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I. Supplementary Literature Review

A. Additional Related Work

An important motivation for studying price levels is the link between stock price levels

and corporate financing or investment decisions as explored by Stein (1996), Baker and

Wurgler (2002), Baker et al. (2003), Shleifer and Vishny (2003), Cohen et al. (2009), Polk

and Sapienza (2009), van Binsbergen and Opp (2019), and Whited and Zhao (forthcoming)

among others. For example, Polk and Sapienza (2009) study how price distortion relates

to corporate investment, using discretionary accruals to proxy for price distortion, and van

Binsbergen and Opp (2019) study the link in a quantitative model of a production economy to

study how abnormal returns on anomaly characteristics affect output. Dessaint et al. (2021)

find evidence that the beta anomaly’s CAPM abnormal price as perceived by firm managers

affects the M&A decision. Gormsen and Huber (2023) and Gormsen and Huber (2022)

explore how firms’ perceived costs of capital relate to factor models and affect corporate

investment.1

The asset pricing literature also explored the difference in the type of information that

expected returns and price levels have about capital market efficiency. Shiller (1984) writes,

“because real returns are nearly unforecastable, the real price of stocks is close to the intrinsic

value . . . is one of the most remarkable errors in the history of economic thought” (pp.

458–459). Summers (1986) provides a numerical example that illustrates this argument and

Campbell (2018) shows how an expected return that follows a persistent AR(1) process may

leave little room for return predictability despite a large variance in the dividend-price ratio.

Pastor and Veronesi (2003) show that high price levels may not be a signal of capital market

inefficiency but of increased uncertainty about future profitability. More recently, Liu et al.

(2021) use a restriction on the price distortion process to revisit factor models of expected

returns and Baba Yara et al. (2020) study the extent to which the permanent and transitory

components of characteristics differently describe the cross-section of long-horizon average

returns.2

1Taking the link between price distortion and equity financing as given, Cho and Salarkia (2020) show

that firms’ equity issuance and repurchases in the face of apparent model-specific price distortion reveals the

CAPM as the model most likely used by firms.

2Other recent papers on the topic of market efficiency and price levels include Bai et al. (2016), Dávila

and Parlatore (2020), Joel et al. (2022), and Jiang et al. (2020).
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Other strands of literature study price levels and long-horizon returns for different rea-

sons. First, these quantities are important for the portfolio decision of long-term investors.

For instance, Cochrane (2014) develops a mean-variance characterization of a stream of long-

run payoffs that is useful even when risks and expected returns vary through time.3 Second,

Vuolteenaho (2002), Cohen et al. (2003), Cochrane (2011), De La O and Myers (2021), and

Cho et al. (2024), among many others, study valuations, expected returns, and cash flows

through the lens of an identity in the spirit of Campbell and Shiller (1988). Third, Lee

et al. (1999), Bartram and Grinblatt (2018), Gerakos and Linnainmaa (2018), Asness et al.

(2019), Golubov and Konstantinidi (2019), and Favero et al. (2020) take different approaches

to come up with proxies for price distortion. Finally, Koijen et al. (2022) use a structural

demand-based approach to study how different types of investors affect equity valuations.

Cumulative abnormal returns (CARs) or buy-and-hold abnormal returns (BHARs) are

used extensively in the corporate finance literature. Barber and Lyon (1997), Kothari and

Warner (1997), Fama (1998), Lyon et al. (1999), Brav (2000), and Bessembinder et al. (2018)

have critically evaluated these approaches.

B. Detailed Response to van Binsbergen et al. (2023)

Internet Appendix C of van Binsbergen, Boons, Opp, and Tamoni (2023) (vBBOT)

compares their dividend-based event-time approach to our calendar-time, (excess) return-

based approach. This type of comparison is useful, as it allows us to reflect further on the

advantages and (potential) disavantages of our proposed method. However, the first two

(out of three) methodological issues they point out apply to methodological aspects of an

older version of our paper (December 2020) that are not present in our subsequent analysis.

The third issue they point out is a weakness particular to their dividend-based approach and

only helps highlight the strength of our excess-return-based approach. The last issue they

point out is a matter of taste as to whether one prefers a simple or log measure of abnormal

price and has little empirical consequence. We explain these points in further detail below.

3See also Kandel and Stambaugh (1996), Campbell and Viceira (1999), Barberis (2000), and Viceira

(2001) among several others.
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B.1. Risk-Free Rate in the Candidate SDF.

First, vBBOT argue that our candidate SDF does not discount returns more in times

of high risk-free rates. They base this critique on an older version of our paper (December

2020) that used the excess return on the market as a factor in the candidate SDF:

M̃t = b0 − b1R
mkt,e
t , (IA.1)

where Rmkt,e
t denotes market return in excess of the risk-free rate.

However, since that draft, we have switched to using the the gross return on the market

in our loglinear SDF setup employed by Korteweg and Nagel (2016).

M̃t = exp(b0 − b1 log(1 +Rmkt
t )), (IA.2)

Since the gross market return includes the risk-free rate as a component, this candidate SDF

does apply a large discount on returns in times of high risk-free rates, not just in times of

high risk premium.4

The candidate SDF in vBBOT follows

M̃t = exp(− log(1 +Rf,t) + b0 − b1
(
log(1 +Rmkt

t )− log(1 +Rf,t])
)
), (IA.3)

where Rf,t is the risk-free rate known at time t− 1 and realized at time t. Whereas the risk-

free rate component is embedded in the gross market return in equation (IA.2), equation

(IA.3) disentangles the risk-free rate and the (log) market risk premium components of the

SDF. However, we find that empirically using the candidate SDF in equation (IA.3) has little

effect on either the estimates of δ or their associated p-values.

B.2. Computing Excess Returns with Respect to the Risk-Free Rate versus Market Return

The second critique of vBBOT also does not apply to our paper’s methodology. They

argue that computing excess returns with respect to the Treasury bill rate as part of our

4In earlier drafts, for example, we used a linearized SDF based on the gross market return: M̃t =

b0 − b1R
mkt
t , where Rmkt

t is the gross market return.
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identity,

δ ≡ E

[
Pt − Vt

Pt

]
= −

∞∑
j=1

E
[
M̃t,t+j

Pt+j−1

Pt
Re

t+j

]
, (IA.4)

requires the candidate SDF to explain the T-bill rate conditionally. However, since the

December 2020 draft, we have switched to using the market rather than the Treasury bill as

the base asset with which to compute excess returns Re
t+j. Since we estimate CAPM-based

δ’s, computing excess returns against the market is a natural methodological choice, given

that the CAPM implies that the market is correctly priced, and follows other research (e.g.,

Campbell et al. (2018) and Korteweg and Nagel (2022)) that also prices returns in excess of

the market.

B.3. Inability of vBBOT to Price Treasury Bill Strategies

vBBOT argue that both their dividend-based event-time framework and our framework

are subject to a large bias that results from having to estimate SDF parameters in a finite

sample. They rely on a back-of-the-envelope calculation to show that using their dividend-

based method means that the strategy of rolling over T-bill investments for 15 years has

an estimated δ of more than 50%, despite the fact that their candidate SDF is designed to

price T-bill rates conditionally (Internet Appendix D.1 of vBBOT). We confirm that in our

sample, applying an event-time gross-return approach to a strategy that rolls over T-bills

results in an estimated δ of 0.497 (49.7%), similar to the number in vBBOT (which they

then hope to correct through a bootstrapping adjustment).

We find that this source of bias has little effect on δ estimates based on our approach.

When we apply our novel calendar-time, excess-return approach, the same rollover strategy

that is dramatically mispriced by vBBOT has an estimated δ of only 0.1% in our full sample

(1948m6–2022m12) and 2.3% in the modern subsample (1972m6–2022m12). This finding is

consistent with Figure 2, Panel A in our main paper, which confirms, based on Monte Carlo

analysis, that our δ estimates are close to being unbiased.5

What is it about our approach ensures that strategies such as rolling over the T-bill do

not have an artificially inflated δ estimate? Our method is not vulnerable to this defect in

5Note that in our Monte Carlo, the interest rate is held fixed for the sake of tractability. We leave a

generalization of our Monte Carlo model to allow for time-varying interest rates for future research.
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vBBOT’s method primarily because our estimated δ aggregates future excess returns Re
t+j

(see equation (33) above) rather than gross returns.6 To see why our approach is immune

to this concern, suppose, for the sake of argument, that we bring equation (IA.4) to data

by computing excess returns against the T-bill rate. Then, by definition, the T-bill rollover

strategy earning the T-bill rate in each period has zero excess return in all periods and must

have an estimated δ of zero.

In practice, of course, we compute excess returns against the market rather than the

T-bill. Even so, the use of excess returns rather than gross returns in this way helps reduce

the impact of measurement errors in a candidate M̃ on our δ estimates. We explain this in

detail in Section III of the main paper.

B.4. Log versus Simple Mispricing

vBBOT choose to estimate the log abnormal price of Cohen et al. (2009) (equation (6))

rather than the simple abnormal price measure estimated in our paper. They implicitly

acknowledge, however, that one definition is not inherently superior to another. We prefer

working with simple abnormal price measure, as it allows us to develop a nonparametric

estimator of abnormal price with several desirable properties, whereas log abnormal price

does not.

6Note that the evidence in Figure A6 only confirms the equivalence between the event-time, dividend-

based approach and an event-time, gross-return approach. Our main approach uses the calendar-time excess-

return expression, which helps minimize the bias as well as serial correlations.
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II. Empirical Appendix

A. Basic Data Adjustments

We use domestic common stocks (CRSP share code 10 or 11) listed on the three major

exchanges (CRSP exchange code 1, 2, or 3). We replace missing prices with the average

bid-ask price when available and drop observations with missing share or price information

in the previous month. We code missing returns as zero returns and add delisting returns

to returns. If delisting returns are missing, but the CRSP delisting code is 500 or between

520 and 584, we use −35% (−55%) as the delisting returns for NYSE and AMEX stocks (for

NASDAQ stocks) (Shumway (1997) and Shumway and Warther (1999)). To compute capital

gains, we use the CRSP split-adjustment factor (CFACPR) to ensure that capital gains are

not affected by split events. We use NYSE breakpoints when sorting stocks throughout the

analysis and always study value-weight portfolios.

B. Characteristics and Portfolios

An important stock characteristic is the book-to-market-equity (B/M) ratio computed

each year in June. B/M ratio is the stock’s book value of equity in the previous fiscal year

divided by its market value of equity in December of the previous calendar year. Book value

of equity is defined as stockholders’ equity SEQ (Compustat item 144) plus balance sheet

deferred taxes and investment tax credit TXDITC (item 35) minus book value of preferred

stock (BE = SEQ+ TXDITC −BPSTK). Book value of preferred stock BPSTK equals

the preferred stock redemption value PSTKRV (item 56), preferred stock liquidating value

PSTKL (item 10), preferred stock PSTK (item 130), or zero depending on data availability.

If SEQ is unavailable, we set it equal to total assets AT (item 6) minus total liabilities LT

(item 181). If TXDITC is unavailable, it is assumed to be zero. In the pre-Compustat

period, we use the book equity data from Davis et al. (2000). We treat zero or negative book

values as missing.

Another stock characteristic used in our preliminary analysis is the quality measure of

Asness et al. (2019) defined as a z-score based on four characteristics—profitability, growth,

safety, and payout ratio—that determine the market-to-book ratio in a Gordon growth model

and in the absence of mispricing: quality = z (zprofitability + zgrowth + zsafety + zpayout ratio) . The

four characteristic z scores are in turn obtained as an equal weighted average of z scores based
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different measures of each characteristic. When some of the underlying measures are missing,

the z score is taken over all available measures. In the pre-Compustat period, we use the

book equity numbers that Davis et al. (2000) collected from the Moody’s Industrial, Public

Utility, Transportation, and Bank and Finance Manuals to calculate measures that require

book equity data. Quality is computed once a year at the end of June and requires the past

six years of data in order to compute zgrowth. See Asness et al. (2019) for further details.

As discussed in the main body of the paper, our core analysis uses a three-characteristic

model of the value-to-price ratio named adjusted value. We simply add the z scores of B/M

and profitability and subtract the z score of beta. For profitability, we use the z score of

gross profitability when available, and the z score of return on equity otherwise.

We also examine portfolios sorted by seven additional characteristics: size, momentum,

net issuance, beta, profitability, investment, and accruals. The first four characteristics

can be computed in the pre-Compustat period, whereas the last three characteristics are

available only in the post-Compustat period. Size is market equity calculated at the end

of each month. Momentum is calculated is the cumulative gross return over the previous

12 months excluding the month before the portfolio formation and is also computed at the

end of each month. Net issuance is calculated annually at the end of each June and is the

split-adjusted growth in shares outstanding over the previous 12 months. Beta is the trailing

3-year market beta (minimum of 2 years) calculated each month based on overlapping 3-day

returns.

Profitability is computed each year in June. Gross profitability (“profitability”) in cal-

endar year y equals sales SALE (Compustat item 12) minus cost of goods sold COGS (item

41) in fiscal year y − 1 over total assets in fiscal year y − 1 Asset growth (“investment”) is

also computed each year in June, and investment in calendar year y is total assets in fiscal

year y− 1 divided by total assets in fiscal year y− 2. Accruals measures the degree to which

earnings come from noncash sources and is defined according to Sloan (1996).

C. GMM Setup

To estimate the deltas of characteristic-sorted portfolios, write the sample moments and

the GMM restriction as

gT (b) =
1

T

T∑
t=1

ut (b)

8



AgT (b) =

(
0

0

)
,

where the first two moments set the market portfolio’s alpha and delta with respect to the

candidate SDF to be zero:

ut (b) =

(
M̃tR

mkt,e
t −

∑J
j=1 M̃t−j,t−1

Pmkt
(t−j),t−1

Pmkt
(t−j),t−j

(
M̃t

(
1 +Rmkt

(t−j),t

)
− 1
)

δ̃1,t ... δ̃N,t

)′

A =

(
J 0 0 ... 0

0 1 0 ... 0

)
.

Recall that we model one-period candidate SDF as M̃t = exp
(
b0 − b1r

mkt
t

)
with rmkt

t denoting

log market return and cumulative candidate SDF as M̃(t−j),t = exp
(
b0j − b1r

mkt
(t−j),t

)
with

rmkt
(t−j),t denoting log market return from t−j to t. Hence, the asymptotic variance-covariance

matrices of the parameters and the sample moments are

V ar
(√

T b̂
)
= (AD)−1ASA′ (AD)−1,′

V ar
(√

TgT

(
b̂
))

=
[
IN+2 −D (AD)−1A

]
S
[
IN+2 −D (AD)−1A

]′
and the finite-sample variance estimates are

V̂
(
b̂
)
=

1

T

(
AD̂
)−1

AŜA′
(
AD̂
)−1,′

V̂
(
gT

(
b̂
))

=
1

T

[
IN+2 − D̂

(
AD̂
)−1

A

]
Ŝ

[
IN+2 − D̂

(
AD̂
)−1

A

]′
,

where S is the spectral density matrix and

D = E

[
∂ut (b)

∂b′

]
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is estimated by D̂, which equals

T−1
T∑

t=1



M̃t(1 +Rmkt
t ) −rmkt

t M̃t(1 +Rmkt
t )

−
∑J

j=1 jM̃t−j,t
Pmkt

(t−j),t−1

Pmkt
(t−j),t−j

Rmkt,e
(t−j),t

∑J
j=1 r

mkt
t−j,tM̃t−j,t

Pmkt
(t−j),t−1

Pmkt
(t−j),t−j

Rmkt,e
(t−j),t

−
∑J

j=1 jM̃t−j,t
P1,(t−j),t−1

P1,(t−j),t−j
Re

1,(t−j),t

∑J
j=1 r

mkt
t−j,tM̃t−j,t

P1,(t−j),t−1

P1,(t−j),t−j
Re

1,(t−j),t

...
...

−
∑J

j=1 jM̃t−j,t
PN,(t−j),t−1

PN,(t−j),t−j
Re

N,(t−j),t

∑J
j=1 r

mkt
t−j,tM̃t−j,t

PN,(t−j),t−1

PN,(t−j),t−j
Re

N,(t−j),t


.

with rmkt
0,0 defined to be zero. The spectral density matrix is estimated as

ŜT

(
b̂
)
= Γ̂0 +

B∑
b=1

B − b

B

(
Γ̂b + Γ̂′

b

)
,

where B is the Newey-West bandwidth and

Γ̂0 =
1

T

T∑
t=1

(
ut

(
b̂
)
− u

(
b̂
))′

×
(
ut

(
b̂
)
− u

(
b̂
))

Γ̂b =
1

T

T∑
t=b+1

(
ut

(
b̂
)
− ut≥b+1

(
b̂
))′

×
(
ut−b

(
b̂
)
− ut≤T−b

(
b̂
))

.

D. Adjusted Value in a Double Sort

Recall that δ measures the percentage deviation of value from price, which can be written

as a product of book equity over market price (B/M) and the present value of cash flows

over book equity (V/B):

δt = 1− Vt

Pt

= 1− Bt

Mt

× Vt

Bt

, (IA.5)

where for convenience we equate market value M with per-share price P . Hence, sorting

stocks on both B/M and V/B should generate large variation in δ.

Although V/B is unobserved, the loglinear present-value model of Vuolteenaho (2002)

shows that it can be written as a spread between future expected profitability and CAPM-

implied discount rates. Hence, we simply model V/B as the spread between the z-score of

profitability and the z-score of market beta today:

V

B
∝ Profitability Spread ≡ z(Prof)− z(Beta), (IA.6)
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Consistent with our prior, double-sorting stocks based on B/M and profitability spread,

our simple proxy for V/B, resurrects the ability of these characteristics to explain larger

variation in δs (Table IA.VI). Furthermore, the variation in δ across the two dimensions of

the table is consistent with our conjecture in Figure IA.5.

Abnormal price δ declines as we move from left to right, which amounts to holding B/M

fixed while increasing profitability spread, and profitability spread appears to be an especially

informative predictor of CAPM abnormal price among low-B/M (growth) stocks. Similarly,

δ declines as we move from top to bottom, which amounts to holding profitability spread

fixed while increasing B/M , and this variation leads to statistically significant differences

in abnormal price among the middle tercile profitability spread stocks. Moving diagonally

from the top left to the bottom right generates the largest variation in δs. We estimate low

profitability spread, low-B/M stocks to be 57.6 percentage points more overpriced than high

profitability spread, high-B/M stocks with a p-value of 0.0%.

E. Adjusted Value Based on Expected Future Profitability

Equation (29) shows that, strictly speaking, the value-to-price ratio depends on expected

future profitability rather than current profitability. Hence, we estimate a VAR model in

which

xt+1 = Axt

where xt is a vector of z-scores of B/M , profitability, beta, and investment (which is the

order we use to form the column vector). The resulting VAR coefficients is as follows:

A =


0.89 −0.07 0.02 0.02

−0.15 0.80 0.01 −0.10

0.00 −0.01 0.92 0.03

−0.22 −0.02 0.07 0.31

 .

It is easy to show that the discounted sum of future profitability can be written as a linear

combination of the four current characteristics:

FutureProf ≡ 1profA (I − ρA)−1 xt,
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where 1prof denotes a vector of zeros and the one in the row that corresponds to profitability.

We use the z-score of the last expression as our profitability z-score that feeds into an

alternative adjusted value measure in Table IA.V.

F. Other Proxies for Misvaluation

Although we use a relatively simple three-characteristic signal of abnormal price dubbed

adjusted value, one may wonder how well existing measures fare against adjusted value to

predict abnormal price in the data. We examine two characteristics having been suggested

as proxies for abnormal price: the analyst-forecast-based measure of Frankel and Lee (1998)

and the market-multiples-based measure of Golubov and Konstantinidi (2019). Both signals

have a relatively short sample period, and the signal based on analyst forecasts is limited

by the availability of analyst forecast data. The market-multiples-based approach requires

within-industry cross-sectional regressions, which can have a very small cross-section of data

in the 1970s and earlier. Hence, our analysis is restricted to (roughly) the same sample

periods used in the original papers, starting in the mid 1970s, giving us post-formation

return data from 1991m6 to 2022m12.7

Table IA.IX shows that the V/P signal based on analyst forecasts does not predict

CAPM mispricing in the direction we expect, consistent with the observation of Chen and

Zimmermann (2022). The same table shows that although the signal based on market

multiples generates a larger variation in CAPM δs, it is also not significant in such a short

sample period. It is possible that this signal proxies for mispricing in a longer sample,

although even in Golubov and Konstantinidi (2019), their market-multiples-based V/P signal

is not a stronger signal of abnormal return than B/M itself (e.g., see the second panel of

Figure 1 of their paper, which shows the value-weight returns on their V/P signal—called

firm-specific error—are lower than those of B/M). Of course, part of their relatively weak

performance could be a feature of the sample.

7A related measure by Bartram and Grinblatt (2018) was defined from year 1987, which would lead to

an even shorter sample period, so we do not consider the measure.
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G. Incremental Information about Prices when Controlling for Adjusted
Value: Book-to-Market, Profitability, and Beta

Table VI studies the incremental information about prices contained in characteristics

other than those used to construct adjusted value. Here, we also examine characteristics we

do use to construct adjusted value. Table IA.X shows that controlling for adjusted value

reduces the ability of the other characteristic to predict CAPM mispricing. In particular, the

δ variation associated with beta drops dramatically. Controlling for adjusted value, however,

increases the magnitude of mispricing associated with profitability. On the other hand,

controlling for one of the underlying characteristics does not affect the economic magnitude

or the statistical significance of δ associated with adjusted value. However, the substantial

correlation between the two signals means that controlling for beta no longer makes adjusted

value a statistically significant predictor of CAPM mispricing.
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III. Theory Appendix

A. Mispricing Identity: An Illustrative Example

An example shows how our identity correctly recovers the initial price deviation with

respect to a candidate SDF, even when there is no subsequent correction in mispricing.

An asset pays a perpetual dividend of Dt+j = λ and has a constant price of Pt+j = 1

in all periods. We posit a candidate SDF that explains the constant risk-free rate Rf > λ,

even if it may not explain the returns and prices of the asset in consideration:

M̃t+j =
1

1 +Rf

Then, the asset’s present value of dividends with respect to M̃ is Vt = λ/Rf , so the asset

has a positive abnormal price with respect to the candidate SDF:

δt =
Pt − Vt

Pt

=
Rf − λ

Rf

> 0.

That is, the asset is overpriced with respect to M̃ .

Does our excess-return-based identity correctly recover the same level of overpricing?

Applying our identity and using the risk-free asset as the base asset,

δt = −
∞∑
j=1

M̃t,t+j
Pt+j−1

Pt

Re
t+j = −

∞∑
j=1

1

(1 +Rf )
j (λ−Rf ) =

Rf − λ

Rf

,

so the answer is yes!

Intuitively, how does our formula correctly recover initial overpricing even if overpricing

does not get corrected in the long run? The reason is that if price stays high, the dividend

yield component of future return is (abnormally) low, and our formula detects that as signal

of initial overpricing.

To be more specific, overpricing with respect to M̃ lowers the dividend yield from Rf to

λ, which leads to lower return and lower excess return. The artificially low dividend yield

is detected by perpetually negative excess returns, which our identity discounts back to the

present to arrive at overpricing of one.

14



• Dividend yield with respect to the “correct” value of Vt+j = λ/Rf :

Dt+j

Vt+j−1

= Rf .

• Dividend yield with respect to market price Pt+j = 1:

Dt+j

Pt+j−1

= λ.

• Return: Rt+j =
Pt+j − Pt+j−1

Pt+j−1︸ ︷︷ ︸
capital gain

+
Dt+j

Pt+j−1︸ ︷︷ ︸
dividend yield

=
1− 1

1
+ λ = λ.

• Excess return: Re
t+j = λ−Rf .

• Return-identity-based δt = −
∑∞

j=1 M̃t,t+j
Pt+j−1

Pt
Re

t+j =
Rf − λ

Rf

.

In the absence of overpricing, the dividend yield would be Rf such that excess returns

and return-based delta would be zero.

In contrast, if the asset’s price does come down to be consistent with M̃ , the capital

gain component of return is abnormally low, and our formula detects the corresponding low

excess return as a sign of initial overpricing.

As a sidenote, our formula also does not rely on the candidate SDF being the true SDF.

However, We need the base-asset return to satisfy the fundamental asset pricing equation

with respect to the candidate SDF.

Our excess-return-based identity continues to be valid in the special case in which an

asset pays zero dividend and there is permanent mispricing with respect to a candidate

SDF. This amounts to setting δ = 0 in the previous example.

Suppose we are still interested in computing abnormal price with respect to the candidate

SDF, M̃t+j =
1

1+Rf
. An “asset” with permanently zero dividend has a positive price Pt+j > 0

in all j ≥ 0, leading to a permanent overpricing of

δt+j = 1− Vt+j

Pt+j

= 1

in all periods, including the initial period at t.
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Does our excess-return-based identity correctly recover the same level of overpricing?

Applying our identity,

δt = −
∞∑
j=1

1

(1 +Rf )
j (−Rf ) =

Rf

Rf

= 1,

so the answer is again a resounding yes. Intuitively, initial overpricing is reflected in subse-

quent negative excess returns of −Rf , which our identity correctly discounts to the present

to find δt = 1.

B. The Estimator in Cohen, Polk, and Vuolteenaho (2009)

CPV proposes estimating average log abnormal price. Based on the Campbell and Shiller

(1988) decomposition,

δlogt ≈ −
∞∑
j=1

ρj−1Et[rt+j]− Et[rV,t+j], (IA.7)

where rt ≡ log(Pt+Dt)− log(Pt−1) and rV,t ≡ log(Vt+Dt)− log(Vt−1) denote log returns on

price and value, respectively, and ρ < 1 is a parameter. Since Et+j−1[e
rV,t+j+m̃t+j ] = 1 and

Et+j−1[e
rb,t+j+m̃t+j ] = 1, the conditional joint normality of the log quantities implies

Et+j−1[rV,t+j] = Et+j−1[rb,t+j]+
1

2
V art+j−1(rb,t+j)−

1

2
V art+j−1(rV,t+j)+Covt+j−1(r

e
V,t+j,−m̃t+j),

(IA.8)

where reV denotes log return on value in excess of the base asset return. Plugging this into

equation (IA.7), using the approximation Et+j−1[Rt+j] ≈ Et+j−1[rt+j] +
1
2
V art+j−1(rt+j),

applying unconditional expectation, and rearranging yields

E

[
∞∑
j=1

ρj−1Rt+j

]
≈ E

[
∞∑
j=1

ρj−1Rb,t+j

]
+ E

[
∞∑
j=1

ρj−1Covt+j−1(r
e
V,t+j,−m̃t+j)

]

+
1

2
E [V art+j−1(rt+j)− V art+j−1(rV,t+j)]− δlog. (IA.9)

This decomposition motivates CPV to estimate δlog using a closely related equation (their

Equation 9) in the cross-section of portfolios, where k indexes a portfolio and the horizon is
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capped at J :

E

[
J∑

j=1

ρj−1Rk,t+j

]
= λ0 + λ1 β

CF
k + uk, (IA.10)

where βCF
k is measured by regressing the portfolio’s long-horizon cash flows on that of the

market.

Besides the potentially large measurement errors in estimated βCF
k , two additional diffi-

culties arise. First, under the null where rv = r, justifying equation (IA.10) requires strong

intertemporal restrictions that guarantee

E

[
∞∑
j=1

ρj−1Covt+j−1(r
e
t+j, r

mkt
t+j )

]
= Cov

(
∞∑
j=1

ρj−1ret+j,

∞∑
j=1

ρj−1rmkt
t+j

)
, (IA.11)

in which case λ1 = b1V ar
(
ρj−1rmkt

t+j

)
if the candidate SDF is given by m̃t = b0 − b1r

mkt
t

for log market return rmkt. The simplest way to guarantee equation (IA.11) is to assume

that returns are independently and identically distributed (i.i.d.). However, in a world with

i.i.d. returns, it makes little sense to explore the distinctions between abnormal price and

short-horizon abnormal returns.

To quantify the extent of the problem, rewrite the conditional variance on the left-hand

side of equation (IA.11) as ret+j = βt+j−1r
mkt
t+j + ut+j, which implies that the value of the

left-hand side can be estimated as

E

[
∞∑
j=1

ρj−1βt+j−1σ
2
mkt,t+j−1

]
(IA.12)

with βt+j−1 and σ2
mkt,t+j−1 denoting the portfolio’s time t+ j conditional return beta and the

market portfolio’s time t+ j conditional variance, respectively. We estimate the conditional

return beta using past 36 months’ return data and realized market variance using daily

market returns over the month. The right-hand side of the equation can be estimated from

the observed values of portfolio and market returns.

We find that there is indeed a large empirical difference between the two sides of equation

(IA.11), 0.192 (left-hand side) versus 0.132 (right-hand side) for the high abnormal profitabil-

ity quintile portfolio. Since we estimate the log candidate SDF’s loading on the log market

return to be larger than three, in the context of CPV’s equation (IA.7), this translates into

an estimation error in log abnormal price of more than 18 percentage points. Two forces
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contribute to the left-hand side of equation (IA.11) being larger than the right-hand side in

the high abnormal profitability portfolio. First, the portfolio’s unconditional beta is less than

one but tends to rise in times of high market volatility. This fact makes the left-hand side

larger (more positive) than it would be under i.i.d. Second, the right-hand side of equation

(IA.11) involves cross-autocovariances between portfolio excess log returns and market log

returns that are likely to be negative due to the long-term reversal effect. This fact pushes

the right-hand side to be smaller.

Second, under the alternative where rv ̸= r, interpreting the error term u in equation

(IA.10) as δlog in equation (IA.9) requires that the long-horizon sum of volatility of log

returns is the same for price and value:

E

[
∞∑
j=1

ρj−1V art+j−1(rt+j)

]
= E

[
∞∑
j=1

ρj−1V art+j−1(rV,t+j)

]
. (IA.13)

This fact can add to the bias in estimated δlog under the alternative in which mispricing

shocks with respect to M̃ makes r substantially more volatile than rV .
8

C. Comparison to the Identity in van Binsbergen and Opp (2019)

van Binsbergen and Opp (2019) use a different identity to link price to subsequent ab-

normal returns:

Pt = Et

[∫ ∞

t

M̃t,t+τe
−

∫ τ
t α∗

ududΠt

]
,

or in discrete time,

Pt =
∞∑
j=1

Et

[
M̃t,t+j

Πj
k=1

(
1 + α∗

t+k

)Dt+j

]
, (IA.14)

where 1 + α∗
t+k ≡ Et

[
M̃t+1 (1 +Rt+1)

]
. van Binsbergen and Opp use the term “mispricing

wedge” to refer to the stochastic cumulation of abnormal returns, 1/
[
Πj

k=1

(
1 + α∗

t+k

)]
, which

is different from the definition of ex-ante abnormal price δt = Et [1− Vt/Pt] we introduce in

our paper.

8Having the correct estimate of abnormal price under the alternative is important, just as the error term

in an asset pricing regression for returns can be interpreted as abnormal returns under the alternative.
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To derive their discrete-time identity in equation (IA.14), begin with

1 + α∗
t+1 ≡ Et

[
M̃t+1 (1 +Rt+1)

]
= Et

[
M̃t+1

Pt+1 +Dt+1

Pt

]
.

Rearranging terms and iterating forward,

Pt = Et

[
M̃t+1

1+α∗
t+1

Dt+1 +
M̃t+1

1+α∗
t+1

Pt+1

]
= Et

[
M̃t+1

1+α∗
t+1

Dt+1 +
M̃t+1M̃t+2

(1+α∗
t+1)(1+α∗

t+2)
Dt+2 + ...

]
=

∑∞
j=1 Et

[
M̃t,t+j

Πj
k=1(1+αt+k)

Dt+j

]
.

To see what equation (IA.14) implies about unconditional ex-ante abnormal price we

define, write

δ = E [1− Vt/Pt] =
∞∑
j=1

E

[
M̃t,t+j

(
1

Πj
k=1

(
1 + α∗

t+k

) − 1

)
Dt+j

Pt

]
. (IA.15)

Compared to the analysis based on the Campbell-Shiller approximation in equation (IA.9),

equation (IA.15) helpfully clarifies that the “mispricing wedge,” 1/
[
Πj

k=1

(
1 + α∗

t+k

)]
, has to

be stochastically discounted using with the cumulative SDF to arrive at ex-ante mispricing.

However, it is not obvious how to take equation (IA.15) to data to estimate δ using

returns. For instance, one could rewrite equation (IA.15) in terms of returns,

δ =
∞∑
j=1

E

M̃t,t+j

 1

Πj
k=1Et+k−1

[
M̃t+k (1 +Rt+k)

] − 1

 Dt+j

Pt

 , (IA.16)

but the conditional expectation in the denominator, Et+k−1[ ], prevents one from taking

equation (IA.16) to data without making additional assumptions about which state variables

help forecast the time series of conditional abnormal returns. Our identity circumvents this

issue by making the intentional decision to use a definition of mispricing that has price Pt in

the denominator, which results in subsequent abnormal returns appearing in the numerator

and leads to our expression for unconditional mispricing in equation (19) as well as our

return-based calendar-time estimator in equation (2).
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D. Portfolio δ

In practice, one would typically estimate the δ of a portfolio of stocks, which requires

expressing the portfolio δ as a function of post-formation capital gains and returns on the

portfolio. These capital gains and returns should be those based on a buy-and-hold strategy

that does not rebalance the portfolio (or equivalently, use the original weight times the stock’s

cumulative capital gain to rebalance the portfolio every month). If wi,t is the portfolio weight

on security i at the time of portfolio formation t,

δt =
∑N

i=1wi,tδi,t

=
∑N

i=1 wi,t

(
−
∑∞

j=1Et

[
M̃t,t+j

Pi,t+j−1

Pi,t
Re

i,t+j

])
= −

∑∞
j=1Et

[
M̃t,t+j

∑N
i=1

(
wi,t

Pi,t+j−1

Pi,t
Re

i,t+j

)]
= −

∑∞
j=1 Et

[
M̃t,t+j

∑
i∈Nt+j

(
wi,t

Pi,t+j−1

Pi,t
Re

i,t+j

)]
,

(IA.17)

where Nt+j denotes the set of firms surviving (not delisted) at the end of t + j − 1 and

therefore have return data for t+ j. Hence,

δt = −
∑∞

j=1Et

[
M̃t,t+j

(∑
i∈Nt+j

wi,t
Pi,t+j−1

Pi,t

)(∑
i∈Nt+j

wi,t
Pi,t+j−1

Pi,t
Re

i,t+j∑
i∈Nt+j

wi,t
Pi,t+j−1

Pi,t

)]
= −

∑∞
j=1Et

[
M̃t,t+j

Pt+j−1

Pt
Re

t+j

]
,

(IA.18)

where

i) we normalize the time t portfolio price Pt to be one,

ii) the buy-and-hold time t+ j − 1 portfolio price is Pt+j−1 =
∑

i∈Nt+j
wi,t

Pi,t+j−1

Pi,t
,

iii) the buy-and-hold portfolio weight on asset i between t+ j − 1 and t+ j is

wi,t+j =
wi,t

Pi,t+j−1

Pi,t∑
i∈Nt+j

wi,t
Pi,t+j−1

Pi,t

,

iv) the buy-and-hold portfolio excess return is then given by Re
t+j =

∑
i∈Nt+j

wi,t+jR
e
i,t+j.
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E. Monte Carlo Analysis

We analyze our estimator’s statistical properties and compare them to those of alternative

approaches by simulating the asset market. We do this by adopting the model used in the

Monte Carlo analysis of Korteweg and Nagel (2016, KN) to our purposes.9

As in KN, the log one-period (candidate) SDF and log market returns follow, respectively,

m̃t = b0 − b1r
mkt
t (IA.19)

rmkt
t = rf + b1σ

2 − 1

2
σ2 + σϵt, (IA.20)

where b0 and b1 are parameters, rf is the constant log risk-free rate, σ is the volatility of log

market return, and ϵt ∼ N (0, 1) are i.i.d. so that rmkt
t also is. Given this setup, the candidate

SDF explains market returns and the risk-free rate if b0 = −rf + b1(rf + b1σ
2− 1

2
σ2)− 1

2
b21σ

2,

which we assume.10 To keep the model lean, we assume that there is single market portfolio

and do not model how market portfolios formed in different periods could be different due

to IPOs, delistings, and net issuance.11

Since market returns are i.i.d., the market has a constant log price-dividend ratio ymkt,

which we define as the log of one plus the ratio of price to dividend. Then, the log dividend

growth, ∆dmkt
t = log(Dmkt

t /Dmkt
t−1 ), follows

12

∆dmkt
t = rmkt

t − ymkt + log
(
exp

(
ymkt

)
− 1
)
, (IA.21)

which allows us to back out ymkt from E[∆dmkt
t ]. The constant price-dividend ratio also

9We present the model in a similar manner to KN for an easy comparison and specify the cash flow and

mispricing processes.

10Furthermore, equation (IA.20) implies that b1 is pinned down by choosing rf , σ
2, and the average log

market return E[rmkt
t ]: b1 = (E[rmkt

t ]− rf )/σ
2 + 1/2

11One can think of that as the market portfolio being a single Lucas tree. Practically, this assumption

means that investors in our model receive the same return and cash flows at each t regardless of when the

investor began buying and holding the market portfolio. Of course, this implication is not true in reality,

but we find that it is a reasonable approximation, since the correlation between market returns and post-

formation market returns tends to be extremely high. The sample correlation between returns on the market

portfolio formed a month ago versus 15 years ago (the largest gap) is 97.8% over 1948m6–2022m12.

12To see this, rmkt
t = log

(
Pmkt
t +Dmkt

t

)
− logPmkt

t−1 = log
(
1 + Pmkt

t /Dmkt
t

)
+ log

(
Dmkt

t /Dmkt
t−1

)
−

log
(
Pmkt
t−1 /Dmkt

t−1

)
= ymkt +∆dmkt

t − log
(
exp

(
ymkt

)
− 1
)
.
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implies that the log capital gain follows the same process as the log dividend growth.

Next, we specify the returns on a characteristic-based portfolio’s present value. The

portfolio formed at (t− j) for j ≥ 1 has a time t log return on value of

rv,(t−j),t = rf + βv(r
mkt
t − rf ) +

1

2
βvσ

2 − 1

2
(β2

vσ
2 + σ2

η) + η(t−j),t, (IA.22)

where ηt =
(

η(t−1),t · · · η(t−J),t

)′
∼ MVN

(
0, σ2

ηΓη

)
and Γη is a J × J cross-sectional

correlation matrix with ρ
|i1−i2|+|j1−j2|
η as the correlation between entries (i1, j1) and (i2, j2) in

the matrix. ηt has zero time-series autocorrelations. This correlation structure ensures that

cross-sectional correlations among the portfolio’s post-formation returns fall as the difference

in the portfolio formation periods increases. It is easy to check that the expected return on

rv,(t−j),t is consistent with the candidate SDF and market return processes. We also assume

that the portfolio’s dividend growth has a βv exposure to the market dividend growth and

an expected value of βvE[∆dmkt
t ].

Since portfolio returns on value are i.i.d. over time (though not in the cross-section),

the portfolio should have a constant log value-dividend ratio of y. This means that the

portfolio’s log dividend growth follows

∆d(t−j),t = rv,(t−j),t − y + log (exp (y)− 1) . (IA.23)

This equation and the fact that we assume E[∆d(t−j),t] = βvE[∆dmkt
t ] pins down the value

of y and of ∆d(t−j),t. Under the null of a correct SDF, there is no mispricing such that the

log return is the return on value and price is the intrinsic value: r = rv and P = V . In this

case, a constant price-dividend ratio also means that capital gain again equals the dividend

growth. This is the process used to examine size.

To examine power, we need to allow for mispricing in the characteristic-based portfolio.

We do this by specifying log abnormal price, δlogt = − log(1− δt) = log(Pt/Vt). We allow the

formation-period abnormal price to be autocorrelated over time:

δlog(t),t = (1− ϕinit)δ
log

+ ϕinitδ
log
(t−1),t−1 + et, (IA.24)

where et ∼ N(0, σ2
e) such that portfolio-formation period log abnormal price tends to mean

revert to δ
log
. In each simulation, we draw the first portfolio-formation period abnormal

price δlog(0),0 from a normal distribution with mean δ
log

and variance (1 − ϕ2
init)

−1σ2
e . On the
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other hand, post-formation log abnormal price tends to converge to zero:

δlog(t−j),t = ϕpostδ
log
(t−j),t−1 + u(t−j),t for j ≥ 1, (IA.25)

where ut =
(

u(t−1),t · · · u(t−J),t

)′
∼ MVN (0, σ2

uΓu) is cross-sectionally correlated across

portfolios formed in different time periods (different j’s) and Γu is a J-by-J matrix with

elements ρ
|i1−i2|+|j1−j2|
u as the correlation between entries (i1, j1) and (i2, j2) in the matrix.

We allow ϕinit and ϕpost to be different. Both et and ut have zero time-series autocorrelations.

Simple algebra implies that the return on price in the presence of mispricing is

r(t−j),t = ∆d(t−j),t + log
(
exp

(
δlog(t−j),t

)
(exp (y)− 1) + 1

)
− δlog(t−j),t−1 − log (exp (y)− 1)

(IA.26)

and that the log capital gain is

log

(
Pt

Pt−1

)
= ∆dt + δlogt − δlogt−1. (IA.27)

We choose the parameters of the model to match the key moments of the market port-

folio and the high abnormal profitability portfolio, which serves as our benchmark for the

characteristic-based portfolio under the alternative. Table IA.II compares a number of key

moments from simulations and data.

F. Estimation in the Presence of Mispricing in Firm-Level Returns

Cohen et al. (2009) explain that tests of the CAPM may be distorted when there is

market-wide mispricing. Their use of a ROE CAPM, as motivated by the Vuolteenaho

(2002) decomposition, nicely avoids this. Of course, we can also use a ROE-based SDF in

our return-based identity approach. Mispricing in firm-level returns, on the other hand, does

not hinder us when using the distorted covariance between returns and the candidate SDF

to estimate δ based on our identity.

The easiest way to see that mispricing in firm-level returns does not hinder us from using

the covariance between distorted returns and the candidate SDF when estimating δ is to

recognize that the direct discount of cash flows is equivalent to an event-time, gross-return

version of our return-based-identity (i.e., a version of our identity that does not exploit the

calendar-time reformulation and the excess return restriction used in the paper). Therefore,
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the direct discount of cash flows is not superior to our method in the presence of firm-level

mispricing.

The event-time return-identity-based formula for δ(J) can be written as

δ(J) = −
J∑

j=1

E

[
M̃t,t+j−1

P(t),t+j−1

P(t),t

(M̃t+j

[
(1 +R(t),t+j)− (1 +Rb,(t),t+j)

]
)

]
, (IA.28)

where Rb denotes the return on the base asset (for which we use the market portfolio). This

equation is the basis for an event-time return-identity-based estimator of abnormal price

that we could use were it not for the serial correlation or the time discount issue:

− 1

T

T∑
t=1

J∑
j=1

[
M̃t,t+j

P(t),t+j−1

P(t),t

Re
(t),t+j

]
. (IA.29)

Since 1 = Et+j−1

[
M̃t+j(1 +Rb,(t),t+j)

]
by definition, we can also write

δ(J) = −
J∑

j=1

E

[
M̃t,t+j−1

P(t),t+j−1

P(t),t

(M̃t+j(1 +R(t),t+j)− 1)

]
(IA.30)

The sample analogue of equation (IA.30) is

− 1

T

T∑
t=1

J∑
j=1

[
M̃t,t+j−1

P(t),t+j−1

P(t),t

(M̃t+j(1 +R(t),t+j)− 1)

]

= − 1

T

T∑
t=1

J∑
j=1

[
M̃t,t+j

P(t),t+j +D(t),t+j

P(t),t

− M̃t,t+j−1

P(t),t+j−1

P(t),t

]

=
1

T

T∑
t=1

[
1−

J∑
j=1

M̃t,t+j

D(t),t+j

P(t),t

− M̃t,t+j

P(t),t+J

P(t),t

]
, (IA.31)

which is the sample delta expression for the cash-flow method. Figure IA.6 verify empirically

that the two methods generate identical point estimates.

Since equation (IA.29) can be stated using returns or using cash flows, taking (IA.31) to

the data cannot provide any additional advantage in terms of improving the point estimate.

In contrast, using the calendar-time expression for equation (IA.29) has the advantage of

having low serial correlation in its time-series observations.
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To show exactly how this equivalence works, we next analyze a simple example. Consider

a three-period setting (t = 0, 1, 2) with two states at time 1 with equal probability (s1 = L,H)

and two cumulative states at time 2 due to the two time 1 states. The candidate SDF follows

the following dynamics:

M̃t =

t = 1

1 + µ if s1 = H

1− µ if s1 = L

−→

t = 2

1 if s1 = H

1 if s1 = L

where µ > 0. The market return is the inverse of the candidate SDF: Rmkt
t = M̃−1

t − 1.

There is a stock portfolio paying no cash flow other than a deterministic liquidating

dividend of V at time 2. Since M̃t has a conditional mean of one in all periods, the stock’s

correct price with respect to the candidate SDF is Vt = V in all periods.

Besides analyzing the case with no mispricing with respect to M̃ , we also consider two

cases of mispricing. Case 1 is when there is an overvaluation by a factor of (1− µ)−1 (1 + 2ϵ)

in the low-M state at time 1, but the price is correct in all other periods and states. Hence,

there is no ex-ante mispricing at time 0. Case 2 is when there is the same overvaluation in

the low-M̃ state at time 1, AND the time 0 price also takes the resulting distorted market

beta into account: P0 = E0

[
M̃1P1

]
= 0.5V + 0.5 (1− µ)

(
V (1− µ)−1 (1 + 2ϵ)

)
= V (1 + ϵ).

Hence, in Case 2, there is an initial overpricing of (P0 − V0) /P0 = ϵ/ (1 + ϵ) at time 0.

t = 0 t = 1 t = 2

Dt 0 V

No mispricing V V 0

Pt Mispricing: Case 1 V
V

V (1− µ)−1 (1 + 2ϵ)

if s1 = H

if s1 = L
0

Mispricing: Case 2 V (1 + ϵ)
V

V (1− µ)−1 (1 + 2ϵ)

if s1 = H

if s1 = L
0

Now consider computing the initial abnormal price measured using either the conventional

cash-flow expression or our return-based identity:

δCF,t = 1− Et

[
M̃t+1

Dt+1

Pt

]
− Et

[
M̃t,t+2

Dt+2 + Pt+2

Pt

]
. (IA.32)
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δt = −Et

[
M̃t+1R

e
t+1

]
− Et

[
M̃t,t+2

Pt+1

Pt

Re
t+2

]
, (IA.33)

where the excess return is with respect to the market return. We want to check that one

can rely on either formula to correctly find the initial abnormal price, whether or not there

is a distorted covariance with the candidate SDF.

F.1. No mispricing

In this case,

δCF,0 = 1− Et

[
M̃t,t+2

Dt+2

Pt

]
= 1− V

V
= 0.

Also,

δ0 = −E0

[
M̃1

(
0−Rmkt

1

)]
= −1

2

[
(1 + µ)

(
(1 + µ)−1 − 1

)
+ (1− µ)

(
(1− µ)−1 − 1

)]
= 0

so that we recover the initial abnormal price of zero in both cases.

F.2. Mispricing Case 1 (no initial mispricing)

In this case,

δCF,0 = 1− Et

[
M̃t,t+2

Dt+2

Pt

]
= 1− V

V
= 0.

Also,

δ0 =
−1

2

[
M̃1,s1=H

(
R1,s1=H −Rmkt

1,s1=H

)
+ M̃1,s1=L

(
R1,s1=L −Rmkt

1,s1=L

)]
−1

2
M̃1,s1=L

P1,s1=L

P0

(
R1,s1=L −Rmkt

2,s1=L

)
=

− 1
2 [(1+µ)(0−((1+µ)−1−1))−(1−µ)(((1−µ)−1(1+2ϵ)−1)−((1−µ)−1−1))]

− 1
2
(1−µ)(1−µ)−1(1+2ϵ)

((
1

(1−µ)−1(1+2ϵ)
−1

)
−0

)
= 0.

Hence, we recover an initial mispricing of zero in both cases in spite of the distorted

covariance with M̃ due to mispricing. Our identity neutralizes this distortion through the

cumulative capital gain term multiplying the cumulative candidate SDF and excess returns.

Of course, this result generalizes to the case with additional periods.
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F.3. Mispricing Case 2 (initial overpricing)

In this case,

δCF,0 = 1− Et

[
Mt,t+2

Dt+2

Pt

]
= 1− V

V (1 + ϵ)
= 1− 1

1 + ϵ
=

ϵ

1 + ϵ
.

When applying the Cho-Polk identity, the difference from Case 1 arises in R1 and P1

P0
.

δ0 =
− 1

2 [(1+µ)(((1+ϵ)−1−1)−((1+µ)−1−1))−(1−µ)(((1+ϵ)−1(1−µ)−1(1+2ϵ)−1)−((1−µ)−1−1))]

− 1
2
(1−µ)(1+ϵ)−1(1−µ)−1(1+2ϵ)

((
1

(1−µ)−1(1+2ϵ)
−1

)
−0

)
=

− 1
2
(1+µ)((1+ϵ)−1−1)− 1

2
(1−µ)((1+ϵ)−1−1)(1−µ)−1(1+2ϵ)

− 1
2
(1−µ)((1+ϵ)−1−1)(1−µ)−1(1+2ϵ)

(
1

(1−µ)−1(1+2ϵ)
−1

)
= ϵ/ (1 + ϵ).

Hence, we recover an initial abnormal price of ϵ/ (1 + ϵ) in both cases in spite of the

distorted covariance with M̃ due to mispricing.
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IV. Additional Results

Figure IA.1. Estimated CAPM-implied candidate SDF. The figure plots the time-
series realizations of the CAPM-implied candidate SDF: M̃t = exp(b0 − b1r

mkt
t ) with rmkt

t

denoting log market returns.
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BM: Low BM: High BM: Hi-Lo

Quality: Low Quality Quality: Hi-Lo

AdjVal: Low AdjVal: High AdjVal: Hi-Lo

Figure IA.2. Autocorrelation by estimation approach: B/M, quality, and ad-
justed value. The figure reports the 1- to 100-month autocorrelations in time-series δs
estimated based on the return-identity-based approach (solid grey) and the dividend-based
approach using event-time (dash orange). We provide the comparison for the low-, high-,
and high-minus-low quintile portfolios (in different columns) sorted on the book-to-market,
quality, and adjusted value (in different rows).
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Figure IA.3. GMM versus bootstrap standard errors: Monte Carlo. The figure
shows the true standard deviation of the delta estimator (red solid line), median GMM
standard error (blue solid circle), median bootstrap standard error, and the 10% and 90%
values for the two standard errors based on Monte Carlo. The comparison shows that GMM
standard errors have a median that almost exactly matches the true standard deviation of
δ̂ and a much narrower confidence interval than the bootstrap standard error. Both GMM
and bootstrap standard errors use a bandwidth / blocklength of two years.

Cumulative δ Change in δ

Figure IA.4. Estimated δ by the choice of J. The left plot shows the way estimated
δ changes as we vary the total number of post-formation months J used in the estimate.
The right plot shows the corresponding change in δ by J . The plotted lines are for the high
(dotted lines) and low (solid lines) quintile portfolios sorted on the market-to-book (blue),
quality (grey), and quality-to-price (orange). The two plots suggest that estimated δs tend
to plateau after J = 15 years (180 months).
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Figure IA.5. A double sort on B/M and profitability spread (V/B): illustration.
This diagram illustrates how a double sort on the book-to-market equity ratio and a proxy
for the value-to-book ratio should generate large cross-sectional variation in mispricing δ.
We proxy the value-to-book ratio with a two-characteristic signal referred to as profitability
spread.
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Figure IA.6. Delta based on the gross-return identity versus cash flows. The
figure plots the delta estimate using two theoretically equivalent approaches: the direct
discount of future cash flows and a terminal value (price in 15 years; vertical axis) and
the event-time, gross-return version of the return-identity-based approach (horizontal axis).
The two approaches yield very similar results, with only differences of a few basis points due
to measurement errors and estimation noise. The identity-based point estimates reported
in our main analysis differ from those reported here due to the use of the calendar time
rearrangement as well as the excess return restriction. Table I shows, however, that the
gross-return-identity approach is subject to a potentially large bias (and naturally, the cash-
flow-based approach as well).
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Panel A. Net Issue: Returns Panel B. Net Issue: Prices Panel C. Investment: Returns Panel D. Investment: Prices

Panel E. Accruals: Returns Panel F. Accruals: Prices Panel G. Beta: Returns Panel H. Beta: Prices

Panel I. Size: Returns Panel J. Size: Prices Panel K. Momentum: Returns Panel L. Momentum: Prices

Panel M. Profitability: Returns Panel N. Profitability: Prices Panel O. Adj Value: Returns Panel P. Adj Value: Prices

Figure IA.7. The risk-return relations in returns and price levels (other return
anomalies). The plots, for portfolios sorted on various return anomaly characteristics, the
relation between long-horizon risk and long-horizon return versus that between short-horizon
risk and return. Risks are measured with respect to the market portfolio. See the description
in Figure 3 for more details. The sample period is 1948m6 to 2022m12.
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Figure IA.8. Delta versus cumulative state adjustment.

The figure plots the abnormal price estimate (horizontal axis) against the cumulative state

adjustment (vertical axis) for the twenty extreme quintile portfolios. The cumulative state

adjustment component arises from the three-way decomposition of long-horizon return

presented in Corollary 4:

J∑
j=1

ET

[
ϕ(t−j),t−1

]
ET

[
M̃t

]
ET

[
Re

(t−j),t

]
︸ ︷︷ ︸

“long-horizon return”

= − δ̂ +
J∑

j=1

ET

[
ϕ(t−j),t−1

]
CovT

(
Re

(t−j),t,−M̃t

)
︸ ︷︷ ︸

“long-horizon risk”

−
J∑

j=1

ET

[
ϕ(t−j),t−1

]
CovT

(
ϕ(t−j),t−1

ET

[
ϕ(t−j),t−1

] , M̃tR
e
(t−j),t

)
︸ ︷︷ ︸

“cumulative state adjustment”

.

The plot shows that the cumulative state adjustment typically has an absolute magnitude

below 10% and does not have a clear univariate cross-sectional relation with abnormal

price δ.
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Panel A. Alphas Panel B. Add Alpha × Return Reversal

Panel C. Add Beta Panel D. Add Cumulative State Adjustment

Figure IA.9. Predicting abnormal price (δ) with short-horizon alpha and other
factors. This figures plots the cross-sectional relation between estimated delta and a fitted
value based on the portfolio’s short-horizon abnormal return (alpha), its interaction with a
dummy variable for return reversal, short-horizon beta, and cumulative state adjustment.
Panel A uses only short-horizon alpha to predict abnormal price, whereas Panel B adds the
interaction of alpha and the return reversal dummy. Panel C adds short-horizon beta and
Panel D also adds the cumulative state adjustment. Short-horizon alpha is the one-month
abnormal return on the portfolio immediately following portfolio formation. Return reversal
is a dummy variable that takes the value of one if the average excess return in years 3 to 15
following portfolio formation is opposite in sign to the average excess return in the first post-
formation month. Short-horizon beta is the portfolio’s one-month market beta immediately
following portfolio formation. Cumulative state adjustment is as defined in Section III.C.
The sample period is 1948m6 to 2022m12.
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Table IA.I

Size and Power of the Return-Identity-Based Estimator of Abnormal Price

This table reports the size and power of our abnormal price estimator for different choices

of the standard error. Panel A shows that under the null of δ = 0, a Newey-West (NW)

bandwidth of two years (“SE2y”) yields a conservative rejection rate of 2.4% as opposed to

the 5% significance level. Under the alternative of δ = 36.6, the null is rejected 75% of the

time. For comparison, Panel B reports the size and power of a short-horizon abnormal return

(α) test, showing that an annualized alpha of around 3.2% (12× 0.26bp) paired with GMM

standard errors with no lag (“SE0m”) has a similar statistical power as a price-level test on

a delta of -36.6% and GMM standard errors with a NW lag of two years. We choose the

parameters in our Monte Carlo simulation to match the key moments of the high-adjusted -

value portfolio. For all tests, we use 1,000 simulations of the same number periods as in the

actual data (1, 074 months spanning 89.5 years).

Panel A. Abnormal Price (δ)

True SD SE1y SE2y SE3y SE4y SE5y SE10y SE15y

Size 0.047 0.016 0.024 0.027 0.035 0.042 0.072 0.098

Power 0.750 0.686 0.750 0.796 0.818 0.835 0.873 0.891

Panel B. Abnormal Return (α)

True SD SE0m SE3m SE3m SE1y SE2y SE3y SE5y

Size 0.051 0.056 0.053 0.050 0.054 0.058 0.064 0.069

Power 0.606 0.720 0.717 0.715 0.714 0.697 0.690 0.690
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Table IA.II

Monte Carlo Moments

The table reports the key moments from simulations and data. The portfolio parameters

are from the high adjusted value decile portfolio.

Simulation

Portfolio parameter δ = 0 δ ̸= 0 Data Market-level parameter Simulation Data

δ 0 −0.366 n/a

E
[
δ̂
]
, δ̂ 0.003 −0.360 −0.335

σr 0.039 0.046 0.041 σmkt 0.043 0.043

r 0.008 0.010 0.010 rmkt 0.0087 0.0087

β 0.830 0.830 0.827 rf 0.0032 0.0032

ρ(r(t−1),t, r(t−2),t) 0.999 0.997 0.996

ρ(r(t−1),t, r(t−180),t) 0.875 0.778 0.817
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Table IA.III

Estimated Candidate SDF Parameters

This table reports the estimated parameters of the model SDF, M̃t = exp(b0 − b1r
mkt
t ) with

rmkt
t denoting log market returns, along with the 95% confidence intervals in brackets.

J b0 b1

1mo 0.015 3.294

[0.000,0.030] [1.518,5.070]

1yr 0.014 3.007

[-0.000,0.027] [1.251,4.764]

3yrs 0.014 3.127

[-0.002,0.030] [1.362,4.892]

5yrs 0.015 3.306

[-0.002,0.032] [1.548,5.064]

10yrs 0.014 3.184

[-0.002,0.031] [1.435,4.933]

15yrs 0.015 3.399

[-0.006,0.037] [1.634,5.165]
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Table IA.IV

Autocorrelation by Estimation Approach: All Characteristics

The table reports the 1-month, 12-month, 60-month, and 180-month autocorrelations in

time-series δs estimated based on the return-identity-based approach (“Return identity”) and

the dividend-based approach using event time (“Cash flow”). We provide the comparison

for the low-, high-, and high-minus-low quintile portfolios sorted on all ten characteristics

studied in the paper.

Low High Hi - Lo

Autocorrelation lag

Sort Approach 1 12 60 180 1 12 60 180 1 12 60 180

Book-to-market Cash flow 0.98 0.78 0.34 -0.86 0.98 0.77 0.18 -0.95 0.96 0.63 -0.14 -0.34

Return identity 0.15 0.15 -0.05 0.01 0.07 0.11 -0.01 0.00 0.11 0.14 -0.03 0.00

Quality Cash flow 0.98 0.77 0.26 -0.94 0.98 0.77 0.31 -0.80 0.93 0.32 0.03 -0.18

Return identity 0.23 0.11 -0.02 0.02 0.23 0.10 -0.05 -0.00 0.24 0.11 -0.03 0.01

Adjusted value Cash flow 0.98 0.80 0.32 -0.82 0.98 0.77 0.19 -0.95 0.97 0.70 0.04 -0.13

Return identity 0.15 0.07 -0.09 -0.05 0.01 0.01 -0.04 -0.05 0.08 0.03 -0.06 -0.06

Net issuance Cash flow 0.98 0.76 0.30 -0.76 0.98 0.79 0.35 -0.80 0.95 0.48 0.03 -0.32

Return identity 0.20 0.11 -0.04 -0.00 0.23 0.09 -0.10 0.04 0.20 0.11 -0.08 0.01

Investment Cash flow 0.98 0.82 0.24 -1.18 0.98 0.74 0.37 -0.71 0.97 0.66 -0.06 -0.24

Return identity 0.01 -0.00 0.02 0.04 0.02 0.12 -0.07 -0.05 -0.05 0.11 -0.02 -0.00

Beta Cash flow 0.97 0.75 0.24 -1.02 0.98 0.82 0.33 -0.80 0.96 0.65 0.01 0.07

Return identity 0.16 0.06 -0.05 -0.05 0.11 0.12 -0.09 -0.03 0.16 0.09 -0.08 -0.05

Accruals Cash flow 0.98 0.83 0.40 -0.70 0.98 0.77 0.30 -0.78 0.94 0.32 0.09 -0.29

Return identity 0.08 -0.02 -0.01 -0.02 0.21 0.06 -0.09 -0.03 0.12 -0.04 -0.02 0.01

Size Cash flow 0.98 0.80 0.23 -0.85 0.98 0.79 0.32 -0.84 0.96 0.60 -0.06 -0.51

Return identity 0.03 0.15 -0.04 0.03 0.02 0.12 -0.06 0.01 0.03 0.15 -0.05 0.03

Momentum Cash flow 0.97 0.76 0.17 -1.06 0.97 0.71 0.37 -0.77 0.94 0.45 -0.14 -0.44

Return identity 0.21 0.11 -0.05 0.01 0.20 0.05 -0.09 -0.01 0.09 0.16 -0.00 0.01

Profitability Cash flow 0.98 0.80 0.32 -0.55 0.98 0.77 0.35 -0.84 0.98 0.76 0.35 -0.08

Return identity 0.24 -0.00 -0.02 0.03 0.12 0.15 -0.02 0.01 0.22 0.08 -0.02 0.02

Average Cash flow 0.98 0.79 0.28 -0.87 0.98 0.77 0.31 -0.83 0.96 0.56 0.01 -0.25

Return identity 0.15 0.08 -0.03 0.00 0.12 0.09 -0.06 -0.01 0.12 0.09 -0.04 -0.00

39



Table IA.V

Alternative Constructions of Adjusted Value

The table presents the deltas and p-values associated with alternative constructions of our adjusted value characteristic. p-

values are based on GMM standard errors with the Newey-West kernel and a 24-month bandwidth.

AdjVal zBM + zz(Prof)−z(Beta) AdjVal (Future Prof) zBM + zz(FutureProf)−z(Beta) zProf − zBeta zBM − zBeta zBM + zProf

delta difference -0.519 -0.508 -0.547 -0.552 -0.394 -0.352 -0.467

(p-value) 0.002 0.005 0.001 0.003 0.164 0.134 0.130
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Table IA.VI

Pricing B/M-and-Profitability-Spread-sorted Portfolios: A Double Sort

The table shows that abnormal price relative to the CAPM is large for portfolios double-

sorted on the book-to-market equity ratio (B/M) and profitability spread, our proxy for

the value-to-book ratio: Profitability Spread = zprof − zbeta, where z is a z-score. We

form nine value-weight portfolios by independently sorting stocks into three B/M bins

and three profitability spread bins based on the associated 30% and 70% NYSE break-

points. We form portfolios and track post-formation returns for 15 years. The re-

ported δs are estimated values of abnormal price defined as δ = E
[
Pt−Vt

Pt

]
≈ δ (180) =

−E
[∑180

j=1M̃t−j,t
P(t−j),t−1

P(t−j),t−j
Re

(t−j),t

]
, where (t− j) denotes the portfolio formation month and t

denotes the month in which returns are realized. We use the candidate SDF implied by the

CAPM, M̃t−j,t = exp
(
b0j − b1

∑j−1
s=0 r

mkt
t−s

)
, where rmkt

t is log market returns and b0 and b1

are chosen to make the market portfolio’s prices (δ) and returns (δ (1)) correct in sample. We

report t-statistics (in parentheses) and p-values (in brackets) based on GMM standard errors

that account for time-series and cross-sectional covariances in the data and uncertainty in

estimating the parameters of the candidate SDF. The sample period is 1948m6–2022m12.

δ × 100 (t-statistic) [p-value]

Profitability spread

Book-to-market Lo 2 Hi Hi - Lo

Lo 26.7 4.1 -11.7 -26.4

(3.04) (2.91) (1.61) (-1.95), [0.052]

2 18.6 -12.7 -33.1 -38.4

(1.50) (2.21) (1.96) (-1.54), [0.124]

Hi 0.3 -34.4 -31.0 -19.3

(1.49) (1.43) (1.92) (-0.74), [0.462]

Hi - Lo -38.4 -51.8 -31.2

(-1.63), [0.104] (-2.11), [0.035] (-1.93), [0.053]

δ difference t-statistic p-value δRN diff (t-stat)

100× (δHH − δLL) -57.6 -3.61 0.000 -18.5 (-0.95)
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Table IA.VII

Abnormal Price vs. Cumulative Abnormal Return (CAR)

This table compares the magnitudes and the p-values of abnormal price vs. CAR estimates.

CAR is the conventional calendar-time cumulative abnormal return with respect to the

CAPM:

ĈAR =
J∑

j=1

α̂j.

When reporting CAR, we flip the sign for a better comparison with delta. To be consistent

with the delta estimates, CAR uses portfolio excess returns with respect to post-formation

market returns. p-values are based on GMM standard errors with the Newey-West kernel

and a 24-month bandwidth.

Delta Cumulative abnormal return

δ p-value CAR ×− 1 p-value

Sort Lo Hi Hi-Lo Lo Hi Hi-Lo Lo Hi Hi-Lo Lo Hi Hi-Lo

Book-to-market 0.060 -0.212 -0.272 0.625 0.206 0.337 -0.012 -0.100 -0.088 0.868 0.390 0.567

Quality 0.061 -0.053 -0.114 0.629 0.603 0.609 0.138 -0.129 -0.266 0.088 0.019 0.054

Adjusted value 0.184 -0.334 -0.519 0.001 0.007 0.002 0.243 -0.316 -0.559 0.000 0.000 0.000

Net issuance -0.164 0.072 0.237 0.008 0.278 0.006 -0.199 0.122 0.321 0.000 0.036 0.000

Investment -0.176 0.118 0.294 0.020 0.154 0.035 -0.114 0.102 0.216 0.089 0.176 0.089

Accruals 0.002 0.209 0.207 0.983 0.047 0.222 0.097 0.183 0.086 0.316 0.017 0.580

Beta -0.226 0.182 0.408 0.060 0.041 0.029 -0.311 0.302 0.613 0.001 0.000 0.000

Size -0.134 0.035 0.170 0.595 0.300 0.549 0.026 -0.009 -0.035 0.884 0.741 0.836

Momentum -0.165 0.043 0.208 0.248 0.460 0.136 -0.010 0.066 0.076 0.889 0.094 0.145

Profitability 0.133 0.044 -0.090 0.527 0.812 0.805 0.054 -0.025 -0.080 0.695 0.807 0.661
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Table IA.VIII

Explaining Delta Using Short-horizon Alpha

The table explains the cross-section of CAPM abnormal price (δ) based on short-horizon

abnormal return (α), its interaction with a dummy variable for return reversal, short-horizon

beta (β), and cumulative state adjustment (Cumul. state adj.). Return reversal is a dummy

variable that takes the value of one if the average excess return in years three-to-15 following

portfolio formation is opposite in sign to the average excess return in the first post-formation

month. All regressors are cross-sectionally standardized for the ease of interpreting the

point estimates. We use the extreme quintile portfolios for each characteristic, resulting

in a cross-section of twenty observations. We report t-statistics (in parentheses) based on

heteroskedasticity-robust standard errors.

(1) (2) (3) (4)

α -0.09 -0.17 -0.11 -0.05

(-1.79) (-5.00) (-2.34) (-1.95)

α× Reversal 0.12 0.12 0.07

(2.74) (4.03) (4.78)

β 0.09 0.14

(2.27) (6.22)

Cumul. state adj 0.09

(9.93)

r2 0.33 0.59 0.70 0.94
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Table IA.IX

Pricing Portfolios Sorted on Other Proxies for V/P (1991m6-)

The table reports estimated abnormal price with respect to the CAPM for portfolios sorted

on characteristics proposed in the literature to proxy for the value-to-price ratio. This

table studies the analyst-forecast-based measure of Frankel and Lee (1998) and the market-

multiples-based measure of Golubov and Konstantinidi (2019) using the sample period from

1991m6 (these signals are first available in 1976m7 and therefore the entire 15 years of post-

formation return data are first available in 1991m6. We report t-statistics (in parentheses)

and p-values based on GMM standard errors that account for time-series and cross-sectional

covariances in the data and uncertainty in estimating the parameters of the candidate SDF.

δ × 100

Sort Lo 2 3 4 Hi Hi - Lo p(Hi - Lo)

Analyst V/P -6.85 -0.12 13.66 -2.44 1.67 8.52 0.762

(-0.33) (-0.04) (0.84) (-0.27) (0.19) (0.30)

Multiples V/P 0.04 -16.76 -32.23 -12.78 -22.41 -22.45 0.368

(0.00) (-1.52) (-1.47) (-0.93) (-0.94) (-0.90)
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Table IA.X

Incremental Information About Prices: Adjusted Value vs. Others

The table studies the CAPM abnormal price of portfolios that bet on a characteristic while controlling for the adjusted value

characteristic and vice versa. This table studies the three characteristics comprising adjusted value using nine value-weight

portfolios based on independent 30% and 70% NYSE breakpoints for both adjusted value and the second sorting characteristic

specified in column one. Adjusted value combines the information in book-to-market, profitability, and beta using their z

scores: zB/M + zProf − zBeta. The left-hand side of the table reports the estimated δ and associated t-statistic for each

portfolio. The right-hand-side of the table reports the δs associated with the combination of the portfolios that results in

either a characteristic-neutral portfolio that bets on adjusted value or a adjusted-value-neutral portfolio that bets on the second

characteristic. We report t-statistics (in parentheses) and p-values (in brackets) based on GMM standard errors that account

for time-series and cross-sectional covariances in the data and uncertainty in estimating the parameters of the candidate SDF.

The sample period is 1948m6–2022m12 except for profitability, which has a sample period of 1967m6–2022m12.

AdjVal sort Second sort

Adjusted value sort (Second sort neutral) (AdjVal neutral)

Low 2 High 1
3 ∗ ((H1 +H2 +H3) 1

3 ∗ ((L3 + 23 +H3)

Second sort → 1 2 3 1 2 3 1 2 3 −(L1 + L2 + L3)) −(L1 + 21 +H1))

Book-to-market 12.49 19.43 8.50 -9.00 -14.92 -11.87 -36.50 -35.37 -32.59 -48.29 -0.98

(1.93) (1.06) (0.30) (-0.60) (-1.26) (-0.72) (-2.04) (-2.58) (-2.15) (-2.31), [0.021] (-0.04), [0.970]

Beta 14.22 7.48 18.42 -17.04 -10.14 -12.82 -32.17 -41.34 -69.01 -60.88 -9.48

(0.75) (1.12) (2.60) (-1.74) (-1.65) (-0.73) (-2.64) (-1.83) (-0.78) (-1.39), [0.164] (-0.23), [0.817]

Profitability 23.55 -3.71 20.96 -11.38 -19.73 -3.31 -26.59 -54.01 -44.94 -55.45 -4.29

(1.08) (-0.36) (0.97) (-0.65) (-1.51) (-0.18) (-1.62) (-1.89) (-2.14) (-2.74), [0.006] (-0.14), [0.887]
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V. Modern Subsample

Table IA.XI

Pricing B/M- or quality-sorted Portfolios: Returns vs. Prices (Modern

Subsample)

The table shows that B/M and V/B are weak signals of abnormal price relative to the CAPM

(the last row), although they tend to predict abnormal one-month returns better (the first

row). It repeats Table III in the paper using the modern subsample: 1972m6–2022m12. We

report t-statistics (in parentheses) and p-values based on GMM standard errors that account

for time-series and cross-sectional covariances in the data and uncertainty in estimating the

parameters of the candidate SDF.
Panel A. CAPM δ

B/M Quality

δ × 100 δ × 100

J Lo 2 3 4 Hi Hi - Lo Lo 2 3 4 Hi Hi - Lo

1mo 0.06 -0.05 -0.12 -0.18 -0.27 -0.33 0.26 -0.06 0.03 -0.04 -0.16 -0.42

(”return”) (1.12) (-0.98) (-1.78) (-1.98) (-2.52) (-2.23) (2.76) (-0.77) (0.62) (-0.96) (-3.17) (-3.23)

1yr 0.82 -0.89 -1.12 -2.75 -3.69 -4.51 2.27 -0.34 0.17 -0.95 -1.53 -3.81

(1.02) (-1.30) (-1.02) (-2.04) (-2.52) (-2.10) (1.99) (-0.32) (0.23) (-1.84) (-2.15) (-2.22)

3yrs 1.73 -2.12 -2.15 -7.54 -10.28 -12.01 4.59 0.02 0.08 -1.81 -2.84 -7.43

(0.63) (-1.24) (-0.67) (-1.97) (-2.54) (-1.84) (1.48) (0.01) (0.05) (-1.17) (-1.27) (-1.49)

5yrs 4.16 -3.03 -4.64 -11.18 -16.26 -20.42 3.64 0.12 -0.69 -1.97 -2.38 -6.02

(0.82) (-1.15) (-0.89) (-1.72) (-2.22) (-1.69) (0.73) (0.02) (-0.21) (-0.87) (-0.58) (-0.70)

10yrs 8.69 -2.20 -4.08 -18.14 -23.81 -32.50 5.25 2.91 -0.22 -2.22 -2.74 -7.99

(0.90) (-0.46) (-0.38) (-1.55) (-1.65) (-1.37) (0.50) (0.30) (-0.03) (-0.76) (-0.33) (-0.44)

15yrs 10.96 -2.09 -5.97 -19.76 -28.78 -39.74 2.65 6.04 0.72 -4.61 -2.12 -4.77

(”price”) (0.79) (-0.29) (-0.41) (-1.23) (-1.48) (-1.22) (0.18) (0.45) (0.06) (-1.19) (-0.18) (-0.18)

Panel B. Risk-neutral δ

B/M Quality

δ × 100 δ × 100

J Lo 2 3 4 Hi Hi - Lo Lo 2 3 4 Hi Hi - Lo

1mo 0.04 -0.04 -0.08 -0.14 -0.25 -0.29 0.14 -0.06 0.04 -0.04 -0.10 -0.24

(”return”) (0.75) (-0.72) (-1.30) (-1.59) (-2.35) (-1.96) (1.49) (-0.81) (0.85) (-0.92) (-1.95) (-1.85)

15yrs 10.41 -5.18 -9.60 -15.92 -29.27 -39.68 -14.92 -1.14 -0.86 -5.04 9.50 24.42

(”price”) (0.92) (-0.95) (-0.92) (-1.16) (-1.90) (-1.52) (-1.37) (-0.11) (-0.10) (-1.11) (1.22) (1.37)
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Table IA.XII

Pricing Portfolios Sorted on Adjusted Value: Returns vs. Prices (Modern
Subsample)

The table shows that the adjusted value signal that combines B/M , profitability, and beta

into single characteristic is a strong signal of CAPM abnormal price (the last row) and

abnormal returns (the first row). It repeats Table IV in the paper using the modern subsam-

ple: 1972m6–2022m12. We report t-statistics (in parentheses) and p-values based on GMM

standard errors that account for time-series and cross-sectional covariances in the data and

uncertainty in estimating the parameters of the candidate SDF.

δ × 100

J Lo 2 3 4 Hi Hi - Lo p(Hi - Lo) [Hi - Lo]
RN

1mo 0.22 0.01 -0.14 -0.23 -0.49 -0.71 0.000 -0.38

(”return”) (3.19) (0.17) (-2.12) (-2.98) (-4.87) (-4.87) (-2.72)

1yr 2.63 0.21 -1.65 -3.15 -5.35 -7.99 0.000 -4.06

(2.90) (0.26) (-2.00) (-2.91) (-4.33) (-4.35) (-2.32)

3yrs 6.28 1.07 -4.10 -8.42 -13.12 -19.40 0.000 -7.75

(2.61) (0.52) (-1.55) (-2.90) (-3.83) (-3.84) (-1.56)

5yrs 9.41 3.07 -6.66 -13.01 -20.49 -29.90 0.000 -11.45

(2.99) (1.13) (-1.65) (-3.31) (-3.29) (-3.70) (-0.87)

10yrs 15.01 1.82 -9.59 -23.86 -30.64 -45.65 0.001 -15.21

(3.17) (0.51) (-1.89) (-3.61) (-2.94) (-3.40) (-0.45)

15yrs 18.92 4.26 -13.41 -33.96 -38.21 -57.12 0.002 -13.96

(”price”) (2.97) (0.78) (-2.53) (-2.70) (-2.69) (-3.10) (-0.60)
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Table IA.XIII

Pricing B/M-and-Profitability-Spread-sorted Portfolios (Modern Subsample)

The table shows that abnormal price relative to the CAPM is large for portfolios double-

sorted on the book-to-market equity ratio and our proxy for the value-to-book ratio. It

repeats Table IA.VI using the modern subsample: 1972m6–2022m12. We report t-statistics

(in parentheses) and p-values based on GMM standard errors that account for time-series

and cross-sectional covariances in the data and uncertainty in estimating the parameters of

the candidate SDF.

δ × 100 (t-statistic) [p-value]

Profitability spread

Book-to-market Lo 2 Hi Hi - Lo

Lo 24.9 5.4 -6.0 -30.0

(2.42) (2.37) (1.31) (-1.91), [0.056]

2 15.3 -18.0 -39.4 -46.1

(1.24) (1.80) (1.70) (-1.59), [0.111]

Hi -5.2 -40.6 -37.2 -31.1

(1.25) (1.15) (1.52) (-1.02), [0.308]

Hi - Lo -30.9 -54.7 -32.0

(-1.14), [0.253] (-2.07), [0.038] (-1.77), [0.078]

δ difference t-statistic p-value δRN diff (t-stat)

100× (δHH − δLL) -62.0 -3.32 0.001 -22.0 (-0.87)
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Table IA.XIV

Pricing Anomaly-sorted Portfolios (Modern Subsample)

The table reports estimated abnormal price with respect to the CAPM for portfolios sorted

on characteristics conceptually linked to abnormal price or on prominent return anomaly

characteristics. This table repeats Table V with the modern subsample, 1972m6–2022m12,

and therefore the results for investment, accruals, and profitability are the same as in Table

V. We report t-statistics (in parentheses) and p-values based on GMM standard errors that

account for time-series and cross-sectional covariances in the data and uncertainty in esti-

mating the parameters of the candidate SDF.

δ × 100

Sort Lo 2 3 4 Hi Hi - Lo p(Hi - Lo) [Hi - Lo]
RN

Net issuance -16.45 -4.24 2.02 -0.18 7.22 23.67 0.006 8.62

(-2.67) (-0.40) (0.52) (-0.03) (1.08) (2.72) (0.93)

Investment -17.61 -17.82 -2.96 8.99 11.80 29.41 0.035 16.68

(-2.33) (-2.50) (-0.68) (1.67) (1.43) (2.11) (1.08)

Accruals 0.18 -11.66 0.18 4.88 20.89 20.71 0.222 9.40

(0.02) (-1.97) (0.03) (0.93) (1.98) (1.22) (0.59)

Beta -22.63 -15.89 -4.95 5.28 18.21 40.85 0.029 -26.86

(-1.88) (-2.19) (-1.11) (1.00) (2.05) (2.18) (-1.21)

Size -13.44 -16.91 -20.64 -13.50 3.54 16.98 0.549 54.62

(-0.53) (-0.92) (-1.19) (-1.14) (1.04) (0.60) (1.91)

Momentum -16.49 -7.67 -3.68 2.56 4.31 20.80 0.136 22.48

(-1.15) (-1.89) (-1.10) (0.53) (0.74) (1.49) (1.85)

Profitability 13.35 -9.30 -14.43 -4.96 4.37 -8.98 0.805 2.25

(0.63) (-0.66) (-1.27) (-0.41) (0.24) (-0.25) (0.08)
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Table IA.XV

Incremental Information About Prices: Adjusted Value vs. Others (Modern Subsample)

The table studies the CAPM abnormal price of portfolios that bet on a particular characteristic while controlling for the

adjusted value characteristic and vice versa. The table studies the characteristics that do not comprise adjusted value based

on the nine portfolios from a 3 × 3 independent sort. This table repeats Table VI with the modern subsample, 1972m6–

2022m12, and therefore the results for investment and accruals are the same as in Table VI. We report t-statistics (in

parentheses) and p-values based on GMM standard errors that account for time-series and cross-sectional covariances in the

data and uncertainty in estimating the parameters of the candidate SDF.

Adj val sort Second sort

Adjusted value sort (Second sort neutral) (Adj val neutral)

Low 2 High 1
3
∗ ((H1 +H2 +H3) 1

3
∗ ((L3 + 23 +H3)

Second sort → 1 2 3 1 2 3 1 2 3 −(L1 + L2 + L3)) −(L1 + 21 +H1))

Net issuance 13.37 18.60 10.28 -18.90 -7.71 -8.86 -40.57 -39.55 -31.23 -51.21 5.43

(1.39) (3.23) (0.96) (-2.34) (-1.01) (-1.26) (-3.12) (-2.89) (-1.78) (-2.84), [0.005] (0.53), [0.595]

Investment 0.55 16.97 19.88 -25.06 -10.01 -3.90 -44.06 -41.42 -35.40 -52.76 16.39

(0.05) (2.17) (2.29) (-2.95) (-1.42) (-0.44) (-2.80) (-2.67) (-2.16) (-2.95), [0.003] (1.62), [0.106]

Accruals 8.33 12.13 26.95 -14.54 -11.05 -1.05 -43.42 -33.93 -46.72 -57.16 9.60

(0.79) (1.90) (2.46) (-1.86) (-1.23) (-0.10) (-1.94) (-2.58) (-2.16) (-2.80), [0.005] (0.81), [0.416]

Size -3.37 -7.59 17.98 -16.99 -30.10 -8.55 -52.88 -41.92 -37.50 -46.44 15.06

(-0.11) (-0.40) (3.32) (-0.64) (-1.53) (-1.06) (-1.56) (-1.89) (-2.48) (-2.67), [0.007] (0.52), [0.602]

Momentum 0.84 15.76 17.21 -29.39 -13.32 -3.57 -55.13 -39.13 -33.22 -53.76 21.37

(0.09) (2.11) (2.29) (-2.43) (-1.96) (-0.46) (-2.12) (-2.96) (-2.32) (-2.85), [0.004] (1.75), [0.080]
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