covariance matrix of 

the news terms. For readability, these estimates are scaled by one hun- 

dred. Panel B shows the correlation matrix of the news terms with 

standard deviations on the diagonal. Panel C shows the correlations of 

shocks to individual state variables with the news terms. Panel D shows 

the functions ( e1 ′ + e1 ′ λDR , e1 ′ λDR , e2 ′ λV ) that map the state vari- 

able shocks to cash-flow, discount-rate, and variance news. We define 

λDR ≡ ρ�(I − ρ�) −1 and λV ≡ ρ(I − ρ�) −1 , where � is the estimated 

VAR transition matrix from Table 1 and ρ is set to 0.95 per annum. 

r M is the log real return on the Center for Research in Security Prices 

(CRSP) value-weight index. RVAR is the realized variance of within- 

quarter daily simple returns on the CRSP value-weight index. PE is the 

log ratio of the Standard & Poor’s (S&P) 500’s price to the S&P 500’s 

ten-year moving average of earnings. r Tbill is the log three-month Trea- 

sury yield. DEF is the default yield spread in percentage points, mea- 

sured as the difference between the log yield on Moody’s BAA bonds 

and the log yield on Moody’s AAA bonds. VS is the small-stock value 

spread, the difference in the log book-to-market ratios of small-value 

and small-growth stocks. Bootstrap standard errors that take into ac- 

count the uncertainty in generating EVAR are in parentheses. 

N CF N DR N V 

Panel A: News terms 

N CF 0.236 −0.018 −0.015 

(0.087) (0.119) (0.030) 

N DR −0.018 0.838 −0.008 

(0.119) (0.270) (0.065) 

N V −0.015 −0.008 0.065 

(0.030) (0.065) (0.030) 

Panel B: Correlations and standard deviations of news terms 

N CF 0.049 −0.041 −0.121 

(0.008) (0.225) (0.264) 

N DR −0.041 0.092 −0.034 

(0.225) (0.014) (0.355) 

N V −0.121 −0.034 0.025 

(0.264) (0.355) (0.007) 

Panel C: Correlations with shocks to state variables 

r M shock 0.497 −0.888 −0.026 

(0.213) (0.045) (0.332) 

EVAR shock −0.040 0.564 0.660 

(0.196) (0.143) (0.174) 

PE shock 0.158 −0.960 −0.097 

(0.239) (0.044) (0.354) 

r Tbill shock −0.372 −0.151 −0.034 

(0.219) (0.142) (0.331) 

DEF shock −0.041 0.533 0.751 

(0.188) (0.115) (0.223) 

VS shock −0.397 −0.165 0.567 

(0.187) (0.141) (0.261) 

Panel D: Functions of shocks to state variables 

r M shock 0.908 −0.092 −0.011 

(0.031) (0.031) (0.015) 

RVAR shock −0.300 −0.300 1.280 

(1.134) (1.134) (0.571) 

PE shock −0.814 −0.814 0.187 

(0.167) (0.167) (0.084) 

r Tbill shock −4.245 −4.245 0.867 

(3.635) (3.635) (1.821) 

DEF shock 0.008 0.008 0.079 

(0.034) (0.034) (0.017) 

VS shock −0.248 −0.248 0.099 

(0.127) (0.127) (0.064) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

its presence in the system makes little difference to our

conclusions. 

Fig. 2 plots the N CF , −N DR , and N V series. To emphasize

lower-frequency movements and to improve the readabil-

ity of the figure, we normalize each series by its standard

deviation and then smooth (for plotting purposes only),

using an exponentially weighted moving average with a

quarterly decay parameter of 0.08. This decay parameter

implies a half-life of approximately two years. The pattern

of N CF and −N DR is consistent with previous research, for

example, Fig. 1 of CV (2004). As a consequence, we focus

on the smoothed series for market variance news. Con-

siderable time variation exists in N V . We find episodes of

news of high future volatility during the Great Depression

and just before the beginning of World War II, followed

by a period of little news until the late 1960s. From then

on, periods of positive volatility news alternate with pe-

riods of negative volatility news in cycles of three to five

years. Spikes in news about future volatility are found in

the early 1970s (following the oil shocks), in the late 1970s

and again following the 1987 stock market crash. The late

1990s are characterized by strongly negative news about

future returns and at the same time, higher expected fu-

ture volatility. The recession of the late 20 0 0s is charac-

terized by strongly negative cash-flow news, together with

a spike in volatility of the highest magnitude in our sam-

ple. The recovery from the 20 07–20 09 financial crisis has

brought positive cash-flow news together with news about

lower future volatility. 

4.4. Predicting long-run volatility 

The predictability of volatility, and especially of its

long-run component, is central to this paper. We have

shown that volatility is strongly predictable, specifically by

variables beyond lagged realizations of volatility itself: PE

and DEF contain essential information about future volatil-

ity. We have also proposed a VAR-based methodology to

construct long-horizon forecasts of volatility that incorpo-

rate all the information in lagged volatility as well as in

the additional predictors such as PE and DEF . 

We now ask how well our proposed long-run volatility

forecast captures the long-horizon component of volatility.

In the Online Appendix, we regress realized, discounted,

annualized long-run variance up to period h , 

LHRVAR h = 

4	h 
j=1 

ρ j−1 RVAR t+ j 

	h 
j=1 

ρ j−1 
, (20)

on the variables included in our VAR system, the VAR long-

horizon forecast, and some alternative forecasts of long-

run variance. We focus on a ten year horizon ( h = 40 ) as

longer horizons come at the cost of fewer independent

observations. However, the Online Appendix confirms that

our results are robust to horizons ranging from one to 15

years. 

We estimate, as alternatives to the VAR approach, two

standard GARCH-type models, designed to capture the

long-run component of volatility: the two-component ex-

ponential (EGARCH) model proposed by Adrian and Rosen-

berg (2008) , and the fractionally integrated (FIGARCH)
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Fig. 2. The history of market news: This figure plots cash-flow news, the negative of discount-rate news, and variance news. The series are normalized 

by their standard deviations and then smoothed with a trailing exponentially weighted moving average in which the decay parameter is set to 0.08 per 

quarter, and the smoothed normalized news series is generated as MA t (N) = 0 . 08 N t + (1 − 0 . 08) MA t−1 (N) . This decay parameter implies a half-life of two 

years. The sample period is 1926:2–2011:4. 
model of Baillie et al. (1996) . We estimate both GARCH 

models using the full sample of daily returns and then gen- 

erate the appropriate forecast of LHRVAR 40 . To these two 

models, we add the set of variables from our VAR and 

compare the forecasting ability of these different models. 

We find that while the EGARCH and FIGARCH forecasts do 

forecast long-run volatility, our VAR variables provide as 

good or better explanatory power, and RVAR , PE and DEF 

are strongly statistically significant. Our long-run VAR fore- 

cast has a coefficient of 1.02, which remains highly signif- 

icant at 0.82 even in the presence of the FIGARCH fore- 

cast. We also find that DEF does not predict long-horizon 

volatility in the presence of our VAR forecast, implying that 

the VAR model captures the long-horizon information in 

the default spread. 

The Online Appendix also examines more carefully the 

links between PE , DEF , and LHRVAR 40 . By itself, PE has 

almost no information about low-frequency variation in 

volatility. In contrast, DEF forecasts nearly 22% of the varia- 

tion in LHRVAR 40 . Furthermore, if we use the component of 

DEF that is orthogonal to PE , which we call DEFO or the PE - 

adjusted default spread, the R 2 increases to over 51%. Our 

interpretation of these results is that DEF contains informa- 

tion about future volatility because risky bonds are short 

the option to default. However, DEF also contains informa- 

tion about future aggregate risk premia. We know from 

previous work that much of the variation in PE reflects ag- 

gregate risk premia. Therefore, including PE in the volatility 

forecasting regression cleans up variation in DEF resulting 

from variation in aggregate risk premia and thus sharpens 
the link between DEF and future volatility. Because PE and 

DEF are negatively correlated (default spreads are relatively 

low when the market trades rich), both PE and DEF receive 

positive coefficients in the multiple regression. 

Fig. 3 provides a visual summary of the long-run 

volatility-forecasting power of our key VAR state variables 

and our interpretation. Panel A plots LHRVAR 40 together 

with lagged DEF and PE . The graph confirms the strong 

negative correlation between PE and DEF (correlation of - 

0.6) and highlights the way both variables track long-run 

movements in long-run volatility. To isolate the contribu- 

tion of the default spread in predicting long run volatil- 

ity, Panel B plots LHRVAR 40 together with DEFO , the PE - 

adjusted default spread that is orthogonal to the mar- 

ket’s smoothed price-earnings ratio. The improvement in 

fit moving from Panel A to Panel B is clear. 

The contrasting behavior of DEF and DEFO in the two 

panels during episodes such as the tech boom help illus- 

trate the workings of our story. Taken in isolation, the rel- 

atively stable default spread throughout most of the late 

1990s would predict little change in future market volatil- 

ity. However, once the declining equity premium over that 

period is taken into account (as shown by the rapid in- 

crease in PE ), a high PE -adjusted default spread in the late 

1990s forecasted much higher volatility ahead. 

As a further check on the usefulness of our VAR ap- 

proach, we compare in the Online Appendix our variance 

forecasts to option-implied variance forecasts over the pe- 

riod 1998–2011. When both the VAR and option data are 

used to predict realized variance, the VAR forecasts drive 
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Fig. 3. Modeling low-frequency variation in realized market variance: We measure long-horizon realized variance ( LHRVAR ) as the annualized discounted 

sum of within-quarter daily return variance, LHRVAR h = 

4 ∗	h 
j=1 

ρ j−1 RVAR t+ j 
	h 

j=1 
ρ j−1 

. Each panel plots quarterly observations of ten-year realized variance, LHRVAR 40 , 

over the sample period 1930:1–2001:1. In Panel A, in addition to LHRVAR 40 , we plot lagged PE and DEF . In Panel B, in addition to LHRVAR 40 , we plot the 

fitted value from a regression forecasting LHRVAR 40 with DEFO , defined as DEF orthogonalized to demeaned PE . The Online Appendix reports the weighted 

least squares estimates of this forecasting regression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ 
out the option-implied forecasts while remaining statisti-

cally and economically significant. 

Taken together, these results make a strong case that

credit spreads and valuation ratios contain information

about future volatility not captured by simple univariate

models, even those designed to fit long-run movements

in volatility. Furthermore, our VAR method for calculating

long-horizon forecasts preserves this information. 

5. Estimating the ICAPM using equity portfolios sorted 

by size, value, and risk 

In this section, we estimate and test the ICAPM with

stochastic volatility using various cross sections of equity

returns. 

5.1. Construction of test assets 

In addition to the VAR state variables, our analysis re-

quires excess returns on a set of test assets. In this subsec-

tion, we construct several sets of equity portfolios sorted

by value, size, and risk estimates from our model. Full de-

tails on the construction method are provided in the On-

line Appendix. 

Because the long-term investor in our model is as-

sumed to hold the equity market, we measure all excess

returns relative to the market portfolio. Our primary cross

section consists of the excess returns over the market on

25 portfolios sorted by size and value (ME and BE/ME),
studied in Fama and French (1993) , extended in Davis et al.

(20 0 0) , and made available by Professor Kenneth French on

his website. 14 To this cross section, we add the excess re-

turn on a Treasury bill over the market (the negative of

the usual excess return on the market over a Treasury bill),

which gives an initial set of 26 characteristic-sorted test

assets. 

We incorporate additional assets in our tests to guard

against the concerns of Daniel and Titman ( 1997, 2012 )

and Lewellen et al. (2010) that characteristic-sorted port-

folios can have a low-order factor structure that is easily

fit by spurious models. We construct a second set of six

risk-sorted portfolios, double-sorted on past multiple be-

tas with market returns and variance innovations (approx-

imated by a weighted average of changes in the VAR ex-

planatory variables). 

We also consider excess returns on equity portfolios

that are formed based on both characteristics and past ex-

posures to variance innovations. One possible explanation

for our finding that growth stocks hedge volatility rela-

tive to value stocks is that growth firms are more likely

to hold real options, whose value increases with volatil-

ity. To test this interpretation, we sort stocks based on two

firm characteristics that are often used to proxy for the

presence of real options and that are available for a large

percentage of firms throughout our sample period: the ra-

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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tio of book equity to market equity (BE/ME) and idiosyn- 

cratic volatility ( i v ol). Having formed nine portfolios using 

a two-way characteristic sort, we split each of these port- 

folios into two subsets based on pre-formation estimates 

of each stock’s simple beta with variance innovations. One 

could expect that sorts on simple instead of partial be- 

tas would be more effective in establishing a link between 

pre-formation and post-formation estimates of volatility 

beta, because the market is correlated with volatility news. 

This gives us eighteen portfolios sorted on both character- 

istics and risk. 

Combining all the above portfolios, we have a set of 50 

test assets. We finally create managed or scaled versions of 

all these portfolios by interacting them with our volatility 

forecast EVAR . The managed portfolios increase their expo- 

sure to test assets at times when market variance is ex- 

pected to be high. With both unscaled and scaled portfo- 

lios, we have a total of one hundred test assets. 15 

Previous research, particularly CV (2004), has found im- 

portant differences in the risks of value stocks in the pe- 

riods before and after 1963. Accordingly, we consider two 

main subsamples, which we call early (1931:3–1963:3) and 

modern (1963:4–2011:4). A successful model should be 

able to fit the cross section of test asset returns in both 

these periods with stable parameters. 

5.2. Beta measurement 

We first examine the betas implied by the covariance 

form of the model in Eq. (16) . We cosmetically multiply 

and divide all three covariances by the sample variance of 

the unexpected log real return on the market portfolio to 

facilitate comparison with previous research, defining 

βi,CF M ≡
Cov (r i,t , N CF,t ) 

V ar(r M,t − E t−1 r M,t ) 
, (21) 

βi,DR M ≡
Cov (r i,t , −N DR,t ) 

V ar(r M,t − E t−1 r M,t ) 
, (22) 

βi,V M ≡
Cov (r i,t , N V,t ) 

V ar(r M,t − E t−1 r M,t ) 
. (23) 

The risk prices on these betas are just the variance of the 

market return innovation times the risk prices in Eq. (16) . 

We estimate cash-flow, discount-rate, and variance be- 

tas using the fitted values of the market’s cash-flow, 

discount-rate, and variance news estimated in Section 4 . 

We estimate simple WLS regressions of each portfolio’s log 

returns on each news term, weighting each time t + 1 ob- 

servation pair by the weights used to estimate the VAR in 

Table 1 , Panel B. We then scale the regression loadings by 

the ratio of the sample variance of the news term in ques- 

tion to the sample variance of the unexpected log real re- 

turn on the market portfolio to generate estimates for our 

three-beta model. 

5.2.1. Characteristic-sorted portfolios 

Table 3 , Panel A, shows the estimated betas for the 

characteristic-sorted portfolios over the 1931–1963 period. 
15 Table OA1 in the Online Appendix reports summary statistics for 

these portfolios. 
To save space, we omit the betas for portfolios in the sec- 

ond and fourth quintiles of each characteristic, retaining 

only the first, third, and fifth quintiles. The full table can 

be found in the Online Appendix. 

The portfolios are organized in a square matrix with 

growth stocks at the left, value stocks at the right, small 

stocks at the top, and large stocks at the bottom. At the 

right edge of the matrix we report the differences between 

the extreme growth and extreme value portfolios in each 

size group. Along the bottom of the matrix, we report the 

differences between the extreme small and extreme large 

portfolios in each BE/ME category. The top matrix displays 

post-formation cash-flow betas, the middle matrix displays 

post-formation discount-rate betas, and the bottom matrix 

displays post-formation variance betas. In square brackets 

after each beta estimate, we report a standard error, cal- 

culated conditional on the realizations of the news series 

from the aggregate VAR model. 

In the pre-1963 sample period, value stocks (except 

those in the smallest size quintile) have both higher cash- 

flow and discount-rate betas than growth stocks. An equal- 

weighted average of the extreme value stocks across all 

size quintiles has a cash-flow beta 0.12 higher than an 

equal-weighted average of the extreme growth stocks. The 

average difference in estimated discount-rate betas, 0.25, is 

in the same direction. Similar to value stocks, small stocks 

have consistently higher cash-flow betas and discount-rate 

betas than large stocks in this sample (by 0.16 and 0.36, 

respectively, for an equal-weighted average of the small- 

est stocks across all value quintiles relative to an equal- 

weighted average of the largest stocks). These differences 

are extremely similar to those in CV (2004) despite the 

exclusion of the 1929–1931 subperiod, the replacement of 

the excess log market return with the log real return, and 

the use of a richer, heteroskedastic VAR. 

The new finding in Table 3 , Panel A, is that value stocks 

and small stocks are also riskier in terms of volatility be- 

tas. An equal-weighted average of the extreme value stocks 

across all size quintiles has a volatility beta 0.06 lower 

than an equal-weighted average of the extreme growth 

stocks. An equal-weighted average of the smallest stocks 

across all value quintiles has a volatility beta that is 0.06 

lower than an equal-weighted average of the largest stocks. 

In summary, value and small stocks were unambiguously 

riskier than growth and large stocks over the 1931–1963 

period. 

Table 3 , Panel B, reports the corresponding estimates 

for the post-1963 period. As shown in this subsample by 

CV (2004), value stocks still have slightly higher cash-flow 

betas than growth stocks, but much lower discount-rate 

betas. Our new finding here is that value stocks continue 

to have much lower volatility betas, and the spread in 

volatility betas is even greater than in the early period. The 

volatility beta for the equal-weighted average of the ex- 

treme value stocks across size quintiles is 0.11 lower than 

the volatility beta of an equal-weighted average of the ex- 

treme growth stocks, a difference that is more than 85% 

higher than the corresponding difference in the early pe- 

riod. 

These results imply that in the post-1963 period, when 

the CAPM has difficulty explaining the low returns on 
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Table 3 

Cash-flow, discount-rate, and variance betas. 

The table shows the estimated cash-flow ( ̂  βCF ), discount-rate ( ̂  βDR ), and variance betas ( ̂  βV ) for the 25 ME- 

and BE/ME-sorted portfolios (Panels A and B) and six risk-sorted portfolios (Panels C and D) for the early 

(1931:3–1963:2) and modern (1963:3–2011:4) subsamples. “Growth” denotes the lowest ratio of book equity 

to market equity (BE/ME), “Value,” the highest BE/ME; “Small,” the lowest market equity (ME); and “Large,”

the highest ME stocks. ̂  b �VAR and ̂  b r M are past return loadings on the weighted sum of changes in the vector 

autoregression (VAR) state variables, in which the weights are according to λV as estimated in Table 2 , and on 

the market-return shock. “Diff” is the difference between the extreme cells. Bootstrapped standard errors [in 

brackets] are conditional on the estimated news series. Estimates are based on quarterly data using weighted 

least squares in which the weights are the same as those used to estimate the VAR. 

Panel A: 25 ME– and BE/ME–sorted portfolios, early period (1931:3–1963:2) 

Growth 3 Value Diff

̂ βCF 

Small 0.49 0.44 0.46 −0.04 

[0.13] [0.11] [0.10] [0.05] 

3 0.32 0.34 0.47 0.15 

[0.08] [0.09] [0.12] [0.05] 

Large 0.24 0.27 0.40 0.16 

[0.07] [0.09] [0.29] [0.04] 

Diff −0.26 −0.17 −0.06 

[0.07] [0.04] [0.03] ̂ βDR 

Small 1.20 1.20 1.13 −0.07 

[0.15] [0.17] [0.17] [0.07] 

3 0.95 0.97 1.22 0.27 

[0.13] [0.12] [0.16] [0.09] 

Large 0.70 0.80 0.90 0.20 

[0.08] [0.12] [0.12] [0.13] 

Diff −0.50 −0.40 −0.23 

[0.14] [0.16] [0.08] ̂ βV 

Small −0.14 −0.15 −0.14 0.00 

[0.05] [0.05] [0.04] [0.02] 

3 −0.09 −0.09 −0.14 −0.05 

[0.03] [0.03] [0.04] [0.02] 

Large −0.05 −0.09 −0.11 −0.07 

[0.02] [0.04] [0.03] [0.03] 

Diff 0.09 0.06 0.03 

[0.04] [0.02] [0.02] 

Panel B: 25 ME– and BE/ME–sorted portfolios, modern period (1963:3–2011:4) 

Growth 3 Value Diff

̂ βCF 

Small 0.23 0.26 0.28 0.05 

[0.06] [0.05] [0.05] [0.04] 

3 0.21 0.24 0.27 0.06 

[0.05] [0.05] [0.05] [0.03] 

Large 0.15 0.18 0.20 0.05 

[0.04] [0.03] [0.04] [0.03] 

Diff −0.08 −0.08 −0.07 

[0.04] [0.03] [0.03] ̂ βDR 

Small 1.30 0.87 0.86 −0.44 

[0.11] [0.07] [0.09] [0.08] 

3 1.11 0.73 0.69 −0.42 

[0.08] [0.06] [0.07] [0.08] 

Large 0.82 0.60 0.64 −0.18 

[0.05] [0.05] [0.06] [0.06] 

Diff −0.48 −0.26 −0.23 

[0.10] [0.06] [0.08] ̂ βV 

Small 0.13 0.05 0.01 −0.13 

[0.07] [0.05] [0.07] [0.03] 

3 0.14 0.05 0.04 −0.10 

[0.06] [0.05] [0.04] [0.03] 

Large 0.09 0.03 0.02 −0.08 

[0.05] [0.04] [0.04] [0.02] 

Diff −0.04 −0.02 0.01 

[0.03] [0.02] [0.03] 

( continued on next page ) 
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Table 3 ( continued ) 

Panel C: Six risk-sorted portfolios, early period (1931:3–1963:2) 

Lo ̂  b r M 2 Hi ̂  b r M Diff

̂ βCF 

Lo ̂  b VAR 0.23 0.34 0.42 0.19 

[0.07] [0.09] [0.11] [0.04] 

Hi ̂  b VAR 0.21 0.28 0.41 0.20 

[0.06] [0.08] [0.11] [0.05] 

Diff −0.02 −0.05 −0.01 

[0.02] [0.03] [0.02] ̂ βDR 

Lo ̂  b VAR 0.60 0.89 1.13 0.54 

[0.06] [0.11] [0.13] [0.11] 

Hi ̂  b VAR 0.58 0.83 1.11 0.54 

[0.07] [0.10] [0.16] [0.13] 

Diff −0.02 −0.06 −0.02 

[0.04] [0.08] [0.06] ̂ βV 

Lo ̂  b VAR −0.04 −0.07 −0.10 −0.06 

[0.02] [0.03] [0.04] [0.02] 

Hi ̂  b VAR −0.05 −0.07 −0.11 −0.06 

[0.02] [0.03] [0.04] [0.03] 

Diff −0.01 0.00 −0.01 

[0.02] [0.02] [0.02] 

Panel D: Six risk-sorted portfolios, modern period (1963:3–2011:4) 

Lo ̂  b r M 2 Hi ̂  b r M Diff

̂ βCF 

Lo ̂  b VAR 0.20 0.20 0.26 0.06 

[0.04] [0.04] [0.06] [0.04] 

Hi ̂  b VAR 0.17 0.21 0.21 0.05 

[0.03] [0.04] [0.06] [0.05] 

Diff −0.04 0.01 −0.05 

[0.03] [0.02] [0.02] ̂ βDR 

Lo ̂  b VAR 0.63 0.79 1.18 0.56 

[0.06] [0.06] [0.09] [0.08] 

Hi ̂  b VAR 0.58 0.85 1.24 0.66 

[0.06] [0.05] [0.09] [0.11] 

Diff −0.04 0.06 0.06 

[0.09] [0.06] [0.05] 

Lo ̂  b VAR 0.04 0.06 0.09 0.05 

[0.05] [0.05] [0.07] [0.03] 

Hi ̂  b VAR 0.06 0.09 0.12 0.06 

[0.04] [0.05] [0.07] [0.04] 

Diff 0.02 0.03 0.03 

[0.02] [0.02] [0.02] 
growth stocks relative to value stocks, growth stocks are 

relative hedges for two key aspects of the investment op- 

portunity set. Consistent with CV (2004), growth stocks 

hedge news about future real stock returns. The novel find- 

ing of this paper is that growth stocks also hedge news 

about the variance of the market return. 

One interesting aspect of these findings is the fact that 

the average βV of the 25 size- and book-to-market port- 

folios changes sign from the early to the modern subpe- 

riod. Over the 1931–1963 period, the average βV is -0.10, 

and over the 1964–2011 period this average becomes 0.06. 

Given the strong positive link between PE and volatility 

news documented in Panel D of Table 2 , one should not be 

surprised that the market’s βV can be positive. Neverthe- 

less, in the Online Appendix we study this change in sign 

more carefully. We show that the market’s beta with re- 

alized volatility has remained negative in the modern pe- 
riod, highlighting the important distinction between real- 

ized and expected future volatility. We also show that the 

change in the sign of βV is driven by a change in the 

correlation between the aggregate market return and the 

change in DEFO , our simple proxy for news about long- 

horizon variance. 

5.2.2. Risk-sorted portfolios 

Panels C and D of Table 3 show the estimated be- 

tas for the six risk-sorted portfolios over the 1931–1963 

and post-1963 periods. In the pre-1963 sample period, 

high market-beta stocks have both higher cash-flow and 

higher discount-rate betas than low market-beta stocks. 

Low volatility-beta stocks have higher cash-flow betas and 

discount-rate betas than high volatility-beta stocks. High 

market-beta stocks also have lower volatility betas, but 

sorting stocks by their past volatility betas induces lit- 
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tle spread in post-formation volatility betas. Putting these

results together, in the 1931–1963 period, high market-

beta stocks and low volatility-beta stocks were unambigu-

ously riskier than low market-beta and high volatility-beta

stocks. 

In the post-1963 (modern) period, high market-beta

stocks again have higher cash-flow and higher discount-

rate betas than low market-beta stocks. However, high

market-beta stocks now have higher volatility betas and

are therefore safer in this dimension. This pattern perhaps

is not surprising given our finding that the aggregate mar-

ket portfolio itself has a positive volatility beta in the mod-

ern period. The important implication is that our three-

beta model with priced volatility risk helps to explain the

well-known result that stocks with high past market be-

tas have offered relatively little extra return in the past

50 years ( Fama and French, 1992; Frazzini and Pedersen,

2013 ). 

In the modern period, sorts on volatility beta generate

an economically and statistically significant spread in post-

formation volatility beta. These high volatility-beta portfo-

lios also tend to have higher discount-rate betas and lower

cash-flow betas, though the patterns are not uniform. 

We also examine test assets that are formed based on

both characteristics and risk estimates. The Online Ap-

pendix reports the estimated betas for the 18 BE/ME-

i v ol − ̂ β�VAR -sorted portfolios in both the early and mod-

ern sample periods. In the early period, firms with higher

i v ol have lower post-formation volatility betas regardless

of their book-to-market ratio. Consistent with this finding,

higher i v ol stocks have higher average returns. In the mod-

ern period, however, among stocks with low BE/ME, firms

with higher i v ol have higher post-formation volatility betas

and lower average return. These patterns reverse among

stocks with high BE/ME. 

We argue that these differences make economic sense.

High idiosyncratic volatility increases the value of growth

options, which is an important effect for growing firms

with flexible real investment opportunities, but much less

so for stable, mature firms. Valuable growth options in

turn imply high betas with aggregate volatility shocks.

Hence, high idiosyncratic volatility naturally raises the

volatility beta for growth stocks more than for value

stocks. This effect is stronger in the modern sample in

which growing firms with flexible investment opportuni-

ties are more prevalent. 

Taken together, the findings from the characteristic- and

risk-sorted test assets suggest that volatility betas vary

with multiple stock characteristics and that techniques tak-

ing this into account can be more effective in generating a

spread in post-formation volatility beta. 

5.3. Model estimation 

We now turn to pricing the cross section of excess re-

turns on our test assets. We estimate our model’s single

parameter via GMM, using the moment condition Eq. (15) .

For ease of exposition, we report our results in terms

of the expected return-beta representation from Eq. (16) ,

rescaled by the variance of market return innovations as in
Section 5.2 : 

R i − R j = g 1 ̂
 βi,CF M + g 2 ̂

 βi,DR M + g 3 ̂
 βi,V M + e i , (24)

where bars denote time series means and betas are mea-

sured using returns relative to the reference asset. Recall

that we use the aggregate equity market as our reference

asset but include the T-bill return as a test asset, so that

our model not only prices cross-sectional variation in aver-

age returns, but also prices the average difference between

stocks and bills. 

We evaluate the performance of five asset pricing mod-

els, all estimated via GMM: (1) the traditional CAPM that

restricts cash-flow and discount-rate betas to have the

same price of risk and sets the price of variance risk to

zero, (2) the two-beta intertemporal asset pricing model

of CV (2004) that restricts the price of discount-rate risk

to equal the variance of the market return and again sets

the price of variance risk to zero, (3) our three-beta in-

tertemporal asset pricing model that restricts the price of

discount-rate risk to equal the variance of the market re-

turn and constrains the prices of cash-flow and variance

risk to be related by Eq. (10) , with ρ = 0 . 95 per year, (4)

a partially constrained three-beta model that restricts the

price of discount-rate risk to equal the variance of the mar-

ket return but freely estimates the other two risk prices

(effectively decoupling γ and ω), and (5) an unrestricted

three-beta model that allows free risk prices for cash-flow,

discount-rate, and volatility betas. 

5.3.1. Model estimates 

Table 4 reports the results of pricing tests for both the

early sample period 1931–1963 (Panel A) and the modern

sample period 1963–2011 (Panel B). In each case, we price

the complete set of test assets described in Section 5.1 . The

Online Appendix reports the results of tests that price the

25 size- and book-to-market–sorted portfolios in isolation.

Table 4 has five columns, one for each of our asset pric-

ing models. The first six rows of each panel are divided

into three sets of two rows. The first set of two rows cor-

responds to the premium on cash-flow beta, the second

set to the premium on discount-rate beta, and the third

set to the premium on volatility beta. Within each set, the

first row reports the point estimate in fractions per quarter,

and the second row reports the corresponding standard er-

ror. Below the premia estimates, we report the R 2 statistic

for a cross-sectional regression of average market-adjusted

returns on our test assets onto the fitted values from the

model as well as the J statistic. In the next two rows of

each panel, we report the implied risk-aversion coefficient,

γ , which can be recovered as g 1 / g 2 , as well as the sensitiv-

ity of news about risk to news about market variance, ω,

which can be recovered as −2 g 3 /g 2 . The five final rows in

each panel report the cross-sectional R 2 statistics for vari-

ous subsets of the test assets. 

Table 4 , Panel A, shows that, in the early subperiod, all

models do a relatively good job pricing these one hundred

test assets. The cross-sectional R 2 statistic is 74% for the

CAPM, 78% for the two-beta ICAPM, and 79% for our three-

beta ICAPM. Consistent with the claim that the three-beta

model does a good job describing the cross section, the

constrained and the unrestricted factor model barely im-
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Table 4 

Asset pricing tests. 

The table reports generalized methods of moments estimates of the capital asset pricing model (CAPM), the two-beta intertemporal CAPM 

(ICAPM), the three-beta volatility ICAPM, a factor model in which only the ̂ βDR premium is restricted, and an unrestricted factor model for the 

early (Panel A: 1931:3–1963:2) and modern (Panel B: 1963:3–2011:4) subsamples. The test assets are 25 market equity (ME)- and ratio of book 

equity to market equity (BE/ME)-sorted portfolios and the T-bill, six risk-sorted portfolios, 18 characteristic- and risk-sorted assets, and managed 

versions of these portfolios, scaled by EVAR , and the reference asset is the market portfolio. The 5% critical value for the test of overidentifying 

restrictions is 121.0 in Columns 1, 2, and 3; 119.9 in Column 4; and 118.8 in Column 5. N/A = not applicable for the model in question. 

Parameter CAPM Two-beta ICAPM Three-beta ICAPM Constrained Unrestricted 

(1) (2) (3) (4) (5) 

Panel A: early period ̂ βCF premium ( g 1 ) 0.037 0.105 0.081 0.058 0.101 

(Standard error) (0.016) (0.071) (0.037) (0.052) (0.067) ̂ βDR premium ( g 2 ) 0.037 0.016 0.016 0.016 −0.016 

(Standard error) (0.016) (0) (0) (0) (0.017) ̂ βVAR premium ( g 3 ) −0.049 −0.094 −0.197 

(Standard error) (0.068) (0.126) (0.142) ̂ R 2 74% 78% 79% 79% 81% 

J statistic 735.9 844.6 824.7 811.1 849.4 

Implied γ 2.4 6.6 5.1 N/A N/A 

Implied ω N/A N/A 6.2 N/A N/A ̂ R 2 : 26 unscaled characteristics 64% 66% 67% 68% 69% ̂ R 2 : six unscaled risk 57% 35% 53% 67% 73% ̂ R 2 : 18 unscaled characteristics and risk 67% 73% 75% 75% 83% ̂ R 2 : 50 unscaled 66% 68% 70% 71% 74% ̂ R 2 : 50 scaled 67% 72% 73% 74% 77% 

Panel B: Modern period ̂ βCF premium ( g 1 ) 0.014 0.118 0.055 0.099 0.104 

(Standard error) (0.010) (0.056) (0.0 0 0) (0.040) (0.030) ̂ βDR premium ( g 2 ) 0.014 0.008 0.008 0.008 0.004 

(Standard error) (0.010) (0) (0) (0) (0.014) ̂ βVAR premium ( g 3 ) −0.096 −0.120 −0.116 

(Standard error) (0.035) (0.034) (0.041) ̂ R 2 −20% 25% 60% 71% 72% 

J statistic 499.2 364.7 495.3 383.8 342.0 

Implied γ 1.9 15.2 7.2 N/A N/A 

Implied ω N/A N/A 24.9 N/A N/A ̂ R 2 : 26 unscaled characteristic portfolios −51% 45% 48% 74% 73% ̂ R 2 : six unscaled risk portfolios −10% 23% 49% 71% 67% ̂ R 2 : 18 unscaled characteristic and risk portfolios −27% 26% 62% 71% 75% ̂ R 2 : 50 unscaled portfolios −31% 36% 57% 73% 75% ̂ R 2 : 50 scaled portfolios −16% 17% 62% 69% 69% 
prove pricing relative to the three-beta ICAPM in Panel 

A. Despite this apparent success, all models are rejected 

based on the standard J test. This perhaps is not sur- 

prising, given that even the empirical three-factor model 

of Fama and French (1993) is rejected by this test when 

faced with the 25 size- and book-to-market–sorted portfo- 

lios. 

In stark contrast, Panel B shows that, in the mod- 

ern subperiod, the CAPM fails to price not only the 

characteristic-sorted test assets already considered in pre- 

vious work, but also risk-sorted and variance-scaled port- 

folios. The cross-sectional R 2 of the CAPM is negative at 

−20% . The two-beta ICAPM of CV (2004) does a better job 

describing average returns in the modern subperiod, deliv- 

ering an R 2 of 25%, but it struggles to price the risk-sorted 

and variance-scaled test assets and requires a much larger 

coefficient of risk aversion in the modern subperiod than 

in the early subperiod. 

In the modern period, the three-beta ICAPM outper- 

forms both the CAPM and the two-beta ICAPM, deliver- 

ing an overall R 2 of 60%. The model also does a good job 

explaining all the subsets of test assets that we consider, 
including the risk-sorted and variance-scaled test assets. 

Moreover, the three-beta estimate of risk aversion is rela- 

tively stable across subperiods. This improvement is driven 

by the addition of volatility risk to the model. Our estimate 

of the volatility premium is both economically and statis- 

tically significant. The premium for one unit of volatility 

beta is approximately −38% per year and 2.76 standard de- 

viations from zero. 

Further support for our three-beta ICAPM can be found 

in the last two columns. Relaxing the link between γ and 

ω (but continuing to restrict the premium for discount-rate 

beta) only improves the fit somewhat (from 60% to 71%). 

The γ and ω of the partially constrained model are 12.2 

and 31.0, respectively, which are not dramatically different 

from the estimated parameters of the fully constrained ver- 

sion of the model. Furthermore, a completely unrestricted 

three-beta model has an R 2 (72%) that is very close to 

that of the partially constrained implementation. Finally, 

the premium for variance beta is relatively stable and al- 

ways statistically significant across all three versions of our 

three-beta model (ICAPM, partially constrained, and unre- 

stricted). 
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Fig. 4. Pricing tests: Each diagram plots the sample against predicted average excess returns. Test assets in Panels A–C are the 25 market equity (ME)- and 

ratio of book equity to market equity (BE/ME)-sorted portfolios (asterisks), plus the bill return (triangle); and in Panels D–F, both unscaled and scaled by 

EVAR versions of the 25 ME- and BE/ME-sorted portfolios (asterisks), six risk-sorted portfolios (circles), 18 characteristic- and risk-sorted portfolios (crosses), 

and bill return (triangles). Predicted values are from Table 4 for 1963:3–2011:4. The models tested are the capital asset pricing model (CAPM), the two-beta 

intertemporal CAPM, and the three-beta ICAPM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 provides a visual summary of the modern-period

results reported in Table 4 , Panel B. Each panel in the

figure plots average realized excess returns against aver-

age predicted excess returns from one of the asset pricing

models under consideration. A well-specified model should

deliver points that lie along the 45-degree line when real-

ized returns are measured over a long enough sample pe-

riod. 

In Panels A-C of Fig. 4 , we examine how these models

price the original 25 characteristic-sorted portfolios, which

are plotted as stars, along with the Treasury bill, plotted

as a triangle. The CAPM is plotted in Panel A, the two-

beta ICAPM, in Panel B, and the three-beta ICAPM, in Panel

C. The poor performance of the CAPM in this sample pe-

riod and the increase in explanatory power provided by

the two-beta ICAPM and particularly the three-beta ICAPM

are immediately apparent. The two-beta ICAPM has partic-

ular difficulty with the Treasury bill, predicting far too low

an excess return relative to the aggregate stock market or,

equivalently, far too high an equity premium. Panels D-F

of Fig. 4 provide a summary of the modern-period results

with the full set of test assets. A visually striking improve-

ment in fit is evident moving from the CAPM to the two-

beta ICAPM and then to the three-beta ICAPM. 

5.3.2. Implications for the history of marginal utility 

As a way to understand the economics behind the

ICAPM, and as a further check on the reasonableness of
our model, we consider what the model implies for the

history of our investor’s marginal utility. Fig. 5 plots the

time series of the combined shock γ N CF − N DR − 1 
2 ωN V ,

normalized and then smoothed for graphical purposes as

in Fig. 2 , based on our estimate of the three-beta model

using characteristic-sorted test assets in the modern pe-

riod ( Table 4 , Panel B). The smoothed shock has correlation

0.77 with equivalently smoothed N CF , 0.02 with smoothed

−N DR , and −0.80 with smoothed N V . Fig. 5 also plots the

corresponding smoothed shock series for the CAPM ( N CF −
N DR ) and for the two-beta ICAPM ( γ N CF − N DR ). The two-

beta model shifts the history of good and bad times rela-

tive to the CAPM, as emphasized by CGP (2013). The model

with stochastic volatility further accentuates that periods

with high market volatility, such as the 1930s and the

late 20 0 0s, are particularly hard times for long-term in-

vestors. Assets that do well in such hard times, for exam-

ple, growth stocks, are valuable hedges that should have

low average returns. 

6. An ICAPM perspective on asset pricing anomalies 

In this section, we use our ICAPM model to reassess a

wide variety of anomalies that have been discussed in the

asset pricing literature. We begin with equity anomalies

and then consider some anomalous patterns from outside

the equity market. 
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Fig. 5. Stochastic discount factor shocks across models: This figure plots the time series of the smoothed combined shock for the capital asset pricing model 

(CAPM) ( N CF − N DR ), the two-beta intertemporal CAPM ( γ N CF − N DR ), and the three-beta ICAPM that includes stochastic volatility ( γ N CF − N DR − 1 
2 
ωN V ) 

estimated in Table 4 , Panel B, for the sample period 1963:3-2011:4. For each model, the shock is normalized by its standard deviation and then smoothed 

with a trailing exponentially weighted moving average. The decay parameter is set to 0.08 per quarter, and the smoothed normalized shock series is 

generated as MA t (SDF ) = 0 . 08 SDF t + (1 − 0 . 08) MA t−1 (SDF ) . This decay parameter implies a half-life of approximately two years. 
6.1. Equity anomalies 

Table 5 analyzes a number of well-known equity 

anomalies using data taken from Professor Kenneth 

French’s website. 16 The sample period is 1963:3–2011:4. 

The anomaly portfolios are the market ( RMRF ), size ( SMB ), 

and value ( HML ) equity factors of Fama and French 

(1993) , the profitability ( RMW ) and investment ( CMA ) fac- 

tors added in Fama and French (2016) , the momentum 

( UMD ) factor of Carhart (1997) , short-term reversal ( STR ) 

and long-term reversal ( LTR ) factors, and zero-cost portfo- 

lios formed from value-weighted quintiles sorted on beta 

( BETA ), accruals ( ACC ), net issuance ( NI ), and idiosyncratic 

volatility ( IVOL ). We also consider a dynamic portfolio that 

varies its exposure to the equity premium based on c / PE t , 

where c is chosen so that the resulting managed portfolio 

has the same unconditional volatility as RMRF . We refer to 

this portfolio as MANRMRF . 

For each of these portfolios, Panel A reports the mean 

excess return in the first column and the standard devia- 

tion of return in the second column. Columns 3–5 report 

the portfolios’ betas with our estimates of discount-rate 

news, cash-flow news, and variance news. These are used 

in Columns 6–9 to construct the components of fitted ex- 

cess returns based on discount-rate news ( λDR ), cash-flow 

news in the two-beta ICAPM ( λ2 −BETA ), cash-flow news in 
CF 

16 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ 
the three-beta ICAPM ( λ3 −BETA 
CF 

), and variance news in the 

three-beta ICAPM ( λV ). These fitted excess returns use the 

parameter estimates of the two-beta and three-beta mod- 

els reported in Table 4 , Panel B. We do not reestimate 

any parameters and in this sense the evaluation of equity 

anomalies is out of sample. 

Columns 10–12 of Panel A report the alphas of the 

anomalies (their sample average excess returns less their 

predicted excess returns) calculated using the CAPM, the 

two-beta ICAPM, and the three-beta ICAPM. All the port- 

folios, with the obvious exception of RMRF , have been cho- 

sen to have positive CAPM alphas. The ability of the ICAPM 

to explain asset pricing anomalies can be measured by the 

reduction in magnitude of ICAPM alphas relative to CAPM 

alphas. To summarize model performance, Panel B reports 

average absolute alphas across all anomaly portfolios, the 

three Fama and French (1993) portfolios, and the five Fama 

and French (2016) portfolios. These averages are calculated 

both for raw alphas and after dividing each anomaly’s al- 

pha by the standard deviation of its return. 

Table 5 shows that volatility risk exposure is help- 

ful in explaining many of the equity anomalies that have 

been discussed in the recent asset pricing literature. Most 

of the anomaly portfolios have negative variance betas, 

which make them riskier and help to explain their pos- 

itive excess returns. Exceptions to this statement include 

the excess return on the market over a Treasury bill RMRF 

and the managed excess return MANRMRF (as we find 

the market to be a volatility hedge in the modern sub- 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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Table 5 

Pricing popular equity strategies. 

The table decomposes the average quarterly returns on well-known equity strategies using the capital asset pricing model (CAPM), the two-beta intertem- 

poral CAPM (ICAPM), and our three-beta ICAPM. We estimate αCAPM using a standard time series regression. We estimate α2 −BETA 
ICAPM 

and α3 −BETA 
ICAPM 

using the 

corresponding estimates of γ from Table 4 , Panel B. The sample covers the 1963:3–2011:4 time period during which the market variance is 0.0077. The 

strategies are the market (RMRF), size (SMB), value (HML), profitability (RMW), investment (CMA), momentum (UMD), short-term reversal (STR), and long- 

term reversal (LTR) factors as well as zero-cost portfolios formed from value-weight quintiles sorted on beta (BETA), accruals (ACC), net issuance (NI), or 

idiosyncratic volatility (IVOL). We also consider a dynamic portfolio that varies its exposure to the equity premium based on c 
PE t 

, where c is chosen so 

that the resulting managed portfolio has the same unconditional volatility as RMRF . We refer to this portfolio as MANRMRF . All return data are from Ken 

French’s website, available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ . We report the average absolute model αs for various subsets of the 

strategies, considering not only the raw strategies but also when the strategies are rescaled to have the same volatility as RMRF . As part of the comparison, 

we also calculate model αs using the constrained and unrestricted models of Table 4 , Panel B, as well as the three- and five-factor models of Fama and 

French. 

Panel A: Decomposition of average quarterly returns 

Strategy μ(%) σ (%) ̂ βDR 
̂ βCF 

̂ βV λDR (%) λ2 −BETA 
CF (%) λ3 −BETA 

CF (%) λV (%) α CAPM (%) α2 −BETA 
ICAPM 

(%) α3 −BETA 
ICAPM 

(%) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

RMRF 1.39 8.69 0.78 0.19 0.07 0.60 2.25 1.06 −0.70 0 −1.45 0.44 

SMB 0.78 5.65 0.22 0.06 0.02 0.17 0.67 0.32 −0.17 0.35 −0.07 0.45 

HML 1.18 5.92 −0.26 0.05 −0.10 −0.20 0.55 0.26 0.94 1.50 0.83 0.18 

RMW 0.83 4.17 −0.09 −0.01 0.01 −0.07 −0.14 −0.07 −0.10 0.99 1.04 1.06 

CMA 1.02 4.21 −0.21 0.02 −0.05 −0.16 0.22 0.10 0.47 1.30 0.96 0.61 

UMD 2.18 7.78 −0.14 −0.03 0.03 −0.11 −0.35 −0.16 −0.26 2.46 2.64 2.71 

BETA −0.20 10.90 −0.74 −0.08 −0.05 −0.57 −0.91 −0.43 0.50 1.01 1.28 0.30 

STR 1.58 5.66 0.15 0.05 −0.01 0.12 0.55 0.26 0.07 1.28 0.91 1.14 

LTR 0.92 5.27 −0.09 0.05 −0.05 −0.07 0.56 0.26 0.47 0.97 0.43 0.26 

ACC 1.14 4.29 −0.08 −0.03 −0.02 −0.06 −0.34 −0.16 0.21 1.29 1.54 1.15 

NI 1.19 5.59 −0.21 −0.03 −0.02 −0.16 −0.33 −0.16 0.21 1.57 1.68 1.30 

IVOL 1.02 11.61 −0.76 −0.07 −0.05 −0.58 −0.87 −0.41 0.52 2.26 2.47 1.50 

MANRMRF 1.48 8.69 0.76 0.20 0.08 0.58 2.29 1.08 −0.74 0.10 −1.39 0.56 

Panel B: Average absolute alpha 

Strategy α CAPM (%) α2 −BETA 
ICAPM 

(%) α3 −BETA 
ICAPM 

(%) α3 −BETA 
Constr 

(%) α3 −BETA 
Unrestr 

(%) α3 FF (%) α 5 FF (%) 

All, not scaled 1.16 1.28 0.90 0.85 0.80 0.90 0.57 

All, scaled 1.65 1.69 1.26 1.18 1.13 1.23 0.80 

Three-factor model, not scaled 0.62 0.78 0.36 0.25 0.23 0 0 

Three-factor model, scaled 0.91 0.93 0.47 0.33 0.34 0 0% 

Five-factor model, not scaled 0.83 0.87 0.55 0.46 0.43 0.32 0% 

Five-factor model, scaled 1.50 1.39 0.98 0.84 0.81 0.67 0% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

period) and the returns on small size SMB , profitabil-

ity RMW , and momentum UMD . The three-beta ICAPM is

particularly good at explaining the high return on value

HML , which perhaps is not surprising because we esti-

mate the model using size- and value-sorted equity portfo-

lios. But it also makes considerable progress at explaining

the returns to low-investment firms CMA , low-beta stocks

BETA , long-term reversal LTR , and low idiosyncratic volatil-

ity IVOL . 

Across all the anomalies in the table, the average ab-

solute alpha is 1.16% for the CAPM, slightly higher at

1.28% for the two-beta ICAPM, but lower at 0.90% for

the three-beta ICAPM. Looking only at Fama and French

(1993) anomalies, the three-beta model reduces the aver-

age absolute alpha from the CAPM’s 0.62% to 0.36%. Look-

ing only at Fama and French (2016) anomalies the average

absolute alpha falls from 0.83% to 0.55%. In both these sub-

sets, the two-beta ICAPM actually performs worse than the

CAPM. Results are similar when anomaly returns are scaled

by standard deviation. 

To what extent is our progress substantial? One reason-

able way to gauge these results is by comparing the pric-

ing improvement (relative to the CAPM) of our model with

unrestricted models of the risk-return trade-off. Panel B of

Table 5 provides exactly those comparisons. For example,

 

one such possible benchmark is the unrestricted three-beta

version of our model, with the factors N CF , −N DR , and N V .

Using only a single free parameter, our three-beta ICAPM

provides 72% of the pricing improvement that an unre-

stricted multifactor model does. Other reasonable bench-

marks studied in the table are the three- and five-factor

models of Fama and French ( 1993, 2016 ). Relative to those

models, our three-beta ICAPM provides 100% and 44% of

the respective pricing improvement. Of course, that class

of models is built from portfolios directly sorted on sev-

eral of the anomalies studied in Table 5 , which makes our

pricing improvement even more impressive. 

6.2. Non-equity anomalies 

Table 6 considers several sets of non-equity test as-

sets, each of which is measured from a different start

date until the end of our sample period in 2011:4. First,

we consider HY − IG, the risky bond factor of Fama and

French (1993) , which we measure from 1983:3 using the

return on the Barclays Capital High Yield Bond Index

( HYRET ) less the return on Barclays Capital Investment

Grade Bond Index ( IGRET ). Second, we study the cross

section of currency portfolios ( CARRY ), starting in 1984:1,

with developed-country currencies dynamically allocated

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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to portfolios based on their interest rates as in Lustig et al. 

(2011) . 17 Third, we use the S&P 100 index straddle returns 

( STRADDLE ) studied by Coval and Shumway (2001) , starting 

in 1986:1. 18 

Finally, from the S&P 500 options market, we gener- 

ate quarterly returns on three synthetic variance forward 

contracts starting in 1998:3. We construct these returns 

as in Dew-Becker et al. (2016) . We construct a panel of 

implied variance swap prices using option data from Op- 

tionMetrics, for maturities n ranging from one quarter to 

three quarters ahead: V IX 2 n,t . Under the assumption that 

returns follow a diffusion, we have V IX 2 n,t = E Q t [ 
∫ t+ n 

t σ 2 
s ds ] .

We compute V IX 2 n,t using the same methodology used by 

the Chicago Board Options Exchange to construct the 30- 

day Volatility Index (VIX), applying it to maturities up to 

three quarters. We then compute synthetic variance for- 

ward prices as F n,t = V IX 2 n,t − V IX 2 
n −1 ,t 

. These forward al- 

low us to isolate claims to variance at a specific horizon 

n (focusing on the variance realized between n − 1 and 

n ). The quarterly returns to these forward are computed 

as R n,t = 

F n −1 ,t 

F n,t−1 
− 1 , where F 0 ,t = RVAR t . Dew-Becker et al. 

(2016) find a large difference in average returns for these 

forward across maturities. Accordingly, we construct the 

anomaly portfolio as a long-short portfolio that sells short- 

maturity forward and buys long-maturity forward (yielding 

strongly positive average returns). 

All these anomaly portfolios have been normalized to 

have positive excess returns, and they all have negative 

variance betas so their exposure to variance risk does con- 

tribute to an explanation of their positive returns. How- 

ever, in the case of HY − IG, the three-beta model over- 

shoots and predicts a higher average return than has been 

realized in the data. In the case of CARRY , the three-beta 

model cuts the CAPM alpha roughly in half. In the two op- 

tions anomalies, STRADDLE and V IXF 2 − V IXF 0 , the three- 

beta model reduces the CAPM alpha slightly but the high 

returns to these anomalies remain puzzling even after tak- 

ing account of their long-run volatility risk exposures. 

Though our three-beta ICAPM is far from perfect in 

absolute terms, our model fares relatively well compared 

with unrestricted asset pricing models. For example, the 

unrestricted version of our model has slightly higher av- 

erage absolute pricing errors. Perhaps even more impres- 

sively, our economically motivated ICAPM significantly out- 

performs both the three- and five-factor versions of the 

empirical models of Fama and French. 

These findings relate to the literature on the pric- 

ing of volatility risk in derivative markets ( Coval and 

Shumway, 2001; Ait-Sahalia et al., 2015 ). Dew-Becker et al. 

(2016) study the market for variance swaps with differ- 

ent maturities and show that market risk premia associ- 

ated with short-term variance shocks are highly negative, 

whereas risk premia for news shocks about future variance 

are close to zero. These results present a challenge to mod- 
17 We thank Nick Roussanov for sharing these data. 
18 The series we study includes only those straddle positions in which 

the difference between the options’ strike price and the underlying price 

is between zero and five. We thank Josh Coval and Tyler Shumway for 

providing their updated data series to us. 
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els in which investors have strong intertemporal hedging

motives, including our model and the long-run risk model

of BKSY (2014). It perhaps is not surprising that the in-

tertemporal model of this paper, which is based on the

first-order conditions of a long-term equity investor, works

better for equity anomalies than for anomalies in deriva-

tives markets, which are harder to access for this type of

investor. 

7. Alternative specifications and robustness 

In this section, we compare our model with some alter-

natives that have recently been explored in the literature.

We also briefly discuss the robustness of our results to al-

ternative choices in the empirical implementation. 

7.1. Comparison with the BKSY (2014) model 

In this subsection, we explore the main differences be-

tween our paper and BKSY (2014), regarding both model-

ing assumptions and empirical implementation. 

A first difference lies in the modeling of the volatility

process itself. In our paper, we model volatility as a het-

eroskedastic process. In their main results, BKSY employ a

homoskedastic volatility process. A disadvantage of BKSY’s

specification is that the volatility process becomes nega-

tive more frequently than in the case of a heteroskedastic

process, in which the volatility of innovations to volatil-

ity shrinks as volatility gets close to zero. In the Online

Appendix we explore this difference formally, using sim-

ulations to compare the frequency with which the het-

eroskedastic and homoskedastic models become negative,

showing a clear advantage in favor of the heteroskedas-

tic process. If one adjusts the volatility process upward

to zero whenever it would otherwise go negative, the cu-

mulative adjustment required quickly decreases to zero for

the heteroskedastic process as the sampling frequency in-

creases. It does not for the homoskedastic process. In our

simulations, the ratio of the adjustment needed in the ho-

moskedastic case relative to the one needed in the het-

eroskedastic case is 6 at the quarterly frequency, 17 at the

monthly frequency, and over 200 at the daily frequency. 

BKSY’s assumption of homoskedastic volatility has im-

portant consequences for their asset pricing analysis. In

the Online Appendix, we show that if the volatility pro-

cess is homoskedastic, the SDF can be expressed as a func-

tion of variance news N V only under special conditions

not explicitly stated by BKSY: that the N V shock depends

only on innovations to state variables that are themselves

homoskedastic, and that N CF and N V are uncorrelated. 19

In our empirical analysis, we estimate the correlation be-

tween N CF and N V to be −0 . 12 . We also explore a range of

other specifications for the VAR and find that this corre-

lation is often below −0 . 5 and, in some cases, as low as

−0 . 78 . In fact, when we emulate BKSY’s VAR specification,
19 Other knife-edge cases with a solution can exist even when N CF and 

N V are correlated, but they entail even more extreme assumptions, for ex- 

ample, N V not loading at all on volatility innovations, or the set of news 

terms not depending at all on any heteroskedastic state variable. The On- 

line Appendix provides details. 

 

 

we obtain a strongly negative correlation of −0 . 71 . This re-

sult should not be surprising: the literature on the lever-

age effect ( Black, 1976; Christie, 1982 ) has long shown that

news about low cash flows is associated with news about

higher future volatility. Overall, the empirical analysis pro-

vides strong evidence that assuming a zero correlation be-

tween N CF and N V , as BKSY implicitly do, is counterfactual

across a range of specifications. 

In a robustness exercise in their Sections II.E and III.D,

BKSY (2014) entertain a heteroskedastic process similar

to ours, in which a single variable σ 2 
t drives the condi-

tional variance of all variables in the VAR. In this speci-

fication, no theoretical constraints are placed on the corre-

lation between N CF and N V . However, as discussed in sub-

section 3.2.1, another constraint appears in models with

heteroskedastic volatility, that is, the value function of the

investor ceases to exist once risk aversion becomes suffi-

ciently high. The most visible symptom of the existence

issue is that the function that links ω (the price of risk

of N V ) to risk aversion γ is not defined in this region. The

condition for existence of a solution is a nonlinear function

of the structural parameters of the model and the time se-

ries properties of the state variables. BKSY ignore the ex-

istence constraint by linearizing the function ω( γ ) around

γ = 0 . 20 This approach has two problems. First, the em-

pirical estimates of the model parameters may erroneously

imply a model solution that lies in the nonexistence re-

gion. Second, even when the model is in a region of the

parameter space where a solution would exist, BKSY’s so-

lution is based on an approximation whose accuracy is not

clear and not explored in the paper. 

In addition to these different modeling assumptions,

BKSY (2014) differs from our paper in the empirical imple-

mentation. This leads to several important differences in

the findings. First, we find that variance risk premia make

an important contribution to explaining the cross section

of equity returns, while they contribute only minimally in

BKSY. Second, we find that a value-minus-growth bet has a

negative beta with volatility news, while BKSY find that it

has a positive volatility beta. Third, in the modern period,

we estimate the aggregate stock market to have a posi-

tive volatility beta, while BKSY estimate a negative volatil-

ity beta. 

To better understand the source of the differences in

empirical results, the Online Appendix explores the prop-

erties of the news terms using different VAR specifications

including our baseline specification, BKSY’s baseline (for

the part of their analysis expressed in terms of returns in-

stead of consumption, so directly comparable to ours), and

various combinations of those. We focus on three main dif-

ferences in the empirical approach: (1) the estimation of a

VAR at yearly versus quarterly frequencies, (2) the method-

ology used to construct realized variance since we con-

struct realized variance using sum of squared daily returns,

whereas BKSY use sums of squared monthly returns that

ignore the information in higher-frequency data and re-

sult in a noisier estimator of realized variance, and (3) the
20 In the first draft of our paper, we also used this inappropriate lin- 

earization. 
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use of different state variables, and particularly the value 

spread, that we show to be important for our results and 

that is not included in BKSY (2014). This analysis shows 

that both using high-frequency data to compute RVAR and 

including the value spread are important drivers of the dif- 

ferences between our results and those of BKSY. 21 

With regard to the difference in the estimated volatil- 

ity beta of a value-minus-growth portfolio, we note that 

our negative volatility beta estimate is more consistent 

with models in which growth firms hold options that be- 

come more valuable when volatility increases ( Berk et al., 

1999; McQuade, 2012; Dou, 2016 ). Empirically, our nega- 

tive volatility beta estimate is consistent with the under- 

performance of value stocks during some well known pe- 

riods of elevated volatility including the Great Depression, 

the technology boom of the late 1990s, and the Great Re- 

cession of the late 20 0 0s (CGP, 2013). 

The Online Appendix sheds light on the drivers of the 

difference between the positive volatility beta that we es- 

timate for the market as a whole in the modern period 

and the negative volatility beta that BKSY estimate. While 

we confirm the result that in the BKSY (2014) specification 

market innovations are negatively correlated with N V , that 

result is sensitive to the exact specification. If RVAR is com- 

puted using daily instead of monthly returns, in particular, 

the correlation moves much closer to zero and in several 

cases becomes positive, as in our baseline specification. 

One important driver of the correlation between mar- 

ket returns and N V is the correlation between N DR and N V . 

Because an increase in discount rates lowers stock prices, 

other things equal, these two correlations tend to have op- 

posite signs. In our replication of BKSY’s analysis, we find 

a positive correlation of 0.47 between N DR and N V , but this 

positive correlation does not survive if quarterly data are 

used instead of yearly data, if the value spread is used 

in the VAR, or if RVAR is constructed using daily instead 

of monthly returns. In all these alternative cases, the rela- 

tion between N DR and N V is much weaker or even negative, 

confirming the results of a long literature in asset pricing 

(see, e.g., Lettau and Ludvigson, 2010 ). 

In summary, we believe that neither the finding of a 

negative volatility beta for value stocks relative to growth 

stocks nor the finding of a positive volatility beta for 

the aggregate equity market in the modern period should 

be surprising. Stockholders are long options, both options 

to invest in growth opportunities (particularly important 

for growth firms) and options to default on bondholders. 

These options become more valuable when volatility in- 

creases, driving up stock prices. Thus, no theoretical rea- 

son exists to believe that higher volatility always reduces 

aggregate stock prices. And, in recent history, there have 

been important episodes in which stock prices have been 
21 BKSY estimate their VAR system by GMM, using additional moment 

conditions implied by the ICAPM and the unconditional returns on test 

assets. We used a similar methodology for a two-beta ICAPM model in 

Campbell et al. (2013) but found it to be computationally challenging and 

numerically unstable. We have not replicated this approach for the three- 

beta ICAPM, but we do not believe it has a first-order effect on the dif- 

ferences in empirical results because we can account for these differences 

using unrestricted VAR models. 
both high and volatile, most notably in the stock boom of 

the 1990s. 

7.2. Comparison with consumption-based models 

In this paper, as in Campbell (1993) , we have estimated 

our model without having to observe the consumption 

process of the investor (who was assumed to hold the mar- 

ket portfolio). However, the model could also be expressed 

in terms of the investor’s consumption. Both consumption 

and asset returns are endogenous, and the two representa- 

tions are equivalent. 

In this subsection we show how to map the returns- 

based representation to the consumption-based represen- 

tation. We focus on two main objects of interest: consump- 

tion innovations and the stochastic discount factor. 

Consumption innovations for our investor are given 

by 

�c t+1 − E t �c t+1 = (r t+1 − E t r t+1 ) − (ψ − 1) N DR,t+1 

− (ψ − 1) 
1 

2 

ω 

1 − γ
N V,t+1 . (25) 

The EIS parameter ψ , which enters this equation, is not 

pinned down by our VAR estimation or the cross section 

of risk premia, so we calibrate it to three different values: 

0.5, 1.0, and 1.5. The Online Appendix shows that implied 

consumption volatility is positively related to ψ , given 

our VAR estimates of return dynamics. With ψ = 0 . 5 , our

investor’s consumption (which need not equal aggregate 

consumption) is considerably more volatile than aggregate 

consumption but roughly as volatile as the time series of 

stockholder’s consumption we obtained from Malloy et al. 

(2009) . Implied and actual consumption growth are pos- 

itively correlated, and a stockholder’s consumption corre- 

lates with implied consumption more strongly than aggre- 

gate consumption. 

We can also represent the entire SDF in terms of con- 

sumption. We can write it as a function of consumption in- 

novations ( �c t+1 − E t �c t+1 ), news about future consump- 

tion growth ( N CF ), and news about future consumption 

volatility ( N CV,t+1 ): 

m t+1 − E t m t+1 = − 1 

ψ 

(�c t+1 − E t �c t+1 ) −(γ − 1 

ψ 

) N CF,t+1 

+ 

1 

2 

η

(
θ − 1 

θ

)
N CV,t+1 , (26)

where the parameter η is a constant that depends on the 

VAR parameters and on the structural parameters of the 

model (the Online Appendix reports the derivation). As in 

the case of the consumption innovations, the SDF depends 

on the parameter ψ . That parameter is not pinned down 

by risk premia in this model, thus requiring additional mo- 

ments to be identified relative to our returns-based analy- 

sis. 

This SDF corresponds to the standard SDF used in the 

consumption-based long-run risk literature (e.g., Bansal 

and Yaron, 2004 ). When γ > 

1 
ψ 

, news about low future 

consumption growth or high volatility increases the in- 

vestor’s marginal utility, so assets that have low returns 

when such bad news arrives command an additional risk 
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22 All our VAR systems forecast returns, not cash flows. As Engsted 

et al. (2012) clarify, results are approximately invariant to this decision, 

notwithstanding the concerns of Chen and Zhao (2009) . 
premium. The SDF collapses to the standard consumption-

CAPM with power utility when γ = 

1 
ψ 

(and, therefore, θ =
1 ). In that case, the coefficient on consumption innovation

is simply equal to γ , and both the consumption news term

and the volatility news term disappear from the SDF. 

To conclude, the model can be equivalently expressed

in terms of consumption or returns. In this paper, we fol-

low Campbell (1993) using the latter approach, but we em-

phasize that neither approach is more structural than the

other, as all quantities are determined jointly in equilib-

rium. 

7.3. Implications for the risk-free rate 

In addition to deriving the implied consumption pro-

cess, we can use the estimated VAR and preference param-

eters to back out the implied risk-free rate in the economy,

showing what time series for the risk-free rate would have

made the long-run investor content not to time the market

at each point in time. 

In the Online Appendix, we show that the implied risk-

free rate is the difference between the expected return on

the market (which can be directly obtained from the VAR)

and the market risk premium, itself a function of σ 2 
t : 

r f 
t+1 

= E t r 
M 

t+1 − Hσ 2 
t , (27)

for a constant H that, in our data, is estimated to be 2.27.

The implied risk-free rate therefore decreases (and poten-

tially becomes negative) whenever conditional variance in-

creases without a corresponding increase in the condi-

tional expectation of the market return. 

The Online Appendix shows that the implied risk-free

rate is volatile (with a standard deviation of 2.4% per quar-

ter). It became negative during the Great Depression, the

technology boom, and the global financial crisis, all periods

of elevated volatility. The implied risk-free rate therefore

does not resemble the observed Treasury bill rate. This re-

sult should be expected. As discussed in Section 3.2.3 , we

do not impose the conditional implications of the model

for the market risk premium, precisely because market

volatility and expected market returns do not line up well

in the data. For this reason, our model does not explain

why a conservative long-term investor would not use Trea-

sury bills as part of an equity market timing strategy. 

The Online Appendix also shows that news about the

present value of future implied risk-free rates has a volatil-

ity similar to that of news about market discount rates.

Implied risk-free rate news was persistently negative dur-

ing the Great Depression and the technology boom but not

during the global financial crisis, which had a more transi-

tory effect on the state variables of our model. 

7.4. Robustness to empirical methodology 

The Online Appendix examines the robustness of our

results to a wide variety of methodological changes. We

use various subsets of variables in our baseline VAR, esti-

mate the VAR in different ways, use different estimates of

realized variance, alter the set of variables in the VAR, ex-

plore the VAR’s out-of-sample and split-sample properties,
and use different proxies for the wealth portfolio includ-

ing delevered equity portfolios. Such robustness analysis is

important because the VAR’s news decomposition can be

sensitive to the forecasting variables included. 22 

Key results from these robustness tests follow. We find

that including two of DEF , PE , and VS is generally essential

for our finding of a negative βV for HML . However, suc-

cessful pricing by our volatility ICAPM requires all three in

the VAR. We find a negative βV for HML regardless of how

we estimate the VAR (e.g., OLS or various forms of WLS) or

construct our proxy for RVAR . However, our ICAPM is most

successful at pricing using a quarterly VAR estimated using

WLS, where RVAR is constructed from daily returns. 

We also augment the set of variables under considera-

tion to be included in the VAR. We not only explore differ-

ent ways to measure the market’s valuation ratio but also

include other variables known to forecast aggregate returns

and market volatility, specifically Lettau and Ludvigson’s

(2001) CAY variable and our quarterly FIGARCH forecast.

HML ’s βV is always negative, and our volatility ICAPM gen-

erally does well in describing cross-sectional variation in

average returns. We further find that our results are ro-

bust to using alternative proxies for the market portfolio,

formed by combining Treasury Bills and the market in var-

ious constant proportions. 

An important concern is the extent to which our VAR

coefficients are stable over time. We address this issue in

two ways. First, we generate the model’s news terms out-

of-sample, by estimating the VAR over an expanding win-

dow. We start the out-of-sample analysis in July 1963. We

continue to find a negative βV for HML , relative to our

baseline result, and the cross-sectional R 2 increases to 77%.

Second, we instead allow for a structural break between

the early and modern periods in the coefficients of the re-

turn and volatility regressions of the VAR. We again find

that HML ’s βV is negative. As with our baseline specifi-

cation, the modern period cross-sectional R 2 is approxi-

mately 48%. 

Finally, the Online Appendix describes in detail the re-

sults of analysis studying the volatility betas we have esti-

mated for the market as a whole and for value stocks rel-

ative to growth stocks. For example, we report OLS esti-

mates of simple betas on RVAR and the 15-year horizon FI-

GARCH forecast ( FIG 60 ) for HML and RMRF . The betas based

on these two simple proxies have the same sign as those

using volatility news from our VAR. 

8. Conclusion 

We extend the approximate closed-form intertempo-

ral capital asset pricing model of Campbell (1993) to al-

low for stochastic volatility. Our model recognizes that

an investor’s investment opportunities can deteriorate ei-

ther because expected stock returns decline or because

the volatility of stock returns increases. A long-term in-

vestor with Epstein-Zin preferences and relative risk aver-

sion greater than one, holding an aggregate stock index,
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wishes to hedge against both types of changes in invest- 

ment opportunities. Such an investor’s perception of a 

stock’s risk is determined not only by its beta with unex- 

pected market returns and news about future returns (or, 

equivalently, news about market cash flows and discount 

rates) but also by its beta with news about future mar- 

ket volatility. Although our model has three dimensions of 

risk, the prices of all these risks are determined by a sin- 

gle free parameter, the investor’s coefficient of relative risk 

aversion. 

Our implementation models the return on the aggre- 

gate stock market as one element of a vector autoregres- 

sive system. The volatility of all shocks to the VAR is an- 

other element of the system. The estimated VAR system 

reveals new low-frequency movements in market volatility 

tied to the default spread. We show that the negative post- 

1963 CAPM alphas of growth stocks are justified because 

these stocks hedge long-term investors against both de- 

clining expected stock returns and increasing volatility. The 

addition of volatility risk to the model helps it fit the cross 

section of value and growth stocks, and small and large 

stocks, with a moderate, economically reasonable value of 

risk aversion. 

We confront our model with portfolios of stocks sorted 

by past betas with the market return and volatility and 

portfolios double-sorted by characteristics and past volatil- 

ity betas. We also confront our model with managed port- 

folios that vary equity exposure in response to our esti- 

mates of market variance. The explanatory power of the 

model is quite good across all these sets of test assets, with 

stable parameter estimates. Notably, the model helps to ex- 

plain the low cross-sectional reward to past market beta 

and the negative return to idiosyncratic volatility as the 

result of volatility exposures of stocks with these charac- 

teristics in the post-1963 period. 

Our model does not explain why a conservative long- 

term investor with constant risk aversion retains a con- 

stant equity exposure in response to changes in the eq- 

uity premium that are not proportional to changes in the 

variance of stock returns. As a consequence, we do not in- 

terpret our model as a representative-agent model of gen- 

eral equilibrium in financial markets. However, our model 

does answer the interesting microeconomic question: Do 

reasonable preference parameters exist that would make 

a long-term investor, constrained to invest 100% in equity, 

content to hold the market instead of tilting toward value 

stocks or other high-return stock portfolios? Our answer is 

clearly yes. 
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