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This Appendix provides a variety of supplemental information for Campbell, Giglio, Polk,
and Turley (CGPT 2017).

1 Additional Literature Review

Our model is an example of an affi ne stochastic volatility model. Affi ne stochastic volatility
models date back at least to Heston (1993) in continuous time, and have been developed
and discussed by Ghysels, Harvey, and Renault (1996), Meddahi and Renault (2004), and
Darolles, Gourieroux, and Jasiak (2006) among others. Similar models have been applied in
the long-run risk literature by Eraker (2008), Eraker and Shaliastovich (2008), and Hansen
(2012), but much of this literature uses volatility specifications that are not guaranteed to
remain positive.

Two precursors to our work are unpublished papers by Chen (2003) and Sohn (2010).
Both papers explore the effects of stochastic volatility on asset prices in an ICAPM setting
but make strong assumptions about the covariance structure of various news terms when
deriving their pricing equations. Chen (2003) assumes constant covariances between shocks
to the market return (and powers of those shocks) and news about future expected market
return variance. Sohn (2010) makes two strong assumptions about asset returns and con-
sumption growth, specifically that all assets have zero covariance with news about future
consumption growth volatility and that the conditional contemporaneous correlation between
the market return and consumption growth is constant through time. Duffee (2005) presents
evidence against the latter assumption. It is in any case unattractive to make assumptions
about consumption growth in an ICAPM that does not require accurate measurement of
consumption.

Chen estimates a VAR with a GARCH model to allow for time variation in the volatility
of return shocks, restricting market volatility to depend only on its past realizations and not
those of the other state variables. His empirical analysis has little success in explaining the
cross-section of stock returns. Sohn uses a similar but more sophisticated GARCH model
for market volatility and tests how well short-run and long-run risk components from the
GARCH estimation can explain the returns of various stock portfolios, comparing the results
to factors previously shown to be empirically successful. In contrast, our paper incorporates
the volatility process directly in the ICAPM, allowing heteroskedasticity to affect and to
be predicted by all state variables, and showing how the price of volatility risk is pinned
down by the time-series structure of the model along with the investor’s coeffi cient of risk
aversion.

Stochastic volatility has been explored in other branches of the finance literature. For
example, Chacko and Viceira (2005) and Liu (2007) show how stochastic volatility affects the
optimal portfolio choice of long-term investors. Chacko and Viceira assume an AR(1) process
for volatility and argue that movements in volatility are not persistent enough to generate
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large intertemporal hedging demands. Our more flexible multivariate process does allow
us to detect persistent long-run variation in volatility. Campbell and Hentschel (1992),
Calvet and Fisher (2007), and Eraker and Wang (2011) argue that volatility shocks will
lower aggregate stock prices by increasing expected returns, if they do not affect cash flows.
The strength of this volatility feedback effect depends on the persistence of the volatility
process. Coval and Shumway (2001), Ang, Hodrick, Xing, and Zhang (2006), and Adrian
and Rosenberg (2008) present evidence that shocks to market volatility are priced risk factors
in the cross-section of stock returns, but they do not develop any theory to explain the risk
prices for these factors.

Time-varying volatility is a prime concern of the field of financial econometrics. Since
Engle’s (1982) seminal paper on ARCH, much of the financial econometrics literature has
focused on variants of the univariate GARCH model (Bollerslev 1986), in which return
volatility is modeled as a function of past shocks to returns and of its own lags (see Poon
and Granger (2003) and Andersen et al. (2006) for recent surveys). More recently, realized
volatility from high-frequency data has been used to estimate stochastic volatility processes
(Barndorff-Nielsen and Shephard 2002, Andersen et al. 2003). The use of realized volatility
has improved the modeling and forecasting of volatility, including its long-run component;
however, this literature has primarily focused on the information content of high-frequency
intra-daily return data. This allows very precise measurement of volatility, but at the same
time, given data availability constraints, limits the potential to use long time series to learn
about long-run movements in volatility. In our paper, we measure realized volatility only
with daily data, but augment this information with other financial time series that reveal
information investors have about underlying volatility components.

A much smaller literature has, like us, looked directly at the information in other variables
concerning future volatility. In early work, Schwert (1989) links movements in stock market
volatility to various indicators of economic activity, particularly the price-earnings ratio
and the default spread, but finds relatively weak connections. Engle, Ghysels and Sohn
(2013) study the effect of inflation and industrial production growth on volatility, finding
a significant link between the two, especially at long horizons. Campbell and Taksler
(2003) look at the cross-sectional link between corporate bond yields and equity volatility,
emphasizing that bond yields respond to idiosyncratic firm-level volatility as well as aggregate
volatility. Two recent papers, Paye (2012) and Christiansen et al. (2012), look at larger
sets of potential volatility predictors, including the default spread and valuation ratios, to
find those that have predictive power for quarterly realized variance. The former paper,
in a standard regression framework, finds that the commercial paper to Treasury spread
and the default spread, among other variables, contain useful information for predicting
volatility. The latter uses Bayesian Model Averaging to find the most successful predictors,
and documents the importance of the default spread and valuation ratios in forecasting
short-run volatility.
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2 Detailed Model Derivations

In this section we derive an expression for the log stochastic discount factor (SDF) of the
intertemporal CAPM model, and the corresponding pricing equations, when we allow for
stochastic volatility. The SDF is based on Epstein—Zin utility, but imposes additional as-
sumptions that allow us to express the SDF as a function of news about future cash flows,
discount rates, and volatility, and obtain empirically testable implications.

2.1 The stochastic discount factor

2.1.1 Preferences

We begin by assuming a representative agent with Epstein—Zin preferences. We write the
value function as

Vt =
[
(1− δ)C

1−γ
θ

t + δ
(
Et
[
V 1−γ
t+1

])1/θ
] θ
1−γ

, (1)

where Ct is consumption and the preference parameters are the discount factor δ, risk aversion
γ, and the elasticity of intertemporal substitution (EIS) ψ. For convenience, we define
θ = (1− γ)/(1− 1/ψ).

The corresponding stochastic discount factor can be written as

Mt+1 =

(
δ

(
Ct
Ct+1

)1/ψ
)θ (

Wt − Ct
Wt+1

)1−θ

, (2)

where Wt is the market value of the consumption stream owned by the agent, including
current consumption Ct. The log return on wealth is rt+1 = ln (Wt+1/ (Wt − Ct)), the log
value of wealth tomorrow divided by reinvested wealth today. The log SDF is therefore

mt+1 = θ ln δ − θ

ψ
∆ct+1 + (θ − 1) rt+1. (3)

The log SDF is a function of 1) consumption growth∆ct+1, and 2) the log return on wealth
rt+1. In the remainder of this section, we show how to re-express the log SDF substituting
consumption out, in a manner analogous to Campbell (1993) but allowing explicitly for time-
varying volatility. We then discuss the implications of the model and its testable restrictions.
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2.1.2 First step: A convenient identity

The gross return to wealth can be written

1 +Rt+1 =
Wt+1

Wt − Ct
=

(
Ct

Wt − Ct

)(
Ct+1

Ct

)(
Wt+1

Ct+1

)
, (4)

expressing it as the product of the current consumption payout, the growth in consumption,
and the future price of a unit of consumption.

We find it convenient to work in logs. We define the log value of reinvested wealth per
unit of consumption as zt = ln ((Wt − Ct) /Ct), and the future value of a consumption claim
as ht+1 = ln (Wt+1/Ct+1), so that the log return is:

rt+1 = −zt + ∆ct+1 + ht+1. (5)

Heuristically, the return on wealth is negatively related to the current value of reinvested
wealth and positively related to consumption growth and the future value of wealth. The
last term in equation (5) will capture the effects of intertemporal hedging on asset prices,
hence the choice of the notation ht+1 for this term.

The convenient identity (5) can therefore be used to write the log SDF (3) without
reference to consumption growth:

mt+1 = θ ln δ − θ

ψ
zt +

θ

ψ
ht+1 − γrt+1. (6)

Given that the focus of our paper will be cross-sectional risk premia, it is useful to write
the one-period innovation in the SDF:

mt+1 − Etmt+1 =
θ

ψ
[ht+1 − Etht+1]− γ [rt+1 − Etrt+1] . (7)

As noted in Campbell (1993), consumption growth does not appear in this expression for
the log SDF. Instead, the equation illustrates the dependence of the innovations in the SDF
(which determine risk premia) on the one-period innovations in the wealth-consumption ratio
and on the log return on the wealth portfolio. Next, we impose the asset pricing equation for
the wealth portfolio and re-express the innovations in the SDF as a function of news about
future cash flows, discount rates, and risk.
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2.1.3 Second step: imposing the general pricing equation and lognormality to
solve the SDF forward

We now add the assumption that asset returns and all state variables in the model are jointly
conditionally lognormal. Since we allow for changing conditional volatility, we are careful to
write second moments with time subscripts to indicate that they can vary over time. Under
this standard assumption, the return on the wealth portfolio must satisfy:

0 = ln Et exp{mt+1 + rt+1} = Et [mt+1 + rt+1] +
1

2
Vart [mt+1 + rt+1] , (8)

We can then substitute our log SDF (6) into the asset pricing equation (8) and multiply
by ψ

θ
to find an equation for zt :

zt = ψ ln δ + (ψ − 1)Etrt+1 + Etht+1 +
ψ

θ

1

2
Vart [mt+1 + rt+1] . (9)

Next, we approximate the relationship of ht+1 and zt+1 by taking a loglinear approxima-
tion about z̄:

ht+1 ≈ κ+ ρzt+1 (10)

where the loglinearization parameter ρ = exp(z̄)/(1+exp(z̄)) ≈ 1−C/W . The two variables
ht+1 and zt+1 are closely related: the former is the log ratio of wealth to consumption,
log(Wt+1/Ct+1), the latter is the ratio of reinvested wealth to consumption, log((Wt+1 −
Ct+1)/Ct+1). In fact, when the EIS, ψ, is 1, the loglinear relationship between the two
variables holds exactly.

Combining the two equations (9) and (10) we then obtain an expression for the innovation
in ht+1:

ht+1 − Etht+1 = ρ(zt+1 − Etzt+1)

= (Et+1 − Et)ρ
(

(ψ − 1)rt+2 + ht+2 +
ψ

θ

1

2
Vart+1 [mt+2 + rt+2]

)
. (11)

Solving forward to an infinite horizon,

ht+1 − Etht+1 = (ψ − 1)(Et+1 − Et)
∞∑
j=1

ρjrt+1+j

+
1

2

ψ

θ
(Et+1 − Et)

∞∑
j=1

ρjVart+j [mt+1+j + rt+1+j]

= (ψ − 1)NDR,t+1 +
1

2

ψ

θ
NRISK,t+1. (12)
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The second equality follows Campbell and Vuolteenaho (2004) and uses the notation NDR

(“news about discount rates”) for revisions in expected future returns. In a similar spirit,
we write revisions in expectations of future risk (the variance of the future log return plus
the log stochastic discount factor) as NRISK .

Finally, we substitute back into the equation for the innovations in the log SDF (7), and
simplify to obtain:

mt+1 − Etmt+1 = −γ [rt+1 − Etrt+1]− (γ − 1)NDR,t+1 +
1

2
NRISK,t+1

= −γNCF,t+1 − [−NDR,t+1] +
1

2
NRISK,t+1 (13)

Equation (13) expresses the log SDF in terms of the market return and news about future
variables. In particular, it identifies three priced factors: the market return (with a price
of risk γ), discount rate news (with price of risk (γ − 1)), and news about future risk (with
price of risk of −1

2
). This is an extension of the ICAPM as derived by Campbell (1993),

with no reference to consumption or the elasticity of intertemporal substitution ψ. When
the investor’s risk aversion is greater than 1, assets which hedge aggregate discount rates
(negative covariance with NDR) or aggregate risk (positive covariance with NCF ) will have
lower expected returns, all else equal.

The second equation rewrites the model, following Campbell and Vuolteenaho (2004),
by breaking the market return into cash-flow news and discount-rate news. Cash-flow news
NCF,t+1 is defined by NCF,t+1 = rt+1−Etrt+1 +NDR,t+1. The price of risk for cash-flow news is
γ times greater than the price of risk for discount-rate news, hence Campbell and Vuolteenaho
call betas with cash-flow news “bad betas”and those with discount-rate news “good betas”.
The third term in (13) shows the risk price for exposure to news about future risks and did
not appear in Campbell and Vuolteenaho’s model, which assumed homoskedasticity. Not
surprisingly, the coeffi cient is positive, indicating that an asset providing positive returns
when risk expectations increase will offer a lower return on average (the log SDF is high
when future volatility is anticipated to be high).

While the elasticity of intertemporal substitution ψ does not affect risk prices (and there-
fore risk premia) in our model, this parameter does influence the implied behavior of the
investor’s consumption.

2.1.4 Third step: linking news about risk to news about volatility

The risk news term NRISK,t+1 in equation (13) represents news about the conditional volatil-
ity of returns plus the stochastic discount factor, Vart [mt+1 + rt+1]. It therefore depends on
the SDF m and its innovations. To close the model and derive its empirical implications, we
need to add assumptions on the data generating process for stock returns and the variance
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terms that will allow to solve for the term Vart [mt+1 + rt+1] and compute the news terms.
These assumptions will imply that the conditional volatility of returns plus the stochastic
discount factor is proportional to the conditional volatility of returns themselves.

We assume that the economy is described by a first-order VAR

xt+1 = x̄ + Γ (xt − x̄) + σtut+1, (14)

where xt+1 is an n× 1 vector of state variables that has rt+1 as its first element, σ2
t+1 as its

second element, and n−2 other variables that help to predict the first and second moments of
aggregate returns. x̄ and Γ are an n× 1 vector and an n×n matrix of constant parameters,
and ut+1 is a vector of shocks to the state variables normalized so that its first element
has unit variance. We assume that ut+1 has a constant variance-covariance matrix Σ, with
element Σ11 = 1.

The key assumption here is that a scalar random variable, σ2
t , equal to the conditional

variance of market returns, also governs time-variation in the variance of all shocks to this
system. Both market returns and state variables, including volatility itself, have innovations
whose variances move in proportion to one another. This assumption makes the stochastic
volatility process affi ne, as in Heston (1993) and related work discussed above in our literature
review.

Given this structure, news about discount rates can be written as

NDR,t+1 = (Et+1 − Et)
∞∑
j=1

ρjrt+1+j

= e′1

∞∑
j=1

ρjΓjσtut+1

= e′1ρΓ (I− ρΓ)−1 σtut+1, (15)

while implied cash flow news is:

NCF,t+1 = (rt+1 − Etrt+1) +NDR,t+1

=
(
e′1 + e′1ρΓ(I− ρΓ)−1

)
σtut+1. (16)

Furthermore, our log-linear model will make the log SDF, mt+1, a linear function of the
state variables. Since all shocks to the SDF are then proportional to σt, Vart [mt+1 + rt+1] ∝
σ2
t . As a result, the conditional variance of the scaled variables, Vart [(mt+1 + rt+1) /σt] = ωt,
will be a constant that does not depend on the state variables: ω. Without knowing the
parameters of the utility function, we can write Vart [mt+1 + rt+1] = ωσ2

t , so that the news
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about risk, NRISK , is proportional to news about market return variance, NV .

NRISK,t+1 = (Et+1 − Et)
∞∑
j=1

ρjVart+j [rt+1+j +mt+1+j]

= (Et+1 − Et)
∞∑
j=1

ρj
(
ωσ2

t+j

)
= ωρe′2

∞∑
j=0

ρjΓjσtut+1

= ωρe′2 (I− ρΓ)−1 σtut+1 = ωNV,t+1. (17)

2.2 Solving for ω

We now show how to solve for the unknown parameter ω. From the definition of ω,

ωσ2
t = Vart [mt+1 + rt+1]

= Vart

[
θ

ψ
ht+1 + (1− γ)rt+1

]
= Vart

[
θ

ψ

(
(ψ − 1)NDR,t+1 +

1

2

ψ

θ
ωNV,t+1

)
+ (1− γ)rt+1

]
= Vart

[
(1− γ)NDR,t+1 +

1

2
ωNV,t+1 + (1− γ)rt+1

]
= Vart

[
(1− γ)NCF,t+1 +

1

2
ωNV,t+1

]
= (1− γ)2Vart

[
NCFt+1

]
+ ω(1− γ)Covt

[
NCFt+1,NVt+1,

]
+
ω2

4
Vart

[
NVt+1

]
. (18)

This equation can also be written directly in terms of the VAR parameters. We define
xCF and xV as the error-to-news vectors that map VAR innovations to volatility-scaled news
terms:

1

σt
NCF,t+1 = xCFut+1 =

(
e′1 + e′1ρΓ(I− ρΓ)−1

)
ut+1 (19)

1

σt
NV,t+1 = xV ut+1 =

(
e′2ρ(I− ρΓ)−1

)
ut+1. (20)

Then ω solves

0 = ω2 1

4
xV Σx′V − ω (1− (1− γ) xCFΣx′V ) + (1− γ)2 xCFΣx′CF (21)
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We can see two main channels through which γ affects ω. First, a higher risk aversion–
given the underlying volatilities of all shocks– implies a more volatile stochastic discount
factor m, and therefore a higher risk. This effect is proportional to (1− γ)2, so it increases
rapidly with γ. Second, there is a feedback effect on current risk through future risk: ω
appears on the right-hand side of the equation as well. Given that in our estimation we find
Covt [NCF,t+1, NV,t+1] < 0, this second effect makes ω increase even faster with γ.

2.2.1 Selecting the correct root of the quadratic equation

The equation defining ω will generally have two solutions

ω =
1− (1− γ)xCFΣx′V ±

√
(1− (1− γ)xCFΣx′V )2 − (1− γ)2 (xV Σx′V ) (xCFΣx′CF )

1
2
xV Σx′V

.

(22)
While the (approximate) Euler equation holds for both solutions, the correct solution is the
one with the negative sign on the radical. This result can be confirmed from numerical
computation, and it can also be easily seen by observing the behavior of the solutions in the
limit as volatility news goes to zero and the model become homoskedastic. With the false
solution, ω becomes infinitely large as xV → 0. This false solution corresponds to the log
value of invested wealth going to negative infinity. On the other hand, we can exploit that
the correct solution for ω converges to (1− γ)2 xCFΣx′CF . This is what we would expect,
since in that case ω =Vart [(1− γ)NCF,t+1/σt].

2.2.2 Simplifying the existence condition for a real root

Appendix Figure 1 plots ω as a function of γ, conditional on our VAR parameter estimates.
The upper bound of 7.2 for γ is the value of γ above which a real solution to the quadratic
equation ceases to exist.

The existence condition for a solution for ω corresponds to the following inequality:

[1− (1− γ)(x′CFΣxV )]
2 − (1− γ)2 (x′V ΣxV ) (x′CFΣxCF ) ≥ 0 (23)

We show here that this condition can be simplified to a set of bounds on γ of the form:

1− 1

(ρn + 1)σcfσv
≤ γ ≤ 1− 1

(ρn − 1)σcfσv
(24)

where ρn is the correlation of the news terms, σcf is the scaled standard deviation of cash flow
news, and σv is the scaled standard deviation of volatility news. Note that since−1 ≤ ρn ≤ 1,
the lower bound on γ is always (weakly) below 1, and the upper bound is always (weakly)
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above 1. We also note that empirically, the lower bound is often below zero, and therefore
not actually binding. For example, in our case depicted in Appendix Figure 1, only the
upper bound on γ is binding, as the lower bound from equation (24) lies below zero.

As evident from equation (23), the existence condition is itself a simple quadratic in-
equality in (1− γ). We can rewrite it as:

(1− γ)2(x′CFΣxV )2 + 1− 2(1− γ)(x′CFΣxV )− (1− γ)2 (x′CFΣxCF ) (x′V ΣxV ) ≥ 0 (25)

or:
(1− γ)2

[
(x′CFΣxV )2 − (x′V ΣxV ) (x′CFΣxCF )

]
− 2(1− γ)(x′CFΣxV ) + 1 ≥ 0 (26)

The two roots of this equation can be found as:

(1− γ) =
2(x′CFΣxV )±

√
4(x′CFΣxV )2 − 4 [(x′CFΣxV )2 − (x′V ΣxV ) (x′CFΣxCF )]

2 [(x′CFΣxV )2 − (x′V ΣxV ) (x′CFΣxCF )]

=
(x′CFΣxV )±

√
(x′V ΣxV ) (x′CFΣxCF )

[(x′CFΣxV )2 − (x′V ΣxV ) (x′CFΣxCF )]
(27)

Note that this equation always has two real solutions, since (x′V ΣxV ) (x′CFΣxCF ) > 0.
The denominator can be written as:[

(x′CFΣxV )2 − (x′V ΣxV ) (x′CFΣxCF )
]

= (x′V ΣxV ) (x′CFΣxCF ) (ρ2
n − 1)

= (x′V ΣxV ) (x′CFΣxCF ) (ρn + 1)(ρn − 1) = σ2
vσ

2
cf (ρn + 1)(ρn − 1) (28)

while the numerator can be written as:

(x′CFΣxV )±
√

(x′V ΣxV ) (x′CFΣxCF ) = σvσcfρn ± σvσcf = σvσcf (ρn ± 1) (29)

Therefore, the two roots can be found as:

(1− γ) =
σvσcf (ρn ± 1)

σ2
vσ

2
cf (ρn + 1)(ρn − 1)

=
(ρn ± 1)

σvσcf (ρn + 1)(ρn − 1)
(30)

Or:

(1− γ) =
(ρn − 1)

σvσcf (ρn + 1)(ρn − 1)
=

1

σvσcf (ρn + 1)
≥ 0 (31)

and

(1− γ) =
(ρn + 1)

σvσcf (ρn + 1)(ρn − 1)
=

1

σvσcf (ρn − 1)
≤ 0 (32)
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Finally, we note that since [(x′CFΣxV )2 − (x′V ΣxV ) (x′CFΣxCF )] = σ2
vσ

2
cf (ρn+1)(ρn−1) ≤

0, the quadratic inequality (23) will have solutions between the two roots, for

1− γ ≤ (1− γ) =
1

σvσcf (ρn + 1)
(33)

and for
1− γ ≥ (1− γ) =

1

σvσcf (ρn − 1)
(34)

or equivalently:

γ ≥ 1− 1

σvσcf (ρn + 1)
(35)

γ ≤ 1− 1

σvσcf (ρn − 1)
(36)

2.3 Derivation of the moment conditions

After solving for ω, we can rewrite the stochastic discount factor as:

mt+1 − Etmt+1 = −γNCF,t+1 − [−NDR,t+1] +
1

2
ωNV,t+1 (37)

To derive the moment conditions of the model, we go back to the general asset pricing
equation under lognormality

0 = ln Et exp{mt+1 + ri,t+1} = Et [mt+1 + ri,t+1] +
1

2
Vart [mt+1 + ri,t+1] . (38)

The same equation can be rewritten as:

0 = Et [mt+1] + Et [ri,t+1] +
1

2
Vart [mt+1] +

1

2
Vart [ri,t+1] + Covt(ri,t+1,mt+1 − Etmt+1) (39)

We now rearrange this equation and make two substitutions. First, we note that the
conditional mean of the log SDF innovation is zero, so that

Covt(ri,t+1,mt+1 − Etmt+1) = Et [ri,t+1(mt+1 − Etmt+1)] (40)

Second, we note that

Etri,t+1 +
1

2
σ2
it ' (EtRi,t+1 − 1) (41)

which links the expected log returns (adjusted by their variance) to the expected gross level
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returns ri,t+1.2

After these two substitutions, we can rearrange (39) to yield:

EtRi,t+1 − 1 = −Et [mt+1]− 1

2
Vart [mt+1]− Et [ri,t+1(mt+1 − Etmt+1)] (42)

Given any reference asset j (which could be but does not need to be the risk-free rate), we
can write the relative risk premium of i relative to j as:

Et [Ri,t+1 −Rj,t+1] = −Et [(ri,t+1 − rj,t+1)(mt+1 − Etmt+1)] (43)

by taking the difference of equation (42) between i and j. We can then substitute the
expression for the innovations in the SDF and write:

Et [Ri,t+1 −Rj,t+1] = Et

[
(ri,t+1 − rj,t+1)(γNCF,t+1 + [−NDR,t+1]− 1

2
ωNV,t+1)

]
(44)

2.4 A simple fully-solved example with ψ = 1

In this section we solve analytically for a simple model with ψ = 1 and γ > 1. We show that
for the value function to exist the parameters of the model must satisfy a quadratic equation,
and we show that in this model the equation corresponds to equation (12) in CGPT (2016),
i.e. the upper bound on γ that ensures existence of a real solution for the price of volatility
risk ω (only the upper bound matters here, since we are looking at the case γ > 1). For
tractability purposes, we assume that consumption growth is iid, so the only state variable
will be volatility. Finally, we consider separately the existence conditions for the case of a
homoskedastic volatility process.

Since ψ = 1, we can write the log value function relative to consumption, vt = ln(Vt/Ct),
recursively as (see Hansen, Heaton and Li 2008):

vt =
δ

1− γ ln Et exp {(1− γ)(vt+1 + ∆ct+1)} (45)

Assume that volatility and consumption growth follow the process

σ2
t+1 = s+ dσ2

t + xσtεt+1 (46)

∆ct+1 = kσtηt+1 (47)

with εt and ηt normal with unit standard deviation, and correlation θ. d captures the

2By lognormality, we have: Et[ri,t+1] +
σ2i,t
2 = lnEt[Ri,t+1]. Now, for the expected gross return

Et[Ri,t+1] close to 1, we will have: lnEt[Ri,t+1] ' Et[Ri,t+1]− 1, from which the result follows.
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persistence of volatility, while x scales the volatility of volatility.

2.4.1 Existence of a solution in the simple model

We conjecture that v and ∆c are jointly lognormal, and write:

vt =
δ

1− γ ln Et exp {(1− γ)(vt+1 + ∆ct+1)}

=
δ

1− γ [Et {(1− γ)(vt+1 + ∆ct+1)}+ 0.5Vart {(1− γ)(vt+1 + ∆ct+1)}]

= δEt {vt+1 + ∆ct+1}+ δ(1− γ)0.5Vart {vt+1 + ∆ct+1} . (48)

Since consumption has mean zero in the simple model,

vt = δEt {vt+1}+ δ(1− γ)0.5Vart {vt+1 + ∆ct+1} (49)

We now guess that the log value function is linear in σ2
t :

vt = a+ bσ2
t (50)

and obtain:

a+ bσ2
t = δ(a+ bEt

{
σ2
t+1

}
) + δ(1− γ)0.5Vart

{
a+ bσ2

t+1 + kσtηt+1

}
= δ(a+ bEt

{
s+ dσ2

t

}
) + δ(1− γ)0.5Vart

{
a+ bσ2

t+1 + kσtηt+1

}
= δ(a+ bEt

{
s+ dσ2

t

}
) + δ(1− γ)0.5Vart

{
bxσtεt+1 + kσtηt+1

}
= δ(a+ bs+ bdσ2

t ) + δ(1− γ)0.5[b2x2 + k2 + 2bxkθ]σ2
t . (51)

Matching coeffi cients on σ2
t :

b = δbd+ δ(1− γ)0.5(b2x2 + k2 + 2bxkθ) (52)

or: (
δ(1− γ)0.5x2

)
b2 + (δd− 1 + δ(1− γ)xkθ) b+

(
δ(1− γ)0.5k2

)
= 0 (53)

This is a quadratic equation which may not have a solution. For the solution to exist, we
need:

(δd− 1 + δ(1− γ)xkθ)2 >
(
δ(1− γ)x2

) (
δ(1− γ)k2

)
(54)

Given the signs of these variables, this equation can be rewritten as:

1− δd− δ(1− γ)xkθ > δ(γ − 1)xk (55)
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Rearranging, the existence condition for the value function in this model is given by:

(γ − 1) ≤ 1− δd
kδx(1− θ) . (56)

2.4.2 Comparison with the existence of a real solution to ω

We can compare this equation with the condition for having a real solution for the price of
volatility risk ω in the general model of CGPT (2016). We can rewrite that upper bound on
γ (from equation 24) as:

(Corr(Ncf , NV )− 1)(1− γ)σcfσv ≤ 1. (57)

We now apply this condition to the fully solved model presented above. In this model we
have:

NCF,t+1 = ∆ct+1 = kσtηt+1 (58)

NV,t+1 = (Et+1 − Et)
∞∑
j=1

δjσ2
t+j = (Et+1 − Et)δ

∞∑
j=0

δjσ2
t+j+1

= δ
∞∑
j=0

δjdj(xσtεt+1) =
δ

1− δdxσtεt+1. (59)

Corr(NCF , NDR) = θ (60)

Substituting:

(θ − 1)(1− γ)
kδx

1− δd ≤ 1 (61)

or

(γ − 1) ≤ 1− δd
kδx(1− θ) (62)

which precisely coincides with the existence condition for vt shown in the previous subsection.

3 VAR summary statistics

We report summary statistics for the variables in our VAR in Appendix Table 1. A com-
parison of the unscaled and scaled autocorrelation matrices, provided in Appendix Table 2,
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documents that much of the sample autocorrelation in the unscaled residuals is eliminated
by our WLS approach.

4 Predicting Long-Run Volatility

The predictability of volatility, and especially of its long-run component, is central to this pa-
per. In the text, we have shown that volatility is strongly predictable, and it is predictable in
particular by variables beyond lagged realizations of volatility itself: PE and DEF contain
essential information about future volatility. We have also proposed a VAR-based method-
ology to construct long-horizon forecasts of volatility that incorporate all the information in
lagged volatility as well as in the additional predictors like PE and DEF .

We now ask how well our proposed long-run volatility forecast captures the long-horizon
component of volatility. In Appendix Table 3 we regress realized, discounted, annualized
long-run variance up to period h,

LHRV ARh =
4Σh

j=1ρ
j−1RV ARt+j

Σh
j=1ρ

j−1
, (63)

on both our VAR forecast and some alternative forecasts of long-run variance.3 We focus
our discussion on the 10-year horizon (h = 40) as longer horizons come at the cost of fewer
independent observations; however, Appendix Table 4 confirms that our results are robust
to horizons ranging from one to 15 years.

We estimate two standard GARCH-type models, specifically designed to capture the
long-run component of volatility. The first one is the two-component EGARCH model
proposed by Adrian and Rosenberg (2008). This model assumes the existence of two separate
components of volatility, one of which is more persistent than the other, and therefore will
tend to capture the long-run dynamics of the volatility process. The other model we estimate
is the FIGARCH model of Baillie, Bollerslev, and Mikkelsen (1996), in which the process for
volatility is modeled as a fractionally-integrated process, and whose slow, hyperbolic rate of
decay of lagged, squared innovations potentially captures long-run movements in volatility
better. We first estimate both GARCH models using the full sample of daily returns and
then generate the appropriate forecast of LHRV AR40.4 To these two models, we add the
set of variables from our VAR, and compare the forecasting ability of these different models.

Appendix Table 3 Panel A reports the results of forecasting regressions of long-run volatil-

3Note that we measure LHRV AR in annual units. In particular, we rescale by the sum of the weights
ρj to maintain the scale of the coeffi cients in the predictive regressions across different horizons.

4We start our forecasting exercise in January 1930 so that we have a long enough history of past returns
to feed the FIGARCH model. Other long-run GARCH models could be estimated in a similar manner, for
example the FIEGARCH model of Bollerslev and Mikkelsen (1996).
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ity LHRV AR40 using different specifications. The first regression presents results using
the state variables in our VAR, each included separately. The second regression predicts
LHRV AR40 with the horizon-specific forecast implied by our VAR (V AR40). The third and
fourth regressions forecast LHRV AR40 with the corresponding forecast from the EGARCH
model (EG40) and the FIGARCH model (FIG40) respectively. The fifth and sixth regres-
sions join the VAR variables with the two GARCH-based forecasts, one at a time. The
seventh and eighth regressions conduct a horse race between V AR40 and FIG40 and be-
tween V AR40 and DEF . Regressions nine through 13 focus on the forecasting ability of our
two key state variables, DEF and PE; we discuss these specifications in more detail below.

First, note that both the EGARCH and FIGARCH forecasts by themselves capture
a significant portion of the variation in long-run realized volatility: both have significant
coeffi cients, and both have nontrivial R2s. Our VAR variables provide as good or better
explanatory power, and RV AR, PE and DEF are strongly statistically significant. Appen-
dix Table 4 documents that these conclusions are true at all horizons (with the exception
of RV AR at h = 8 and h = 20, i.e. two and five years). Finally, the coeffi cient on the
VAR-implied forecast, V AR40, is 1.02. This estimate is not only significantly different from
zero but also not significantly different from one. This finding indicates that our VAR is
able to produce forecasts of volatility that not only go in the right direction, but are also of
the right magnitude, even at the 10-year horizon.

Very interesting results appear once we join our variables to the two GARCH models.
Even after controlling for the GARCH-based forecasts (which render RV AR insignificant),
PE and DEF significantly predict long-horizon volatility, and the addition of the VAR
state variables strongly increases the R2. We further show that when using the VAR-implied
forecast together with the FIGARCH forecast, the coeffi cient on V AR40 is still very close to
one and always statistically significant while the FIGARCH coeffi cient moves closer to zero
(though it remains statistically significant at the 10-year horizon).

We develop an additional test of our VAR-based model of stochastic volatility from the
idea that the variables that form the VAR —in particular the strongest of them, DEF —
should predict volatility at long horizons only through the VAR, not in addition to it. In other
words, the VAR forecasts should ideally represent the best way to combine the information
contained in the state variables concerning long-run volatility. If true, after controlling for the
VAR-implied forecast, DEF or other variables that enter the VAR should not significantly
predict future long-run volatility. We test this hypothesis by running a regression using
both the VAR-implied forecast and DEF as right-hand side variables. We find that the
coeffi cient on V AR40 is still not significantly different from one, while the coeffi cient on
DEF is essentially measured as zero. Appendix Table 4 shows that this finding is true at
all horizons we consider.

The bottom part of Appendix Table 3 Panel A examines more carefully the link between
DEF and LHRV AR40. Regressions nine through 13 in the table forecast LHRV AR40 with
PE, DEF , PEO (PE orthogonalized to DEF ), and DEFO (DEF orthogonalized to PE).
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These regressions show that by itself, PE has no information about low-frequency variation
in volatility. In contrast, DEF forecasts nearly 22% of the variation in LHRV AR40. And
once DEF is orthogonalized to PE, the R2 increases to nearly 51%. Adding PEO has little
effect on the R2. We argue that this is clear evidence of the strong predictive power of the
orthogonalized component of the default spread.

As a further check on the usefulness of our VAR approach, we compare our variance
forecasts to option-implied variance forecasts. Specifically, using option data from Option-
Metrics for the period 1998—2011, we construct the synthetic prices of variance swaps (claims
to the realized variance from inception to the maturity of the contract), replicated using a
portfolio of options. We construct these prices for maturities 1 to 12 months: V IX2

n,t. Under
the assumption that returns follow a diffusion, we will have: V IX2

n,t = EQ
t [
∫ t+n
t

σ2
sds]. We

compute V IX2
n,t using the same methodology used by the CBOE to construct the 30-day

VIX, applying it to all maturities. We compare the forecast of long-horizon variance at hori-
zon h from our baseline VAR (V ARh) to the corresponding V IX2 at horizon h (V IX2

h).
5

Since our VAR is quarterly, we study forecasts at the three-month, six-month, nine-month,
and twelve-month horizons. The top panels of Appendix Figure 2 plot the time series of
these forecasts for the three-month and twelve-month horizons. We find that forecasts from
the two quite different methods line up well, though the V IX2 forecasts are generally higher,
especially near the end of the sample. Appendix Figure 2 also shows that the V ARh fore-
casts become smoother when the horizon is extended, relative to both the shorter-horizon
V ARh forecasts as well as the V IX2

h forecasts at the same horizon. Appendix Table 3 Panel
B confirms these facts by reporting the mean, standard deviation, and correlation of these
forecasts, along with the value for realized variance (LHRV ARh) over the corresponding
horizon. The V IX2 forecasts are on average approximately 20% larger than their realized
variance counterparts.

Appendix Table 3 Panel C reports regressions forecasting LHRV ARh using the V ARh

forecast, the V IX2
h forecast, or both together, at each horizon. Both the VAR and the option-

based forecasts are individually statistically significant, though the coeffi cient on V ARh is
always closer to the predicted value of 1.0 at all horizons except for three months. The
bottom panels of Appendix Figure 2 plot LHRV ARh against the fitted value from the
V ARh forecast and against the fitted value of the V IX2

h forecast for the three-month and
twelve-month horizons. The figure confirms that V ARh is as informative as V IX2

h, if not
more so. Indeed, Appendix Table 3 Panel C shows that when both forecasts are included in
the regression, V ARh subsumes V IX2

h, remaining statistically and economically significant.

Taken together, these results make a strong case that credit spreads and valuation ratios
contain information about future volatility not captured by simple univariate models, even
those like the FIGARCH model or the two-component EGARCH model that are designed to

5As the V IX2
h measures do not discount future volatility, for this portion of the analysis, we do not

discount either expectations of future variance when constructing our V ARh measures or their realized
variance counterparts when constructing LHRV ARh.
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fit long-run movements in volatility, and that our VAR method for calculating long-horizon
forecasts preserves this information.

4.1 Shocks to short- and long-run expected variance

Our empirical specification (the VAR that drives volatility and the other state variables)
delivers a time-series model where volatility is affected by different shocks, each with different
time-series properties. Some shocks affect volatility for a long time, some for a short time.
Our multifactor specification predicts that one-period and multi-period innovations are not
perfectly correlated. Our results are in stark contrast to a univariate model of volatility (e.g.
if volatility followed an AR(1)). In that case, one-period shocks and longer-horizon shocks
(like NV ) would be perfectly correlated. Appendix Table 5 summarizes this message: in the
data, NV and innovations in one-period volatility expectations are not perfectly correlated,
as predicted in a multifactor world. Appendix Figure 3 makes this point graphically.

5 Comparison with BKSY: details

In this section we discuss details of the comparison with Bansal, Kiku, Shaliastovich, and
Yaron’s (BKSY 2014) model (Section 7.1 in CGPT). We review the theoretical implications
of a homoskedastic volatility process, we compare by simulation the homoskedastic and het-
eroskedastic versions of the volatility process, and we present a comparison of the empirical
results in our and BKSY’s papers.

5.1 A Homoskedastic Stochastic Volatility Model

It is interesting to explore the alternative hypothesis of a homoskedastic process for σ2
t (as

in BKSY). We show in the paper that under the assumption that σ2
t scales all the shocks

of the VAR, we obtain the result that Vart(RISKt+1) ≡ Vart(mt+1 + rt+1) = ωσ2
t , so that

NRISK = ωNV . Given this proportionality, in our empirical analysis we can use NV as a
pricing factor, with a price of risk of ω. We now explore whether this proportionality holds
under the assumption of homoskedasticity of the variance process.

For NRISK to be proportional to NV , a suffi cient condition is that Vart(RISKt+1) is
proportional (as in our case) or at least affi ne (as in BKSY) in σ2

t . If this is not the case,
the news terms will not generally be proportional to each other, and it will not generally be
appropriate to use NV as a pricing factor.

When considering the homoskedastic volatility case, it is important to define which shocks
are actually homoskedastic. When the volatility process σ2

t is modeled as part of a VAR,

18



the fact that its own innovation has constant variance does not imply that NV will also have
constant variance. To see this, call ηt+1 the unscaled vector of VAR innovations. If σ

2
t is

the v− th element of the VAR and its shock has constant variance, but the other shocks are
scaled by σ2

t , then we will have: Vart(e
′
vηt+1) equal to a constant but Vart(e

′
i 6=vηt+1) ∝ σ2

t

(where ei is a vector of zeros with 1 at the i-th element). Now consider that the volatility
news term NV can be expressed as λ

′
vηt+1, where λv = e′−1

v . In general NV will not have
constant variance, but rather its variance will be a linear function of σt and σ2

t . With a simple
example, suppose that σ2

t is the second element of a 2-variable VAR, and λv = [λ1 λ2]′. Then,

Vart(NV,t+1) = Vart(λ1σtu1,t+1 + λ2u2,t+1) = a1 + a2σ + a3σ
2
t (64)

for some a1, a2, a3, and for ut+1 being a vector with constant variance-covariance matrix.
Similarly, the covariance between NV and NCF will be a function of σt and σ2

t . The general
intuition for this result is that news about long-run volatility is driven by all the shocks
in the VAR, not just by the innovation to the volatility equation, and therefore the term
NV will generally have time-varying second moments even when the volatility equation is
homoskedastic.

What does this imply? Remember that for Vart(mt+1 + rt+1) to be affi ne in σ2
t we need

Vart(mt+1+rt+1) = (1−γ)2Vart(NCF,t+1)+ω(1−γ)Covt(NCF,t+1, NV,t+1)+
ω2

4
Vart(NV,t+1) = f+ωσ2

t

(65)
for some coeffi cients f and ω (this is analogous to equation (18) with the addition of a
constant, f). Under the case considered above, the left-hand side will depend on σt in
addition to σ2

t and a constant. Setting the σt term to zero requires additional restrictions on
the parameters f and ω and their relation with the news terms; otherwise the proportionality
of NRISK and NV is violated. We consider these restrictions below in greater detail.

Suppose, instead, that by homoskedasticity we mean that NV itself has constant variance:
i.e., Vart(λ

′
vηt+1) = c, a constant. To obtain this, the vector λv must be loading only on

VAR innovations that are homoskedastic. Even in this case, we can show that a σt term
will appear on the left-hand side of eq. (65). To see why, note that NCF = λ′CFηt+1, and
at least some of the elements of η must depend on σt (otherwise, the whole model would be
homoskedastic and time-varying volatility would be irrelevant). For simplicity, consider the
case NCF = σtλ

′
CFut+1, which is also the case considered in BKSY. We will have

Covt(NV,t+1, NCF,t+1) = Covt(λ
′
CFσtut+1, λ

′
V ut+1) = hσt (66)

for a scalar h = Cov(λ′CFut+1, λ
′
V ut+1). Eq. (65) then reduces to

(1− γ)2λ′CFΣλCFσ
2
t + ω(1− γ)hσt +

ω2

4
c = f + ωσ2

t (67)

Matching coeffi cients requires that ω(1 − γ)h = 0, which can be possible only if either the
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price of volatility risk is 0 (ω = 0), or if NCF and NV are uncorrelated. We note that the
latter assumption is counterfactual since these news series are negatively correlated in the
data.

We conclude that under the assumption of homoskedasticity it will not generally be
possible to write Vt(mt+1 + rt+1) as an affi ne function of σ2

t , and therefore generally it will
not be the case that NRISK is proportional to NV .

A similar intuition can be obtained by looking at the conditions for the existence of the
value function, in the special case with ψ = 1 analyzed above. Suppose that

σ2
t+1 = s+ dσ2

t + xεt+1 (68)

∆ct+1 = kσtηt+1 (69)

so that σt scales the volatility of consumption growth but not its own. Conjecturing that
vt = a+ bσ2

t and substituting, we find:

a+ bσ2
t = δ(a+ bc+ bdσ2

t ) + δ(1− γ)0.5[b2x2 + k2σ2
t + 2bxkθσt]. (70)

In the right-hand side we now have a term proportional to σt (and not only σ2
t ): bxkθσt.

For the coeffi cients on the two sides to match, we need to have:

bxkθ = 0. (71)

Therefore, for the value function to have a solution of the form a + bσ2
t we need that

either the value function does not depend at all on volatility (b = 0), one of the shocks has
zero variance (x = 0 or k = 0), or shocks to volatility and shocks to consumption growth
are uncorrelated (θ = 0). The latter assumption would imply, counterfactually, that NV

and NCF should be uncorrelated, while they are clearly strongly negatively correlated in the
data. Unless one of these conditions is met, the value function cannot be written as an affi ne
function of σ2

t . And in this case Vart(mt+1+rt+1), which is proportional to Vart(vt+1+∆ct+1),
will not be proportional to σ2

t , which again implies that the terms NV and NRISK will not
be proportional to each other.

5.2 Simulations of homoskedastic and heteroskedastic volatility
processes

In our specification, the conditional variance term σ2
t (EVAR) is modeled as one of the

elements of the VAR state vector. This means that in samples generated by the VAR σ2
t

could become negative, an issue that has been previously highlighted in the literature. As in
the previous literature, in simulations we replace negative or zero values of σ2

t with a small
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positive number.

In this section we show by simulation that our heteroskedastic VAR specification, in which
σ2
t scales the entire covariance matrix of the innovations, makes the issue of potentially neg-
ative volatility much less severe than the homoskedastic counterpart. This is especially true
when the process is sampled at higher frequencies: as we converge towards the continuous
time limit, volatility becomes less likely to attain or cross the boundary of zero, and when
it does, it crosses the boundary by a small amount.

Starting from our estimated quarterly VAR, we simulate both a homoskedastic version
(where the VAR innovations et+1 have a constant covariance matrix equal to the sample
unconditional covariance matrix) and the heteroskedastic version we employ in the paper
(where the innovations et+1 have a covariance matrix of the form σ2

tΣ). We then derive
the VAR sampled at higher frequencies, and simulate it for 10,000 quarters at quarterly,
monthly, and daily frequencies. As we simulate the process, we reset σ2

t every time it falls
below 0.

For each simulation, we compute the fraction of periods in which σ2
t falls below zero, N0.

We also compute the total amount that was added to the process σ2
t over the simulated path

to ensure it stayed positive everywhere. We refer to this quantity as B0. To understand
the meaning of these quantities, it is useful to consider that in the continuous time limit,
a diffusion with reflective boundary at 0 spends zero time at the boundary. The processes
we simulate, in which σ2

t is reset at 1e-9 when it crosses the boundary, does not converge
exactly to a diffusion with reflective boundary in the continuous-time limit, but its behavior
is similar to it, so that it would not be surprising if both the homoskedastic model and the
heteroskedastic model tend to hit the boundary a smaller and smaller fraction of time as we
increase the sampling frequency (N0 → 0). This implies that just counting the amount of
times the process needs to be reset (N0) will not provide a very meaningful diagnostic as we
increase the sampling frequency.

Instead, the total amount that needs to be added to the process to ensure its positivity,
B0, converges to a limiting stochastic process, in a reflective diffusion (Karatzas and Shreve
1988). This quantity tells us by how much the theoretical process tends to violate the
boundary, and therefore is a measure of how well the theoretical VAR (in which this boundary
is not taken into account explicitly) can approximate the true process (in which the boundary
can never be crossed).

The following table reports the quantities N0 and B0 for a 10,000 quarter simulation at
different frequencies, and for the two models, homoskedastic and heteroskedastic.

Quarterly Monthly Daily
Homosk. Heterosk. Homosk. Heterosk. Homosk. Heterosk.

N0: fraction of times σ2
t < 0 8.8% 3.3% 6.2% 1.7% 1.3% 0.2%

B0: total amount added to σ2
t 2.37 0.38 3.65 0.21 4.79 0.02
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The Table shows that while for both processes the fraction of times where σ2
t needs to

be reset, N0, falls as the frequency increases, the total amount by which σ2
t needs to be

increased to ensure it stays positive is in fact increasing for the homoskedastic model, while
it’s decreasing for the heteroskedastic model. As a reference point, the unconditional mean
of σ2

t is 0.008. So in a daily simulation for 10,000 quarters, the homoskedastic process needs
to be increased by 600 times the unconditional mean to stay positive; the heteroskedastic
process by only 2.5 times the mean over the entire simulation. This shows that the het-
eroskedastic process crosses the boundary with low probability and by low amounts as the
sampling frequency increases.

5.2.1 Derivations of the higher-frequency VAR representation

We start from the estimated quarterly model:

xt+1 = a+Gxt + et+1. (72)

The covariance matrix of et+1 is either constant (and we refer to it just as Σ, empirically the
covariance matrix of the unscaled errors) or is stochastic, σ2

tΣ, where then we refer to Σ as
the covariance matrix of the scaled errors.

We start by noting that changing the sampling frequency will not affect the unconditional
mean of the model. Therefore, we can rewrite the model in terms of deviations from the
mean. The unconditional mean of xt is:

x = (I −G)−1a (73)

We can then write the model in deviations from the mean as:

(xt+1 − x) = G(xt − x) + et+1, (74)

or:
yt+1 = Gyt + et+1 (75)

with yt = xt+1−x. From now on, we consider the model directly in terms of deviations from
the mean.

5.2.2 Scaling the homoskedastic model

Let us now assume that the variance of the et+1 error is Σ, where Σ is the covariance matrix
of the unscaled errors. To derive the scaling in the homoskedastic case, suppose we start at
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a certain frequency and we want to sample less frequently, say every n periods. Then we can
write:

yt+1 = Gyt + et+1

yt+2 = G2yt +Get+1 + et+2

...

yt+n = Gnyt +

n−1∑
j=0

Gjet+j+1. (76)

The process sampled at frequency 1
n
has errors vt,t+n =

∑n−1
j=0 Get+j+1. The covariance

matrix of these errors is:

V (vt,t+n) =
n−1∑
j=0

(
GjΣGj′

)
. (77)

When sampling less frequently, we obtain a VAR with transition matrix Gn and variance
of the errors

∑n−1
j=0 (GjΣGj). Conversely, when sampling more frequently, we need a VAR

with transition matrix G
1
n , and a variance-covariance of the errors Σ̃ such that:

Σ =
n−1∑
j=0

(
G

j
n Σ̃G

j
n

′)
. (78)

Σ̃ can be solved by noting that:

vec(ABC) = (C ′ ⊗ A)vec(B), (79)

so that
vec(G

j
n Σ̃G

j
n ) = (G

j
n ⊗G

j
n )vec(Σ̃). (80)

We can rewrite:

vec(Σ) =

[
n−1∑
j=0

(G
j
n ⊗G

j
n )

]
vec(Σ̃). (81)

So we can find

vec(Σ̃) =

[
n−1∑
j=0

(G
j
n ⊗G

j
n )

]−1

vec(Σ). (82)

There are two practical considerations to take into account. First, G
1
n may not be real. In

that case, we take the real part of it. Second, Σ̃ is not guaranteed to be positive semidefinite,
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i.e. a valid covariance matrix. In that case, we replace each negative eigenvalues with a small
positive number (1e-6). We have verified by simulation that both of these modifications have
small effects on the results.

5.2.3 Scaling the heteroskedastic model

The heteroskedastic model has one additional diffi culty: that in theory the volatility is
changing within each period, continuously. Ignoring this, we can simply find the time-scaled
variance of the scaled shocks by solving:

vec(Σ̃) =

[
n−1∑
j=0

(G
j
n ⊗G

j
n )

]−1

vec(Σ), (83)

and then construct the conditional variance as σtΣ̃.

5.3 Comparison of the empirical results

In Appendix Table 6 we estimate different versions of the VAR that include our baseline esti-
mate, our replication of BKSY’s VAR, and various combination of the two specifications. For
each specification, the Table reports the properties of the news terms. The main differences
between BKSY’s and our VAR are: 1) BKSY estimate the VAR at the yearly frequency, we
estimate it at the quarterly frequency; 2) BKSY use monthly returns to construct RVAR,
we use daily returns; 3) the state variable used by BKSY are partly different than the ones
we use: in addition to RVAR, BKSY use log dividend growth, log price-dividend ratio, term
spread, long-term interest rate, and default spread; we use the market return, the log PE
ratio, the value spread, the default spread, and the t-bill rate.

6 Construction of the Test Portfolios

Our primary cross section consists of the excess returns on the 25 ME- and BE/ME-sorted
portfolios, studied in Fama and French (1993), extended in Davis, Fama, and French (2000),
and made available by Professor Kenneth French on his web site.6

We consider two main subsamples: early (1931:3-1963:3) and modern (1963:4-2011:4)
due to the findings in Campbell and Vuolteenaho (2004) of dramatic differences in the risks
of these portfolios between the early and modern period. The first subsample is shorter than

6http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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that in Campbell and Vuolteenaho (2004) as we require each of the 25 portfolios to have at
least one stock as of the time of formation in June.

We also follow the advice of Daniel and Titman (1997, 2012) and Lewellen, Nagel, and
Shanken (2010) and construct a second set of six portfolios double-sorted on past risk loadings
to market and variance risk. First, we run a loading-estimation regression for each stock in
the CRSP database where ri,t is the log stock return on stock i for month t.

3∑
j=1

ri,t+j = b0 + brM

3∑
j=1

rM,t+j + b∆V AR

3∑
j=1

∆V ARt+j + εi,t+3 (84)

We calculate ∆V AR as a weighted sum of changes in the VAR state variables. The
weight on each change is the corresponding value in the linear combination of VAR shocks
that defines news about market variance. We choose to work with changes rather than shocks
as this allows us to generate pre-formation loading estimates at a frequency that is different
from our VAR. Namely, though we estimate our VAR using calendar-quarter-end data, our
approach allows a stock’s loading estimates to be updated at each interim month.

The regression is reestimated from a rolling 36-month window of overlapping observations
for each stock at the end of each month. Since these regressions are estimated from stock-level
instead of portfolio-level data, we use quarterly data to minimize the impact of infrequent
trading. With loading estimates in hand, each month we perform a two-dimensional sequen-
tial sort on market beta and ∆V AR beta. First, we form three groups by sorting stocks
on b̂rM . Then, we further sort stocks in each group to three portfolios on b̂∆V AR and record
returns on these nine value-weight portfolios. The final set of risk-sorted portfolios are the
two sets of three b̂rM portfolios within the extreme b̂∆V AR groups. To ensure that the aver-
age returns on these portfolio strategies are not influenced by various market-microstructure
issues plaguing the smallest stocks, we exclude the five percent of stocks with the lowestME
from each cross-section and lag the estimated risk loadings by a month in our sorts.

Finally, we consider equity portfolios that are formed based on both characteristics and
past risk loadings. One possible explanation for our finding that growth stocks hedge
volatility relative to value stocks is that growth firms are more likely to hold real options,
which increase in value when volatility increases, all else equal. To test this interpretation,
we sort stocks based on two firm characteristics that are often used to proxy for the presence
of real options and that are available for a large percentage of firms throughout our sample
period: BE/ME and idiosyncratic volatility (ivol).

We first sort stocks into tritiles based on BE/ME and then into tritiles based on ivol. We
follow Ang, Hodrick, Xing, and Zhang (2006) and others and estimate ivol as the volatility
of the residuals from a Fama and French (1993) three-factor regression using daily returns
within each month. Finally, we split each of these nine portfolios into two subsets based on
pre-formation estimates of simple volatility beta, β̂∆V AR, estimated as above but in a simple
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regression that does not control for the market return. One might expect that sorts on simple
rather than partial betas will be more effective in establishing a link between pre-formation
and post-formation estimate of volatility beta, since the market is correlated with volatility
news. As before, we exclude the bottom five percent of stocks based on market capitalization
and lag our loadings and idiosyncratic volatility estimates by one month.

Appendix Table 7 reports the average excess returns on our test assets. Appendix Table
8 reports the ICAPM betas for the size and book-to-market sorted portfolios. Appendix
Table 9 reports the ICAPM betas for the characteristic and risk-sorted portfolios.

7 Changing Volatility Beta of the Aggregate StockMar-
ket

In the paper we find that the average βV of the 25 size- and book-to-market portfolios changes
sign from the early to the modern subperiod. Over the 1931-1963 period, the average βV is
-0.10 while over the 1964-2011 period this average becomes 0.06. Of course, given the strong
positive link between PE and volatility news documented in the paper, one should not be
surprised that the market’s βV can be positive. Moreover, in Appendix Table 1 we show
that the correlation between PE and some of the key variables driving EV AR changes from
one subperiod to the other. Nevertheless, we study this change in sign more carefully.

Appendix Figure 4 shows scatter plots with the early period as blue triangles and the
modern period data as red asterisks. The top two plots in this figure emphasize that variance
news betas are not the same as RV AR betas. The top left portion of the figure plots the
market return against RV AR. This plot shows that the market does do poorly when realized
variance is high, and that this is the case in both subsamples. In fact, this relation is slightly
more negative in the modern period. However, our theory tells us that long-horizon investors
care about low frequency movements in volatility. The top right portion of the figure plots
the market return against volatility news, NV . Consistent with the estimates in the paper,
the relation between the market return and NV is negative in the early period and positive
in the modern period.7 This plot shows that the estimates are robust and not driven by
outliers.

The bottom two plots in this figure illustrate what drives this relation in our VAR. The
bottom left of the figure plots PE against DEFO, our simple proxy for news about long-
horizon variance. It is easy to see that the market’s PE is high when DEFO is low in the
early period, but this relation reverses in the latter period. The bottom right of the figure

7Straddle returns are negatively correlated with the return on the market portfolio in the 1986:1-2011:4
sample. This negative correlation is not inconsistent with the positive correlation we find between the market
return and NV in the modern sample as the straddle portfolio consists of one-month maturity options and
thus should respond to short-term volatility expectations.
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plots market returns against the contemporaneous change in DEFO, showing a negative
relation in the early period and a positive relation in the modern period. In other words,
the orthogonalization of DEF to PE that creates DEFO is valid over the whole sample, but
conceals negative comovement in the early period and positive comovement in the modern
period.

In summary, Appendix Figure 4 highlights the important distinction between single-
period realized variance RV AR and long-run volatility news, and confirms that the sign
change in the market’s volatility beta from the early to the modern period can be seen in
simple plots of the market return against the change in our key state variable, the PE-
adjusted default spread.

7.1 Model estimation

We now turn to pricing the cross section of excess returns on our test assets. We estimate our
model’s single parameter via GMM, using the moment condition (44). For ease of exposition,
we report our results in terms of the expected return-beta representation from equation (??),
rescaled by the variance of market return innovations as in section 5.2:

Ri −Rj = g1β̂i,CFM + g2β̂i,DRM + g3β̂i,VM + ei, (85)

where bars denote time-series means and betas are measured using returns relative to the
reference asset. Recall that we use the aggregate equity market as our reference asset but
include the T-bill return as a test asset, so that our model not only prices cross-sectional
variation in average returns, but also prices the average difference between stocks and bills.

We evaluate the performance of five asset pricing models, all estimated via GMM: 1)
the traditional CAPM that restricts cash-flow and discount-rate betas to have the same
price of risk and sets the price of variance risk to zero; 2) the two-beta intertemporal asset
pricing model of CV (2004) that restricts the price of discount-rate risk to equal the variance
of the market return and again sets the price of variance risk to zero; 3) our three-beta
intertemporal asset pricing model that restricts the price of discount-rate risk to equal the
variance of the market return and constrains the prices of cash-flow and variance risk to
be related by equation (??), with ρ = 0.95 per year; 4) a partially-constrained three-beta
model that restricts the price of discount-rate risk to equal the variance of the market return
but freely estimates the other two risk prices (effectively decoupling γ and ω); and 5) an
unrestricted three-beta model that allows free risk prices for cash-flow, discount-rate, and
volatility betas.
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7.1.1 Model estimates with characteristic-sorted portfolios

Table 10 reports separate results for the early sample period 1931-1963 (Panel A) and the
modern sample period 1963-2011 (Panel B), using 25 size- and book-to-market-sorted port-
folios and the T-bill rate as test assets. The table has five columns, one for each of our asset
pricing models. The first six rows of each panel in Table 10 are divided into three sets of two
rows. The first set of two rows corresponds to the premium on cash-flow beta, the second set
to the premium on discount-rate beta, and the third set to the premium on volatility beta.
Within each set, the first row reports the point estimate in fractions per quarter, and the
second row reports the corresponding standard error. Below the premia estimates, we report
the R2 statistic for a cross-sectional regression of average market-adjusted returns on our
test assets onto the fitted values from the model as well as the J statistic. In the final two
rows of each panel, we report the implied risk-aversion coeffi cient, γ, which can be recovered
as g1/g2, as well as the sensitivity of news about risk to news about market variance, ω,
which can be recovered as −2g3/g2.

Table 10 Panel A shows that in the 1931-1963 period, all our models explain the cross
section of stock returns reasonably well. The cross-sectional R2 statistic is 64% for the
CAPM, 66% for the two-beta ICAPM, and 67% for our three-beta ICAPM. Consistent
with the claim that the three-beta model does a good job describing the cross section, the
constrained and the unrestricted factor model barely improve pricing relative to the three-
beta ICAPM in Panel A. Despite this apparent success, all models are rejected based on
the standard J test. This may not be surprising, given that even the empirical three-factor
model of Fama and French (1993) is rejected by this test.

Results are very different in the 1963-2011 period. Table 10 Panel B shows that in this
period, the CAPM does a very poor job of explaining cross-sectional variation in average
market-adjusted returns on size and value portfolios: its cross-sectional R2 is strongly nega-
tive at −50%. The two-beta CV (2004) model does a much better job describing the cross
section of average returns than the CAPM, with a cross-sectional R2 of 45%. However, the
implied coeffi cient of risk aversion is arguably extreme at 16.5, and much larger than the
value of 6.4 estimated in the early subperiod.

The three-beta model explains slightly more cross-sectional variation than the two-beta
model, delivering anR2 of 48%. Importantly, the estimated coeffi cient of relative risk aversion
is estimated at 7.2, a moderate value that is reasonably similar to the estimate of 5.2 from
the early subperiod. The value of ω that corresponds to this estimate of risk aversion is
24.9. As before, all models are rejected based on the J statistic.

The modest size of the increase in R2 delivered by the three-beta ICAPM is because
of the derived link between γ and ω. We illustrate this fact by considering in Panel B a
partially-constrained factor model that removes the constraint linking γ and ω but retains
the constraint on the discount-rate beta premium. The cross-sectional R2 for this model
increases from 48% to 76%, and the risk prices for γ and ω remain economically large and
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of the right sign. The γ implied by the partially-constrained model is 15.1, and the implied
ω is 27.3. Thus, compared to our fully-constrained model, the data prefer a higher γ rather
than a higher ω .

8 Implications for Consumption Growth

In this section we derive the model implications for consumption growth and show how to
represent the stochastic discount factor in terms of consumption growth, news about future
consumption growth, and consumption volatility.

8.1 Implied consumption growth in the model and in the data

8.1.1 Analytical results

Following Campbell (1993), in this paper we substitute consumption out of the pricing equa-
tions using the intertemporal budget constraint. However the model does have interesting
implications for the implied consumption process. From equation (4) in the text and the
identity rt+1 − Etrt+1 = (∆ct+1 − Et∆ct+1) + (ht+1 − Etht+1), we can derive the expression:

∆ct+1 − Et∆ct+1 = (rt+1 − Etrt+1)− (ψ − 1)NDR,t+1 − (ψ − 1)
1

2

ω

1− γNV,t+1. (86)

The first two components of the equation for consumption growth are the same as in the
homoskedastic case. An unexpectedly high return of the wealth portfolio has a one-for-one
effect on consumption. An increase in expected future returns increases today’s consumption
if ψ < 1, as the low elasticity of intertemporal substitution induces the representative investor
to consume today (the income effect dominates). If ψ > 1, instead, the same increase induces
the agent to reduce consumption to better exploit the improved investment opportunities
(the substitution effect dominates).

The introduction of time-varying conditional volatility adds an additional term to the
equation describing consumption growth. News about high future risk is news about a
deterioration of future investment opportunities, which is bad news for a risk-averse investor
(γ > 1). When ψ < 1, the representative agent will reduce consumption and save to ensure
adequate future consumption. An investor with high elasticity of intertemporal substitution,
on the other hand, will increase current consumption and reduce the amount of wealth
exposed to the future (worse) investment opportunities.

Using estimates of the news terms from our VAR model, we can explore the implications
of the model for consumption growth. As shown in the text, the three shocks that drive
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innovations in consumption growth (rt+1 − Etrt+1, NDR,t+1, NV,t+1) can all be expressed
as functions of the vector of innovations σtut+1. The conditional variance of consump-
tion growth, Vart(∆ct+1), will then be proportional to the conditional variance of returns,
Vart(rt+1); similarly, the conditional standard deviation of consumption growth will be pro-
portional to the conditional standard deviation of returns. As a consequence, the ratio of
the standard deviations,

A(γ, ψ) ≡
√

Vart(∆ct+1)√
Vart(rt+1)

(87)

will be a constant that depends on the model parameters γ and ψ as well as on the uncondi-
tional variances and covariances of the innovation vector ut+1, which we obtain by estimating
the VAR.

Appendix Figure 5 plots the coeffi cient A(γ, ψ) for different values of γ and ψ for the
homoskedastic case (left panel), and for the heteroskedastic case (right panel). In each panel,
we plot A(γ, ψ) as γ varies between 0 and the maximum possible value of γ, for different
values of ψ. Each line corresponds to a different ψ between 0.5 and 1.5; when ψ = 1 the
value of A(γ, ψ) is always equal to 1 since in that case the volatility of consumption growth
is equal to the volatility of returns.

As expected, in the homoskedastic case (left panel), the variance of consumption growth
does not depend on γ but only on ψ. It is rising in ψ because our VAR estimates imply
that the return on wealth is negatively correlated with news about future expected returns
NDR,t+1, that is, wealth returns are mean-reverting. This confirms results reported in Camp-
bell (1996). Once we add stochastic volatility (right panel), as γ increases the volatility of
consumption growth increases for all values of ψ as long as ψ > 1, while for values of ψ < 1,
the effect depends on ψ. The reason for this is that the variance of consumption growth
depends on the variances and covariances of the three terms that add up to consumption
growth as shown in equation (86). Whether A(γ, ψ) increases with γ or not depends on the
relative magnitude of these variances and covariances, which in turn depends on ψ.

Overall, Appendix Figure 5 shows that including stochastic volatility makes little differ-
ence to the variance of consumption growth for the range of γ in which the model admits a
solution. And γ has a relatively minor effect on the variance of consumption growth, which
continues to depend primarily on ψ.

8.1.2 Implied and measured aggregate consumption and cash flows

Next we compare the implied consumption innovations (∆ct+1−Et∆ct+1) to observed innova-
tions in real log aggregate consumption growth, as well as stockholders’and top stockholder’s
log consumption growth. We construct aggregate consumption growth using nondurable and
services data from the BEA, and obtain stockholders’and top stockholders’data from Mal-
loy, Moskowitz, and Vissing-Jørgensen (2009). We construct consumption innovations by
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taking the residuals of an AR(1) regression for each series. We work here with yearly data,
from 1930 to 2011 for all series except for stockholders’consumption, which is available only
between 1982 and 2004.

Panel A of Appendix Table 11 reports the standard deviations of innovations in aggregate
consumption in the full sample and in the subsample 1982-2004 for which stockholders’
consumption data is available; stockholders’and top stockholders’ consumption (only for
the period 1982-2004); and implied innovations in consumption under the three calibrations
for ψ (0.5, 1, 1.5). The table shows that the implied consumption innovation series are more
volatile than aggregate consumption innovations, but roughly of the same order of magnitude
as top stockholders’consumption.

Panel B of Appendix Table 11 reports the correlations between the consumption in-
novation series implied by our model and the observed consumption series (for aggregate
consumption, we compute the correlations both in the full sample and in the subsample
1982-2004 for which we observe stockholders’consumption as well). The table shows that
our implied consumption series are positively correlated with the realizations of aggregate
consumption in the full sample (with a correlation of about 0.3). While the correlation of
aggregate consumption with implied consumption is weaker in the subsample 1982-2004, top
stockholders’consumption (only available in this time period) correlates more strongly than
aggregate consumption with the implied consumption innovations. This is consistent with
the interpretation that the investor whose first-order conditions we study in this paper is a
long-term investor fully invested in the market portfolio, whose consumption lines up more
strongly with the stockholders’consumption series.

Appendix Figure 6 shows the time series of aggregate and stockholder’s consumption
growth, as well as the time series of implied consumption growth (with ψ = 0.5). Both
the higher volatility of stockholder’s consumption relative to aggregate consumption and the
higher correlation with implied consumption are clearly visible in the figure.

8.2 Consumption-based representation of the SDF

As shown in the previous section, we can express consumption growth as:

∆ct+1 − Et∆ct+1 = (rt+1 − Etrt+1)− (ψ − 1)NDR,t+1 − (ψ − 1)
1

2

ω

1− γNV,t+1. (88)

Note that we also have:

mt+1 − Etmt+1 = −γNCF,t+1 +NDR,t+1 +
1

2
ωNV,t+1. (89)
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We can rewrite the consumption equation as:

∆ct+1 − Et∆ct+1 = NCF,t+1 − ψNDR,t+1 − (ψ − 1)
1

2

ω

1− γNV,t+1 (90)

and, rearranging:

ψNDR,t+1 = −(∆ct+1 − Et∆ct+1) +NCF,t+1 − (ψ − 1)
1

2

ω

1− γNV,t+1. (91)

NDR,t+1 = − 1

ψ
(∆ct+1 − Et∆ct+1) +

1

ψ
NCF,t+1 −

1

ψ
(ψ − 1)

1

2

ω

1− γNV,t+1. (92)

Substitute into the SDF:

mt+1−Etmt+1 = −γNCF,t+1+

{
− 1

ψ
(∆ct+1 − Et∆ct+1) +

1

ψ
NCF,t+1 −

1

ψ
(ψ − 1)

1

2

ω

1− γNV,t+1

}
+

1

2
ωNV,t+1

(93)

or:

mt+1−Etmt+1 = − 1

ψ
(∆ct+1−Et∆ct+1)−(γ− 1

ψ
)NCF,t+1+

1

2
ω

{
− 1

ψ
(ψ − 1)

1

1− γ + 1

}
NV,t+1

(94)

Note that:
ψ − 1

1− γ =
ψ

( 1−γ
1− 1

ψ

)
(95)

so we have:{
− 1

ψ
(ψ − 1)

1

1− γ + 1

}
=

− 1

ψ

ψ

( 1−γ
1− 1

ψ

)
+ 1

 =

− 1

( 1−γ
1− 1

ψ

)
+ 1

 =

{
−

1− 1
ψ

1− γ + 1

}
= −1

θ
+1

=
θ − 1

θ
(96)

So to conclude we have:

mt+1 − Etmt+1 = − 1

ψ
(∆ct+1 − Et∆ct+1)− (γ − 1

ψ
)NCF,t+1 +

1

2
ω

(
θ − 1

θ

)
NV,t+1. (97)

As expected, when θ = 1, the price of NV is 0. The NV reported here is the volatility of
news about the volatility of returns. Next, we express the SDF in terms of news about the
volatility of consumption growth NCV .
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Recall that:
ωσ2

t = Vt((1− γ)NCF,t+1 +
1

2
ωNV,t+1), (98)

σ2
t = Vt(rt+1 − Etrt+1). (99)

We have:

∆ct+1 − Et∆ct+1 = (rt+1 − Etrt+1)− (ψ − 1)NDR,t+1 − (ψ − 1)
1

2

ω

1− γNV,t+1

= (rt+1−Etrt+1)− (ψ− 1)NDR,t+1 + (ψ− 1)NCF,t+1− (ψ− 1)NCF,t+1− (ψ− 1)
1

2

ω

1− γNV,t+1

= (rt+1 − Etrt+1) + (ψ − 1)(rt+1 − Etrt+1)− (ψ − 1)NCF,t+1 − (ψ − 1)
1

2

ω

1− γNV,t+1

= ψ(rt+1 − Etrt+1)− (ψ − 1)

1− γ

[
(1− γ)NCF,t+1 +

1

2
ωNV,t+1

]
. (100)

So:

Vt(∆ct+1 − Et∆ct+1) = ψ2σ2
t +

(
(ψ − 1)

1− γ

)2

ωσ2
t+

−ψ (ψ − 1)

1− γ Covt(rt+1 − Etrt+1, (1− γ)NCF,t+1 +
1

2
ωNV,t+1). (101)

Note that while ω only depends on the covariance between NCF and NV , this conditional
variance depends on the covariance between all three news terms NDR, NCF and NV . If we
call this coeffi cient k, we have:

Vt(∆ct+1 − Et∆ct+1) = kσ2
t , (102)

and
NCV = kNV (103)

then we can rewrite:

mt+1 − Etmt+1 = − 1

ψ
(∆ct+1 − Et∆ct+1)− (γ − 1

ψ
)NCF,t+1 +

1

2
ω

(
θ − 1

θ

)
1

k
NCV,t+1 (104)

or, more simply, we can call η = ω
k
and obtain the formula reported in the text.

9 Implications for the Risk-Free Rate

In this section we report the implied risk-free rate rf in the model as well as Nrf (news about
the future risk-free rate), and plot their time series using our model estimates.
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9.1 Time series of rf and Nrf

Starting from the equation for the conditional risk premium of the market:

Etr
M
t+1 +

1

2
σ2
Mt − r

f
t+1 = γCovt(r

M
t+1, NCF,t+1)− Covt(rMt+1, NDR,t+1)− 1

2
ωCovt(r

M
t+1, NV,t+1)

(105)

We derive the log risk-free rate rft+1 as:

rft+1 = Etr
M
t+1 −Hσ2

t , (106)

where
H = γe′1ΣxCF − e′1ΣxDR −

1

2
ωe′1ΣxNV −

1

2
(107)

includes both the risk premium and the volatility adjustment due to the Jensen adjustment
for log returns.

Here xCF , xDR and xNV are the loadings of the three news terms on the vector of
innovations, and Σ is the scaled covariance matrix of innovations. In our data, and using
our estimates of γ and ω, we find H = 2.27.

Appendix Figure 7 plots EtrMt+1 and r
f
t+1. The difference between the two lines is, of

course, Hσ2
t . The risk-free rate implied by the model is relatively volatile (standard deviation

of 2.4% per quarter). The graph clearly shows periods where rf and EtrMt+1 are close to each
other (times of low market volatility), like in the 1950s and 1960s; but also periods when
the two diverge significantly, as in the Great Depression and the Great Recession, where
volatility is higher. The implied risk-free rate turns sharply negative in a few occasions —the
Great Depression, during the tech boom in the 1990s-2000s (prices were high and expected
returns were low) and at the onset of the financial crisis, when volatility spiked.

Risk-free news is:
Nrf,t+1 = NDR,t+1 −H ·NV,t+1 (108)

Appendix Figure 8 shows the time-series of Nrf (normalized to have standard deviation
of 1 and then smoothed as in Figure 2 in the text). Risk-free rate news is correlated with
changes in the risk-free rate, but, remarkably, does not show a large drop at the beginning of
the financial crisis. This is because the news reflects all the future dynamics of the risk-free
rate, so that a temporary spike in the risk-free rate has a smaller effect on Nrf than on rf
itself.

Finally, Appendix Table 12 reports the correlations among all these news terms (with
standard deviations on the diagonal). Not surprisingly, risk-free rate news is positively cor-
related with discount rate news, and negatively correlated with news about future variance.
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9.2 Derivations

Recall that:

Etr
M
t+1 +

1

2
σ2
Mt − r

f
t+1 = γCovt(r

M
t+1, NCF,t+1)− Covt(rMt+1, NDR,t+1)− 1

2
ωCov(rMt+1, NV,t+1)

(109)

Now, call xCF , xDR and xNV the loadings of the news terms on the vector ut; e1 is a
vector of zeroes with 1 as the first element, so that:

Covt(r
M
t+1, NCF,t+1) = e′1ΣxCFσ

2
t (110)

where Σ is the covariance matrix of scaled news terms. Then we can write:

So we can write:

rft+1 = Etrt+1 +
1

2
σ2
t − γe′1ΣxCFσ

2
t + e′1ΣxDRσ

2
t +

1

2
ωe′1ΣxNV σ

2
t

= Etrt+1 + (
1

2
− γe′1ΣxCF + e′1ΣxDR +

1

2
ωe′1ΣxNV )σ2

t . (111)

We define:

Nrf,t+1 = (Et+1 − Et)
∞∑
j=1

ρjrft+j+1

= (Et+1 − Et)
∞∑
j=1

ρj
[
Et+jrt+j+1 + (

1

2
− γe′1ΣxCF + e′1ΣxDR +

1

2
ωe′1ΣxNV )σ2

t+j

]
, (112)

so
Nrf,t+1 = NDR,t+1 + (

1

2
− γe′1ΣxCF + e′1ΣxDR +

1

2
ωe′1ΣxNV )NV,t+1. (113)

10 Robustness

Appendix Table 13 examines the robustness of our findings. Where appropriate, we include
in bold font our baseline model as a benchmark. Panel A shows results using various subsets
of variables in our baseline VAR. These results indicate that including both DEF and
PE is generally essential for our finding of a negative βV for HML, consistent with the
importance of these two variables in long-run volatility forecasting. Moreover, successful
volatility ICAPM pricing in the modern period requires PE, DEF , and V S in the VAR.
The results in Panel A also show that the positive volatility beta of the aggregate stock
index in the modern period is due to the inclusion of PE and DEF in the VAR. This
finding makes sense once one is convinced (and the long-horizon regressions of Appendix
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Table 3 make a strong case) that, controlling for DEF , high PE forecasts high volatility
in the future. Since the market will certainly covary positively (and quite strongly) with
the PE shock, one should expect this component of volatility news to be positive and an
important determinant of the market’s volatility beta.

Panel B presents results based on different estimation methods for the VAR. These meth-
ods include an OLS VAR, two different bounds on the maximum ratio of WLS weights, a
single-stage approach where the weights are proportional to RV AR rather than EV AR, and
a partial VAR where we throw out in each regression those variables with t-statistics under
1.0 (in an iterative fashion, starting with the weakest t-statistic first). These results show
that our first major finding (a negative βV for HML) is generally robust to using different
methods. However, the use of WLS is critical for successful ICAPM pricing.

In Panel C, we vary the way in which we estimate realized variance. In the second, fifth,
and sixth columns of the Table, we estimate the VAR using annual data. Thus, our estimate
of realized variance reflects information over the entire year. In columns three and five, we
compute the realized variance of monthly returns rather than the realized variance of daily
returns as in our benchmark specification. In the fourth and six columns, we simply sum
squared monthly returns. Across Panel C, ICAPM R2s remain high in the modern period
for quarterly VARs.

In Panel D, we alter the set of variables included in the VAR as a response to the concern
of Chen and Zhao (2009) that VAR-based forecasts are sensitive to this choice. (See also
Engsted, Pedersen, and Tanggaard 2012 for a clarifying discussion of this issue.) We first
explore different ways to measure the market’s valuation ratio. In the second column of the
Table, we replace PE with PERe al where we construct the price-earnings ratio by deflating
both the price and the earnings series by the CPI before taking their ratio. In the third
column, we use the log price-dividend ratio, PD, instead of PE. In column four, we replace
PE with PERe al and the CPI inflation rate, INFL. Panel D also explores adding two
additional state variables. In column five, we add CAY (Lettau and Ludvigson (2001)) to
the VAR as CAY is known to be a strong predictor of future market returns. Column six
adds the quarterly FIGARCH forecast to the VAR as Appendix Table 3 Panel B documents
that GARCH-based methods are useful predictors of future market return variance.

Column seven adds the volatility of the term spread (TY V ol) to the list of state variables
based on the evidence in Fornari and Mele (2011) that this variable contains information
about time-varying expected returns. In particular, following Fornari and Mele (2011), we
add the mean absolute monthly change in the term spread over the previous twelve months.8

In unreported results, we find that TY V ol is not incrementally important for forecasting
either the first or second moment of the real market return. In fact, even if we exclude
some or all of PE, RTbill, DEF , or V S from the VAR, TY V ol never comes in significantly.
However, TY V ol does help forecast DEF . Nevertheless, adding TY V ol to the VAR does
not qualitatively change the conclusions of the pricing tests. In total, this Panel confirms

8Results are robust to measuring the volatility of the monthly term spread over the last year instead.
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that our finding of a negative βV for HML and successful ICAPM pricing in both time
periods is generally robust to these variations.

In Panel E, we study the out-of-sample properties of our model. In particular, we estimate
our baseline VAR on an expanding window, using the estimates in each window to generate
news terms for the quarter ahead. Since the interesting pricing results are in the modern
period, our initial window is the 1926:2 to 1963:2 period, so that the first out-of-sample news
realizations occur in 1963:3, corresponding to the first data point in the modern period. We
find that the out-of-sample news terms are strongly correlated with their in-sample counter-
parts. Specifically, the correlations are 0.36, 0.43, and 0.63 for the cash-flow, discount-rate,
and volatility news terms respectively over the 1963:3-2011:4 subperiod. Appendix Table 13
Panel E documents that the pricing of the out-of-sample news terms is very consistent with
the full-sample results. In fact, the out-of-sample test of the ICAPM has a much higher R2.
We next allow for a structural break between the early and modern periods in the coeffi cients
of the return and volatility regressions in the VAR. Specifically, we interact all coeffi cients in
these regressions in both the first and second stage with a dummy variable that is one if the
observation is in the post-1962 subsample. Thus, we effectively split the sample for these two
key regressions of the VAR. We continue to focus on the modern period. We find that the
news terms from these sample splits are highly correlated with their baseline counterparts.
We again find that HML’s βV is negative. As with our baseline specification, the modern
period cross-sectional R2 is approximately 48%.

In unreported results, we have also experimented with allowing all 42 coeffi cients in the
VAR’s six regressions to vary across the early and modern periods. Care has to be taken here
as more persistent variables rightly receive more weight in the construction of the news terms
yet estimates of persistence are known to be biased downwards in finite samples with the
size of the bias proportional to the inverse of the sample size (Kendall 1954). Nevertheless,
our main finding, that HML’s βV is negative, continues to hold in these specifications.
However, in the modern subsample, we estimate a less persistent process for V S, the key
variable in Campbell and Vuolteenaho’s (2004) finding that HML’s βCF is positive and, as
a consequence, find that HML’s βCF is negative in that specification.

In Panel F, we explore using alternative proxies for the wealth portfolio. In particular,
we replace the market returns with the return on a delevered market portfolio that combines
Treasury Bills and the market in various constant proportions. By doing so, we are able to
assess how varying the volatility of this central series affects our results. The two specific
delevered portfolios we examine have 80% or 60% invested in the market. We find that
the cross-sectional fit of our model remains high, with R2s in the early period essentially
unaffected and R2s in the modern period declining slowly. Perhaps not surprisingly, the
estimated risk aversion parameter increases as the degree of delevering increases. In the
modern period, delevering the market portfolio by 20% results in a risk aversion estimate of
10.2 while delevering by 40% requires risk aversion of 14.5.

Panels G and H present information to help us better understand the volatility betas we
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have estimated for the market as a whole, and for value stocks relative to growth stocks.
Panel G reports components of RMRF andHML’s βV in each period (estimated either with
WLS or OLS). Specifically, these results use the elements of the vector defined in equation
(17) and the corresponding VAR shock to measure how each shock contributes to the βV in
question. Panel G documents, consistent with Panel A, that the excess return on the market
has a positive volatility beta in the modern period due in part to the PE state variable.
The results in Panel G also show that all of the non-zero components of HML’s βV in
the modern period are negative. This finding is comforting as it further confirms that our
negative HML beta finding is robust. Panel G also reports OLS estimates of simple betas
on RV AR and the 15-year horizon FIGARCH forecast (FIG60) for HML and the excess
market return. The HML betas based on these two simple proxies have the same sign as our
more sophisticated and more appropriate measure of volatility news. However, conclusions
about the relevance of volatility risk for the value effect clearly depend on measuring the
long-run component of volatility well.

Panel H reports time-series regressions of HML on NV,t by itself as well as on all three
factors together. We find that NV,t explains over 22% of HML’s returns in the modern
period. The three news factors together explain slightly over 32%. Thus our model is able
to explain not only the cross-sectional variation in average returns of the 25 size- and book-
to-market-sorted portfolios of Fama and French (1993) but also a significant amount of time
series variation in realized returns on the key factor that they argue is multifactor-minimum-
variance (Fama and French, 1996).
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Table 1: Summary Statistics
This Appendix Table reports descriptive statistics for quarterly observations of the state
variables included in the VAR. rM is the log real return on the CRSP value-weight index.
RV AR is the realized variance of within-quarter daily returns on the CRSP value-weight
index. PE is the log ratio of the S&P 500’s price to the S&P 500’s ten-year moving average of
earnings. rTbill is the log three-month Treasury Bill yield. DEF is the default yield spread in
percentage points, measured as the difference between the log yield on Moody’s BAA bonds
and the log yield on Moody’s AAA bonds. V S is the small-stock value-spread, the difference
in the log book-to-market ratios of small value and small growth stocks. The small-value
and small-growth portfolios are two of the six elementary portfolios constructed by Davis
et al. (2000). The paper reports the WLS parameter estimates of a constrained regression
forecasting RV AR with lagged values of these state variables; the forecasted values from
that regression are the state variable EV AR used in the second stage of the estimation
and described below. Panel A reports descriptive statistics of these state variables over the
full sample period 1926.2-2011.4, 343 quarterly data points. Panel B reports descriptive
statistics of these state variables over the early sample period 1926.2-1963.2, 149 quarterly
data points. Panel C reports descriptive statistics of these state variables over the modern
sample period 1963.3-2011.4, 194 quarterly data points. "Stdev." denotes standard deviation
and "Autocorr." the first-order autocorrelation of the series.



Panel A: Full-Sample Summary Statistics
Variable Mean Median Stdev. Min Max Autocorr.

rM 0.016 0.027 0.107 -0.406 0.635 -0.038
RV AR 0.007 0.003 0.012 0.000 0.113 0.524
EV AR 0.007 0.005 0.007 0.000 0.062 0.754

PE 2.924 2.919 0.379 1.508 3.910 0.965
rTbill 0.016 0.014 0.013 0.000 0.063 0.965
DEF 1.072 0.852 0.671 0.324 5.167 0.901
V S 1.640 1.517 0.356 1.183 2.685 0.969

Correlations rM,t+1 RV ARt+1 EV ARt+1 PEt+1 rTbill,t+1 DEFt+1 V St+1

rM,t+1 1 -0.306 -0.306 0.083 -0.040 -0.138 -0.037
RV ARt+1 -0.306 1 0.922 -0.214 -0.189 0.600 0.336
EV ARt+1 -0.306 0.922 1 -0.166 -0.229 0.777 0.505

PEt+1 0.083 -0.214 -0.166 1 0.106 -0.597 -0.356
rTbill,t+1 -0.040 -0.189 -0.229 0.106 1 -0.133 -0.482
DEFt+1 -0.138 0.600 0.777 -0.597 -0.133 1 0.645
V St+1 -0.037 0.336 0.505 -0.356 -0.482 0.645 1
rM,t -0.038 -0.157 -0.156 0.095 -0.014 -0.163 -0.023

RV ARt 0.031 0.524 0.594 -0.215 -0.205 0.568 0.355
EV ARt 0.018 0.609 0.754 -0.169 -0.246 0.717 0.515

PEt -0.156 -0.113 -0.067 0.965 0.113 -0.541 -0.350
rTbill,t -0.031 -0.156 -0.191 0.101 0.965 -0.102 -0.477
DEFt 0.077 0.520 0.661 -0.582 -0.150 0.901 0.640
V St -0.032 0.338 0.491 -0.358 -0.490 0.619 0.969

Covariances rM RV AR EV AR PE rTbill DEF V S
rM 0.0115 -0.0004 -0.0002 0.0032 -0.0001 -0.0100 -0.0015

RV AR -0.0004 0.0001 0.0001 -0.0009 0.0000 0.0047 0.0014
EV AR -0.0002 0.0001 0.0001 -0.0005 0.0000 0.0038 0.0013

PE 0.0032 -0.0009 -0.0005 0.1434 0.0005 -0.1512 -0.0478
rTbill -0.0001 0.0000 0.0000 0.0005 0.0002 -0.0012 -0.0022
DEF -0.0100 0.0047 0.0038 -0.1512 -0.0012 0.4496 0.1538
V S -0.0015 0.0014 0.0013 -0.0478 -0.0022 0.1538 0.1264
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Panel B: 1926-1963 Summary Statistics
Variable Mean Median Stdev. Min Max Autocorr.

rM 0.020 0.029 0.128 -0.406 0.635 -0.105
RV AR 0.008 0.003 0.013 0.001 0.091 0.568
EV AR 0.008 0.004 0.009 0.000 0.043 0.812

PE 2.715 2.723 0.300 1.508 3.502 0.914
RF 0.006 0.005 0.006 0.000 0.021 0.937

DEF 1.214 0.820 0.879 0.435 5.167 0.910
V S 1.838 1.730 0.441 1.236 2.685 0.981

Correlations rM,t+1 RV ARt+1 EV ARt+1 PEt+1 rTbill,t+1 DEFt+1 V St+1

rM,t+1 1 -0.233 -0.311 0.128 0.013 -0.217 -0.100
RV ARt+1 -0.233 1 0.918 -0.458 -0.123 0.684 0.411
EV ARt+1 -0.311 0.918 1 -0.533 -0.185 0.894 0.644

PEt+1 0.128 -0.458 -0.533 1 0.605 -0.727 -0.501
rTbill,t+1 0.013 -0.123 -0.185 0.605 1 -0.340 -0.549
DEFt+1 -0.217 0.684 0.894 -0.727 -0.340 1 0.777
V St+1 -0.100 0.411 0.644 -0.501 -0.549 0.777 1
rM,t -0.105 -0.107 -0.134 0.131 0.010 -0.170 -0.061

RV ARt 0.046 0.568 0.642 -0.447 -0.170 0.652 0.428
EV ARt 0.025 0.684 0.812 -0.530 -0.237 0.838 0.651

PEt -0.239 -0.332 -0.383 0.914 0.605 -0.615 -0.480
rTbill,t 0.001 -0.053 -0.133 0.580 0.937 -0.316 -0.528
DEFt 0.068 0.667 0.812 -0.704 -0.383 0.910 0.771
V St -0.039 0.410 0.623 -0.494 -0.567 0.749 0.981

Covariances rM RV AR EV AR PE rTbill DEF V S
rM 0.0163 -0.0004 -0.0004 0.0048 0.0000 -0.0243 -0.0058

RV AR -0.0004 0.0002 0.0001 -0.0018 0.0000 0.0078 0.0024
EV AR -0.0004 0.0001 0.0001 -0.0014 0.0000 0.0069 0.0025

PE 0.0048 -0.0018 -0.0014 0.0898 0.0010 -0.1911 -0.0657
rTbill 0.0000 0.0000 0.0000 0.0010 0.0000 -0.0017 -0.0014
DEF -0.0243 0.0078 0.0069 -0.1911 -0.0017 0.7723 0.3009
V S -0.0058 0.0024 0.0025 -0.0657 -0.0014 0.3009 0.1945
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Panel C: 1963-2011 Summary Statistics
Variable Mean Median Stdev. Min Max Autocorr.
RV AR 0.006 0.004 0.011 0.000 0.113 0.464
EV AR 0.007 0.006 0.006 0.000 0.062 0.653

PE 3.085 3.114 0.354 2.331 3.910 0.976
rTbill 0.023 0.022 0.013 0.000 0.063 0.943
DEF 0.963 0.855 0.421 0.324 3.167 0.854
V S 1.488 1.484 0.147 1.183 2.045 0.809

Correlations rM,t+1 RV ARt+1 EV ARt+1 PEt+1 rTbill,t+1 DEFt+1 V St+1

rM,t+1 1 -0.414 -0.301 0.102 -0.053 0.008 0.060
RV ARt+1 -0.414 1 0.936 -0.005 -0.235 0.480 0.256
EV ARt+1 -0.301 0.936 1 0.173 -0.367 0.554 0.377

PEt+1 0.102 -0.005 0.173 1 -0.558 -0.543 0.429
rTbill,t+1 -0.053 -0.235 -0.367 -0.558 1 0.193 -0.213
DEFt+1 0.008 0.480 0.554 -0.543 0.193 1 0.060
V St+1 0.060 0.256 0.377 0.429 -0.213 0.060 1
rM,t 0.064 -0.233 -0.196 0.131 0.010 -0.185 -0.007

RV ARt 0.005 0.464 0.529 -0.011 -0.242 0.441 0.287
EV ARt 0.002 0.507 0.653 0.167 -0.373 0.473 0.391

PEt -0.104 0.106 0.257 0.976 -0.548 -0.532 0.421
rTbill,t -0.028 -0.199 -0.309 -0.567 0.943 0.270 -0.201
DEFt 0.088 0.265 0.346 -0.524 0.184 0.854 0.044
V St -0.114 0.269 0.370 0.407 -0.231 0.015 0.809

Covariances rM RV AR EV AR PE rTbill DEF V S
rM 0.0079 -0.0004 -0.0002 0.0032 -0.0001 0.0002 0.0008

RV AR -0.0004 0.0001 0.0001 0.0000 0.0000 0.0021 0.0004
EV AR -0.0002 0.0001 0.0000 0.0004 0.0000 0.0014 0.0003

PE 0.0032 0.0000 0.0004 0.1255 -0.0025 -0.0807 0.0222
rTbill -0.0001 0.0000 0.0000 -0.0025 0.0002 0.0010 -0.0004
DEF 0.0002 0.0021 0.0014 -0.0807 0.0010 0.1768 0.0033
V S 0.0008 0.0004 0.0003 0.0222 -0.0004 0.0033 0.0215
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Table 2: VAR Estimation
This Appendix table reports the correlation ("Corr/std") and autocorrelation ("Autocorr.")
matrices of both the unscaled and scaled shocks from the second-stage VAR estimated in
CGPTTable 1. The sample period for the dependent variables is 1926.3-2011.4, 342 quarterly
data points.

Autocorrelations of VAR residuals
Autocorr. rM,t+1 EV ARt+1 PEt+1 rTbill,t+1 DEFt+1 V St+1

unscaled
rM,t -0.064 0.090 -0.058 -0.041 0.085 0.045

EV ARt 0.073 -0.157 0.086 0.114 -0.188 -0.080
PEt -0.075 0.180 -0.141 -0.063 0.206 0.093

rTbill,t 0.002 0.016 -0.013 -0.139 -0.029 -0.057
DEFt 0.132 -0.140 0.169 0.109 -0.289 -0.145
V St 0.021 -0.035 0.018 0.037 -0.085 -0.083

scaled
rM,t 0.005 0.042 0.001 -0.003 -0.001 -0.008

EV ARt 0.061 -0.105 0.074 0.077 -0.124 -0.053
PEt -0.007 0.125 -0.072 -0.032 0.097 0.026

rTbill,t -0.014 0.038 -0.028 -0.123 0.000 -0.036
DEFt 0.080 -0.097 0.109 0.085 -0.202 -0.102
V St 0.020 -0.027 0.008 0.018 -0.076 -0.066
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Table 3: Forecasting Long-Horizon Realized Variance
This Appendix Table studies the estimates of long-run variance implied by the VAR model of the paper. Panel A reports
the WLS parameter estimates of constrained regressions forecasting the annualized discounted sum of future   over

the next 40 quarters (4 ∗
40X
=1

(−1) +
40X
=1

(−1)). The forecasting variables include the VAR state variables, the

corresponding annualized long-horizon forecast implied from estimates of the VAR in the paper ( 40) as well as FI-
GARCH (40) and two-factor EGARCH (40) models estimated from the full sample of daily returns.  is the log
real return on the CRSP value-weight index.   is the realized variance of within-quarter daily simple returns on
the CRSP value-weight index.  is the log ratio of the S&P 500’s price to the S&P 500’s ten-year moving average of
earnings.  is the log three-month Treasury Bill yield.  is the default yield spread in percentage points, measured
as the difference between the log yield on Moody’s BAA bonds and the log yield on Moody’s AAA bonds.   is the
small-stock value-spread, the difference in the log book-to-market ratios of small value and small growth stocks.  is
 orthogonalized to  and  is  orthogonalized to . Initial WLS weights are inversely proportional
to the corresponding 40 long-horizon forecast except in those regressions involving  40 or 40 forecasts, where
the corresponding  40 or 40 long-horizon forecast is used instead. Newey-West standard errors estimated with lags
corresponding to twice the number of overlapping observations are in square brackets. The sample period for the dependent
variable is 1930.1-2011.4. Panel B of the Appendix Table reports summary statistics for realized variance ( ), the
corresponding forecasts from the VAR ( ), and the prices of variance swaps ( 2

) at various horizons . Panel
C of the Appendix Table shows regressions forecasting   with   and  2

. In this Panel, we set  to 1
when calculating   and  . Newey-West -statistics that take into account overlapping observations are in
brackets.



Panel A: Forecasting 10-year Realized Variance (4 ∗
40X
=1

(−1) +
40X
=1

(−1))

Constant          40 40 40   2%
1 -0.067 -0.007 0.099 0.023 0.067 0.012 0.003 56.66%

[0.016] [0.005] [0.031] [0.006] [0.086] [0.004] [0.003]
2 -0.009 1.017 49.83%

[0.006] [0.228]
3 -0.067 1.458 40.01%

[0.016] [0.269]
4 -0.006 0.987 37.31%

[0.006] [0.177]
5 -0.105 -0.010 0.021 0.022 0.023 0.011 0.002 0.773 58.95%

[0.022] [0.006] [0.023] [0.005] [0.081] [0.003] [0.004] [0.277]
6 -0.077 -0.008 -0.022 0.021 0.106 0.008 0.002 0.827 60.31%

[0.015] [0.006] [0.021] [0.006] [0.080] [0.003] [0.003] [0.225]
7 -0.016 0.820 0.454 55.73%

[0.006] [0.211] [0.221]
8 -0.010 0.001 0.995 50.36%

[0.006] [0.003] [0.232]
9 -0.006 0.009 -0.53%

(0.026) (0.009)
10 0.012 0.008 21.75%

(0.005) (0.004)
11 -0.052 0.025 29.36%

(0.014) (0.005)
12 0.002 0.018 50.60%

(0.003) (0.004)
13 -0.070 0.025 0.017 51.42%

(0.019) (0.006) (0.004)



Panel B: Comparing   and  2


 = 1  = 2  = 3  = 4
mean

  0.048 0.047 0.047 0.047
  0.046 0.046 0.045 0.045
 2

 0.059 0.058 0.058 0.058

standard deviation
  0.066 0.057 0.051 0.046
  0.021 0.018 0.017 0.015
 2

 0.042 0.036 0.035 0.034

correlation
( , 2

) 0.75 0.72 0.71 0.70

Panel C: Forecasting   with   and  2


 = 1  = 2  = 3  = 4
Constant    2

 Constant    2
 Constant    2

 Constant    2


-0.024 1.552 -0.011 1.275 -0.006 1.176 -0.001 1.062
[-1.22] [3.97] [-0.66] [3.04] [-0.35] [2.73] [-0.05] [2.55]

0.009 0.657 0.022 0.435 0.026 0.365 0.029 0.314
[0.62] [3.30] [2.34] [2.20] [2.47] [2.27] [2.26] [1.96]

-0.022 1.255 0.194 -0.012 1.422 -0.099 -0.008 1.375 -0.127 -0.002 1.194 -0.083
[-1.08] [2.11] [0.66] [-0.71] [3.11] [-0.69] [-0.44] [3.15] [-0.93] [-0.11] [3.31] [-0.65]



Table 4: Forecasting Long-Horizon Realized Variance: results across horizons
This Appendix Table reports the WLS parameter estimates of constrained regressions
forecasting the annualized discounted sum of future RV AR over the next h quarters

(4 ∗
h∑
k=1

ρ(k−1)RV ARt+k/
h∑
k=1

ρ(k−1)). The forecasting variables include the VAR state vari-

ables, the corresponding annualized long-horizon forecast (V ARh) implied from estimates of
the VAR in the paper as well as FIGARCH (FIGh) and two-factor EGARCH (EGh) models
estimated from the full sample of daily returns. rM is the log real return on the CRSP
value-weight index. RV AR is the realized variance of within-quarter daily simple returns on
the CRSP value-weight index. PE is the log ratio of the S&P 500’s price to the S&P 500’s
ten-year moving average of earnings. rTbill is the log three-month Treasury Bill yield. DEF
is the default yield spread in percentage points, measured as the difference between the log
yield on Moody’s BAA bonds and the log yield on Moody’s AAA bonds. V S is the small-
stock value-spread, the difference in the log book-to-market ratios of small value and small
growth stocks. Initial WLS weights are inversely proportional to the corresponding FIGh

long-horizon forecast except in those regressions involving V ARh or EGh forecasts, where the
corresponding V ARh or EGh long-horizon forecast is used instead. Newey-West standard
errors estimated with lags corresponding to twice the number of overlapping observations
are in square brackets. The sample period for the dependent variable is 1930.1-2011.4.
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Varying the Horizon h in (4 ∗
h∑
k=1

ρ(k−1)RV ARt+k/

h∑
k=1

ρ(k−1))

Constant rM RV AR PE rTbill DEF V S V ARh EGh FIGh R2%
h = 4 (1 year ahead)

-0.083 -0.025 0.198 0.027 -0.178 0.028 -0.001 47.20%
[0.024] [0.023] [0.101] [0.009] [0.195] [0.010] [0.010]
-0.001 0.980 44.86%
[0.005] [0.214]
-0.007 1.054 47.11%
[0.004] [0.172]
-0.001 0.998 43.17%
[0.004] [0.185]
-0.064 -0.031 -0.141 0.020 -0.268 0.018 -0.003 0.897 54.22%
[0.019] [0.019] [0.092] [0.007] [0.165] [0.007] [0.009] [0.211]
-0.083 -0.029 -0.015 0.026 -0.150 0.022 -0.002 0.581 50.85%
[0.023] [0.021] [0.095] [0.009] [0.191] [0.009] [0.010] [0.210]
-0.007 0.708 0.492 50.04%
[0.004] [0.206] [0.186]
-0.003 0.004 0.851 45.23%
[0.006] [0.006] [0.205]

h = 8 (2 years ahead)
-0.101 -0.024 0.125 0.032 -0.137 0.027 0.003 44.21%
[0.028] [0.017] [0.082] [0.011] [0.206] [0.011] [0.010]
-0.003 1.023 44.86%
[0.005] [0.256]
-0.013 1.024 37.58%
[0.007] [0.217]
0.001 0.936 32.24%
[0.006] [0.234]
-0.094 -0.025 -0.087 0.027 -0.186 0.019 0.000 0.717 48.07%
[0.027] [0.017] [0.082] [0.010] [0.189] [0.009] [0.010] [0.223]
-0.102 -0.027 0.019 0.032 -0.119 0.024 0.002 0.352 45.43%
[0.028] [0.017] [0.106] [0.011] [0.199] [0.011] [0.011] [0.363]
-0.008 0.866 0.326 44.48%
[0.006] [0.262] [0.271]
-0.004 0.002 0.953 42.64%
[0.007] [0.007] [0.239]

h = 20 (5 years ahead)
-0.078 -0.006 0.091 0.028 -0.120 0.020 -0.002 44.33%
[0.017] [0.008] [0.062] [0.007] [0.127] [0.007] [0.008]
-0.004 0.932 39.58%
[0.005] [0.243]
-0.030 1.037 29.62%
[0.015] [0.299]
0.000 0.865 31.13%
[0.006] [0.224]
-0.087 -0.007 0.046 0.027 -0.130 0.018 -0.001 0.309 44.51%
[0.022] [0.008] [0.054] [0.007] [0.109] [0.006] [0.007] [0.408]
-0.080 -0.007 -0.011 0.027 -0.080 0.017 -0.002 0.471 45.63%
[0.007] [0.008] [0.043] [0.007] [0.129] [0.007] [0.008] [0.363]
-0.008 0.758 0.342 43.34%
[0.007] 0.178 0.283
-0.005 0.002 0.895 39.88%
[0.006] [0.004] [0.188]



Varying the Horizon h in (4 ∗
h∑
k=1

ρ(k−1)RV ARt+k/

h∑
k=1

ρ(k−1))

Constant rM RV AR PE rTbill DEF V S V ARh EGh FIGh R2%
h = 60 (15 years ahead)

-0.060 -0.005 0.075 0.022 0.090 0.011 0.001 50.76%
[0.023] [0.004] [0.016] [0.008] [0.053] [0.003] [0.002]
-0.012 1.056 41.54%
[0.006] [0.224]
-0.059 1.254 28.76%
[0.008] [0.386]
-0.003 0.812 30.86%
[0.041] [0.210]
-0.108 -0.007 0.023 0.024 0.061 0.010 0.000 0.765 52.63%
[0.041] [0.004] [0.022] [0.008] [0.056] [0.002] [0.002] [0.442]
-0.077 -0.007 -0.022 0.022 0.119 0.008 0.000 0.863 55.29%
[0.024] [0.004] [0.015] [0.008] [0.043] [0.002] [0.002] [0.202]
-0.016 0.857 0.343 45.71%
[0.005] [0.252] [0.264]
-0.011 0.001 1.012 41.46%
[0.007] [0.003] [0.345]
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Table 5: Shocks to Short- and Long-run Expected Variance
This Appendix Table reports the correlation matrix for key shocks generated from our base-
line VAR for the full sample (Panel A) as well as the early (Panel B) and modern (Panel C)
subsamples. The shocks include NV , the EV AR shock generated from the second-stage of
our VAR, the RV AR generated from the first stage of our VAR, and the shock to rM . The
first two shocks represent innovations to short-run and long-run expected variance respec-
tively.

Panel A: Full Sample

Correlations NV EV AR shock RV AR shock rm shock
NV 1 0.66 0.45 -0.03

EV AR shock 0.66 1 0.93 -0.51
RV AR shock 0.45 0.93 1 -0.41

rm shock -0.03 -0.51 -0.41 1

Panel B: 1926-1963

Correlations NV EV AR shock RV AR shock rm shock
NV 1 0.68 0.39 -0.31

EV AR shock 0.68 1 0.88 -0.61
RV AR shock 0.39 0.88 1 -0.36

rm shock -0.31 -0.61 -0.36 1

Panel C: 1963-2011

Correlations NV EV AR shock RV AR shock rm shock
NV 1 0.65 0.50 0.27

EV AR shock 0.65 1 0.96 -0.40
RV AR shock 0.50 0.96 1 -0.47

rm shock 0.27 -0.40 -0.47 1
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Table 6: News Correlations and VAR specification
This Appendix Table reports correlations between news terms and returns innovations in
different VAR specifications. Each specification 1-8 is obtained using different variables in
the VAR. All VARs are estimated via OLS for the period 1930-2010 as in BKSY 2014.
Each panel reports, for all 8 specifications of the state vector, a correlation using quarterly
and yearly data. Two methods for computing RVAR are considered. CGPT uses squared
daily returns, while BKSY uses squared monthly returns. The eight specifications vary the
variables other than RVAR: 1) CGPT specification: same variables as our main VAR: Rm,
PE, VS, DEF, TBILL. 2) BKSY specification: log dividend growth (Dd), log price-dividend
ratio (PD), term spread (TS), long-term interest rate (LTR), default spread (DEF) as in
BKSY 2014. 3) Use Rm (from CGPT) and PD, LTR, DEF, TS (from BKSY). 4) Use Rm,
PE, DEF, TBILL (from CGPT) and TS (from BKSY). 5) Use Rm, PE, DEF, TBILL (from
CGPT) and LTR (from BKSY). 6) Use Dd and PD (from BKSY) and TBILL, DEF, VS
(from CGPT). 7) Use Dd, PD, LTR, DEF (from BKSY) and VS (from CGPT). 8) Use Dd,
PD, TS, DEF (from BKSY) and VS (from CGPT). The correlation in bold in the first row
corresponds to the baseline CGPT specification. The correlation in bold in the second row
corresponds to the baseline BKSY specification.
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Full sample Early period Modern period
ρ(NDR, NV ) ρ(NDR, NV ) ρ(NDR, NV )

Quarterly Yearly Quarterly Yearly Quarterly Yearly
RVAR CGPT CGPT BKSY CGPT CGPT BKSY CGPT CGPT BKSY
1 -0.11 -0.34 0.01 0.26 -0.25 0.14 -0.41 -0.43 -0.14
2 0.33 0.00 0.47 0.40 0.08 0.54 0.22 -0.08 0.39
3 0.51 0.08 0.58 0.58 0.15 0.69 0.40 0.00 0.45
4 0.16 -0.06 0.42 0.43 -0.02 0.44 -0.13 -0.10 0.38
5 0.16 -0.06 0.45 0.45 0.00 0.47 -0.14 -0.13 0.42
6 -0.03 -0.15 0.21 0.16 -0.09 0.31 -0.24 -0.20 0.11
7 -0.05 -0.08 0.32 0.15 -0.12 0.35 -0.29 -0.05 0.29
8 -0.03 -0.27 0.13 0.18 -0.15 0.29 -0.28 -0.37 0.00

ρ(NCF , NV ) ρ(NCF , NV ) ρ(NCF , NV )
Quarterly Yearly Quarterly Yearly Quarterly Yearly

RVAR CGPT CGPT BKSY CGPT CGPT BKSY CGPT CGPT BKSY
1 -0.15 -0.37 -0.58 -0.14 -0.36 -0.49 -0.16 -0.39 -0.68
2 -0.45 -0.55 -0.63 -0.60 -0.60 -0.57 -0.25 -0.51 -0.71
3 -0.36 -0.52 -0.75 -0.53 -0.60 -0.73 -0.17 -0.44 -0.78
4 0.11 -0.02 -0.25 0.02 -0.21 -0.32 0.21 0.19 -0.17
5 0.11 -0.08 -0.35 0.03 -0.23 -0.35 0.22 0.11 -0.36
6 -0.50 -0.60 -0.67 -0.66 -0.65 -0.66 -0.30 -0.55 -0.69
7 -0.53 -0.66 -0.69 -0.67 -0.72 -0.67 -0.36 -0.61 -0.72
8 -0.52 -0.62 -0.66 -0.67 -0.65 -0.62 -0.34 -0.59 -0.71

ρ(NCF , NDR) ρ(NCF , NDR) ρ(NCF , NDR)
Quarterly Yearly Quarterly Yearly Quarterly Yearly

RVAR CGPT CGPT BKSY CGPT CGPT BKSY CGPT CGPT BKSY
1 0.02 -0.11 -0.10 0.00 -0.19 -0.18 0.05 -0.07 -0.05
2 -0.23 -0.36 -0.35 -0.15 -0.34 -0.33 -0.40 -0.38 -0.37
3 -0.22 -0.40 -0.37 -0.30 -0.41 -0.39 -0.11 -0.39 -0.35
4 -0.25 -0.59 -0.58 -0.14 -0.48 -0.49 -0.46 -0.72 -0.69
5 -0.26 -0.58 -0.57 -0.14 -0.44 -0.44 -0.48 -0.76 -0.73
6 -0.01 -0.20 -0.22 -0.01 -0.27 -0.27 -0.03 -0.14 -0.19
7 -0.07 -0.32 -0.30 -0.02 -0.21 -0.21 -0.15 -0.45 -0.42
8 -0.07 -0.15 -0.16 -0.02 -0.17 -0.16 -0.15 -0.13 -0.16

ρ(NCF −NDR, NV ) ρ(NCF −NDR, NV ) ρ(NCF −NDR, NV )
Quarterly Yearly Quarterly Yearly Quarterly Yearly

RVAR CGPT CGPT BKSY CGPT CGPT BKSY CGPT CGPT BKSY
1 0.03 0.14 -0.24 -0.29 0.09 -0.30 0.30 0.18 -0.18
2 -0.50 -0.32 -0.66 -0.67 -0.40 -0.68 -0.28 -0.24 -0.65
3 -0.51 -0.36 -0.81 -0.67 -0.45 -0.85 -0.28 -0.27 -0.76
4 -0.09 0.04 -0.40 -0.35 -0.07 -0.46 0.18 0.14 -0.34
5 -0.09 0.01 -0.46 -0.37 -0.09 -0.50 0.19 0.13 -0.42
6 -0.37 -0.28 -0.56 -0.62 -0.35 -0.61 -0.08 -0.21 -0.51
7 -0.39 -0.39 -0.64 -0.63 -0.43 -0.67 -0.10 -0.34 -0.60
8 -0.37 -0.18 -0.50 -0.63 -0.32 -0.59 -0.07 -0.07 -0.41
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Table 7: Average Excess Returns on Test Assets
This Appendix Table shows the average excess returns on the 25 ME- and BE/ME-sorted
portfolios (Panel A), six risk-sorted portfolios (Panel B), 18 BE/ME, IVol, and β̂∆V AR-
sorted portfolios (Panel C), and the non-equity sample (Panel D) that includes the three
equity factors of Fama and French (1993), the returns on high yield and investment grade
bond portfolios, the five interest-rate-sorted currency portfolios from developed countries of
Lustig, Roussanov, and Verdelhan (2011), the S&P 100 index straddle return from Coval
and Shumway (2001), and three three-month variance forward positions with maturities of
three, six, and nine months. The returns on the straddle and the VIX forwards are scaled
down by a factor of 17 so that these assets have comparable average returns with the other
test assets. “Growth”denotes the lowest BE/ME, “Value”the highest BE/ME, “Small”the
lowest ME, and "Large" the highest ME stocks. b̂∆V AR and b̂rM are past return-loadings on
the weighted sum of changes in the VAR state variables, where the weights are according to
λV as estimated in Table 1 in CGPT, and on the market-return shock.

Panel A: 25 ME- and BE/ME-sorted portfolios

1931:3-1963:2
Growth 2 3 4 Value

Small 3.45% 3.80% 6.13% 6.61% 7.35%
2 3.76% 5.36% 5.30% 5.62% 6.18%
3 4.42% 4.05% 4.79% 4.79% 5.73%
4 3.03% 3.87% 4.33% 4.51% 5.82%
Large 2.85% 2.53% 3.55% 3.95% 4.80%

1963:3-2011:4
Growth 2 3 4 Value

Small 0.94% 2.52% 2.60% 3.12% 3.58%
2 1.49% 2.21% 2.88% 2.86% 3.12%
3 1.47% 2.31% 2.37% 2.65% 3.23%
4 1.76% 1.69% 2.08% 2.54% 2.53%
Large 1.28% 1.46% 1.32% 1.55% 1.63%

Panel B: 6 risk-sorted portfolios

1931:3-1963:2
Lo b̂rM 2 Hi b̂rM

Lo b̂V AR 2.74% 3.56% 4.48%
Hi b̂V AR 2.74% 4.12% 4.67%

1963:3-2011:4
Lo b̂rM 2 Hi b̂rM

Lo b̂V AR 1.87% 2.19% 2.48%
Hi b̂V AR 0.98% 1.29% 1.28%
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Panel C: 18 BE/ME, IVol, and β̂∆V AR-sorted portfolios

1931:3-1963:2
Growth 2 Value

Low IVol 2 High IVol Low IVol 2 High IVol Low IVol 2 High IVol
Low β̂∆V AR 2.40% 2.63% 3.88% 3.33% 4.45% 4.09% 4.96% 5.77% 6.41%
High β̂∆V AR 2.72% 3.33% 3.14% 3.57% 4.35% 4.86% 5.02% 5.17% 6.03%

P1: 2.54% P2: Growth 0.95%, Value 1.22% P3: 0.03%
1963:3-2011:4

Growth 2 Value
Low IVol 2 High IVol Low IVol 2 High IVol Low IVol 2 High IVol

Low β̂∆V AR 1.52% 1.39% -0.22% 1.83% 2.18% 2.28% 2.02% 3.65% 3.51%
High β̂∆V AR 1.06% 0.91% -0.44% 1.47% 1.52% 1.18% 2.02% 3.03% 3.29%

P1: 2.22% P2: Growth -1.62%, Value 1.38% P3: -0.46%

Panel D: Non-equity sample

1998:1-2011:4
RMRF SMB HML IGRET HYRET
1.50% 1.76% 1.37% 1.59% 1.75%

Low r* 2 3 4 High r*
0.97% 1.07% 1.31% 1.52% 2.22%

STRADDLE VIXF0 VIXF1 VIXF2
-0.48% -0.37% 0.92% 1.20%
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Table 8: Cash-flow, Discount-rate, and Variance Betas
The table shows the estimated cash-flow (β̂CF ), discount-rate (β̂DR), and variance betas
(β̂V ) for the 25 ME- and BE/ME-sorted portfolios (Panels A and B) and six risk-sorted
portfolios (Panels C and D) for the early (1931:3-1963:2) and modern (1963:3-2011:4) sub-
samples respectively as well as for the 18 BE/ME, IVol, and β̂∆V AR-sorted portfolios in the
modern period (Panel E) and the Fama-French factors RMRF , SMB, HML, high yield
(HY RET ) and investment grade (IGRET ) bond portfolios, the five interest-rate-sorted
portfolios of Lustig, Roussanov, and Verdelhan (2011) and the S&P 100 index straddle
portfolio (STRADDLE) along with three VIX Forward positions (Panel F) over the com-
mon subperiod of 1998:1-2011:4. “Growth”denotes the lowest BE/ME, “Value”the highest
BE/ME, “Small” the lowest ME, and "Large" the highest ME stocks. b̂∆V AR and b̂rM are
past return-loadings on the weighted sum of changes in the VAR state variables, where the
weights are according to λV as estimated in Table 2 of CGPT, and on the market-return
shock. “Diff.”is the difference between the extreme cells. Bootstrapped standard errors [in
brackets] are conditional on the estimated news series. Estimates are based on quarterly
data using weighted least squares where the weights are the same as those used to estimate
the VAR.
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25 ME- and BE/ME-sorted portfolios

Panel A: Early Period (1931:3-1963:2)
β̂CF Growth 2 3 4 Value Diff
Small 0.49 [0.13] 0.42 [0.11] 0.44 [0.11] 0.44 [0.10] 0.46 [0.10] -0.04 [0.05]
2 0.30 [0.08] 0.36 [0.09] 0.37 [0.09] 0.39 [0.09] 0.42 [0.10] 0.12 [0.04]
3 0.32 [0.08] 0.29 [0.08] 0.34 [0.09] 0.33 [0.08] 0.47 [0.12] 0.15 [0.05]
4 0.26 [0.07] 0.28 [0.08] 0.31 [0.09] 0.35 [0.08] 0.44 [0.11] 0.18 [0.05]
Large 0.24 [0.07] 0.23 [0.07] 0.27 [0.09] 0.34 [0.10] 0.40 [0.29] 0.16 [0.04]
Diff -0.26 [0.07] -0.19 [0.05] -0.17 [0.04] -0.10 [0.03] -0.06 [0.03]

β̂DR Growth 2 3 4 Value Diff
Small 1.20 [0.15] 1.21 [0.16] 1.20 [0.17] 1.19 [0.17] 1.13 [0.17] -0.07 [0.07]
2 0.87 [0.11] 1.03 [0.14] 1.01 [0.15] 0.99 [0.16] 1.14 [0.14] 0.27 [0.08]
3 0.95 [0.13] 0.81 [0.09] 0.97 [0.12] 0.93 [0.12] 1.22 [0.16] 0.27 [0.09]
4 0.67 [0.07] 0.81 [0.10] 0.85 [0.10] 0.93 [0.14] 1.24 [0.17] 0.58 [0.13]
Large 0.70 [0.08] 0.66 [0.08] 0.80 [0.12] 1.05 [0.16] 0.90 [0.12] 0.20 [0.13]
Diff -0.50 [0.14] -0.56 [0.11] -0.40 [0.16] -0.13 [0.13] -0.23 [0.08]

β̂V Growth 2 3 4 Value Diff
Small -0.14 [0.05] -0.14 [0.04] -0.15 [0.05] -0.14 [0.04] -0.14 [0.04] 0.00 [0.02]
2 -0.08 [0.03] -0.10 [0.03] -0.10 [0.03] -0.11 [0.03] -0.14 [0.04] -0.06 [0.02]
3 -0.09 [0.03] -0.07 [0.02] -0.09 [0.03] -0.10 [0.03] -0.14 [0.04] -0.05 [0.02]
4 -0.04 [0.02] -0.06 [0.02] -0.08 [0.03] -0.10 [0.04] -0.15 [0.05] -0.10 [0.03]
Large -0.05 [0.02] -0.05 [0.02] -0.09 [0.04] -0.12 [0.04] -0.11 [0.03] -0.07 [0.03]
Diff 0.09 [0.04] 0.09 [0.02] 0.06 [0.02] 0.02 [0.02] 0.03 [0.02]

Panel B: Modern Period (1963:3-2011:4)
β̂CF Growth 2 3 4 Value Diff
Small 0.23 [0.06] 0.24 [0.05] 0.26 [0.05] 0.25 [0.04] 0.28 [0.05] 0.05 [0.04]
2 0.23 [0.06] 0.24 [0.05] 0.26 [0.05] 0.27 [0.05] 0.29 [0.05] 0.05 [0.04]
3 0.21 [0.05] 0.25 [0.05] 0.24 [0.05] 0.25 [0.05] 0.27 [0.05] 0.06 [0.03]
4 0.21 [0.05] 0.24 [0.04] 0.25 [0.04] 0.25 [0.04] 0.28 [0.05] 0.07 [0.03]
Large 0.15 [0.04] 0.20 [0.03] 0.18 [0.03] 0.20 [0.04] 0.20 [0.04] 0.05 [0.03]
Diff -0.08 [0.04] -0.04 [0.03] -0.08 [0.03] -0.05 [0.03] -0.07 [0.03]

β̂DR Growth 2 3 4 Value Diff
Small 1.30 [0.11] 1.05 [0.09] 0.87 [0.07] 0.81 [0.07] 0.86 [0.09] -0.44 [0.08]
2 1.19 [0.09] 0.94 [0.08] 0.82 [0.07] 0.74 [0.07] 0.80 [0.08] -0.39 [0.08]
3 1.11 [0.08] 0.87 [0.06] 0.73 [0.06] 0.70 [0.07] 0.69 [0.07] -0.42 [0.08]
4 1.00 [0.07] 0.82 [0.06] 0.73 [0.07] 0.70 [0.07] 0.75 [0.07] -0.26 [0.08]
Large 0.82 [0.05] 0.68 [0.04] 0.60 [0.05] 0.59 [0.07] 0.64 [0.06] -0.18 [0.06]
Diff -0.48 [0.10] -0.37 [0.08] -0.26 [0.06] -0.22 [0.07] -0.23 [0.08]

β̂V Growth 2 3 4 Value Diff
Small 0.13 [0.07] 0.08 [0.06] 0.05 [0.05] 0.05 [0.05] 0.01 [0.07] -0.13 [0.03]
2 0.14 [0.06] 0.08 [0.06] 0.05 [0.05] 0.04 [0.05] 0.03 [0.06] -0.12 [0.02]
3 0.14 [0.06] 0.07 [0.05] 0.05 [0.05] 0.02 [0.05] 0.04 [0.04] -0.10 [0.03]
4 0.13 [0.05] 0.07 [0.05] 0.03 [0.05] 0.02 [0.06] 0.01 [0.06] -0.11 [0.02]
Large 0.09 [0.05] 0.07 [0.04] 0.03 [0.04] 0.02 [0.05] 0.02 [0.04] -0.08 [0.02]
Diff -0.04 [0.03] -0.01 [0.03] -0.02 [0.02] -0.03 [0.02] 0.01 [0.03]



Table 9: Cash-flow, Discount-rate, and Variance Betas: BE/ME, IVol, and Risk-sorted Portfolios
The table shows the estimated cash-flow (b ), discount-rate (b), and variance betas (b ) for the 18 BE/ME, IVol, andb∆ -sorted portfolios (Panels A and B) for the early (1931:3-1963:2) and modern (1963:3-2011:4) subsamples respectively.b∆  is the past return-loadings on the weighted sum of changes in the VAR state variables, where the weights are according
to  as estimated in CGPT Table 2. 1 is the composite portfolio that is long the equal-weight average of the value
portfolios and is short the equal-weight average of the growth portfolios. 2 is the composite portfolio that is long the high
idiosyncratic portfolio and short the low idiosyncratic portfolio for either the growth subset or the value subset. 3 is the
portfolio that is long the equal-weight average of the high b∆  portfolios and is short the equal-weight average of the lowb∆  portfolios. Bootstrapped standard errors [in brackets] are conditional on the estimated news series. Estimates are
based on quarterly data using weighted least squares where the weights are the same as those used to estimate the VAR.
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18 BE/ME, IVol, and b∆ -sorted portfolios
Panel A: Early Period (1931:3-1963:2)b Growth 2 Value

Low IVol 2 High IVol Low IVol 2 High IVol Low IVol 2 High IVol
Low b∆  0.24 [0.08] 0.31 [0.10] 0.38 [0.11] 0.25 [0.08] 0.39 [0.11] 0.43 [0.13] 0.37 [0.09] 0.47 [0.12] 0.47 [0.12]
High b∆  0.21 [0.06] 0.26 [0.07] 0.29 [0.08] 0.24 [0.07] 0.33 [0.10] 0.36 [0.09] 0.37 [0.10] 0.38 [0.10] 0.44 [0.10]

1: 0.31 [0.07] 2: Growth 0.13 [0.03], Value 0.10 [0.03] 3: -0.05 [0.02]

b Growth 2 Value
Low IVol 2 High IVol Low IVol 2 High IVol Low IVol 2 High IVol

Low b∆  0.69 [0.10] 0.89 [0.13] 1.07 [0.15] 0.86 [0.14] 1.03 [0.13] 1.21 [0.15] 0.96 [0.13] 1.18 [0.16] 1.16 [0.13]
High b∆  0.60 [0.07] 0.68 [0.08] 0.73 [0.08] 0.75 [0.11] 0.90 [0.12] 0.95 [0.13] 1.06 [0.15] 1.10 [0.15] 1.09 [0.16]

1: 1.05 [0.49] 2: Growth 0.31 [0.10], Value 0.15 [0.05] 3: -0.15 [0.04]

b Growth 2 Value
Low IVol 2 High IVol Low IVol 2 High IVol Low IVol 2 High IVol

Low b∆  -0.04 [0.02] -0.08 [0.03] -0.11 [0.03] -0.09 [0.04] -0.10 [0.04] -0.12 [0.03] -0.10 [0.03] -0.14 [0.05] -0.13 [0.04]
High b∆  -0.04 [0.02] -0.05 [0.02] -0.06 [0.03] -0.08 [0.04] -0.09 [0.03] -0.10 [0.04] -0.12 [0.04] -0.13 [0.04] -0.14 [0.05]

1: -0.13 [0.06] 2: Growth -0.05 [0.02], Value -0.02 [0.01] 3: 0.02 [0.01]

Panel B: Modern Period (1963:3-2011:4)b Growth 2 Value
Low IVol 2 High IVol Low IVol 2 High IVol Low IVol 2 High IVol

Low b∆  0.17 [0.03] 0.19 [0.05] 0.22 [0.06] 0.22 [0.04] 0.26 [0.05] 0.29 [0.06] 0.23 [0.04] 0.30 [0.06] 0.27 [0.06]
High b∆  0.17 [0.03] 0.16 [0.05] 0.19 [0.07] 0.18 [0.03] 0.22 [0.04] 0.25 [0.05] 0.20 [0.04] 0.25 [0.05] 0.32 [0.05]

1: 0.09 [0.02] 2: Growth 0.03 [0.04], Value 0.08 [0.03] 3: -0.02 [0.02]

b Growth 2 Value
Low IVol 2 High IVol Low IVol 2 High IVol Low IVol 2 High IVol

Low b∆  0.71 [0.05] 1.06 [0.10] 1.33 [0.12] 0.59 [0.05] 0.79 [0.07] 1.11 [0.09] 0.59 [0.06] 0.85 [0.09] 0.96 [0.12]
High b∆  0.74 [0.05] 1.07 [0.08] 1.37 [0.14] 0.57 [0.05] 0.86 [0.07] 1.08 [0.10] 0.56 [0.07] 0.88 [0.09] 1.05 [0.08]

1: -0.20 [0.05] 2: Growth 0.58 [0.10], Value 0.44 [0.07] 3: 0.00 [0.04]

b Growth 2 Value
Low IVol 2 High IVol Low IVol 2 High IVol Low IVol 2 High IVol

Low b∆  0.07 [0.04] 0.08 [0.08] 0.14 [0.07] 0.03 [0.04] 0.02 [0.05] 0.07 [0.07] 0.01 [0.05] 0.01 [0.07] -0.03 [0.09]
High b∆  0.10 [0.04] 0.12 [0.06] 0.13 [0.09] 0.04 [0.04] 0.06 [0.06] 0.09 [0.06] 0.05 [0.04] 0.02 [0.07] 0.07 [0.05]

1: -0.09 [0.02] 2: Growth 0.05 [0.04], Value 0.00 [0.03] 3: 0.03 [0.01]



Table 10: Asset Pricing Tests: 25 Size and Book-to-Market Portfolios
The table reports GMM estimates of the CAPM, the 2-beta ICAPM, the 3-beta volatility ICAPM, a factor model where only
the b premium is restricted, and an unrestricted factor model for the early (Panel A: 1931:3-1963:2) and modern (Panel B:
1963:3-2011:4) subsamples. The test assets are 25 ME- and BE/ME-sorted portfolios and the T-bill with the market portfolio as
the reference asset. The 5% critical value for the test of overidentifying restrictions is 36.5 in columns 1, 2, and 3; 35.2 in column 4;
and 34.0 in column 5.

Parameter CAPM 2-beta ICAPM 3-beta ICAPM Constrained Unrestricted
Panel A: Early Periodb premium (1) 0.040 0.102 0.082 0.040 0.074

Std. err. (0.016) (0.061) (0.035) (0.048) (0.068)b premium (2) 0.040 0.016 0.016 0.016 -0.003
Std. err. (0.016) 0 0 (0.000) (0.025)b  premium (3) -0.052 -0.157 -0.185
Std. err. (0.066) (0.162) (0.177)c2 64% 66% 67% 68% 69%
J statistic 50.9 56.8 53.4 45.9 47.2
Implied  2.5 6.4 5.2 N/A N/A
Implied  N/A N/A 6.6 N/A N/A

Panel B: Modern Periodb premium (1) 0.016 0.128 0.055 0.117 0.153
Std. err. (0.010) (0.047) (0.000) (0.050) (0.045)b premium (2) 0.016 0.008 0.008 0.008 -0.009
Std. err. (0.010) 0 0 (0.000) (0.015)b  premium (3) -0.096 -0.106 -0.033
Std. err. (0.041) (0.051) (0.066)c2 -50% 45% 48% 76% 79%
J statistic 98.6 63.1 77.2 53.9 54.5
Implied  2.1 16.5 7.2 N/A N/A
Implied  N/A N/A 24.9 N/A N/A



Table 11: Actual and Implied Consumption
This Appendix Table reports a comparison of aggregate consumption innovations, stockhold-
ers’and top stockholders’consumption innovations, and model-implied consumption inno-
vations. We use yearly data between 1930 and 2011, except for stockholders’consumption,
which is available only for the period 1982-2004. Real consumption growth is constructed
from BEA data, stockholders’consumption is obtained from Malloy et al. (2009). Inno-
vations in these variables are constructed by taking a residual of an AR(1) regression for
each series. Panel A reports standard deviations of implied consumption innovations (for
different values of ψ); aggregate consumption innovations (both in the full sample and in
the subsample 1982-2004); and stockholders’and top stockholder’s consumption innovations.
Panel B reports the correlations between implied consumption and innovations in the three
consumption series. Correlations with aggregate consumptions are reported both for the full
sample (first column) and for the subsample for which stockholders’consumption data is
available (1982-2004, second column).

Panel A: Standard Deviations
∆c (full sample) 0.019
∆c (82-04) 0.008
∆c (stockholders, 82-04) 0.041
∆c (top stockholders, 82-04) 0.174
∆c (implied, ψ = 0.5) 0.107
∆c (implied, ψ = 1) 0.178
∆c (implied, ψ = 1.5) 0.277

Panel B: Implied vs. actual consumption innovations
∆c (full sample) ∆c (82-04) ∆c (stockh.,82-04) ∆c (top stockh.,82-04)

∆c (implied, ψ = 0.5) 0.32 -0.08 -0.02 0.21
∆c (implied, ψ = 1) 0.33 0.09 0.04 0.13
∆c (implied, ψ = 1.5) 0.30 0.13 0.05 0.08
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Table 12: Correlation of Nrf with other News Terms
This Appendix Table reports the correlation matrix of the news terms (including implied
risk-free rate news) with standard deviations on the diagonal.

Ncf Ndr Nv Nrf

Ncf 0.049 -0.041 -0.121 0.029
Ndr -0.041 0.092 -0.034 0.851
Nv -0.121 -0.034 0.025 -0.555
Nrf 0.029 0.851 -0.555 0.110
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Table 13: Various Robustness Tests
This Appendix Table provides a variety of robustness tests. When appropriate, the base-
line model appears in bold font. Panel A reports the results when only a subset of state
variables from the baseline VAR (D ≡ DEF , R ≡ rTbill, V ≡ V S, P ≡ PE) are used to
forecast returns and realized variance. Panel B reports the results when different estimation
techniques are used. Panel C reports results as we change the estimate of realized variance.
Panel D reports the results when other state variables either replace or are added to the
VAR. These variables include the log real PE ratio (PERe al), the log price-dividend ratio
(PD), log inflation (INFL), CAY , the quarterly FIGARCH variance forecast (FIG), and
the term spread volatility (TY V ol). Panel E reports the modern-period results when either
out-of-sample versions of the model’s news terms are used in the pricing tests or the VAR
coeffi cients are allowed to vary across the early and modern subperiods. Panel F reports
results using delevered market portfolios. Panel G reports the components of RMRF and
HML’s β̂V by re-estimating β̂V using each component of e2′λV . Panel G also reports sim-
ple loadings of RMRF and HML on RV AR and the 15-year FIGARCH variance forecast.
Panel H reports time-series regressions explaining HML with the three news terms.

Panel A: Results Using Various Subsets of the Baseline VAR (rM and RV AR always included)
None D D/R/V ALL P/D/V P/D P

γ̂Max 4.5 3.2 3.1 7.2 6.7 8.9 14.8

Early Period
RMRF β̂V -0.03 -0.23 -0.20 -0.03 -0.03 -0.02 0.08
SMB β̂V -0.01 -0.08 -0.07 -0.02 -0.02 -0.02 0.03
HML β̂V 0.00 -0.12 -0.13 -0.06 -0.06 -0.04 0.06
γ̂ 2.4 2.4 2.5 5.2 5.0 5.4 8.1
ω̂ 3.1 3.1 3.6 6.6 5.7 5.0 12.4
R̂2 66% 65% 66% 67% 68% 66% 54%

Modern Period
RMRF β̂V -0.11 -0.15 -0.07 0.10 0.11 0.07 0.00
SMB β̂V -0.03 -0.05 -0.02 0.03 0.03 0.01 0.00
HML β̂V 0.00 -0.01 -0.11 -0.11 -0.11 -0.05 -0.02
γ̂ 1.9 1.9 3.1 7.2 6.7 8.9 3.4
ω̂ 1.2 1.1 14.9 24.9 20.3 29.4 1.4
R̂2 -55% -55% 18% 48% 29% -24% -56%
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Panel B: Results Using Different Estimation Methods
All WLS WLS WLS RVAR Partial
OLS 3 5 8 Weighted VAR

γ̂Max 1.6 7.1 7.2 7.1 7.1 7.1

Early Period
RMRF β̂V -0.07 -0.05 -0.03 -0.01 -0.01 0.01
SMB β̂V -0.03 -0.02 -0.02 -0.02 -0.02 -0.01
HML β̂V -0.08 -0.07 -0.06 -0.05 -0.05 -0.03
γ̂ 1.6 5.2 5.2 5.3 4.8 3.9
ω̂ 2.3 6.5 6.6 6.9 5.9 15.9
R̂2 28% 67% 67% 67% 70% 62%

Modern Period
RMRF β̂V 0.08 0.09 0.10 0.11 0.10 0.11
SMB β̂V 0.02 0.02 0.03 0.03 0.03 0.03
HML β̂V -0.10 -0.10 -0.11 -0.11 -0.13 -0.12
γ̂ 1.6 7.1 7.2 7.1 5.8 2.8
ω̂ 2.3 24.4 24.9 25.3 12.8 2.8
R̂2 -44% 46% 48% 49% -9% -207%
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Panel C: Results Using Different Measures of Realized Variance
Quarterly Annual Quarterly Quarterly Annual Annual
Var Daily Var Daily Var Monthly Sum Monthly Var Monthly Sum Monthly

γ̂Max 7.2 6.8 4.9 5.4 5.8 5.9

Early Period
RMRF β̂V -0.03 0.16 -0.19 -0.20 0.11 0.14
SMB β̂V -0.02 0.07 -0.08 -0.06 0.04 0.04
HML β̂V -0.06 0.06 -0.15 -0.13 0.01 0.09
γ̂ 5.2 7.2 4.0 4.5 5.4 5.8
ω̂ 6.6 24.9 4.0 4.1 11.3 15.4
R̂2 67% 50% 67% 63% 31% 60%

Modern Period
RMRF β̂V 0.10 0.08 0.03 0.03 0.07 0.04
SMB β̂V 0.03 -0.01 0.00 0.00 -0.02 -0.03
HML β̂V -0.11 -0.06 -0.13 -0.15 -0.06 -0.08
γ̂ 7.2 0.0 4.9 5.4 5.4 5.8
ω̂ 24.9 0.3 12.7 11.3 11.3 15.4
R̂2 48% -48% 43% 43% -24% -41%
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Panel D: Results Replacing/Adding Other State Variables to the VAR
PE PERe al PD INFL CAY FIG TY V OL

γ̂Max 7.2 9.6 4.6 9.3 9.3 9.3 7.2

Early Period
RMRF β̂V -0.03 0.03 -0.13 0.02 0.07 -0.02 -0.02
SMB β̂V -0.02 -0.01 -0.05 -0.01 0.01 -0.02 -0.02
HML β̂V -0.06 -0.02 -0.11 -0.03 0.00 -0.02 -0.05
γ̂ 5.2 6.0 3.2 6.1 11.4 4.6 5.1
ω̂ 6.6 6.5 3.2 6.8 23.0 5.6 6.4
R̂2 67% 67% 69% 66% -689% 70% 67%

Modern Period
RMRF β̂V 0.10 0.13 -0.01 0.14 0.06 0.11 0.09
SMB β̂V 0.03 0.03 -0.01 0.03 0.01 0.03 0.02
HML β̂V -0.11 -0.09 -0.09 -0.09 -0.05 -0.08 -0.11
γ̂ 7.2 9.6 4.6 9.3 15.9 5.3 7.2
ω̂ 24.9 31.4 18.3 29.4 58.2 9.7 24.9
R̂2 48% 38% 14% 38% 26% -58% 51%
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Panel E: Modern Period Pricing
Full Sample Out of Sample Structural Break

RMRF β̂V 0.10 -0.10 0.08
SMB β̂V 0.03 -0.04 0.02
HML β̂V -0.11 -0.10 -0.12
γ̂ 7.2 6.3 4.6
ω̂ 24.9 11.9 22.6
R̂2 48% 77% 48%
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Panel F: Delevered Market
Equity % 100% 80% 60%

γ̂Max
Exact 7.2 10.2 14.5

Early Period
RMRF β̂V -0.03 -0.03 -0.03
SMB β̂V -0.02 -0.02 -0.02
HML β̂V -0.06 -0.06 -0.05
γ̂ 5.2 7.6 11.3
ω̂ 6.6 15.7 49.1
R̂2 67% 68% 69%

Modern Period
RMRF β̂V 0.10 0.10 0.10
SMB β̂V 0.03 0.03 0.02
HML β̂V -0.11 -0.11 -0.11
γ̂ 7.2 10.2 14.5
ω̂ 24.9 50.1 128.9
R̂2 48% 45% 35%
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Panel G: Components of and Proxies for β̂V
Early Period

RMRF HML
WLS OLS WLS OLS

β̂V -0.03 -0.06 -0.06 -0.07
β̂λ1V rM Shock 0.01 0.01 0.00 0.00
β̂λ2V EV AR Shock -0.06 -0.06 -0.03 -0.03
β̂λ3V PE Shock 0.14 0.14 0.06 0.07
β̂λ4V rTbill Shock 0.00 0.00 0.00 0.00
β̂λ5VDEF Shock -0.13 -0.12 -0.09 -0.08
β̂λ6V V S Shock -0.02 -0.02 -0.02 -0.03
β̂RV AR -0.01 1.50
β̂FIGARCH 0.02 0.04

Modern Period
RMRF HML

WLS OLS WLS OLS
β̂V 0.10 0.07 -0.11 -0.09
β̂λ1V rM Shock 0.01 0.01 0.00 0.00
β̂λ2V EV AR Shock -0.08 -0.07 -0.01 -0.01
β̂λ3V PE Shock 0.14 0.13 -0.02 -0.02
β̂λ4V rTbill Shock 0.00 0.00 0.00 0.00
β̂λ5VDEF Shock -0.01 -0.02 -0.02 -0.01
β̂λ6V V S Shock 0.03 0.03 -0.05 -0.05
β̂RV AR -3.31 -0.51
β̂FIGARCH -0.08 -0.01
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Panel H: Time-series Regressions explaining HML

Early Period
(1) (2)

Intercept 0.01 1.39 0.01 2.30
NCF 0.39 3.68
−NDR 0.40 6.67
NV -1.96 -6.46 -1.30 -4.96
R̂2 24% 49%

Modern Period
(1) (2)

Intercept 0.01 2.28 0.01 2.67
NCF 0.24 2.70
−NDR -0.23 -4.92
NV -1.05 -7.34 -0.82 -5.84
R̂2 22% 32%
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Figure 1: This figure graphs the relation between the parameter γ and the parameter ω
described by equation (22). These functions depend on the loglinearization parameter ρ, set
to 0.95 per year and the empirically estimated VAR parameters of CGPT Table 1. γ is the
investor’s risk aversion while ω is the sensitivity of news about risk, NRISK , to news about
market variance, NV .
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Figure 2: The top two diagrams correspond to forecasts of three-month (top left panel)
and twelve-month (top right panel) variance from the VAR (V ARh, solid black line) and
from the option market (V IX2

h, dashed red line). The bottom two diagrams correspond
to scatter plots of three-month (bottom left panel) and twelve-month (bottom right panel)
ralized variance against the corresponding forecast from the VAR (V ARh, red asterisks) and
from the option market (V IX2

h, blue triangles).
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Figure 3: This figure plots shocks to EV AR against volatility news, NV . Observations from
the early period are denoted with blue triangles while observations from the modern period
are denoted with red asterisks.
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Figure 4: The top left portion of the figure plots the market return against RV AR. The top
right portion of the figure plots the market return against volatility news, NV . The bottom
left of the figure plots PE against DEFO (DEF orthogonalized to PE). The bottom right
of the figure plots market returns against the contemporaneous change in DEFO, our simple
proxy for news about long-horizon variance. In all four subplots, observations from the early
period as denoted with blue triangles while observations from the modern period data are
denoted with red asterisks.
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Figure 5: This figure plots plots the coeffi cient A(γ, ψ) relating the conditional volatility
of consumption growth to the volatility of returns for different values of γ and ψ for the
homoskedastic case (left panel) and for the heteroskedastic case (right panel), where A(γ, ψ)
is a function of the variances and covariances of the scaled residuals ut+1. In each panel,
we plot A(γ, ψ) as γ varies between 1 and the maximum possible value, for different values
of ψ. Each line corresponds to a different ψ, beginning with the bottommost solid line line
(ψ=0.5), incrementing ψ by 0.1 until ending with the topmost dashed line (ψ=1.5).
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Figure 6: We plot the time series of aggregate consumption growth, stockholders’and top
stockholders’ consumption growth from Malloy et al. (2009), and implied consumption
growth, obtained setting ψ = 0.5.
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Figure 7: The figure reports the time series of EtrMt+1 in the estimated model as well as the
implied risk-free rate, rft .
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Figure 8: This figure plots implied risk-free rate news. The series is first normalized by di-
viding by its standard deviation, and then smoothed with a trailing exponentially-weighted
moving average where the decay parameter is set to 0.08 per quarter. The smoothed nor-
malized news series is generated asMAt(N) = 0.08Nt+(1−0.08)MAt−1(N). The parameter
implies a half-life of two years. The sample period is 1926:2-2011:4.
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