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ABSTRACT

We propose a novel way to estimate a portfolio’s abnormal price, the percentage

gap between price and the present value of dividends computed with a chosen

asset pricing model. Our method, based on a novel identity, resembles the time-

series estimator of abnormal returns, avoids the issues in alternative approaches,

and clarifies the role of risk and mispricing in long-horizon returns. We apply our

techniques to study the cross-section of price levels relative to the CAPM, finding

that a single characteristic dubbed adjusted value provides a parsimonious model

of CAPM-implied abnormal price.
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How well does an asset pricing model explain the observed price levels of stocks? And

which stock characteristics signal model-specific abnormal price, the deviation of price

from the present value of future dividends?1 These are central questions in finance, since

stock price levels can drive the financing and investment decisions of firms as well as the

portfolio decisions of long-term buy-and-hold investors. Understanding stock price levels

can also reveal whether abnormal returns on a given expected return anomaly are earned

on price convergence or divergence.

The techniques with which to study asset price levels at our disposal are extremely

limited. Since discount rates vary over time, abnormal price cannot simply be inferred

from short-horizon abnormal returns (alphas), the literature’s traditional focus. Cohen

et al. (2009) proposed an approximate estimator of abnormal price that nonetheless relies

on strong assumptions about the data. An estimator based on directly discounting sub-

sequent dividends and a terminal cash flow, as explored in van Binsbergen et al. (2023),

can be significantly biased and suffers from a serious overlapping observations issue.

Our contribution is to develop a new estimator of abnormal price. The estimator

resembles the time-series alpha estimator and avoids the issues in alternative approaches.

Applying our techniques, we document empirical facts about the cross-section of stock

price levels. (i) The CAPM explains some, but not all, of the cross-sectional variation

in stock price levels. (ii) Net issuance, investment, and beta predict significant CAPM-

implied abnormal price. (iii) The classic momentum strategy bets on overpriced stocks.

(iv) A single characteristic that we dub adjusted value provides a parsimonious model of

CAPM abnormal price.

We define a portfolio’s average formation-period abnormal price—which we also call

1Abnormal price could signal either a misspecification of the model of risk or an actual distortion

in asset price levels. That is, like abnormal returns, abnormal price is subject to the joint hypothesis

problem emphasized in Fama (1970).
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δ (“delta”) or mispricing—as follows:

δ ≡ E

[
Pt − Vt

Pt

]
with Vt = Et

[ ∞∑

j=1

M̃t,t+jDt+j

]
, (1)

where t is the portfolio-formation period, Pt is the portfolio’s market price at t, and Vt

is the present value of post-formation dividends {Dt+j}∞j=1 with respect to the candidate

cumulative stochastic discount factor (SDF) M̃t,t+j implied by a chosen asset pricing

model of risk. Abnormal price (δ) is a price-level analogue of short-horizon abnormal

return (α) in a return analysis and is specific to the asset pricing model used to specify

M̃ , just like α.2

We estimate δ via a novel exact identity expressing today’s abnormal price using

post-formation buy-and-hold excess returns. For intuition, consider a portfolio that is

currently overpriced relative to an asset pricing model. If that overpricing undergoes

a subsequent “correction,” the capital gain component of future returns must be low

on a risk-adjusted basis. If, on the other hand, the price remains elevated—which our

identity also allows for—the dividend yield component of future returns must be low on

a risk-adjusted basis. In both cases, we expect initial overpricing to be reflected in lower

subsequent risk-adjusted returns, an idea our identity formalizes.

Applying our novel identity, we derive a calendar-time estimator of δ, denoted δ̂, based

on the portfolio’s post-formation buy-and-hold excess returns:

δ̂ =
1

T

T∑

t=1

δ̃t with δ̃t = −
J∑

j=1

M̃t−j,t
P(t−j),t−1

P(t−j),t−j
Re

(t−j),t, (2)

where t here indexes the month in which returns occur (i.e., calendar time) and the

(t− j) argument in the subscript indicates that the particular cumulative capital gain

2This perspective on M̃ is similar to that of Hansen and Jagannathan (1991, 1997): δt measures the

abnormal component of Pt relative to a potentially misspecified candidate model of risk, M̃ .
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(
P(t−j),t−1

P(t−j),t−j
) or one-month excess return (Re

(t−j),t) is earned on buying and holding a portfolio

formed at time t − j. Using J = 15 years (180 months) turns equation (2) into an

estimator of δ, whereas using J = 1 month reduces it to the conventional alpha estimator,

α̂ = 1
T

∑T
t=1 M̃tR

e
t .
3

Our abnormal price estimator in equation (2) has three advantages relative to estima-

tors in the literature. First, estimating δ̂ with excess (rather than gross) returns prevents

measurement errors in the candidate M̃ from materially biasing δ̂, since it forces M̃ in

equation (2) to act mainly as a risk adjustment rather than a time discount. This benefit

is similar to the way using excess returns in the expected return framework allows re-

searchers to focus on risk adjustment rather than time discount (p.9 of Cochrane (2009)).

Second, equation (2) avoids using overlapping observations and minimizes serial correla-

tions, since each δ̃t combines the contemporaneous time-t returns on portfolios formed in

prior periods (t − 1, t − 2, t − 3, ...). Third, our estimator implies a natural measure of

long-horizon return that can be decomposed into “risk” and “abnormal price” (δ) com-

ponents, facilitating the parallel between the expected return and price frameworks. In

contrast, the aforementioned dividend-based approach of van Binsbergen et al. (2023) and

others leads to a bias, has statistical inference that is challenging due to its reliance on

monthly discounted sums of future dividends that generate overlapping 15-year windows,

and does not imply a natural measure of long-horizon risk and return.

What is the statistical power of our price-level test? To reject the null of zero abnormal

price, δ must be roughly 10 times larger in absolute value than the annualized α (abnormal

return) required for significance in a traditional return test, consistent with a time-series

delta observation δ̃t (equation (2)) being a discounted cross-sectional sum of 15 years of

post-formation returns. For example, if return volatility were such that an annualized α

of 2 to 4 percent achieves significance, we need a δ of roughly 20 to 40 percent to find

3This correspondence holds after a sign flip and an interest rate adjustment 1/M̃t.
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significance.4

Applying equation (2), we study cross-sectional variation in stock prices with respect

to the CAPM, providing a foundation for multifactor refinements in subsequent research.

Following Korteweg and Nagel (2016), we specify a loglinear candidate SDF and choose

the SDF parameters to make the market portfolio’s in-sample abnormal price (δ) and

abnormal return (α) zero, just as the time-series return regression restricts a model’s

factor portfolios to have zero in-sample α’s. Our method does not assume the portfolio’s

factor betas to be constant and instead allows these betas—computed implicitly as part

of estimation—to vary over different post-formation months. Based on Monte Carlo

analysis, we recommend GMM standard errors with a Newey-West bandwidth of 24

months.

Our initial analysis focuses on two signals recently studied in the price-level con-

text: book-to-market (B/M) and quality which, according to Golubov and Konstantinidi

(2019) and Asness et al. (2019) respectively, predict α precisely because they proxy for

δ. In isolation, however, we find that neither is a statistically significant signal of CAPM

δ (see Cohen et al. (2009) for similar evidence on B/M). A quintile sort on quality gen-

erates an estimated δ variation of just 11.4 percentage points, whereas B/M generates a

larger but statistically insignificant spread of 27.2 percentage points.

Next, we combine information about price, profitability, and CAPM risk to develop

a simple novel characteristic signaling abnormal price.5 This signal—dubbed adjusted

value—generates variation in δ that is economically large at 51.9 percentage points and

statistically significant. Hence, adjusted value generates the sort of price variation that

should attract long-term buy-and-hold CAPM investors and challenge researchers devel-

4Interestingly, this finding provides conceptual and statistical grounds supporting Black (1986)’s

conjecture that markets are efficient if prices are within a factor of two of intrinsic value.

5Our new signal draws from the ideas developed in Frankel and Lee (1998), Piotroski (2000),

Vuolteenaho (2002), Piotroski and So (2012), Novy-Marx (2013), Asness et al. (2019), and several others.

The primary advantage of our proposed measure is its simplicity.
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oping asset pricing models of price levels.

Turning to portfolios sorted on seven other characteristics (net issuance, investment,

accruals, beta, size, momentum, and profitability), we document four main findings.

First, net issuance is a robust signal of abnormal price relative to the CAPM, consistent

with firm managers timing the stock market based on the perceived mispricing of their

stocks relative to the CAPM. Second, investment and beta also generate price-level varia-

tion not explained by the CAPM. Third, on average, momentum bets on overpriced stocks

despite their short-term CAPM alpha being positive. Finally, adjusted value subsumes

the ability of net issuance and investment to generate significant δ variation, indicating

that adjusted value is a parsimonious signal of CAPM abnormal price.

Relation to the literature. This paper applies a novel identity linking abnormal

price to subsequent returns to develop an estimator of abnormal price resembling the

time-series regression for abnormal returns. Our novel identity mapping model-specific

abnormal price to subsequent returns allows one to estimate a portfolio’s unconditional

abnormal price without a structural assumption on the evolution of abnormal returns,

clearly departing from the existing identities in Cohen et al. (2009) or van Binsbergen

and Opp (2019). Our identity achieves this benefit within a general SDF framework

by putting market price in the denominator of our definition of mispricing, δt = 1 −

Vt/Pt, which allows subsequent returns—which are inversely related to initial price—to

appear in the numerator of the identity in an additively separable manner. Furthermore,

unlike the cumulative abnormal return (CAR) or buy-and-hold abnormal return (BHAR)

constructs, our delta measure has an exact interpretation as the price deviation from the

present value of cash flows, or, equivalently, abnormal price from the perspective of buy-

and-hold investors.

On the empirical front, Cohen et al. (2009) study the cross-section of price levels,

focusing on B/M -, size-, and beta-sorted portfolios, and apply the calendar-time refor-
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mulation to price-level analysis to avoid the overlapping observations issue. Cho (2020)

documents that institutional trading of return anomalies can generate abnormal price,

as trading by those intermediaries turns alphas into higher betas with intermediary asset

pricing factors. Belo et al. (2013) use the relation between Tobin’s q and investment un-

der constant returns to scale to study the cross-section of price levels. Belo et al. (2022)

introduce labor and heterogeneous capital inputs to Belo et al. (2013)’s framework in

order to structurally decompose the sources of firm value.

Chernov et al. (2022) discipline popular linear factor models by requiring them to

price their own factors at multiple horizons. Keloharju et al. (2021) document that

discount rates on stocks tend to converge over time. van Binsbergen et al. (2023) estimate

mispricing for 57 anomalies to classify them as either convergence or divergence bets and

then correlate those estimates with investment as done in Polk and Sapienza (2009). They

estimate δ based on post-formation dividends and a terminal value, which, as mentioned

above, suffers from a potentially large bias from misspecifying the yield curve component

of the candidate SDF and is exposed to serious autocorrelation issues. Chen and Kaniel

(2021) develop a new methodology to study long-horizon expected returns.

Organization of the paper. After explaining the drawbacks of existing approaches

(Section I), we develop a novel identity (Section II) and a new estimator of abnormal

price (Section III). We then present data and our empirical results on B/M , quality, and

adjusted value (Section IV), extend our analysis to other characteristic sorts (Section V),

and conclude (Section VI).

I. Section

This section discusses the drawbacks of existing techniques that our novel estimator

addresses. We begin by specifying the asset pricing environment.
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A. Asset pricing environment

Consider a portfolio formed at time t with post-formation dividends {Dt+j}∞j=1 and

a candidate stochastic discount factor (SDF)
{
M̃t+j

}∞

j=1
that may or may not be the

true SDF. We want to compare the portfolio’s market price Pt to the present value of

post-formation dividends discounted using M̃ , which we denote by Vt:

Vt =
∞∑

j=1

Et

[
M̃t,t+jDt+j

]
, (3)

where M̃t,t+j = Πj
s=1M̃t+s−1,t+s is the cumulative candidate SDF. There is a base asset

whose return, denoted Rb, satisfies the fundamental asset pricing equation with respect

to M̃ in all periods:

Et+j−1

[
M̃t+j (1 +Rb,t+j)

]
= 1 ∀j. (4)

In our particular CAPM implementation, a natural choice for the base asset b is the

market portfolio itself.6 Hence, we compute excess returns with respect to returns on the

market portfolio rather than the Treasury bill.

We define (conditional) abnormal price, denoted δt, as the percentage deviation of

price from present value:

δt =
Pt − Vt

Pt

. (5)

Hence, δt > 0 if the portfolio is overpriced, and δt < 0 if it is underpriced. The range

of values δt can take is (−∞, 1], the opposite of the range of abnormal returns, [−1,∞).

Define log abnormal price as

δlogt = log(Pt)− log(Vt). (6)

6For a multifactor implementation of our estimator, future research may need to think carefully

about the most appropriate base asset, given that Chernov et al. (2022) show that popular unconditional

multifactor models cannot simultaneously price the short- and long-horizon returns on their own factors.
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We use δ ≡ E[δt] and δlog ≡ E[δlogt ] to denote the unconditional mean of abnormal price

and log abnormal price, respectively.

B. Cohen, Polk, and Vuolteenaho (2009) (CPV)

Using the decomposition of Campbell and Shiller (1988),

δlogt ≈ −
∞∑

j=1

ρj−1Et[rt+j]− Et[rV,t+j], (7)

where rt ≡ log(Pt+Dt)− log(Pt−1) and rV,t ≡ log(Vt+Dt)− log(Vt−1) denote log returns

on price and value, respectively, and ρ < 1 is a parameter. Equation (7) and joint

lognormality implies that long-horizon returns are related to mean log abnormal price as

follows:

E

[ ∞∑

j=1

ρj−1Rt+j

]
≈ E

[ ∞∑

j=1

ρj−1Rb,t+j

]
+ E

[ ∞∑

j=1

ρj−1Covt+j−1(r
e
V,t+j,−M̃t+j)

]

+
1

2
E

[ ∞∑

j=1

ρj−1{V art+j−1(rt+j)− V art+j−1(rV,t+j)}
]
− δlog. (8)

We provide a detailed derivation of this equation in the Internet Appendix. Note that

CPV estimate δlog using a closely related equation (their Equation 9) in the cross-section

of portfolios:

E

[
J∑

j=1

ρj−1Rk,t+j

]
= λ0 + λ1 β

CF
k + uk, (9)

where k indexes a portfolio, βCF
k is measured by regressing the portfolio’s long-horizon

cash flows on that of the market, with the horizon capped at J .7

7CPV highlight that tests of the CAPMmay be distorted when there is market-wide mispricing. Their

use of a ROE CAPM, as motivated by the Vuolteenaho (2002) decomposition, nicely avoids this concern.

Of course, we can similarly use a ROE-based SDF in our return-based identity approach. However,

mispricing in firm-level returns does not hinder us when using the distorted covariance between returns

and the candidate SDF to estimate δ based on our identity. The Internet Appendix provides more details
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In addition to the potentially large measurement errors when estimating βCF
k , justi-

fying equation (9) under the null where rv = r requires strong intertemporal restrictions

that guarantee

E

[ ∞∑

j=1

ρj−1Covt+j−1(r
e
t+j, r

mkt
t+j )

]
= Cov

( ∞∑

j=1

ρj−1ret+j,
∞∑

j=1

ρj−1rmkt
t+j

)
, (10)

in which case λ1 = b1V ar
(
ρj−1rmkt

t+j

)
if the candidate SDF is given by m̃t = b0 − b1r

mkt
t

for the log market return rmkt. The simplest way to guarantee equation (10) is to assume

that returns are independently and identically distributed (i.i.d.). However, assuming

that returns are i.i.d. is not only inconsistent with the properties of return data but

also obviates the need to study differences between abnormal price and short-horizon

abnormal returns in the first place. Indeed, estimating both sides of equation (10) in our

sample reveals a large discrepancy arising from (i) a portfolio’s conditional market beta

covarying with market volatility (which affects the left-hand side) and (ii) the long-run

reversal effect generating negative cross-autocovariances between portfolio excess returns

and market returns.

C. A direct discount of post-formation cash flows

A potential estimator of δ is to directly discount post-formation dividends and a

terminal cash flow:

δ = E

[
Pt − Vt

Pt

]
≈ 1− E

[
J∑

j=1

M̃t,t+j
Dt+j

Pt

]
− E

[
M̃t,t+j

Pt+J

Pt

]
. (11)

Suppose one takes equation (11) to the data using the method of moments estimator δ̂CF
t :

δ̂CF =
1

T

T∑

t=1

δ̃t
CF

with δ̃t
CF

= 1−
J∑

j=1

M̃t,t+j

D(t),t+j

P(t),t

− M̃t,t+j

P(t),t+J

P(t),t

, (12)

and a simple example that illustrates this point.
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where the notation X(t),t+j indicates a time t+j realization of X from buying and holding

a portfolio formed at time t. The resulting dividend-based estimator of δ in equation (12)

is potentially biased and also subject to a serious overlapping observations problem.

To see the bias point, restate the dividend-based estimator in equation (12) using

post-formation returns (see Section IA.C.6 in the Internet Appendix for the equivalence):

δ̂CF =
1

T

T∑

t=1

δ̃t
CF

with δ̃t
CF

= −M̃t,t+j−1

P(t),t+j−1

P(t),t

(M̃t+j(1 +R(t),t+j)− 1). (13)

Here, getting M̃t+j(1+R(t),t+j)− 1 close to zero on average requires getting both the risk

premium and the interest rate parts of M̃ right, and measurement error in the interest rate

part of M̃ could bias M̃t+j(1+R(t),t+j)−1 in the same direction for all periods, leading to

a large bias in δ̂CF . Importantly, simply introducing a T-bill rate into M̃ is not a remedy

for this issue. Indeed, van Binsbergen et al. (2023) grant that applying their dividend-

based estimator to a simple strategy of rolling over T-bills for 15 years results in a δ̂CF

of around 0.50 (i.e., 50%), despite the strategy requiring relatively little risk adjustment,

highlighting the challenge of dealing with time discounts in price-level analyses.8 (They

propose correcting for such a bias through bootstrap that requires a structural model

of how returns are distributed.) Applying our excess-return-based estimator in equation

(2) to the same 15-year roll-over T-bill strategy results in a δ̂ of just 0.001 (i.e., 0.1%)

without having to apply a separate bias adjustment. We return to this point about the

bias in Section III after we formally introduce our excess-return-based estimator.

Second, to understand the overlapping samples issue, note that the covariance between

8In our sample, the event-time gross-return approach estimates the δ̂ET,gross of the T-bill roll-over

strategy to be 0.497 (49.7%), similar to the number in van Binsbergen et al. However, for other portfolios,

we find that the event-time gross-return approach typically finds estimated mispricing that is similar to

our calendar-time excess-return approach.
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δ̃t
CF

observations s months apart is

Cov(δ̃CF
t , δ̃CF

t+s) =
J∑

j=s+1

Cov(
M̃t,t+j

P(t),t

D(t),t+j,
M̃t+s,t+j

P(t+s),t+s

D(t+s),t+j) + other terms. (14)

Since both δ̃CF
t and δ̃CF

t+s depend on dividend realizations in periods t + s + 1 through

t+J , the cross-sectional covariance in dividend yields results in severe time-series covari-

ances. For example, for the growth portfolio (lowest B/M portfolio in a quintile sort),

the time-series of δ observations based on the cash-flow approach (δ̃t
CF

) have 1-, 5-,

and 15-year sample autocorrelations of 0.78, 0.34, and −0.86 whereas the corresponding

autocorrelations based on our approach are 0.15, −0.05, and 0.01 (Table IA.IV in the

Internet Appendix). Furthermore, unlike returns, dividends on a stock are extremely se-

rially correlated over time such that the event-time-to-calendar-time rearrangement does

not sufficiently lower the serial correlation in the δ̃t
CF

observations. This high serial

correlation of a dividend-based approach makes standard errors imprecise and inference

unreliable.9 We also discuss this issue further in Section III.

D. Simple long-horizon returns

If short-horizon α cannot proxy for price-level δ, could we use simple long-horizon

abnormal return measures such as the cumulative abnormal return (CAR) or buy-and-

hold abnormal return (BHAR) instead? The issue with these measures is that they put

equal weight on all future abnormal returns and do not differentiate among abnormal

returns earned in different time periods or states of nature. As explained in the next

section, our δ estimator appropriately discounts the abnormal returns earned in different

periods and states, which can lead to a very different magnitude of estimated δ.

One may argue that the CAR or the BHAR could generate the direction of price

distortion and associated statistical significance that tend to be correct under the null

9Panel D of Figure 2 makes this point using Monte Carlo analysis.
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hypothesis. However, measuring the exact magnitude of price-level δ under the alterna-

tive hypothesis is important for firm managers and investors who wish to use our novel

estimation approach and the magnitude of the resulting δ estimate to inform their invest-

ment/issuance decisions. For example, firm managers may wish to quantify the extent to

which a particular characteristic is historically a signal of δ from the CAPM perspective.

Similarly, long-term buy-and-hold investors would like to understand the magnitude of

the δ associated with the stocks they bought. Indeed, equity analyst reports provide a

price target and the magnitude of estimated δ on a stock. When those investors under-

take that analysis, they would not want to rely on methods like CAR or BHAR, which

do not have an interpretable magnitude under the alternative of non-zero δ and, as we

emphasize and document in our analysis in Table A5 in the Internet Appendix, can have

magnitudes that depart substantially from δ estimated using our approach.

II. The Mispricing Identity

Under the asset pricing environment specified in the previous section, we derive a

novel identity that yields our new estimator of abnormal price in Section III.

A. The law of motion for abnormal price

The first step is to derive a simple law of motion for conditional abnormal price,

δt. Equation (3) and the law of iterated expectations imply that the fundamental asset

pricing equation holds for Vt with respect to M̃ :

1 = Et

[
M̃t+1

Vt+1 +Dt+1

Vt

]
. (15)
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Next, using equation (5) to substitute the empirically unobserved quantities Vt and Vt+1

with Vt = (1− δt)Pt and Vt+1 = (1− δt+1)Pt+1,

δt = 1− Et

[
M̃t+1 (1 +Rt+1)

]
+ Et

[
M̃t+1

Pt+1

Pt
δt+1

]

= −Et

[
M̃t+1R

e
t+1

]
+ Et

[
M̃t+1

Pt+1

Pt
δt+1

]
, (16)

where the last equality uses equation (4) to express mispricing δt at time t in terms of

excess return Re
t+1 = Rt+1 −Rb,t+1 at time t+ 1 and mispricing δt+1 at time t+ 1.

Equation (16) is intuitive. It says that overpricing (underpricing) at time t is either

“paid out” as a negative (positive) abnormal return, Et

[
M̃t+1R

e
t+1

]
, or contributes to

overpricing (underpricing) at time t + 1. The correct discount factor on δt+1 is the SDF

times the capital gain because δt+1 has been normalized by Pt+1. δt+1 matters more at

time t if it arises in a state in which Pt+1 is high (hence the capital gain term) or has a

higher present value (hence the SDF term).

B. The identity: linking abnormal price to subsequent returns

Our identity is derived under the relatively mild assumption of no explosive bubbles

in prices.

ASSUMPTION 1 (No explosive bubble): Price is not explosive with respect to the

candidate M̃ : limj→∞Et

[
M̃t,t+jPt+j

]
= 0.

To understand this assumption, note that by definition, an analogous condition on value

V also holds: limj→∞ Et

[
M̃t,t+jVt+j

]
= 0. Hence, Assumption 1 implies that the present

value of the deviation in price from value at the limit j → ∞ is zero:

lim
j→∞

Et

[
M̃t,t+j (Pt+j − Vt+j)

]
= 0. (17)

This condition is not restrictive, as it allows for most types of price deviations from value,
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including a permanent gap (e.g., δt+j = δ ̸= 0 ∀j), which our identity correctly detects.10

Iterating equation (16) forward and imposing Assumption 1 to set

limj→∞ Et

[
M̃t,t+j

Pt+j

Pt
δt+j

]
= 0 expresses abnormal price as a discounted sum of

subsequent excess returns.

LEMMA 1 (Mispricing identity): Under Assumption 1, a portfolio’s abnormal price

δt is the negative of the sum of expected subsequent excess returns discounted by the price-

weighted SDF:

δt ≡
Pt − Vt

Pt

= −
∞∑

j=1

Et

[
M̃t,t+j

Pt+j−1

Pt
Re

t+j

]
, (18)

where
Pt+j−1

Pt
and Re

t+j are, respectively, the portfolio’s cumulative capital gains from time

t to t + j − 1 and excess returns at time t + j. Hence, mean (unconditional) abnormal

price, denoted δ, equals

δ ≡ E

[
Pt − Vt

Pt

]
= −

∞∑

j=1

E
[
M̃t,t+j

Pt+j−1

Pt
Re

t+j

]
. (19)

Equation (18) can also be stated with conditional abnormal re-

turns. By the law of iterated expectations, Et

[
M̃t,t+j

Pt+j−1

Pt
Re

t+j

]
=

Et

[
M̃t,t+j−1

Pt+j−1

Pt
Et+j−1

[
M̃t+j

]
Et+j−1

[
M̃t+j

Et+j−1[M̃t+j]
Re

t+j

]]
= Et

[
M̃t,t+j

Pt+j−1

Pt
αt+j

]
,

where αt+j denotes the conditional abnormal return.

COROLLARY 1 (Identity in abnormal returns): Today’s abnormal price δt is the

expectation of a simple discounted sum of subsequent conditional abnormal returns:

δt = −
∞∑

j=1

Et

[
M̃t,t+j

Pt+j−1

Pt
αt+j

]
, (20)

where αt+j is the time t+ j abnormal return conditional on information at time t+ j−1.

Equation (20) is intuitive. The economic surplus, relative to a candidate SDF M̃ ,

10Section IA.C.1 in the Internet Appendix gives an example illustrating this point.
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from a buy-and-hold strategy on a portfolio is the net present value of all subsequent

abnormal payoffs: Vt − Pt = Et

[∑∞
j=1 M̃t,t+jX

Abnormal
t+j

]
. The abnormal payoff at t+ j is

XAbnormal
t+j = Pt+j−1αt+j, the conditional abnormal return from t+j−1 to t+j, converted

into monetary payoff through a multiplication by price at time t+ j − 1. Finally, divide

both sides by Pt and change sign to arrive at equation (20).

We note in passing that equation (20) is fundamentally different from an identity van

Binsbergen and Opp (2019) exploit in their quantitative analysis:

Pt =
∞∑

j=1

Et

[
M̃t,t+j

Πj
k=1

(
1 + α∗

t+k

)Dt+j

]
, (21)

where 1 + α∗
t+k = Et+k−1

[
M̃t+k (1 +Rt+k)

]
.11 Since equation (21) writes price in the

numerator of the left-hand side, abnormal returns appear in the denominator of the

identity. This choice is innocuous for the structural approach taken in their paper but

does not render a simple expression for unconditional abnormal price as in equation (19).

C. Theoretical implications of the abnormal price identity

Equation (20) clarifies the exact relation between price-level δ and subsequent buy-

and-hold short-horizon αs missing in the literature, summarized as Corollary 2.

COROLLARY 2 (Implications of the identity): Ceteris paribus, ex-ante abnormal

price δ is larger if subsequent abnormal returns

1. are larger

2. are more persistent

3. occur sooner

4. occur in more valuable states

5. occur after relatively large capital gains

11This is a discrete-time version of their continuous-time expression. See the Internet Appendix

Section IA.C.3 for further details.
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While the first two points are relatively obvious (i.e., they are present in the Campbell-

Shiller based approach of CPV, at least to some degree), the last three points emphasize

that to recover ex-ante abnormal price, one must correctly discount the subsequent ab-

normal returns according to the time and state in which they occur. Put differently,

the correct way to aggregate subsequent abnormal returns to arrive at ex-ante abnormal

price is clearly distinct from existing long-run return measures such as CAR or BHAR,

which do not distinguish between abnormal returns earned in the near vs. distant future

or those earned in more valuable vs. less valuable cumulative states.

Mathematically, the time discount (#3) arises because the no-explosive-bubble con-

dition implies limj→∞Et

[
M̃t,t+j

Pt+j−1

Pt

]
= 0.12 Intuitively, an abnormal return that arises

in the distant future matters less for the stock’s current price level, since such an ab-

normal return only affects the discounting of the dividends to be earned in the periods

that follow the abnormal return, not the dividends to be earned prior to the timing of

the abnormal return. In contrast, an abnormal return in the immediate future affects

the discounting of all future dividends and therefore matters more for today’s stock price

level. The state discount (#4 and #5) arises because the conditional abnormal return,

αt+j, is earned on Pt+j−1, which has a large present value if either the cumulative capital

gain has been large or the cumulative candidate SDF is high.13 While we speculate that

our abnormal price identity can be applied in other ways, the present paper applies the

identity to derive a return-based estimator of abnormal price discussed next.

12CPV effectively incorporate a time discount through the Campbell-Shiller discount parameter al-

though their approach does not account for differences in cash-flow duration across different stocks.

13Since the time t + j component of the cumulative candidate SDF, M̃t+j , is orthogonal to αt+j by

definition, it only generates a time discount. The covariance between αt+j and the past cumulative state,

M̃t,t+j−1, could be nonzero.
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III. A Return-Based Estimator of Abnormal Price

This section derives a return-based estimator of a portfolio’s mean formation-period

abnormal price, δ ≡ E[δt] = E [(Pt − Vt) /Pt], and studies its statistical properties using

Monte Carlo.

A. The identity in calendar time

To get to our abnormal price estimator, we first rearrange the terms of the iden-

tity in Equation (19) to obtain an equivalent calendar-time expression for unconditional

abnormal price δ.14

LEMMA 2 (Calendar-time δ expression): Consider a series of portfolios formed every

period based on a predetermined rule (e.g., characteristic cutoffs). Then, the portfolio’s

unconditional formation-period abnormal price, δ ≡ E
[
Pt−Vt

Pt

]
, equals the unconditional

expectation of the sum of appropriately discounted time-t excess returns on all portfolios

formed between periods t−∞ and t− 1:

δ = −E

[ ∞∑

j=0

M̃t−j,t

P(t−j),t−1

P(t−j),t−j

Re
(t−j),t

]
, (22)

where
P(t−j),t

P(t−j),t−j
and Re

(t−j),t denote, respectively, the time-t realizations of the cumulative

capital gain and one-period excess return on the portfolio formed at t− j. The stochastic

discount M̃t−j,t
P(t−j),t−1

P(t−j),t−j
tends to place a greater weight on portfolios formed in the recent

past.

14Fama (1998) emphasizes the usefulness of calendar-time techniques in his discussion of the literature

on post-event, long-horizon abnormal returns. Cohen et al. (2009) modify a calendar-time approach

to have portfolio weights decline as a function of time-from-event so that the return on the resulting

portfolio approximates a buy-and-hold investor’s experience in price-level units. We thank Rob Rogers

for suggesting a similar approach for our estimation of delta using our exact identity.
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Proof. Applying equation (19) to a multi-asset portfolio implies that a portfolio’s time-t0

ex-ante conditional abnormal price is δt0 = −∑∞
j=0 Et0 [M̃t0,t0+j

P(t0),t0+j−1

P(t0),t0

Re
(t0),t0+j], where

(t0) in a subscript indicates that the quantity is from a buy-and-hold strategy on a

portfolio formed at t0. Take an unconditional expectation of both sides of the expression

and use calendar time t ≡ t0+ j (the time when the excess returns are realized) to obtain

the expression in equation (22).

Figure 1 visualizes the difference between an event-time and a calendar-time approach.

The original identity in equation (19) shows that unconditional δ is the expectation of

the event-time δt that appropriately discounts the post-formation buy-and-hold monthly

excess returns on a growth portfolio formed today, as illustrated in Panel A. In contrast,

the equivalent calendar-time identity in equation (22) shows that unconditional δ also

equals the expectation of the calendar-time δt that appropriately discounts today’s real-

izations of monthly excess buy-and-hold returns on growth portfolios formed in the past,

as illustrated in Panel B.

B. A new estimator of abnormal price

In practice, truncating the infinite-horizon sum in equation (22) at some large J

provides a good approximation, since E
[
M̃t−j,t

P(t−j),t−1

P(t−j),t−j
Re

(t−j),t

]
converges to zero as j

gets large. This convergence is because both the discount part (M̃t−j,t
P(t−j),t−1

P(t−j),t−j
) and the

conditional abnormal return part (Et−1

[
M̃tR

e
(t−j),t

]
) of the expression converge to zero

as j → ∞ due to the no-explosive-bubble condition and the long-term convergence in

(abnormal) returns of stocks (Keloharju et al. (2021)), respectively. We find that J = 15

years works well both empirically and in simulations (see Figure IA.4 in the Internet

Appendix).

Our estimator of unconditional δ is therefore the sample analogue of the true un-

conditional δ in equation (22) with the truncation of the infinite sum at a large finite

J .
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A. Event Time

δ = E
[
δET
t

]
, δET

t = −∑∞
j=1 M̃t,t+j
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Pt
Re

t+j

A. Estimating δ in Event Time

δ = E
[
δET
t

]
, δET

t = −∑∞
j=1 M̃t,t+j

Pt+j−1

Pt
Re

t+j
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...
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t
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B. Estimating δ in Calendar Time
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×M̃t−2,t

P(t−2),t−1
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Figure 2. Event Time vs. Calendar Time Approach to δ Estimation
Panel A visualizes the event-time approach to estimating δ. The equation there
shows that unconditional δ is the expectation of the event-time δ that appro-
priately discounts the post-formation buy-and-hold monthly excess returns on a
growth portfolio formed today. Hence, the event-time approach takes a sum of
all discounted post-formation excess returns diagonally in the southeast direction.
Panel B visualizes the equivalent calendar-time approach. The equation there
shows that unconditional δ also equals the expectation of the calendar-time δ that
appropriately discounts today’s realizations of monthly excess buy-and-hold re-
turns on growth portfolios formed in the past. Hence, the calendar-time approach
takes a sum of all discounted excess returns in the concurrent period (on portfolios
formed in the past) horizontally.
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Figure 2. Event Time vs. Calendar Time Approach to δ Estimation
Panel A visualizes the event-time approach to estimating δ. The equation there
shows that unconditional δ is the expectation of the event-time δ that appro-
priately discounts the post-formation buy-and-hold monthly excess returns on a
growth portfolio formed today. Hence, the event-time approach takes a sum of
all discounted post-formation excess returns diagonally in the southeast direction.
Panel B visualizes the equivalent calendar-time approach. The equation there
shows that unconditional δ also equals the expectation of the calendar-time δ that
appropriately discounts today’s realizations of monthly excess buy-and-hold re-
turns on growth portfolios formed in the past. Hence, the calendar-time approach
takes a sum of all discounted excess returns in the concurrent period (on portfolios
formed in the past) horizontally.
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Figure 1. Event time vs. calendar time approach to δ estimation. Panel
A visualizes the event-time approach to estimating δ. The equation there shows that
unconditional δ is the expectation of the event-time δ that appropriately discounts the
post-formation buy-and-hold monthly excess returns on a growth portfolio formed to-
day. Hence, the event-time approach takes a sum of all discounted post-formation excess
returns diagonally in the southeast direction. Panel B visualizes the equivalent calendar-
time approach. The equation there shows that unconditional δ also equals the expectation
of the calendar-time δ that appropriately discounts today’s realizations of monthly excess
buy-and-hold returns on growth portfolios formed in the past. Hence, the calendar-time
approach takes a sum of all discounted excess returns in the concurrent period (on port-
folios formed in the past) horizontally.
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COROLLARY 3 (A return-based estimator of abnormal price): The unconditional

abnormal price δ of a portfolio formed on a predetermined rule (e.g., “value portfolio”)

can be estimated by

δ̂ =
1

T

T∑

t=1

δ̃t with δ̃t = −
J∑

j=1

M̃t−j,t
P(t−j),t−1

P(t−j),t−j
Re

(t−j),t, (2)

for J = 15 years, where the time-t observation of δ is the sum of appropriately discounted

time-t excess returns on all portfolios formed on the characteristic over the last J periods.

The expression coincides with the true δ in equation (22) as J, T → ∞.

An important advantage of our estimator in equation (2) is that using excess returns

rather than gross returns for estimation makes our mispricing estimates less subject to a

potential bias. This can be best explained by drawing an analogy with the expected return

framework. Researchers typically estimate time-series abnormal returns using the excess-

return formulation, E
[

M̃t

E[M̃t]
Re

t

]
, not the gross-return formulation, E

[
M̃t(1 +Rt)− 1

]
,

since the former only requires the SDF to explain the risk premium component of excess

returns, whereas the latter requires the SDF to explain both the risk premium and the

interest rate components of gross returns.15 Since our excess-return estimator of abnormal

price uses δ̃t = −∑J
j=1

(
Mt−j,t−1

P(t−j),t−1

P(t−j),t−j

)
M̃tR

e
(t−j),t, getting δ̂ close to zero mostly hinges

on getting M̃tR
e
(t−j),t close to zero on average through the risk premium component of M̃ ,

whereas the interest rate component of M̃ only affects how M̃tR
e
(t−j),t is time-discounted

back to the portfolio formation period through M̃t−j,t−1
P(t−j),t−1

P(t−j),t−j
. Thus, our excess return

formulation ensures that measurement error in the interest rate component of M̃ does

not materially affect our δ̂.

15Cochrane (2009): “In fact, much asset pricing focuses on excess returns. Our economic understand-

ing of interest rate variation turns out to have little to do with our understanding of risk premia, so it

is convenient to separate the two phenomena by looking at interest rates and excess returns separately”

(p.9).
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Table I. CAPM abnormal price (δ) of a T-bill rollover strategy by estimation
approach. The table reports the estimated CAPM δ, computed based on four different
methods, of a strategy that rolls over the 1-month Treasury bill return for 15 years. The
calendar-time excess return method proposed in the present study (top left) ensures that
the T-bill rollover strategy has a near-zero estimated CAPM δ. The event-time excess
return method (top right) also leads to a small CAPM δ of the T-bill strategy but is
subject to large serial correlations. The gross-return method based on excess returns
(bottom left) or the direct discount of cash flows (bottom right, equivalent to the event-
time gross return method) leads to large estimated CAPM δs of the T-bill rollover strategy
of around 50%. For each method, the candidate SDF’s two parameters are estimated by
imposing the restriction that the estimated delta of the market portfolio is zero as well as
the complementary restriction that either the market’s gross one-month return (first two
approaches) or its excess one-month return (last two approaches) is perfectly explained.

Calendar Time Event Time

Excess Return δ̂ = 0.001 (This Paper) δ̂excess,ET = 0.028

Gross Return δ̂gross,CT = 0.457 δ̂CF = 0.497 (Discounted CF)

Indeed, the strategy that rolls over the one-month T-bill return for 15 years has

drastically different CAPM delta estimates depending on whether or not the excess return

method is employed. Table I shows that using the proposed calendar-time excess-return

method (top left corner),

δ̂ = 1
T

∑T
t=1 δ̃t with δ̃t = −∑J

j=1 M̃t−j,t
P(t−j),t−1

P(t−j),t−j
Re

(t−j),t,

leads to an estimated delta of 0.1%, consistent with how restrictions used to estimate

the candidate SDF parameters include an implicit assumption on the T-bill return being

correct. The delta remains relatively small at 2.8% even if we use the event-time excess-

return method that does not take advantage of the calendar-time formulation (top right
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corner),16

δ̂excess,ET =
1

T

T∑

t=1

δ̃excess,ET
t with δ̃excess,ET

t = −
J∑

j=1

M̃t,t+j
P(t),t+j−1

P(t),t
Re

(t),t+j

In contrast, the calendar-time gross-return method,

δ̂gross,CT = 1
T

∑T
t=1 δ̃

gross,CT
t with δ̃gross,CT

t = −∑J
j=1 M̃t−j,t−1

P(t−j),t−1

P(t−j),t−j
(M̃t(1 +R(t−j),t)− 1),

and the dividend-discount method (equivalent to the event-time gross-return method),

δ̂CF = 1
T

∑T
t=1 δ̃t

CF
with δ̃t

CF
= 1−∑J

j=1 M̃t,t+j
D(t),t+j

P(t),t
− M̃t,t+j

P(t),t+J

P(t),t
,

lead to large estimated deltas of 45.7% and 49.7%, respectively (bottom left and right

corners of Table I; the latter estimate is similar to the one found in van Binsbergen et al.

(2023)). The biases remain just as large even if we use candidate SDFs estimated using

the excess return method, implying that the problem arises with the delta estimator itself,

not in the restrictions used to estimate the candidate SDF coefficients.

Another advantage of working with this return-based calendar-time estimator of

δ is that its time-series observations, δ̃t, have very little serial correlation, simpli-

fying the inference problem. To see this, consider estimating a value portfolio’s δ.

Then, the time-t observation of the value portfolio’s calendar-time δ is the discounted

sum of time-t excess returns on all value portfolios formed over the last J periods:

δ̃t = −∑J
j=1 M̃t−j,t

P(t−j),t−1

P(t−j),t−j
Re

(t−j),t. Hence, even if value portfolios formed over the span

16The following restrictions are used to estimate the candidate SDF parameters. (1) Calendar-time

excess-return method: 1
T

∑T
t=1 M̃t(1 + Rmkt

t ) = 1 and δ̂ = 0 for the market portfolio. (2) Event-

time excess-return method: 1
T

∑T
t=1 M̃t(1 + Rmkt

t ) = 1 and δ̂excess,ET = 0. (3) Calendar-time gross-

return method: 1
T

∑T
t=1 M̃t(R

mkt
t − Rf,t) = 0 and δ̂gross,CT = 0. (4) Dividend discount method:

1
T

∑T
t=1 M̃t(R

mkt
t −Rf,t) = 0 and δ̂CF = 0.
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of past few years have cross-sectionally correlated buy-and-hold one-period returns at

time t, by putting all these time-t returns into a single observation δ̃t, the expression

ensures that this cross-sectional return correlation increases the variance of δ̃t instead

of generating serial correlation in δ̃t. On the other hand, since the stochastic discount

part of the formula, M̃t−j,t
P(t−j),t−1

P(t−j),t−j
, must always remain positive and multiplies an ex-

cess return Re
(t−j),t that fluctuates around zero, the overlapping nature of the stochastic

discount expression does not generate an empirically discernible serial correlation in δ̃t

(Figure IA.2 and Table IA.IV of the Internet Appendix).

C. Decomposing long-horizon return: risk vs. abnormal price

Similarly to how (short-horizon) expected return can be decomposed into an abnormal

return and a risk premium, a measure of long-horizon return can be written in terms of

abnormal price, long-horizon risk, and a cumulative state adjustment component. To see

this, apply the covariance identity, E[XY ] = E[X]E[Y ] + Cov(X, Y ), to equation (2).

COROLLARY 4 (Long-horizon return and long-horizon risk): Estimated abnor-

mal price δ̂ is a deviation of long-horizon return from long-horizon risk, adjusted by the

cumulative state in which the risk-return distortion arises:

J∑

j=1

ET

[
ϕ(t−j),t−1

]
ET

[
M̃t

]
ET

[
Re

(t−j),t

]

︸ ︷︷ ︸
“long-horizon return”

= − δ̂ (23)

+
J∑

j=1

ET

[
ϕ(t−j),t−1

]
CovT

(
Re

(t−j),t,−M̃t

)

︸ ︷︷ ︸
“long-horizon risk”

−
J∑

j=1

ET

[
ϕ(t−j),t−1

]
CovT

(
ϕ(t−j),t−1

ET

[
ϕ(t−j),t−1

] , M̃tR
e
(t−j),t

)

︸ ︷︷ ︸
“cumulative state adjustment”

where subscript T denotes a sample moment over T periods and ϕ(t−j),t−1 ≡
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M̃t−j,t−1
P(t−j),t−1

P(t−j),t−j
discounts post-formation returns in more distant future or less important

states more heavily.

Long-horizon return summarizes the term structure of discount rates on the port-

folio’s cash flows. It puts more (less) weight on returns in the more imminent

(distant) future, since in a dividend discount model, return in an imminent future

(e.g., Rt+1) discounts all future cash flows, whereas return in a more distant fu-

ture (e.g., Rt+j) discounts a smaller subset of cash flows that arise subsequently:

Pt = Et

[
Dt+1

1+Rt+1
+ Dt+2

(1+Rt+1)(1+Rt+2)
+ ...+

Dt+j

(1+Rt+1)(1+Rt+2)...(1+Rt+j)
+ ...

]
. By the same

logic, long-horizon risk applies different time discounts to the term structure of risk

premia. Cumulative state adjustment accounts for the way the cumulative state in which

returns deviate from risk premia—not just the time at which those deviations happen—

matters for abnormal price.

To obtain a measure of risk-neutral abnormal price, simply set M̃t in equation (23) to

be one.17

DEFINITION 1 (Risk-neutral abnormal price): Estimated risk-neutral abnormal

price, denoted δ̂RN , equals

δ̂RN = −
J∑

j=1

ET

[
M̃t−j,t−1

P(t−j),t−1

P(t−j),t−j

Re
(t−j),t

]
. (24)

For instance, when excess returns are taken with respect to the market portfolio, risk-

neutral abnormal price measures the extent to which the term structure of portfolio

returns differs from the term structure of market portfolio returns, where the weight on

each excess return depends on the time and the cumulative state in which it occurs.

17We thank an anonymous referee for this suggestion. One could alternatively set M̃t to be the inverse

of the average monthly risk-free rate, but the difference is very small at our monthly frequency.
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D. Implementation

To take our estimator in equation (2) to data, we use the CAPM to specify the

candidate SDF.18 While analyzing short-horizon returns requires choosing risk factors,

analyzing price levels requires choosing both risk factors and the functional form of the

candidate SDF. We follow Korteweg and Nagel (2016) and use a loglinear SDF specifi-

cation, a natural choice for price-level analysis given its ability to explain short-horizon

returns and prices simultaneously:

M̃t−j,t = exp
(
b0j − b1

∑j−1
s=0 r

mkt
t−s

)
, (25)

where rmkt
t = log

(
1 +Rmkt

t

)
is the log market return and (b0, b1) are constant parame-

ters, and M̃t ≡ M̃t−1,t = exp
(
b0 − b1r

mkt
t

)
. We choose b0 and b1 to explain the market

portfolio’s prices and returns perfectly in sample, which makes our approach analogous

to the conventional time-series approach to estimating abnormal returns. Specifically,

the following two moment conditions pin down b0 and b1:

0 = E
[
M̃t(1 +Rmkt

t )
]
− 1

0 =
J∑

j=1

E[M̃t−j,t

Pmkt
t−1

Pmkt
t−j

(
Rmkt

(t−j),t −Rf,t

)
], (26)

where Rmkt
(t−j),t is the time-t return on market portfolio formed at t − j. The Internet

Appendix shows that the estimated values of b0 and b1 vary depending on the choice

of the number of post-formation years J that we include in our estimate of δ, but not

18Our analysis in subsequent sections will provide a direction for future research on multifactor models

of prices. In addition, it would be natural to check whether the intertemporal CAPM specification of

Campbell et al. (2018), which incorporates stochastic volatility into the ICAPM framework of Campbell

and Vuolteenaho (2004), significantly reduces the pricing errors relative to the CAPM in standard SDF

return tests. We leave a multifactor analysis of price levels to future work.

26



dramatically so, with confidence intervals at each horizon covering the point estimates

of other horizons. These results are consistent with the CAPM evidence from Chernov

et al. (2022).

We compute excess returns on a characteristic-based portfolio with respect to returns

on the market portfolio, exploiting the CAPM implication that the market should be

correctly priced and the fact that the market has a zero in-sample δ with respect to

the model SDF. Benchmarking test assets against the market reduces the sensitivity of

the time-series of δ observations to market return shocks, reducing the volatility of the

resulting series and improving the precision of our estimates (as in Campbell et al. (2013),

Campbell et al. (2018), and Korteweg and Nagel (2022)). Simulation shows that taking

excess returns with respect to the market portfolio reduces the estimator’s volatility by

seven percent. An added benefit of this approach could be that the resulting estimates

of δ may be less affected by the near-money feature of the T-bill (Krishnamurthy and

Vissing-Jorgensen (2012), Nagel (2016)).19

We use the generalized method of moments (GMM) standard errors that account for

the time-series and cross-sectional covariances in the data as well as the uncertainty in

estimating the SDF parameters. Our Monte Carlo analysis in the next subsection shows

that the Bartlett kernel of Newey and West (1987) with a bandwidth of 24 months works

well, given the low level of autocorrelation observed in the time series of δ̃t.

19Note also that any convenience yield properties of the short-term US government debt could still

affect our results through its impact on candidate SDF parameter estimates, since the market portfolio’s

δ in equation (26) is estimated using its excess return with respect to the Treasury-bill rate. In practice,

computing excess returns with respect to the T-bill return makes only a small difference to the point

estimates.
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E. Monte Carlo analysis

To study the performance of our delta estimator, we simulate a numerical model that

resembles the one in Korteweg and Nagel (2016). The model generates realistic moments

that resemble those of the high adjusted value quintile portfolio and those of the market

portfolio.

We first analyze bias. Since the choice of candidate SDF parameters b0 and b1 affect

δ̂ in a highly nonlinear fashion, the uncertainty arising from having to estimate b0 and b1

using the base asset (market portfolio) can lead our estimated δ̂ to deviate from the true

δ. Panel A of Figure 2 shows that such a bias, if any, leads to a small attenuation in the

estimated δ̂ and a more conservative rule in rejecting an asset pricing model.

Next, turning to size and power, we find that our estimator under the null tends to

under-reject the null relative to the 5% significance level and that our price-level test

has statistical power similar to a conventional return test (Table IA.I in the Internet

Appendix). As equation (2) implies, abnormal price δ is a discounted sum of 15 years

of post-formation returns. This means that the magnitude of δ required for statistical

significance is roughly 10-to-12 times that for annualized α, consistent with δ being a

discounted sum of future αs over roughly 15 years. Panel B of Figure 2 visualizes this

rule of thumb.

Panel C and D highlight the main issue with doing inference on δ using cash flows,

which is that the resulting large serial correlation makes the number of independent

time-series observations in the cash-flow approach small and the range of standard errors

wide (Panel D). Our return-identity-based approach addresses this problem and tends to

estimate standard errors accurately.
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A. Bias: Estimated vs. True δ B. Critical Values (5%) of δ and α
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Figure 2. Bias, power, and standard errors of the return-identity-based δ
estimator. Panel A analyzes the bias of our estimator. The solid blue line relating the
mean estimated δ̂ to the true δ from a Monte Carlo simulation almost coincides with
the 45-degree line in dotted line apart from a small attenuation (less than 1% point)
in large values of δ. Panel B plots, for different levels of return volatility, the smallest
absolute value of δ (left vertical axis) and α (right vertical axis) needed to reject the null
at the 5% significance level when there is a true CAPM mispricing of δ = 36.6% and
α = 0.26%. This shows that the magnitude of δ required for statistical significance is
roughly 10-to-12 times that for annualized α, consistent with δ being a discounted sum of
future αs over roughly 15 years. Panel C reports results from a Monte Carlo simulation
analyzing whether a Newey-West standard error (“SE”) with a bandwidth of around 2
years accurately estimates the true standard deviation (“SD”) of δ̂. The Monte Carlo
simulation uses the parameter values reported in Table IA.II except that the simulation
for Panel B varies the volatilities of cash flow shocks and conditional δt shocks to generate
variation in return volatility.
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IV. Asset Pricing Tests on Prices

A. Data

We combine monthly stock price data from the Center for Research in Security Prices

(CRSP), annual accounting data from CRSP/Compustat Merged (CCM), and the pre-

Compustat book equity data from Davis et al. (2000) to create our basic dataset. We

compute the gross market portfolio return, the factor in our candidate SDF, as the sum

of the market excess return and the one-month Treasury bill rate from Kenneth French’s

data library.

Our tests estimate the δs of diversified portfolios to minimize the impact of idiosyn-

cratic returns. We typically form value-weight quintile portfolios by sorting stocks on

single characteristic and applying NYSE cutoffs. When double-sorting, we form nine

value-weight portfolios by sorting stocks independently on each characteristic and apply-

ing 30% and 70% NYSE cutoffs.

Estimating a portfolio’s δ requires data on post-formation returns and capital gains

over 180 months (15 years). Hence, for a portfolio formed at t, we track its monthly

buy-and-hold returns and capital gains over t+1, . . . , t+180.20 That is, as illustrated

in Figure 1, the post-formation returns on a portfolio formed in t are R(t),t+1, R(t),t+2, .

. . , R(t),t+3, following the diagonal arrow pointing southeast, where R(t),t+j denotes the

time-t+ j return on buying and holding a portfolio formed at time t.

In summary, we construct three-dimensional data for each sorting characteristic: buy-

and-hold monthly returns (and capital gains) over J post-formation months for T different

months in which the post-formation return data are available for the full J holding

periods, all together on N different portfolios. In contrast, a conventional short-horizon

20Post-formation returns at t+ j for the portfolio formed at t are from a buy-and-hold strategy that

does not reinvest dividends into the same or different stocks. Section IA.C.4 in the Internet Appendix

explains how to apply our identity correctly to a portfolio of stocks in an empirical analysis.
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Table II. Descriptive statistics on stock characteristics. The table describes the
ten characteristics we use to study CAPM-implied abnormal price. Column 2 reports the
sample period over which post-formation returns for j = 1 through 180 months are avail-
able. Columns 3–5 report the CAPM alphas of the lowest and highest portfolio quintiles
as well as the difference in the alphas between the two portfolios. Here, excess return is
taken with respect to market returns. We report t-statistics based on heteroskedasticity-
robust standard errors in parentheses. Column 6 reports Persistence, the value-weighted
probability that the characteristic decile of a stock in the portfolio does not change after
a year.

Sample Period αCAPM
Low αCAPM

High αCAPM
H−L Persistence

Book-to-Market Jun48-Dec22 -0.04 0.25 0.29 0.67
(-0.99) (2.87) (2.46)

Quality Jun48-Dec22 -0.28 0.17 0.46 0.56
(-3.84) (4.56) (4.57)

Adjusted Value Jun48-Dec22 -0.29 0.47 0.76 0.59
(-5.58) (6.39) (7.15)

Size Jun48-Dec22 0.03 0.01 -0.02 0.89
(0.23) (0.29) (-0.15)

Momentum Jun48-Dec22 -0.64 0.33 0.97 0.23
(-5.74) (4.39) (5.81)

Net Issuance Jun48-Dec22 0.24 -0.28 -0.51 0.49
(5.39) (-5.24) (-6.23)

Beta Jun48-Dec22 0.24 -0.38 -0.62 0.63
(3.58) (-4.67) (-4.94)

Investment Jun72-Dec22 0.25 -0.18 -0.43 0.35
(3.30) (-2.88) (-3.75)

Profitability Jun72-Dec22 -0.08 0.09 0.17 0.77
(-0.90) (1.31) (1.29)

Accruals Jun72-Dec22 0.04 -0.20 -0.24 0.37
(0.57) (-3.08) (-2.14)
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return test uses two dimensional data, since it tracks just J = 1 month post-formation

returns for T different months on N different portfolios.

Our baseline analysis uses post-formation returns over 1948m6–2022m12, where

1933m6 is the first month in which most of the characteristics other than accruals can be

computed and 1948m6 is the first month in which the full 15 years of calendar-time ob-

servations of post-formation returns and capital gains are available (the horizontal arrows

in Figure 1). Our modern subsample analysis uses 1972m6–2022m12. Table II provides

descriptive statistics for the portfolios formed from a univariate sort on each of the nine

characteristics we consider in the rest of the paper. The Internet Appendix provides

further details on data construction.

B. Initial analysis on book-to-market and quality

Our initial analysis studies the book-to-market equity ratio (B/M) and quality, which

the recent literature argues proxies for abnormal price. Golubov and Konstantinidi (2019)

decompose B/M into the market-to-value ratio (abnormal price) and the value-to-book

ratio using within-industry cross-sectional regressions of equity values on firm funda-

mentals, finding that the return predictability of B/M stems from the abnormal price

component. Asness et al. (2019) measure quality, a z-score measure based on sixteen

characteristics that rewards profitable, fast-growing, safe, and high-payout stocks and

find that quality predicts price-level distortions, measured by cumulative abnormal re-

turns over five years.

Looking first at returns, Rows 1 and 2 of Table II show that the CAPM does a

poor job explaining the cross-section of returns on quintile portfolios sorted on B/M or

quality. The long-short portfolio based on B/M generate an annualized CAPM alpha

of 3.5% and the long-short portfolio based on quality generates an annualized alpha of

5.5%. In conjunction with the fact that both B/M and quality are relatively persistent

characteristics, these two anomalies are natural candidates to generate significant price-
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Table III. Pricing B/M- or Quality-sorted portfolios: returns vs. prices. The
table shows that the book-to-market equity ratio (B/M) and quality (from Asness et al.
(2019)) are not statistically significant univariate signals of abnormal price relative to
the CAPM (the last row), although they are significant signals of CAPM alpha (the first
row). We form value-weight quintile portfolios based on NYSE breakpoints and track
post-formation returns for 15 years (180 months). In the first “return” row, δ measures
−1 times the average one-month abnormal return:

δ (1) = −E
[
M̃tR

e
t

]
.

Positive (negative) δ here means negative (positive) one-month abnormal return. The
reported δs in the last row are estimated values of abnormal price defined as

δ = E
[
Pt−Vt

Pt

]
≈ δ (180) = −E

[∑180
j=1M̃t−j,t

P(t−j),t−1

P(t−j),t−j
Re

(t−j),t

]
,

where Vt is the portfolio’s buy-and-hold value implied by the CAPM, (t− j) is the
portfolio formation month, t is the month in which returns are realized, and j is the
number of post-formation months. In the remaining rows, the reported δ estimates il-

lustrate how the estimated δ (J) = −E
[∑J

j=1M̃t−j,t
P(t−j),t−1

P(t−j),t−j
Re

(t−j),t

]
changes as J takes

values less than 180. The last two columns report δH−L ≡ δHigh − δLow and its risk-
neutral counterpart (Definition 1). We use the candidate SDF implied by the CAPM,

M̃t−j,t = exp
(
b0j − b1

∑j−1
s=0 r

mkt
t−s

)
, where rmkt

t is log market returns and b0 and b1 are

chosen to make the market portfolio’s prices (δ = 0) and returns (δ (1) = 0) correct
in sample. We report t-statistics (in parentheses) based on GMM standard errors that
account for time-series and cross-sectional covariances in the data and uncertainty in es-
timating the parameters of the candidate SDF. The sample period is 1948m6–2022m12.

A. Book-to-Market
J δLow δ2 δ3 δ4 δHigh δH−L δRN

H−L

1mo 0.04 0.02 -0.14 -0.16 -0.24 -0.28 -0.25
(“return”) (0.97) (0.44) (-2.65) (-2.30) (-2.77) (-2.38) (-2.21)

1yr 0.52 -0.23 -1.22 -2.38 -2.81 -3.33 -2.97
(0.78) (-0.43) (-1.40) (-2.19) (-2.34) (-1.92) (-1.88)

3yrs 0.70 -0.79 -2.07 -6.43 -7.89 -8.58 -7.38
(0.30) (-0.56) (-0.77) (-2.00) (-2.22) (-1.54) (-1.54)

5yrs 1.90 -0.59 -3.53 -9.68 -12.64 -14.53 -12.87
(0.44) (-0.25) (-0.82) (-1.77) (-1.97) (-1.39) (-0.08)

10yrs 4.58 1.30 -1.42 -14.42 -17.61 -22.19 -23.99
(0.55) (0.28) (-0.15) (-1.41) (-1.41) (-1.09) (-1.17)

15yrs 5.98 1.59 -2.14 -15.31 -21.19 -27.18 -29.94
(“price”) (0.49) (0.23) (-0.16) (-1.08) (-1.26) (-0.96) (-1.54)
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B. Quality
J δLow δ2 δ3 δ4 δHigh δH−L δRN

H−L

1mo 0.29 0.04 0.06 -0.03 -0.17 -0.46 -0.26
(“return”) (3.85) (0.65) (1.51) (-0.86) (-4.55) (-4.58) (-2.66)

1yr 2.49 0.61 0.71 -0.65 -1.88 -4.37 -2.27
(2.78) (0.71) (1.19) (-1.52) (-3.31) (-3.24) (-1.78)

3yrs 4.69 1.31 1.44 -1.17 -3.79 -8.48 -2.81
(1.90) (0.53) (0.99) (-0.84) (-2.05) (-2.12) (-0.81)

5yrs 4.19 1.37 1.39 -1.28 -3.74 -7.93 1.53
(1.02) (0.31) (0.49) (-0.63) (-1.09) (-1.12) (0.03)

10yrs 7.83 4.70 3.03 -1.78 -5.27 -13.10 6.61
(0.86) (0.57) (0.43) (-0.69) (-0.74) (-0.83) (0.58)

15yrs 6.09 8.25 4.49 -4.13 -5.32 -11.41 19.58
(“price”) (0.48) (0.71) (0.41) (-1.14) (-0.52) (-0.51) (1.32)

level errors as well.

Table III provides a formal analysis of prices, estimating quintile δs and their difference

between the “high” and “low” quintile portfolios (δH−L ≡ δHigh − δLow), along with t-

statistics (in parentheses) for J ∈ {1mo, 1yr, 3yrs, 5yrs, 10yrs, 15yrs}. The J = 1 month

estimates (the first row of each panel) recovers results close to the conventional time-

series return regression results in Table II after the appropriate sign change, but with

a loglinear model of the SDF, whereas J = 15 years (180 months; the last row of each

panel) proxies for price-level results given by J → ∞.21 The intermediate values of J

allow us to see how the performance of the asset pricing model changes as the return

horizon increases gradually from 1 month to 15 years.

The results for B/M in Panel A of Table III show that value stocks are undervalued

relative to growth stocks only from the perspective of CAPM investors with a short

investment horizon of J = 1 month. Beyond an investment horizon of 1 month, B/M

is a weak signal of CAPM δ. In particular, the price-level result with J = 15 years in

21Figure IA.4 in the Internet Appendix shows that J = 15 years captures most, if not all, of the

consequences of the post-formation abnormal returns associated with characteristics we study.

34



the last row shows that value stocks are 27.2 percentage points underpriced relative to

growth stocks but with a t-statistic of 0.96.

Turning to quality, Panel B of Table III shows that high-quality stocks are underval-

ued and low-quality stocks are overvalued from the perspective of CAPM investors with

an investment horizon of J = 3 year or less. However, for J = 5 or more years, the esti-

mated δs are statistically indistinguishable from zero for all quality-sorted portfolios and

imply that the market price correctly accounts for the quality difference. For example,

for J = 15, we find that high-quality stocks are only 11.4 percentage points underpriced

relative to low-quality stocks with an associated t-statistic of 0.51. Our finding based on

an exact definition of price distortion δ is contrary to the conclusion drawn by Asness

et al. (2019), whose analysis instead studies either cumulative five-year abnormal returns

or a cross-sectional regression of the M/B ratio on quality.

Part of the reason that we find insignificant δ is that accounting for market risk

reduces the CAPM-implied δ. Comparing the last two columns for J = 1 month shows

that accounting for market risk leads to a larger spread in risk-adjusted returns than

that in simple returns. In contrast, at J = 15 years, CAPM δs are smaller in magnitude

than their corresponding risk-neutral δ for both B/M and quality, albeit to a small

extent for B/M . Figure 3 makes this point graphically: whereas CAPM-implied risk and

average excess returns tend to have an anomalous negative relation over a one-month

post-formation horizon, they have a flat (for quality) or positive (for B/M) relation over

a long horizon.22

Figure 4 plots the post-formation behavior of excess returns and market betas to

analyze why risk and return tend to have a less anomalous relation over a long horizon.

22Figure 3 plots the long-horizon components of risk and return in equation (23) for direct comparison

with the corresponding short-horizon measures. We thank an anonymous referee for this suggestion.

Figure IA.8 shows that the cumulative state adjustment is not a negligible component of δ, although

this component typically has an absolute magnitude below 10% and does not have a strong univariate

cross-sectional relation to δ.
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C. Quality: Returns D. Quality: Prices
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Figure 3. The risk-return relations in returns and price levels: book-to-market
and quality. The plots show that, for portfolios sorted on book-to-market or quality,
the relation between long-horizon risk and long-horizon return (Panel B and D) tends
to be less anomalous than that between short-horizon risk and return (Panel A and C).
This improvement contributes to the statistically insignificant CAPM abnormal price
associated with book-to-market and quality sorts. Long-horizon return and long-horizon
risk summarize the term structure of post-formation average excess returns and of risk
premia, respectively, as in equation (23). The sample period is 1948m6–2022m12.
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A. B/M: Post-formation B. B/M: Post-formation
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Figure 4. Post-formation behavior of return and risk: book-to-market and
quality. The plots study the post-formation behavior of returns and CAPM betas of
extreme quintile B/M or quality portfolios. The top plots (Panels A and B) show that
the post-formation beta of value (high BM) stocks exceeds that of growth (low BM)
stocks from around year 5, consistent with value stocks having higher post-formation
mean returns than growth stocks until around year 8. The bottom plots (Panels C and
D) show that junk (low quality) stocks have higher mean returns than quality stocks
from around year 3, consistent with junk stocks having higher betas than quality stocks
post formation. Excess returns used in the left panel are taken relative to post-formation
returns on the market portfolio. The sample period is 1948m6–2022m12.
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These plots show that a contributing factor for the smaller spread in δs for B/M -sorted

portfolios is that value stocks have slightly higher betas than growth stocks from year five,

allowing the higher long-horizon risk of value stocks to exceed that of growth stocks.23

As for quality-sorted portfolios, junk stocks have persistently higher betas than quality

stocks, which lines up with the fact that junk stocks have higher returns than quality

stocks for most of their 15-year post-formation horizon.

C. Primary sorting characteristic: adjusted value

A more powerful test on price levels requires test assets that a priori are likely to

exhibit large variation in δ. One way to generate more spread in δ is by adjusting the

traditional value signal (B/M) for the effect of profitability and risk.

Intuitively, the present-value logic says that a stock could be cheap (i.e., B/M high)

because it is (i) expected to have low dividend growth, (ii) risky, or (iii) truly undervalued.

And for (i), profitable stocks with high expected future returns on equity will tend to have

faster dividend growth as more earnings per book equity gets plowed back. Therefore,

cheap stocks that are nonetheless (i) profitable and (ii) safe are likely underpriced, an

idea we capture in adjusted value:

adjusted value ≡ z(B/M)︸ ︷︷ ︸
value (cheap)

+ z(Prof)︸ ︷︷ ︸
profitable

− z(Beta)︸ ︷︷ ︸
risky

, (27)

where z denotes the z-score of the characteristic’s cross-sectional rank.

Formally, the loglinear present-value model of Vuolteenaho (2002) implies that a

stock’s CAPM-implied log value (vt = log Vt) is the log book value (bt) plus expected

log clean-surplus returns on equity (Etroe
cs
t+j+1) minus CAPM-implied discount rates

23That is, the insignificant delta associated with B/M is not merely an outcome of post-formation

alpha decay over time but of a small reversion in post-formation alphas.
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(Etrt+j+1):

vt ≈ bt +
∞∑

j=0

ρjEtroe
cs

t+j+1 −
∞∑

j=0

ρjEtrt+j+1 (28)

Since CAPM underpricing is the deviation of CAPM-implied value from price, it follows

that a characteristic that adds the z-scores of B/M and profitability and subtracts the

z-score of beta should proxy for CAPM underpricing:

vt − pt ≈ bt − pt︸ ︷︷ ︸
book-to-market

+
∞∑

j=0

ρjEtroe
cs

t+j+1

︸ ︷︷ ︸
profitability

−
∞∑

j=0

ρjEtrt+j+1

︸ ︷︷ ︸
beta

(29)

∝ z(B/M) + z(Prof) − z(Beta),

which equals adjusted value in equation (27).24,25

Our three-characteristic model of CAPM underpricing is similar in spirit to ‘quality

at a reasonable price’ in Asness et al. (2019) but addresses the potential concern that a

composite measure based on sixteen characteristics plus B/M can be difficult to interpret

and subject to overfitting. Adjusted value is also related to the idea in Piotroski and So

(2012) that one can isolate the underpricing component of B/M through its interaction

with proxies for the stock’s future fundamentals.26 Although our baseline analysis uses

the z-score of current gross profitability of Novy-Marx (2013) to measure expected future

profitability, we explore an alternative approach that more directly proxies for future

profitability as well.

24We use the z-score of current gross profitability to proxy for future profitability. When gross

profitability data are unavailable, we use the z-score of return on equity.

25Cho et al. (forthcoming) derive a loglinear present-value identity that links today’s market-to-

book equity ratio to future investment (”scale”), profitability (”yield”), and discount rates. Their more

granular decomposition suggests that separately controlling for firms’ scale and yield characteristics may

provide a better adjustment of B/M than our current adjusted value measure.

26See also Frankel and Lee (1998), Piotroski (2000), Cohen et al. (2003), Polk et al. (2006), Novy-Marx

(2013), and Gonçalves and Leonard (2023).
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D. Adjusted value and the cross-section of price levels

Table IV shows that portfolios sorted on adjusted value are economically and statisti-

cally mispriced at every horizon we consider. The first row shows that high-adjusted -value

stocks outperform low-adjusted-value stocks by 75 basis points a month with an associated

t-statistic of 6.88. At the 15-year horizon, low-adjusted-value stocks are 51.9 percentage

points more overpriced than their high-adjusted-value counterparts. The large CAPM δ

difference seems to arise from the CAPM risk adjustment to long-horizon returns on high

vs. low adjusted-value portfolios being too large (i.e., the ex-post security market line be-

ing too flat), since the difference in risk-neutral δ is much smaller at 8.5 percentage points.

Indeed, consistent with this interpretation, Figure IA.7 Panel P (Internet Appendix) vi-

sually confirms the strong negative relation between long-horizon risk and long-horizon

return for portfolios sorted on adjusted value. Thus, Table IV documents exactly the

sort of variation a buy-and-hold CAPM investor should be interested in exploiting and

represents a challenge for future asset pricing models that make understanding price-level

risk a priority.27

We find that the exact way in which information in the three characteristics is used

matters less. For instance, defining adjusted value in a way that puts more weight on

the “price” component of adjusted value rather than putting an equal weight on all

three z scores generates similar results. We also find that using VAR-implied expected

future profitability z-score instead of current profitability z-score slightly improves the

performance of the adjusted value characteristic (columns three and four in the table).28

27Table IA.VI uses double sorts to generate variation in adjusted value.

28The improvement is relatively small, since profitability is one of the most persistent among the

characteristics we consider, making current profitability a strong predictor of its future values (Table

II). Hence, for parsimony as well as to facilitate replication of our work, we present the adjusted value

characteristic based on current profitability as the baseline. The Internet Appendix details how we

modify the baseline approach through a VAR model of characteristic z scores to use information about

expected future profitability.
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Table IV. Pricing Adjusted-value-sorted Portfolios: Returns vs. Prices. The
table shows that adjusted value, our proxy for the value-to-price ratio (V/P ), generates
cross-sectional variation in price levels (the last rows) and returns (the first row) not
explained by the CAPM. Adjusted value combines B/M , profitability, and beta by taking
the sum of their z scores: Adjusted value = z(B/M)+ z(Prof)− z(Beta). We form value-
weight quintile portfolios based on NYSE breakpoints for adjusted value and track post-
formation returns for 15 years (180 months). In the first “return” row, δ measures −1
times the average one-month abnormal return:

δ (1) = −E
[
M̃tR

e
t

]
.

Positive (negative) δ here means negative (positive) one-month abnormal return. The
reported δs in the last row are estimated values of abnormal price defined as

δ = E
[
Pt−Vt

Pt

]
≈ δ (180) = −E

[∑180
j=1M̃t−j,t

P(t−j),t−1

P(t−j),t−j
Re

(t−j),t

]
,

where Vt is the portfolio’s buy-and-hold value implied by the CAPM, (t− j) is the
portfolio formation month, t is the month in which returns are realized, and j is the
number of post-formation months. In the remaining rows, the reported δ estimates il-

lustrate how the estimated δ (J) = −E
[∑J

j=1M̃t−j,t
P(t−j),t−1

P(t−j),t−j
Re

(t−j),t

]
changes as J takes

values less than 180. The last two columns report δH−L ≡ δHigh − δLow and its risk-
neutral counterpart (Definition 1). We use the candidate SDF implied by the CAPM,

M̃t−j,t = exp
(
b0j − b1

∑j−1
s=0 r

mkt
t−s

)
, where rmkt

t is log market returns and b0 and b1 are

chosen to make the market portfolio’s prices (δ = 0) and returns (δ (1) = 0) correct
in sample. We report t-statistics (in parentheses) based on GMM standard errors that
account for time-series and cross-sectional covariances in the data and uncertainty in es-
timating the parameters of the candidate SDF. The sample period is 1948m6–2022m12.

J δLow δ2 δ3 δ4 δHigh δH−L δRN
H−L

1mo 0.29 -0.00 -0.17 -0.23 -0.46 -0.75 -0.39
(“return”) (5.46) (-0.01) (-3.43) (-4.01) (-6.11) (-6.88) (-3.82)

1yr 3.24 0.10 -1.96 -3.04 -5.02 -8.26 -4.12
(4.39) (0.16) (-3.01) (-3.51) (-5.24) (-5.75) (-3.03)

3yrs 7.08 0.76 -4.91 -8.06 -12.28 -19.37 -6.98
(3.54) (0.44) (-2.24) (-3.35) (-4.34) (-4.69) (-1.74)

5yrs 9.34 2.45 -6.90 -12.17 -18.92 -28.26 -8.95
(3.59) (1.05) (-2.03) (-3.66) (-3.57) (-4.15) (-0.05)

10yrs 14.72 0.44 -9.04 -20.74 -26.88 -41.60 -11.17
(3.79) (0.13) (-2.07) (-3.49) (-3.05) (-3.63) (-0.62)

15yrs 18.45 2.32 -13.15 -29.92 -33.41 -51.86 -8.54
(“price”) (3.33) (0.47) (-2.80) (-2.46) (-2.69) (-3.14) (-0.47)
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At the same time, accounting for all three characteristics—B/M , profitability, and

beta—is critical in isolating the large price-level variations unexplained by the CAPM. In-

teracting the z-scores of only two of the three characteristics—i.e., profitability and beta,

B/M and beta, and B/M and profitability—fail to generate a statistically significant

CAPM δ.

V. Are Return Anomalies Price Anomalies?

This second and final empirical section studies the extent to which the CAPM explains

price-level variation associated with nine additional characteristics known to be associated

with cross-sectional variation in average returns: net issuance, investment, accruals, beta,

size, momentum, and profitability. The first four are chosen for their potential conceptual

link to price-level distortions, while the next three are chosen for being prominent return

anomalies (in conjunction with value, investment, and the market factor, they make up

the widely-used Fama-French-Carhart six-factor model).

A. Characteristics conceptually related to abnormal price

Certain characteristics are interesting to analyze using our abnormal price measure

either due to their conceptual association with abnormal price (net issuance, investment,

and accruals) vis-à-vis the endogenous choices of managers or their mechanical link to

the long-horizon risk component of abnormal price in Corollary 4 (beta). We explain the

conceptual link that each characteristic has to abnormal price δ and study the extent to

which the characteristic is associated with price-level variation that cannot be explained

by exposure to market risk that the CAPM captures.
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A.1. Net share issuance

A large literature in behavioral corporate finance views securities market mispricing

as a primary factor in managerial financing and investment decisions.29 In particular,

several papers document evidence that share repurchase (issuance) indicate undervalu-

ation (overvaluation) as perceived by firm managers (e.g., Loughran and Ritter (1995);

Ikenberry et al. (1995)). Nevertheless, this hypothesis has not been tested using our

definition of stock mispricing that explicitly accounts for the asset pricing model of risk

(in our case, the CAPM): δ = E [(Pt − Vt) /Pt].

Table V shows that the spread in mispricing δs associated with net issuance is indeed

large.30 Share repurchases (low net issuance) are especially strong signals of CAPM

underpricing, consistent with CFOs identifying market timing as the number one reason

for stock repurchases (Brav et al. (2005)). In contrast, share issuances (high net issuance)

are not strongly indicative of CAPM overpricing, and this weaker result may reflect that

firm CFOs use stock issuance primarily to finance investment projects (Graham and

Harvey (2001)).31 The difference in δ’s across the two extreme net issuance quintiles is

23.7 percentage points with a large t-statistic of 2.72. Similarly to the adjusted value

sort, the risk-neutral delta difference is small and statistically insignificant, indicating

that the implicit CAPM long-horizon risk adjustment is an important contributor to the

difference in deltas that we find. A similar finding holds for the other two significant delta

characteristics discussed below, investment and beta, highlighting that the flat security

line continues to play a role in our price-level analysis.32

29Baker et al. (2007) review this literature.

30Figure IA.7 in the Internet Appendix visualizes the cross-sectional relations between long-horizon

risk and long-horizon return for the return anomalies studied in this section.

31The CFOs surveyed in the study identify market timing as the number two reason for stock issuance.

32Since the focus of our paper is to explain our novel method and document the corresponding

empirical facts, we leave a more complete analysis of the flat price-level security market line to future

work.
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Table V. Pricing Anomaly-sorted Portfolios. The table reports estimated abnormal
price with respect to the CAPM for portfolios sorted on characteristics conceptually linked
to abnormal price or prominent return anomaly characteristics. For each characteristic,
we form value-weight quintile portfolios based on NYSE breakpoints and track post-
formation returns for 15 years. High (Low) denotes stocks with the highest (lowest)
value of the characteristic. The reported δs are estimated values of CAPM abnormal price

defined as δ = E
[
Pt−Vt

Pt

]
, where Vt is the portfolio’s buy-and-hold value implied by the

CAPM. The last two columns report δH−L ≡ δHigh−δLow and its risk-neutral counterpart
(Definition 1). We report t-statistics (in parentheses) based on GMM standard errors
that account for time-series and cross-sectional covariances in the data and uncertainty in
estimating the parameters of the candidate SDF. The sample period is 1948m6–2022m12
except for investment, accruals, and profitability, which have a sample period of 1972m6–
2022m12.

Sort δLow δ2 δ3 δ4 δHigh δH−L δRN
H−L

Net issuance -16.4 -4.2 2.0 -0.2 7.2 23.7 8.6
(-2.67) (-0.40) (0.52) (-0.03) (1.08) (2.72) (0.93)

Investment -17.6 -17.8 -3.0 9.0 11.8 29.4 16.7
(-2.33) (-2.50) (-0.68) (1.67) (1.43) (2.11) (1.08)

Accruals 0.2 -11.7 0.2 4.9 20.9 20.7 9.4
(0.02) (-1.97) (0.03) (0.93) (1.98) (1.22) (0.59)

Beta -22.6 -15.9 -4.9 5.3 18.2 40.8 -26.9
(-1.88) (-2.19) (-1.11) (1.00) (2.05) (2.18) (-1.21)

Size -13.4 -16.9 -20.6 -13.5 3.5 17.0 54.6
(-0.53) (-0.92) (-1.19) (-1.14) (1.04) (0.60) (1.91)

Momentum -16.5 -7.7 -3.7 2.6 4.3 20.8 22.5
(-1.15) (-1.89) (-1.10) (0.53) (0.74) (1.49) (1.85)

Profitability 13.3 -9.3 -14.4 -5.0 4.4 -9.0 2.3
(0.63) (-0.66) (-1.27) (-0.41) (0.24) (-0.25) (0.08)
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A.2. Investment

Arguably the most important anomaly to study in this context is investment, given

the potential link between misvaluation and the allocation of capital by firms to real

investment projects. That link may occur indirectly, through the equity issuance deci-

sion (Stein (1996), Baker and Wurgler (2002), Baker et al. (2003)), or directly, through

catering by the firm to investor sentiment (Polk and Sapienza (2009)). Thus, it is natu-

rally interesting to measure whether price-levels are also anomalous for portfolios sorted

on investment, as measured by asset growth. The high investment and the low invest-

ment quintiles have a statistically significant difference in δ’s of 29.4 percentage points,

confirming the link between investment and price-level mispricing.

A.3. Accruals

Earnings management proxied by accruals (Sloan (1996)) is an interesting phe-

nomenon to revisit with our explicit mispricing definition, as its typical interpretation

is that companies with adverse operating results manage earnings to inflate the firm’s

market value. Thus, if the firms are successful in managing earnings, high accruals may

proxy for overpricing perceived by firm managers. The results in Table V do not support

this interpretation of accruals, as it is a statistically weak predictor of delta.

A.4. Beta

Equation (23) shows that long-horizon risk, defined as a discounted sum of contempo-

raneous covariances between excess returns and the candidate SDF M̃ , helps determine

abnormal price δ. Hence, the persistence of market beta implies that market beta sorts

have the potential to generate large variation in δ = E [(Pt − Vt) /Pt]. In particular,

we would find that sorts on beta generate spread in δ if the resulting spread in long-

horizon risk that must generate spread in CAPM-implied V is not compensated by a

corresponding spread in price (P ).
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Table V shows an estimated difference in δs of 40.8 percentage points across the high-

and low-beta portfolios, consistent with the above prediction. Furthermore, this estimate

is statistically significant with a t-statistic of 2.18. As discussed above, the flat security

market line plays a particularly important role in our analysis, and the results for beta

underscore this interpretation as risk-neutral δ is of the opposite sign as risk-adjusted δ.

B. Prominent return anomalies

Next, we turn to three remaining prominent return anomalies. Fama and French

(2015) argue that profitability and size are characteristics that are important in sum-

marizing the cross-section of returns, and price momentum has been a prominent return

anomaly since Jegadeesh and Titman (1993). To what extent are these prominent return

characteristics associated with variation in price levels unrelated to CAPM price-level

risk?

B.1. Size and momentum

Size and momentum are interesting to study from the price-level perspective, given

that momentum strongly predicts the cross-section of average returns but is a rather tran-

sitory firm characteristic while size weakly predicts the cross-section of average returns

but is a rather persistent firm characteristic. In particular, Cohen et al. (2009) highlight

that signal persistence is an important consideration when moving from the conventional

return perspective to the price-level perspective, a point that Cochrane (2011) subse-

quently emphasizes.

“For example, since momentum amounts to a very small time-series correla-

tion and lasts less than a year, I suspect it has little effect on long-run expected

returns and hence the level of stock prices. Long-lasting characteristics are

likely to be more important. Conversely, small transient price errors can have

a large impact on return measures” (p.1064).
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A. Post-formation Excess Returns B. Post-formation Betas
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Figure 5. Post-formation behavior of return and risk: momentum. The plots
study the post-formation behavior of returns and CAPM betas of extreme quintile mo-
mentum portfolios. They show that the anomalous pattern of high momentum stocks
having higher excess returns but lower market betas than low momentum stocks quickly
reverses such that low momentum stocks have higher excess returns and lower betas on
those excess returns than high momentum stocks from around year 2 post portfolio for-
mation. Excess return is measured relative to the post-formation returns on the market
portfolio. The sample period is 1948m6–2022m12.

Consistent with Cochrane’s conjecture, Table V shows that momentum is not a statisti-

cally significant predictor of CAPM abnormal price: the difference in δ between the high

momentum and low momentum portfolios is 20.8 percentage points with a t-statistic

of 1.49. Moreover, the point estimates suggest that high momentum stocks with large

positive abnormal returns are overpriced, whereas low momentum stocks with negative

abnormal returns are underpriced.33 This finding is consistent with momentum profits

often coming from continued overreaction.34

Figure 5 visualizes how momentum’s initial positive α quickly turns into negative α

33The point estimates in van Binsbergen et al. (2023) are consistent with momentum stocks being

overpriced as well. In contrast to our results, their analysis finds statistical significance, suggesting the

importance of our method’s more reliable statistical inference.

34Lou and Polk (2022) provide extensive analysis arguing that momentum can transition from an

underreaction to an overreaction phenomenon in the presence of destabilizing activity by momentum

traders. Blank et al. (2023) document similar findings in the cross-section for those stocks that are held

relatively more by investors who react excessively to salient public news. Our price-level measure of

mispricing δ can facilitate those sorts of empirical refinements of under and overreaction phenomena.
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post formation. Low momentum stocks start having higher average returns and lower

CAPM betas compared to high momentum stocks from around year 2, contributing to

momentum being associated with overpricing. While size is a persistent characteristic,

it generates small and statistically insignificant price-level variation unaccounted by the

CAPM.

B.2. Profitability

Table V documents that profitability-sorted portfolios are associated with price-level

errors that are statistically insignificant with an estimated δ spread of only 9.0 percentage

points. The result is consistent with the observation that cross-sectional variation in the

marginal product of capital, which our profitability measure could proxy for, does not

necessarily imply a misallocation of capital (Joel et al. (2022)).

C. Why are (some) return anomalies not also price anomalies?

Having studied ten characteristics individually from the price-level perspective and

estimated their CAPM deltas, we now study them together to understand the factors

that determine whether a return anomaly is also a price anomaly.

Taking two extreme quintile portfolios from each of the ten characteristics, we run a

cross-sectional regression of CAPM delta on variables motivated by our identity:

δi = b0 + b1 αi + b2 [αi × 1(Reversali)] + b3 βi + b4CumStateAdji + ϵi, (30)

where α is the short-horizon (1-month) alpha, 1(Reversal) is a dummy variable that takes

the value of one if the average excess return in years three-to-15 following portfolio for-

mation is opposite in sign to the average excess return in the first post-formation month,

β is the CAPM beta of the anomaly’s excess monthly return in the first post-formation

month, and CumStateAdj is the cumulative state adjustment from the decomposition in
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Corollary 4.35 We include β as an incremental predictor of delta because a large initial

β is likely to predict more persistent post-formation alphas. That is, since a portfolio’s

CAPM β is persistent, a flat security market line could cause a portfolio starting out with

a large initial β to have persistent post-formation alphas. Table IA.VIII and Figure IA.9

of the Internet Appendix show that these four variables explain 94% of the cross-sectional

variation in the deltas of the twenty portfolios in question.

Figure 6 plots the component of fitted delta associated with each of these four ex-

planatory variables for all ten long-short portfolios; for example, b̂1 × (αL − αS) is the

component of long-short delta explained by short-horizon alpha and is plotted with a

black bar for each anomaly. Given the high R2 in column (4) of Table IA.VIII, the four

components together explain almost all of the cross-sectional variation in delta.

Figure 6 highlights four findings. First, short-horizon alphas explain only a small

fraction of the variation in abnormal price. Second, the largest price anomalies—adjusted

value and beta—are those with a large initial beta, highlighting the importance of a flat

security line in our price-level analysis. Third, the other two significant price anomalies—

net issuance and investment—have delta contributions coming from a large initial alpha,

a large initial beta, and (for investment) a large cumulative state adjustment. Although

a sort on investment leads to an eventual reversal in returns, the other components of

delta are enough to offset this effect, making investment a significant price anomaly.

Finally, the return anomalies that do not make the cut for a significant delta either

have weak contributions from short-horizon alpha and beta (e.g., B/M, profitability, size,

accruals) and/or an offsetting effect from return reversal (B/M, quality, profitability, and

momentum).

35Note that excess returns are measured in excess of the market return.
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Figure 6. Why are (some) return anomalies not also price anomalies? The
figure plots the extent to which short-horizon alpha, post-formation return reversal, short-
horizon beta, and cumulative state adjustment explain portfolio long-short delta. The
fitted values are based on a cross-sectional regression of delta on these four explanatory
variables (Table IA.VIII; see also Figure IA.9), and each vertical bar measures the com-
ponent of fitted value due to a particular explanatory variable. The sum across the four
vertical bars for each characteristic portfolio is the fitted delta, with any remaining dif-
ference representing the regression residual. Overall, the figure shows that short-horizon
beta contributes the most to delta for the two largest price anomalies (adjusted value
and beta), whereas the other two statistically significant price anomalies (net issuance
and investment) are driven by multiple factors. The other characteristics are not associ-
ated with a significant abnormal price typically because different components offset each
other’s effect (e.g., short-horizon alpha is offset by a subsequent reversal in returns). Re-
turn reversal is a dummy variable that takes the value of one if the average excess return
in years three-to-15 following portfolio formation is opposite in sign to the average excess
return in the first post-formation month. Short-horizon beta is the portfolio’s one-month
market beta immediately following portfolio formation and matters because beta tends
to be persistent and large betas tend not to be accompanied by large excess returns (i.e.,
the security market line is flat). Cumulative state adjustment is defined in Section III.

50



D. Double sorts on characteristics and adjusted value

Our proposed adjusted value characteristic proxies for abnormal price by combining

information in price, profitability, and beta. How well, then, does it explain variation

in δ generated by other characteristics: net issuance, investment, accruals, size, and

momentum?

Table VI synthesizes our analysis by examining double sorts on adjusted value and

each of the five characteristics. Specifically, sorting stocks into three-by-three portfolios

based on independent NYSE breakpoints, we report the δ and associated t-statistic for

each of the nine portfolios on the left-hand side of the table. The right-hand-side of the

table reports the δ’s associated with the combination of the nine portfolios that results in

either a characteristic-neutral portfolio that bets on adjusted value or a adjusted-value-

neutral portfolio that bets on the second characteristic.
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Table VI. Incremental Information About Prices: Adjusted Value vs. Others. The table shows that controlling
for adjusted value, our proxy for the value-to-price ratio (V/P ), subsumes the ability of other characteristics to predict CAPM
abnormal price. In contrast, adjusted value retains its ability to predict CAPM abnormal price when controlling the other char-
acteristic in question. To draw this conclusion, we form nine value-weight portfolios based on 30% and 70% NYSE breakpoints
for adjusted value and, independently, the 30% and 70% NYSE breakpoints for the second sorting characteristic specified in
column one. We study the five characteristics that do not comprise adjusted value. Adjusted value combines B/M , profitability,
and beta by taking the sum of their z scores: Adjusted value = z(B/M) + z(Prof) − z(Beta). The left-hand side of the table
reports the estimated δ and associated t-statistic for each portfolio. The right-hand-side of the table reports the δs associated
with the combination of the portfolios that results in either a characteristic-neutral portfolio that bets on adjusted value or a
adjusted -value-neutral portfolio that bets on the second characteristic. We report t-statistics (in parentheses) and p-values based
on GMM standard errors that account for time-series and cross-sectional covariances in the data and uncertainty in estimating
the parameters of the candidate SDF. The sample period is 1948m6–2022m12 except for investment and accruals, which has a
sample period of 1972m6–2022m12.

Adj val sort Second sort
Adjusted value sort (Second sort neutral) (Adj val neutral)

Low 2 High 1
3 ∗ ((H1 +H2 +H3) 1

3 ∗ ((L3 + 23 +H3)

Second sort → 1 2 3 1 2 3 1 2 3 −(L1 + L2 + L3)) −(L1 + 21 +H1))

Net issuance 10.7 16.6 11.6 -18.6 -8.7 -6.8 -37.7 -33.0 -29.0 -46.2 7.2
(1.26) (3.40) (1.45) (-2.53) (-1.39) (-1.12) (-3.16) (-2.63) (-1.80) (-2.80), [0.005] (0.83), [0.408]

Investment 0.6 17.0 19.9 -25.1 -10.0 -3.9 -44.1 -41.4 -35.4 -52.8 16.4
(0.05) (2.17) (2.29) (-2.95) (-1.42) (-0.44) (-2.80) (-2.67) (-2.16) (-2.95), [0.003] (1.62), [0.106]

Accruals 8.3 12.1 27.0 -14.5 -11.1 -1.0 -43.4 -33.9 -46.7 -57.2 9.6
(0.79) (1.90) (2.46) (-1.86) (-1.23) (-0.10) (-1.94) (-2.58) (-2.16) (-2.80), [0.005] (0.81), [0.416]

Size 4.7 -3.8 15.7 -8.5 -24.6 -9.4 -41.4 -36.8 -33.7 -42.8 6.0
(0.18) (-0.25) (3.25) (-0.36) (-1.49) (-1.32) (-1.49) (-1.99) (-2.34) (-2.66), [0.008] (0.25), [0.804]

Momentum 2.6 15.1 16.4 -25.5 -12.6 -4.4 -48.7 -33.6 -29.4 -48.6 18.1
(0.34) (2.26) (2.54) (-2.35) (-2.09) (-0.63) (-2.06) (-2.76) (-2.28) (-2.78), [0.005] (1.61), [0.107]
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Table VI has two important takeaways. First, across all of the rows, adjusted value re-

peatedly generates economically and statistically significant variation in CAPM δ. Hence,

adjusted value appears to contain information about prices that is neither explained by

CAPM-implied risk nor captured by another single characteristic. Second, after control-

ling for adjusted value, there is little incremental information about prices in the char-

acteristics we study, in terms of the economic magnitude or the statistical significance.

This finding is true even for net issuance and investment which both showed significant

spread in δ in a univariate sort but are subsumed by adjusted value.36

E. Modern subsample

Our results and conclusions in Sections IV and V continue to hold in the modern

subsample, 1972m6–2022m12. Combining information in price, profitability, and CAPM

risk through our composite variable adjusted value describes economically and statistically

significant variation in CAPM abnormal price (Tables IA.XIII and IA.XII in the Internet

Appendix) while the other characteristics we study generally do not, with the exception

of net issuance and beta (Tables IA.XI and IA.XIV).37 Furthermore, in a horse race, all

other characteristics are subsumed by adjusted value (Table IA.XV).

F. Alternative approaches

How do results change if we employ alternative approaches to estimating abnormal

price? First, in terms of the point estimates, we show in Figure IA.6 that the cash-flow

36Our findings based on these double sorts suggest that adjusted value could be the natural second

factor to put in a multifactor model of price levels. However, a proper treatment of all potential mul-

tifactor refinements would require a substantial expansion to the analysis. For this reason, we believe

our single factor analysis based on the CAPM is one that most lucidly illustrates our novel return-based

price-level analysis.

37Investment, accruals, and profitability are defined only over the modern subsample, so their results

remain the same as before.
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approach that directly discounts the cash flows and a terminal value generates essentially

the same delta estimates as the version of our return-based approach that uses gross

returns (rather than excess returns) and event-time observations (rather than calendar-

time observations). This equivalence confirms that the cash-flow approach does not have

an inherent advantage over the return-based approach but is less desirable in finite-sample

inference. (See the discussion in Subsections I.C, III.B, and III.E.)

Second, Table IA.VII shows that cumulative abnormal return (CAR) generates differ-

ent results, both in terms of magnitude and statistical significance at the 5% level. Third,

Figure IA.9 shows that short-horizon CAPM alpha, its persistence (proxied by the per-

sistence of the characteristic associated with that alpha), and the resulting interaction

explain around half of the cross-sectional variation in delta across the twenty extreme

quintile portfolios we study, implying that a simple measure based on short-horizon al-

pha and its persistence would miss important variation in abnormal price.

VI. Conclusion

Our novel identity precisely links ex-ante price distortion to subsequent returns and

provides a new natural framework for studying the cross-section of stock price levels.

Our primary tests reveal that portfolios formed on adjusted value, a composite signal that

extracts the mispricing component from the market-to-book ratio, generate large variation

in abnormal price, our measure of price distortion. Among all other prominent return

anomalies, net equity issuance, investment, and beta sorts produce significant price-level

distortions relative to the CAPM, and these distortions are subsumed by adjusted value.

As a consequence, our method identifies the stocks that a buy-and-hold investor who

measures risk using a particular asset-pricing model—in our case, the monthly CAPM—

should find the most attractive. Moreover, our approach highlights where new models

that aim to explain both short- and long-run patterns in markets should focus. Indeed, by

providing an exact metric of the extent to which a candidate asset-pricing model explains
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variation in prices, we aim to advance future research in both asset pricing and corporate

finance. For the former, estimates of ex-ante price distortion could provide a useful

lens through which to distinguish among risk-based, behavioral-based, and institutional-

friction-based explanations for well-known empirical patterns in short-horizon returns.

For the latter, our measure of mispricing with respect to a risk model may refine the

results of a large literature (e.g. Baker and Wurgler (2002) and Shleifer and Vishny

(2003)) that aims to link a firm’s investment and financing decisions to price distortions.
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