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IA.A. Supplementary Literature Review

IA.A.1. Additional Related Work

An important motivation for studying price levels is the link between stock price levels

and corporate financing or investment decisions as explored by Stein (1996), Baker and

Wurgler (2002), Baker et al. (2003), Shleifer and Vishny (2003), Cohen et al. (2009), Polk

and Sapienza (2009), van Binsbergen and Opp (2019), and Whited and Zhao (forthcom-

ing) among others. For example, Polk and Sapienza (2009) study how price distortion

relates to corporate investment, using discretionary accruals to proxy for price distortion,

and van Binsbergen and Opp (2019) study the link in a quantitative model of a produc-

tion economy to study how abnormal returns on anomaly characteristics affect output.

Dessaint et al. (2021) find evidence that the beta anomaly’s CAPM abnormal price as

perceived by firm managers affects the M&A decision. Gormsen and Huber (2023) and

Gormsen and Huber (2022) explore how firms’ perceived costs of capital relate to factor

models and affect corporate investment.2

The asset pricing literature also explored the difference in the type of information

that expected returns and price levels have about capital market efficiency. Shiller (1984)

writes, “because real returns are nearly unforecastable, the real price of stocks is close

to the intrinsic value . . . is one of the most remarkable errors in the history of

economic thought” (pp. 458–459). Summers (1986) provides a numerical example that

illustrates this argument and Campbell (2018) shows how an expected return that follows

a persistent AR(1) process may leave little room for return predictability despite a large

variance in the dividend-price ratio. Pastor and Veronesi (2003) show that high price

levels may not be a signal of capital market inefficiency but of increased uncertainty

2Taking the link between price distortion and equity financing as given, Cho and Salarkia (2020)

show that firms’ equity issuance and repurchases in the face of apparent model-specific price distortion

reveals the CAPM as the model most likely used by firms.
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about future profitability. More recently, Liu et al. (2021) use a restriction on the price

distortion process to revisit factor models of expected returns and Baba Yara et al. (2020)

study the extent to which the permanent and transitory components of characteristics

differently describe the cross-section of long-horizon average returns.3

Other strands of literature study price levels and long-horizon returns for different

reasons. First, these quantities are important for the portfolio decision of long-term

investors. For instance, Cochrane (2014) develops a mean-variance characterization of

a stream of long-run payoffs that is useful even when risks and expected returns vary

through time.4 Second, Vuolteenaho (2002), Cohen et al. (2003), Cochrane (2011), De La

O and Myers (2021), and Cho et al. (forthcoming) among many others study valuations,

expected returns, and cash flows through the lens of an identity in the spirit of Campbell

and Shiller (1988). Third, Lee et al. (1999), Bartram and Grinblatt (2018), Gerakos and

Linnainmaa (2018), Asness et al. (2019), Golubov and Konstantinidi (2019), and Favero

et al. (2020) take different approaches to come up with proxies for price distortion. Finally,

Koijen et al. (2022) use a structural demand-based approach to study how different types

of investors affect equity valuations.

Cumulative abnormal returns (CARs) or buy-and-hold abnormal returns (BHARs) are

used extensively in the corporate finance literature. Barber and Lyon (1997), Kothari

and Warner (1997), Fama (1998), Lyon et al. (1999), Brav (2000), and Bessembinder

et al. (2018) have critically evaluated these approaches.

3Other recent papers on the topic of market efficiency and price levels include Bai et al. (2016),

Dávila and Parlatore (2020), Joel et al. (2022), and Jiang et al. (2020).

4See also Kandel and Stambaugh (1996), Campbell and Viceira (1999), Barberis (2000), and Viceira

(2001) among several others.
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IA.A.2. Detailed Response to van Binsbergen et al. (2023)

Internet Appendix C of van Binsbergen, Boons, Opp, and Tamoni (2023) (vBBOT)

compares their dividend-based event-time approach to our calendar-time, (excess) return-

based approach. This type of comparison is useful, as it allows us to reflect further on the

advantages and (potential) disavantages of our proposed method. However, the first two

(out of three) issues they point out apply to methodological aspects of an older version of

our paper (Dec 2020) that are not present in our analysis. The third issue they point out

is a weakness particular to their dividend-based approach and only helps highlight the

strength of our excess-return-based approach. The last issue they point out is a matter

of taste as to whether one prefers a simple or log measure of abnormal price and has little

empirical consequence. We explain these points in further detail below.

1. Risk-free rate in the candidate SDF.

First, vBBOT argue that our candidate SDF does not discount returns more in times

of high risk-free rates. They base this critique on an older version of our paper (Dec

2020) that used the excess return on the market as a factor in the candidate SDF:

M̃t = b0 − b1R
mkt,e
t , (IA.1)

where Rmkt,e
t denotes market return in excess of the risk-free rate.

However, since that draft, we have switched to using the the gross return on the

market in our loglinear SDF setup employed by Korteweg and Nagel (2016).

M̃t = exp(b0 − b1 log(1 +Rmkt
t )), (IA.2)

Since the gross market return includes the risk-free rate as a component, this candidate

SDF does apply a large discount on returns in times of high risk-free rates, not just in

4



times of high risk premium.5

The candidate SDF in vBBOT follows

M̃t = exp(− log(1 +Rf,t) + b0 − b1
(
log(1 +Rmkt

t )− log(1 +Rf,t])
)
), (IA.3)

where Rf,t is the risk-free rate known at time t−1 and realized at time t. Whereas the risk-

free rate component is embedded in the gross market return in equation (IA.2), equation

(IA.3) disentangles the risk-free rate and the (log) market risk premium components of

the SDF. However, we find that empirically using the candidate SDF in equation (IA.3)

has little effect on either the estimates of δ or their associated p-values.

2. Computing excess returns with respect to the risk-free rate vs. market return

The second critique of vBBOT also does not apply to our paper’s methodology. They

argue that computing excess returns with respect to the Treasury bill rate as part of our

identity,

δ ≡ E

[
Pt − Vt

Pt

]
= −

∞∑
j=1

E
[
M̃t,t+j

Pt+j−1

Pt
Re

t+j

]
, (IA.4)

requires the candidate SDF to explain the T-bill rate conditionally. However, since the

Dec 2020 draft, we have switched to using the market rather than the Treasury bill as the

base asset with which to compute excess returns Re
t+j. Since we estimate CAPM-based

δ’s, computing excess returns against the market is a natural methodological choice, given

that the CAPM implies that the market is correctly priced, and follows other research

(e.g., Campbell et al. (2018) and Korteweg and Nagel (2022)) that also prices returns in

excess of the market.

5In earlier drafts, e.g., Apr 2021, we used a linearized SDF based on the gross market return:

M̃t = b0 − b1R
mkt
t , where Rmkt

t is the gross market return.
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3. Inability of vBBOT to price Treasury bill strategies

vBBOT argue that both their dividend-based event-time framework and our frame-

work are subject to a large bias that results from having to estimate SDF parameters in

a finite sample. They rely on a back-of-the-envelope calculation to show that using their

dividend-based method means that the strategy of rolling over T-bill investments for 15

years has an estimated δ of more than 50%, despite the fact that their candidate SDF

is designed to price T-bill rates conditionally (Internet Appendix D.1 of vBBOT). We

confirm that in our sample, applying an event-time gross-return approach to a strategy

that rolls over T-bills results in an estimated δ of 0.497 (49.7%), similar to the number

in vBBOT (which they then hope to correct through a bootstrapping adjustment).

We find that this source of bias has little effect on δ estimates based on our approach.

When we apply our novel calendar-time, excess-return approach, the same roll-over strat-

egy that is dramatically mispriced by vBBOT has an estimated δ of only 0.1% in our

full sample (1948m6–2022m12) and 2.3% in the modern subsample (1972m6–2022m12).

This finding is consistent with Figure 2A in our main paper, which confirms, based on

Monte Carlo analysis, that our δ estimates are close to being unbiased.6

What is it about our approach ensures that strategies such as rolling over the T-bill do

not have an artificially inflated δ estimate? Our method is not vulnerable to this defect

in vBBOT’s method primarily because our estimated δ aggregates future excess returns

Re
t+j (see equation (33) above) rather than gross returns.7 To see why our approach is

immune to this concern, suppose, for the sake of argument, that we bring equation (IA.4)

to data by computing excess returns against the T-bill rate. Then, by definition, the

6Note that in our Monte Carlo, the interest rate is held fixed for the sake of tractability. We leave a

generalization of our Monte Carlo model to allow for time-varying interest rates for future research.

7Note that the evidence in Figure A6 only confirms the equivalence between the event-time, dividend-

based approach and an event-time, gross-return approach. Our main approach uses the calendar-time

excess-return expression, which helps minimize the bias as well as serial correlations.
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T-bill roll-over strategy earning the T-bill rate in each period has zero excess return in

all periods and must have an estimated δ of zero.

In practice, of course, we compute excess returns against the market rather than the

T-bill. Even so, the use of excess returns rather than gross returns in this way helps

reduce the impact of measurement errors in a candidate M̃ on our δ estimates. We

explain this in detail in Section 3.2 of the main paper.

4. Log vs. simple mispricing

vBBOT choose to estimate the log abnormal price of Cohen et al. (2009) (equation (6))

rather than the simple abnormal price measure estimated in our paper. They implicitly

acknowledge, however, that one definition is not inherently superior to another. We prefer

working with simple abnormal price measure, as it allows us to develop a nonparametric

estimator of abnormal price with several desirable properties, whereas log abnormal price

does not.
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IA.B. Empirical Appendix

IA.B.1. Basic data adjustments

We use domestic common stocks (CRSP share code 10 or 11) listed on the three

major exchanges (CRSP exchange code 1, 2, or 3). We replace missing prices with the

average bid-ask price when available and drop observations with missing share or price

information in the previous month. We code missing returns as zero returns and add

delisting returns to returns. If delisting returns are missing, but the CRSP delisting code

is 500 or between 520 and 584, we use −35% (−55%) as the delisting returns for NYSE

and AMEX stocks (for NASDAQ stocks) (Shumway (1997) and Shumway and Warther

(1999)). To compute capital gains, we use the CRSP split-adjustment factor (CFACPR)

to ensure that capital gains are not affected by split events. We use NYSE breakpoints

when sorting stocks throughout the analysis and always study value-weight portfolios.

IA.B.2. Characteristics and portfolios

An important stock characteristic is the book-to-market-equity (B/M) ratio computed

each year in June. B/M ratio is the stock’s book value of equity in the previous fiscal year

divided by its market value of equity in December of the previous calendar year. Book

value of equity is defined as stockholders’ equity SEQ (Compustat item 144) plus balance

sheet deferred taxes and investment tax credit TXDITC (item 35) minus book value of

preferred stock (BE = SEQ + TXDITC − BPSTK). Book value of preferred stock

BPSTK equals the preferred stock redemption value PSTKRV (item 56), preferred

stock liquidating value PSTKL (item 10), preferred stock PSTK (item 130), or zero

depending on data availability. If SEQ is unavailable, we set it equal to total assets AT

(item 6) minus total liabilities LT (item 181). If TXDITC is unavailable, it is assumed

to be zero. In the pre-Compustat period, we use the book equity data from Davis et al.

(2000). We treat zero or negative book values as missing.
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Another stock characteristic used in our preliminary analysis is the quality mea-

sure of Asness et al. (2019) defined as a z-score based on four characteristics—

profitability, growth, safety, and payout ratio—that determine the market-to-book

ratio in a Gordon growth model and in the absence of mispricing: quality =

z (zprofitability + zgrowth + zsafety + zpayout ratio) . The four characteristic z scores are in turn

obtained as an equal weighted average of z scores based different measures of each charac-

teristic. When some of the underlying measures are missing, the z score is taken over all

available measures. In the pre-Compustat period, we use the book equity numbers that

Davis et al. (2000) collected from the Moody’s Industrial, Public Utility, Transportation,

and Bank and Finance Manuals to calculate measures that require book equity data.

Quality is computed once a year at the end of June and requires the past six years of

data in order to compute zgrowth. See Asness et al. (2019) for further details.

As discussed in the main body of the paper, our core analysis uses a three-

characteristic model of the value-to-price ratio named adjusted value. We simply add

the z scores of B/M and profitability and subtract the z score of beta. For profitability,

we use the z score of gross profitability when available, and the z score of return on equity

otherwise.

We also examine portfolios sorted by seven additional characteristics: size, momen-

tum, net issuance, beta, profitability, investment, and accruals. The first four characteris-

tics can be computed in the pre-Compustat period, whereas the last three characteristics

are available only in the post-Compustat period. Size is market equity calculated at the

end of each month. Momentum is calculated is the cumulative gross return over the pre-

vious 12 months excluding the month before the portfolio formation and is also computed

at the end of each month. Net issuance is calculated annually at the end of each June

and is the split-adjusted growth in shares outstanding over the previous 12 months. Beta

is the trailing 3-year market beta (minimum of 2 years) calculated each month based on

overlapping 3-day returns.
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Profitability is computed each year in June. Gross profitability (“profitability”) in

calendar year y equals sales SALE (Compustat item 12) minus cost of goods sold COGS

(item 41) in fiscal year y − 1 over total assets in fiscal year y − 1 Asset growth (“invest-

ment”) is also computed each year in June, and investment in calendar year y is total

assets in fiscal year y−1 divided by total assets in fiscal year y−2. Accruals measures the

degree to which earnings come from non-cash sources and is defined according to Sloan

(1996).

IA.B.3. The GMM

To estimate the deltas of characteristic-sorted portfolios, write the sample moments

and the GMM restriction as

gT (b) =
1

T

T∑
t=1

ut (b)

AgT (b) =

 0

0

 ,

where the first two moments set the market portfolio’s alpha and delta with respect to

the candidate SDF to be zero:

ut (b) =

(
M̃tR

mkt,e
t −

∑J
j=1 M̃t−j,t−1

Pmkt
(t−j),t−1

Pmkt
(t−j),t−j

(
M̃t

(
1 +Rmkt

(t−j),t

)
− 1
)

δ̃1,t ... δ̃N,t

)′

A =

 J 0 0 ... 0

0 1 0 ... 0

 .

Recall that we model one-period candidate SDF as M̃t = exp
(
b0 − b1r

mkt
t

)
with

rmkt
t denoting log market return and cumulative candidate SDF as M̃(t−j),t =

exp
(
b0j − b1r

mkt
(t−j),t

)
with rmkt

(t−j),t denoting log market return from t − j to t. Hence,

the asymptotic variance-covariance matrices of the parameters and the sample moments
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are

V ar
(√

T b̂
)
= (AD)−1ASA′ (AD)−1,′

V ar
(√

TgT

(
b̂
))

=
[
IN+2 −D (AD)−1A

]
S
[
IN+2 −D (AD)−1A

]′
and the finite-sample variance estimates are

V̂
(
b̂
)
=

1

T

(
AD̂
)−1

AŜA′
(
AD̂
)−1,′

V̂
(
gT

(
b̂
))

=
1

T

[
IN+2 − D̂

(
AD̂
)−1

A

]
Ŝ

[
IN+2 − D̂

(
AD̂
)−1

A

]′
,

where S is the spectral density matrix and

D = E

[
∂ut (b)

∂b′

]

is estimated by D̂, which equals

T−1
T∑

t=1



M̃t(1 +Rmkt
t ) −rmkt

t M̃t(1 +Rmkt
t )

−
∑J

j=1 jM̃t−j,t
Pmkt

(t−j),t−1

Pmkt
(t−j),t−j

Rmkt,e
(t−j),t

∑J
j=1 r

mkt
t−j,tM̃t−j,t

Pmkt
(t−j),t−1

Pmkt
(t−j),t−j

Rmkt,e
(t−j),t

−
∑J

j=1 jM̃t−j,t
P1,(t−j),t−1

P1,(t−j),t−j
Re

1,(t−j),t

∑J
j=1 r

mkt
t−j,tM̃t−j,t

P1,(t−j),t−1

P1,(t−j),t−j
Re

1,(t−j),t

...
...

−
∑J

j=1 jM̃t−j,t
PN,(t−j),t−1

PN,(t−j),t−j
Re

N,(t−j),t

∑J
j=1 r

mkt
t−j,tM̃t−j,t

PN,(t−j),t−1

PN,(t−j),t−j
Re

N,(t−j),t


.

with rmkt
0,0 defined to be 0. The spectral density matrix is estimated as follows:

ŜT

(
b̂
)
= Γ̂0 +

B∑
b=1

B − b

B

(
Γ̂b + Γ̂′

b

)

where B is the Newey-West bandwidth and

Γ̂0 =
1

T

T∑
t=1

(
ut

(
b̂
)
− u

(
b̂
))′

×
(
ut

(
b̂
)
− u

(
b̂
))
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Γ̂b =
1

T

T∑
t=b+1

(
ut

(
b̂
)
− ut≥b+1

(
b̂
))′

×
(
ut−b

(
b̂
)
− ut≤T−b

(
b̂
))

.

IA.B.4. Adjusted value in a double sort

Recall that δ measures the percentage deviation of value from price, which can be

written as a product of book equity over market price (B/M) and the present value of

cash flows over book equity (V/B):

δt = 1− Vt

Pt

= 1− Bt

Mt

× Vt

Bt

, (IA.5)

where for convenience we equate market value M with per-share price P . Hence, sorting

stocks on both B/M and V/B should generate a large variation in δ.

Although V/B is unobserved, the loglinear present-value model of Vuolteenaho (2002)

shows that it can be written as a spread between future expected profitability and CAPM-

implied discount rates. Hence, we simply model V/B as the spread between the z-score

of profitability and the z-score of market beta today:

V

B
∝ Profitability Spread ≡ z(Prof)− z(Beta), (IA.6)

Consistent with our prior, double sorting stocks based on B/M and profitability

spread, our simple proxy for V/B, resurrects the ability of these characteristics to ex-

plain larger variation in δs (Table IA.VI). Furthermore, the variation in δ across the two

dimensions of the table is consistent with our conjecture in Figure IA.5.

Abnormal price δ declines as we move from left to right, which amounts to holding

B/M fixed while increasing profitability spread, and profitability spread appears to be

an especially informative predictor of CAPM abnormal price among low-B/M (growth)

stocks. Similarly, δ declines as we move from top to bottom, which amounts to holding

profitability spread fixed while increasing B/M , and this variation leads to statistically
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significant differences in abnormal price among the middle tercile profitability spread

stocks. Moving diagonally from the top left to the bottom right generates the largest

variation in δs. We estimate low profitability spread, low-B/M stocks to be 57.6 per-

centage points more overpriced than high profitability spread, high-B/M stocks with a

p-value of 0.0%.

IA.B.5. Adjusted value based on expected future profitability

Equation (29) shows that, strictly speaking, the value-to-price ratio depends on ex-

pected future profitability rather than current profitability. Hence, we estimate a VAR

model in which

xt+1 = Axt

where xt is a vector of z-scores of B/M , profitability, beta, and investment (which is the

order we use to form the column vector). The resulting VAR coefficients is as follows:

A =



.89 −.07 .02 .02

−.15 .80 .01 −.10

.00 −.01 .92 .03

−.22 −.02 .07 .31


It is easy to show that the discounted sum of future profitability can be written as a

linear combination of the four current characteristics:

FutureProf ≡ 1profA (I − ρA)−1 xt,

where 1prof denotes a vector of zeros and the one in the row that corresponds to prof-

itability. We use the z-score of the last expression as our profitability z-score that feeds

into an alternative adjusted value measure in Table IA.V.
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IA.B.6. Other proxies of misvaluation

Although we use a relatively simple three-characteristic signal of abnormal price

dubbed adjusted value, one may wonder how well existing measures fare against adjusted

value to predict abnormal price in the data. We examine two characteristics having been

suggested as proxies for abnormal price: the analyst-forecast-based measure of Frankel

and Lee (1998) and the market-multiples-based measure of Golubov and Konstantinidi

(2019). Both signals have a relatively short sample period, and the signal based on

analyst forecasts is limited by the availability of analyst forecast data. The market-

multiples-based approach requires within-industry cross-sectional regressions, which can

have a very small cross-section of data in the 1970s and earlier. Hence, our analysis is

restricted to (roughly) the same sample periods used in the original papers, starting in

the mid 1970s, giving us post-formation return data from 1991m6 to 2022m12.8

Table IA.IX shows that the V/P signal based on analyst forecasts does not predict

CAPM mispricing in the direction we expect, consistent with the observation of Chen and

Zimmermann (2021). The same table shows that although the signal based on market

multiples generates a larger variation in CAPM δs, it is also not significant in such a short

sample period. It is possible that this signal proxies for mispricing in a longer sample,

although even in Golubov and Konstantinidi (2019), their market-multiples-based V/P

signal is not a stronger signal of abnormal return than B/M itself (e.g., see the second

panel of Figure 1 of their paper, which shows the value-weight returns on their V/P

signal—called firm-specific error—are lower than those of B/M). Of course, part of their

relatively weak performance could be a feature of the sample.

8A related measure by Bartram and Grinblatt (2018) was defined from year 1987, which would lead

to an even shorter sample period, so we do not consider the measure.
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IA.B.7. Incremental information about prices when controlling for ad-
justed value: book-to-market, profitability, and beta

Table VI studies the incremental information about prices contained in characteristics

other than ones used to construct adjusted value. Here, we also examine characteristics we

do use to construct adjusted value. Table IA.X shows that controlling for adjusted value

reduces the ability of the other characteristic to predict CAPM mispricing. In particular,

the δ variation associated with beta drops dramatically. Controlling for adjusted value,

however, increases the magnitude of mispricing associated with profitability. On the other

hand, controlling for one of the underlying characteristics does not affect the economic

magnitude or the statistical significance of δ associated with adjusted value. However,

the substantial correlation between the two signals means that controlling for beta no

longer makes adjusted value a statistically significant predictor of CAPM mispricing.
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IA.C. Theory Appendix

IA.C.1. Mispricing identity: an illustrative example

An example shows how our identity correctly recovers the initial price deviation with

respect to a candidate SDF, even when there is no subsequent correction in mispricing.

An asset pays a perpetual dividend of Dt+j = λ and has a constant price of Pt+j = 1

in all periods. We posit a candidate SDF that explains the constant risk-free rate Rf > λ,

even if it may not explain the returns and prices of the asset in consideration:

M̃t+j =
1

1 +Rf

Then, the asset’s present value of dividends with respect to M̃ is Vt = λ/Rf , so the asset

has a positive abnormal price with respect to the candidate SDF:

δt =
Pt − Vt

Pt

=
Rf − λ

Rf

> 0.

That is, the asset is overpriced with respect to M̃ .

Does our excess-return-based identity correctly recover the same level of overpricing?

Applying our identity and using the risk-free asset as the base asset,

δt = −
∞∑
j=1

M̃t,t+j
Pt+j−1

Pt

Re
t+j = −

∞∑
j=1

1

(1 +Rf )
j (λ−Rf ) =

Rf − λ

Rf

,

so the answer is yes!

Intuitively, how does our formula correctly recover initial overpricing even if overpric-

ing does not get corrected in the long run? The reason is that if price stays high, the

dividend yield component of future return is (abnormally) low, and our formula detects

that as signal of initial overpricing.

To be more specific, overpricing with respect to M̃ lowers the dividend yield from Rf
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to λ, which leads to lower return and lower excess return. The artificially low dividend

yield is detected by perpetually negative excess returns, which our identity discounts back

to the present to arrive at overpricing of one.

• Dividend yield with respect to the “correct” value of Vt+j = λ/Rf :

Dt+j

Vt+j−1

= Rf

• Dividend yield with respect to market price Pt+j = 1:

Dt+j

Pt+j−1

= λ

• Return: Rt+j =
Pt+j − Pt+j−1

Pt+j−1︸ ︷︷ ︸
capital gain

+
Dt+j

Pt+j−1︸ ︷︷ ︸
dividend yield

=
1− 1

1
+ λ = λ

• Excess return: Re
t+j = λ−Rf

• Return-identity-based δt = −
∑∞

j=1 M̃t,t+j
Pt+j−1

Pt
Re

t+j =
Rf − λ

Rf

In the absence of overpricing, the dividend yield would be Rf such that excess returns

and return-based delta would be zero.

In contrast, if the asset’s price does come down to be consistent with M̃ , the capital

gain component of return is abnormally low, and our formula detects the corresponding

low excess return as a sign of initial overpricing.

As a sidenote, our formula also does not rely on the candidate SDF being the true

SDF. However, We need the base-asset return to satisfy the fundamental asset pricing

equation with respect to the candidate SDF.
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IA.C.1.1. Mispricing identity: the special case of zero dividend

Our excess-return-based identity continues to be valid in the special case when an

asset pays zero dividend and there is permanent mispricing with respect to a candidate

SDF. This amounts to setting δ = 0 in the previous example.

Suppose we are still interested in computing abnormal price with respect to the can-

didate SDF, M̃t+j = 1
1+Rf

. An “asset” with permanently zero dividend has a positive

price Pt+j > 0 in all j ≥ 0, leading to a permanent overpricing of

δt+j = 1− Vt+j

Pt+j

= 1

in all periods, including the initial period at t.

Does our excess-return-based identity correctly recover the same level of overpricing?

Applying our identity,

δt = −
∞∑
j=1

1

(1 +Rf )
j (−Rf ) =

Rf

Rf

= 1,

so the answer is again a resounding yes. Intuitively, initial overpricing is reflected in

subsequent negative excess returns of −Rf , which our identity correctly discounts to the

present to find δt = 1.

IA.C.2. The estimator in Cohen, Polk, and Vuolteenaho (2009)

CPV proposes estimating average log abnormal price. Based on the Campbell and

Shiller (1988) decomposition,

δlogt ≈ −
∞∑
j=1

ρj−1Et[rt+j]− Et[rV,t+j], (IA.7)

where rt ≡ log(Pt+Dt)− log(Pt−1) and rV,t ≡ log(Vt+Dt)− log(Vt−1) denote log returns

on price and value, respectively, and ρ < 1 is a parameter. Since Et+j−1[e
rV,t+j+m̃t+j ] = 1
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and Et+j−1[e
rb,t+j+m̃t+j ] = 1, the conditional joint normality of the log quantities implies

Et+j−1[rV,t+j] = Et+j−1[rb,t+j]+
1

2
V art+j−1(rb,t+j)−

1

2
V art+j−1(rV,t+j)+Covt+j−1(r

e
V,t+j,−m̃t+j),

(IA.8)

where reV denotes log return on value in excess of the base asset return. Plugging this into

equation (IA.7), using the approximation Et+j−1[Rt+j] ≈ Et+j−1[rt+j] +
1
2
V art+j−1(rt+j),

applying unconditional expectation, and rearranging,

E

[
∞∑
j=1

ρj−1Rt+j

]
≈ E

[
∞∑
j=1

ρj−1Rb,t+j

]
+ E

[
∞∑
j=1

ρj−1Covt+j−1(r
e
V,t+j,−m̃t+j)

]

+
1

2
E [V art+j−1(rt+j)− V art+j−1(rV,t+j)]− δlog. (IA.9)

This decomposition motivates CPV to estimate δlog using a closely related equation

(their Equation 9) in the cross-section of portfolios, where k indexes a portfolio and the

horizon is capped at J :

E

[
J∑

j=1

ρj−1Rk,t+j

]
= λ0 + λ1 β

CF
k + uk, (IA.10)

where βCF
k is measured by regressing the portfolio’s long-horizon cash flows on that of

the market.

Besides the potentially large measurement errors in estimated βCF
k , two additional

difficulties arise. First, under the null where rv = r, justifying equation (IA.10) requires

strong intertemporal restrictions that guarantee

E

[
∞∑
j=1

ρj−1Covt+j−1(r
e
t+j, r

mkt
t+j )

]
= Cov

(
∞∑
j=1

ρj−1ret+j,
∞∑
j=1

ρj−1rmkt
t+j

)
, (IA.11)

in which case λ1 = b1V ar
(
ρj−1rmkt

t+j

)
if the candidate SDF is given by m̃t = b0 − b1r

mkt
t

for log market return rmkt. The simplest way to guarantee equation (IA.11) is to assume
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that returns are independently and identically distributed (i.i.d.). However, in a world

with i.i.d. returns, it makes little sense to explore the distinctions between abnormal

price and short-horizon abnormal returns.

To quantify the extent of the problem, rewrite the conditional variance on the left-

hand side of equation (IA.11) as ret+j = βt+j−1r
mkt
t+j + ut+j, which implies that the value

of the left-hand side can be estimated as

E

[
∞∑
j=1

ρj−1βt+j−1σ
2
mkt,t+j−1

]
(IA.12)

with βt+j−1 and σ2
mkt,t+j−1 denoting the portfolio’s time t + j conditional return beta

and the market portfolio’s time t+ j conditional variance, respectively. We estimate the

conditional return beta using past 36 months’ return data and realized market variance

using daily market returns over the month. The right-hand side of the equation can be

estimated from the observed values of portfolio and market returns.

We find that there is indeed a large empirical difference between the two sides of

equation (IA.11), 0.192 (left-hand side) vs. 0.132 (right-hand side) for the high abnormal

profitability quintile portfolio. Since we estimate the log candidate SDF’s loading on

the log market return to be larger than 3, in the context of CPV’s equation (IA.7), this

translates into an estimation error in log abnormal price of more than 18 percentage

points. Two forces contribute to the left-hand side of equation (IA.11) being larger than

the right-hand side in the high abnormal profitability portfolio. First, the portfolio’s

unconditional beta is less than one but tends to rise in times of high market volatility.

This fact makes the left-hand side larger (more positive) than it would be under i.i.d.

Second, the right-hand side of equation (IA.11) involves cross-autocovariances between

portfolio excess log returns and market log returns that are likely to be negative due to

the long-term reversal effect. This fact pushes the right-hand side to be smaller.

Second, under the alternative where rv ̸= r, interpreting the error term u in equation
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(IA.10) as δlog in equation (IA.9) requires that the long-horizon sum of volatility of log

returns is the same for price and value:

E

[
∞∑
j=1

ρj−1V art+j−1(rt+j)

]
= E

[
∞∑
j=1

ρj−1V art+j−1(rV,t+j)

]
. (IA.13)

This fact can add to the bias in estimated δlog under the alternative in which mispricing

shocks with respect to M̃ makes r substantially more volatile than rV .
9

IA.C.3. Comparison to the abnormal return identity in van Binsbergen
and Opp (2019)

van Binsbergen and Opp (2019) use a different identity to link price to subsequent

abnormal returns:

Pt = Et

[∫ ∞

t

M̃t,t+τe
−

∫ τ
t α∗

ududΠt

]
,

or in discrete time,

Pt =
∞∑
j=1

Et

[
M̃t,t+j

Πj
k=1

(
1 + α∗

t+k

)Dt+j

]
, (IA.14)

where 1+α∗
t+k ≡ Et

[
M̃t+1 (1 +Rt+1)

]
. van Binsbergen and Opp use the term “mispricing

wedge” to refer to the stochastic cumulation of abnormal returns, 1/
[
Πj

k=1

(
1 + α∗

t+k

)]
,

which is different from the definition of ex-ante abnormal price δt = Et [1− Vt/Pt] we

introduce in our paper.

To derive their discrete-time identity in equation (IA.14), begin with

1 + α∗
t+1 ≡ Et

[
M̃t+1 (1 +Rt+1)

]
= Et

[
M̃t+1

Pt+1 +Dt+1

Pt

]
.

9Having the correct estimate of abnormal price under the alternative is important, just as the er-

ror term in an asset pricing regression for returns can be interpreted as abnormal returns under the

alternative.
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Rearranging terms and iterating forward,

Pt = Et

[
M̃t+1

1+α∗
t+1

Dt+1 +
M̃t+1

1+α∗
t+1

Pt+1

]
= Et

[
M̃t+1

1+α∗
t+1

Dt+1 +
M̃t+1M̃t+2

(1+α∗
t+1)(1+α∗

t+2)
Dt+2 + ...

]
=

∑∞
j=1Et

[
M̃t,t+j

Πj
k=1(1+αt+k)

Dt+j

]
.

To see what equation (IA.14) implies about unconditional ex-ante abnormal price we

define, write

δ = E [1− Vt/Pt] =
∞∑
j=1

E

[
M̃t,t+j

(
1

Πj
k=1

(
1 + α∗

t+k

) − 1

)
Dt+j

Pt

]
. (IA.15)

Compared to the analysis based on the Campbell-Shiller approximation in equation (??),

equation (IA.15) helpfully clarifies that the “mispricing wedge,” 1/
[
Πj

k=1

(
1 + α∗

t+k

)]
,

has to be stochastically discounted using with the cumulative SDF to arrive at ex-ante

mispricing.

However, it is not obvious how to take equation (IA.15) to data to estimate δ using

returns. For instance, one could rewrite equation (IA.15) in terms of returns,

δ =
∞∑
j=1

E

M̃t,t+j

 1

Πj
k=1Et+k−1

[
M̃t+k (1 +Rt+k)

] − 1

 Dt+j

Pt

 , (IA.16)

but the conditional expectation in the denominator, Et+k−1[ ], prevents one from tak-

ing equation (IA.16) to data without making additional assumptions about which state

variables help forecast the time series of conditional abnormal returns. Our identity cir-

cumvents this issue by making the intentional decision to use a definition of mispricing

that has price Pt in the denominator, which results in subsequent abnormal returns ap-

pearing in the numerator and leads to our expression for unconditional mispricing in

equation (19) as well as our return-based calendar-time estimator in equation (2).
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IA.C.4. Portfolio δ

In practice, one would typically estimate the δ of a portfolio of stocks, which requires

expressing the portfolio δ as a function of post-formation capital gains and returns on

the portfolio. These capital gains and returns should be those based on a buy-and-hold

strategy that does not rebalance the portfolio (or equivalently, use the original weight

times the stock’s cumulative capital gain to rebalance the portfolio every month). If wi,t

is the portfolio weight on security i at the time of portfolio formation t,

δt =
∑N

i=1wi,tδi,t

=
∑N

i=1wi,t

(
−
∑∞

j=1Et

[
M̃t,t+j

Pi,t+j−1

Pi,t
Re

i,t+j

])
= −

∑∞
j=1Et

[
M̃t,t+j

∑N
i=1

(
wi,t

Pi,t+j−1

Pi,t
Re

i,t+j

)]
= −

∑∞
j=1Et

[
M̃t,t+j

∑
i∈Nt+j

(
wi,t

Pi,t+j−1

Pi,t
Re

i,t+j

)]
,

(IA.17)

where Nt+j denotes the set of firms surviving (not delisted) at the end of t + j − 1 and

therefore have return data for t+ j. Hence,

δt = −
∑∞

j=1Et

[
M̃t,t+j

(∑
i∈Nt+j

wi,t
Pi,t+j−1

Pi,t

)(∑
i∈Nt+j

wi,t
Pi,t+j−1

Pi,t
Re

i,t+j∑
i∈Nt+j

wi,t
Pi,t+j−1

Pi,t

)]
= −

∑∞
j=1Et

[
M̃t,t+j

Pt+j−1

Pt
Re

t+j

]
,

(IA.18)

where

1. we normalize the time t portfolio price Pt to be 1.

2. the buy-and-hold time t+ j − 1 portfolio price is Pt+j−1 =
∑

i∈Nt+j
wi,t

Pi,t+j−1

Pi,t
.

3. the buy-and-hold portfolio weight on asset i between t+ j − 1 and t+ j is

wi,t+j =
wi,t

Pi,t+j−1

Pi,t∑
i∈Nt+j

wi,t
Pi,t+j−1

Pi,t

4. the buy-and-hold portfolio excess return is then given by Re
t+j =
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∑
i∈Nt+j

wi,t+jR
e
i,t+j.

IA.C.5. Monte Carlo analysis

We analyze our estimator’s statistical properties and compare them to those of alter-

native approaches by simulating the asset market. We do this by adopting the model

used in the Monte Carlo analysis of Korteweg and Nagel (2016) (KN) to our purposes.10

As in KN, the log one-period (candidate) SDF and log market returns follow, respec-

tively,

m̃t = b0 − b1r
mkt
t (IA.19)

rmkt
t = rf + b1σ

2 − 1

2
σ2 + σϵt, (IA.20)

where b0 and b1 are parameters, rf is the constant log risk-free rate, σ is the volatility

of log market return, and ϵt ∼ N (0, 1) are i.i.d. so that rmkt
t also is. Given this setup,

the candidate SDF explains market returns and the risk-free rate if b0 = −rf + b1(rf +

b1σ
2 − 1

2
σ2)− 1

2
b21σ

2, which we assume.11 To keep the model lean, we assume that there

is single market portfolio and do not model how market portfolios formed in different

periods could be different due to IPOs, delistings, and net issuance.12

10We present the model in a similar manner to KN for an easy comparison and specify the cash flow

and mispricing processes.

11Furthermore, equation (IA.20) implies that b1 is pinned down by choosing rf , σ
2, and the average

log market return E[rmkt
t ]: b1 = (E[rmkt

t ]− rf )/σ
2 + 1/2

12One can think of that as the market portfolio being a single Lucas tree. Practically, this assumption

means that investors in our model receive the same return and cash flows at each t regardless of when

the investor began buying and holding the market portfolio. Of course, this implication is not true in

reality, but we find that it is a reasonable approximation, since the correlation between market returns

and post-formation market returns tends to be extremely high. The sample correlation between returns

on the market portfolio formed a month ago versus 15 years ago (the largest gap) is 97.8% over 1948m6–

2022m12.
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Since market returns are i.i.d., the market has a constant log price-dividend ratio

ymkt, which we define as the log of one plus the ratio of price to dividend. Then, the log

dividend growth, ∆dmkt
t = log(Dmkt

t /Dmkt
t−1 ), follows

13

∆dmkt
t = rmkt

t − ymkt + log
(
exp

(
ymkt

)
− 1
)
, (IA.21)

which allows us to back out ymkt from E[∆dmkt
t ]. The constant price-dividend ratio also

implies that the log capital gain follows the same process as the log dividend growth.

Next, we specify the returns on a characteristic-based portfolio’s present value. The

portfolio formed at (t− j) for j ≥ 1 has a time-t log return on value of

rv,(t−j),t = rf + βv(r
mkt
t − rf ) +

1

2
βvσ

2 − 1

2
(β2

vσ
2 + σ2

η) + η(t−j),t, (IA.22)

where ηt =

(
η(t−1),t · · · η(t−J),t

)′

∼ MVN
(
0, σ2

ηΓη

)
and Γη is a J-by-J cross-

sectional correlation matrix with ρ
|i1−i2|+|j1−j2|
η as the correlation between entries (i1, j1)

and (i2, j2) in the matrix. ηt has zero time-series autocorrelations. This correlation struc-

ture ensures that cross-sectional correlations among the portfolio’s post-formation returns

fall as the difference in the portfolio formation periods increases. It is easy to check that

the expected return on rv,(t−j),t is consistent with the candidate SDF and market return

processes. We also assume that the portfolio’s dividend growth has a βv exposure to the

market dividend growth and an expected value of βvE[∆dmkt
t ].

Since portfolio returns on value are i.i.d. over time (though not in the cross-section),

the portfolio should have a constant log value-dividend ratio of y. This means that the

portfolio’s log dividend growth follows

∆d(t−j),t = rv,(t−j),t − y + log (exp (y)− 1) . (IA.23)

13To see this, rmkt
t = log

(
Pmkt
t +Dmkt

t

)
− logPmkt

t−1 = log
(
1 + Pmkt

t /Dmkt
t

)
+ log

(
Dmkt

t /Dmkt
t−1

)
−

log
(
Pmkt
t−1 /Dmkt

t−1

)
= ymkt +∆dmkt

t − log
(
exp

(
ymkt

)
− 1
)
.
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This equation and the fact that we assume E[∆d(t−j),t] = βvE[∆dmkt
t ] pins down the value

of y and of ∆d(t−j),t. Under the null of a correct SDF, there is no mispricing such that

the log return is the return on value and price is the intrinsic value: r = rv and P = V .

In this case, a constant price-dividend ratio also means that capital gain again equals the

dividend growth. This is the process used to examine size.

To examine power, we need to allow for mispricing in the characteristic-based port-

folio. We do this by specifying log abnormal price, δlogt = − log(1− δt) = log(Pt/Vt). We

allow the formation-period abnormal price to be autocorrelated across time:

δlog(t),t = (1− ϕinit)δ
log

+ ϕinitδ
log
(t−1),t−1 + et, (IA.24)

where et ∼ N(0, σ2
e) such that portfolio-formation period log abnormal price tends to

mean revert to δ
log
. In each simulation, we draw the first portfolio-formation period ab-

normal price δlog(0),0 from a normal distribution with mean δ
log

and variance (1−ϕ2
init)

−1σ2
e .

On the other hand, post-formation log abnormal price tends to converge to zero:

δlog(t−j),t = ϕpostδ
log
(t−j),t−1 + u(t−j),t for j ≥ 1, (IA.25)

where ut =

(
u(t−1),t · · · u(t−J),t

)′

∼ MVN (0, σ2
uΓu) is cross-sectionally correlated

across portfolios formed in different time periods (different j’s) and Γu is a J-by-J matrix

with elements ρ
|i1−i2|+|j1−j2|
u as the correlation between entries (i1, j1) and (i2, j2) in the

matrix. We allow ϕinit and ϕpost to be different. Both et and ut have zero time-series

autocorrelations. Simple algebra implies that the return on price in the presence of

mispricing is

r(t−j),t = ∆d(t−j),t + log
(
exp

(
δlog(t−j),t

)
(exp (y)− 1) + 1

)
− δlog(t−j),t−1 − log (exp (y)− 1)

(IA.26)
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and that the log capital gain is

log

(
Pt

Pt−1

)
= ∆dt + δlogt − δlogt−1. (IA.27)

We choose the parameters of the model to match the key moments of the market

portfolio and the high abnormal profitability portfolio, which serves as our benchmark for

the characteristic-based portfolio under the alternative. Table IA.II compares a number

of key moments from simulations and data.

IA.C.6. Estimation in the presence of mispricing in firm-level returns

Cohen et al. (2009) explain that tests of the CAPM may be distorted when there is

market-wide mispricing. Their use of a ROE CAPM, as motivated by the Vuolteenaho

(2002) decomposition, nicely avoids this. Of course, we can also use a ROE-based SDF

in our return-based identity approach. Mispricing in firm-level returns, on the other

hand, does not hinder us when using the distorted covariance between returns and the

candidate SDF to estimate δ based on our identity.

The easiest way to see that mispricing in firm-level returns does not hinder us from

using the covariance between distorted returns and the candidate SDF when estimating

δ is to recognize that the direct discount of cash flows is equivalent to an event-time,

gross-return version of our return-based-identity (i.e., a version of our identity that does

not exploit the calendar-time reformulation and the excess return restriction used in the

paper). Therefore, the direct discount of cash flows is not superior to our method in the

presence of firm-level mispricing.

The event-time return-identity-based formula for δ(J) can be written as

δ(J) = −
J∑

j=1

E

[
M̃t,t+j−1

P(t),t+j−1

P(t),t

(M̃t+j

[
(1 +R(t),t+j)− (1 +Rb,(t),t+j)

]
)

]
, (IA.28)

where Rb denotes the return on the base asset (for which we use the market portfolio).
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This equation is the basis for an event-time return-identity-based estimator of abnormal

price that we could use were it not for the serial correlation or the time discount issue:

− 1

T

T∑
t=1

J∑
j=1

[
M̃t,t+j

P(t),t+j−1

P(t),t

Re
(t),t+j

]
. (IA.29)

Since 1 = Et+j−1

[
M̃t+j(1 +Rb,(t),t+j)

]
by definition, we can also write

δ(J) = −
J∑

j=1

E

[
M̃t,t+j−1

P(t),t+j−1

P(t),t

(M̃t+j(1 +R(t),t+j)− 1)

]
(IA.30)

The sample analogue of equation (IA.30) is

− 1

T

T∑
t=1

J∑
j=1

[
M̃t,t+j−1

P(t),t+j−1

P(t),t

(M̃t+j(1 +R(t),t+j)− 1)

]

= − 1

T

T∑
t=1

J∑
j=1

[
M̃t,t+j

P(t),t+j +D(t),t+j

P(t),t

− M̃t,t+j−1

P(t),t+j−1

P(t),t

]

=
1

T

T∑
t=1

[
1−

J∑
j=1

M̃t,t+j

D(t),t+j

P(t),t

− M̃t,t+j

P(t),t+J

P(t),t

]
, (IA.31)

which is the sample delta expression for the cash-flow method. Figure IA.6 verify empir-

ically that the two methods generate identical point estimates.

Since equation (IA.29) can be stated using returns or using cash flows, taking (IA.31)

to the data cannot provide any additional advantage in terms of improving the point

estimate. In contrast, using the calendar-time expression for equation (IA.29) has the

advantage of having low serial correlation in its time-series observations.

To show exactly how this equivalence works, we next analyze a simple example. Con-

sider a three-period setting (t = 0, 1, 2) with two states at time 1 with equal probability

(s1 = L,H) and two cumulative states at time 2 due to the two time-1 states. The

28



candidate SDF follows the following dynamics:

M̃t =

t = 1

1 + µ if s1 = H

1− µ if s1 = L

−→

t = 2

1 if s1 = H

1 if s1 = L

where µ > 0. The market return is the inverse of the candidate SDF: Rmkt
t = M̃−1

t − 1.

There is a stock portfolio paying no cash flow other than a deterministic liquidating

dividend of V at time 2. Since M̃t has a conditional mean of one in all periods, the stock’s

correct price with respect to the candidate SDF is Vt = V in all periods.

Besides analyzing the case with no mispricing with respect to M̃ , we also con-

sider two cases of mispricing. Case 1 is when there is an overvaluation by a fac-

tor of (1− µ)−1 (1 + 2ϵ) in the low-M state at time 1, but the price is correct in all

other periods and states. Hence, there is no ex-ante mispricing at time 0. Case 2 is

when there is the same overvaluation in the low-M̃ state at time 1, AND the time-0

price also takes the resulting distorted market beta into account: P0 = E0

[
M̃1P1

]
=

0.5V +0.5 (1− µ)
(
V (1− µ)−1 (1 + 2ϵ)

)
= V (1 + ϵ). Hence, in Case 2, there is an initial

overpricing of (P0 − V0) /P0 = ϵ/ (1 + ϵ) at time 0.

t = 0 t = 1 t = 2

Dt 0 V

No mispricing V V 0

Pt Mispricing: Case 1 V
V

V (1− µ)−1 (1 + 2ϵ)

if s1 = H

if s1 = L
0

Mispricing: Case 2 V (1 + ϵ)
V

V (1− µ)−1 (1 + 2ϵ)

if s1 = H

if s1 = L
0

Now consider computing the initial abnormal price measured using either the conven-
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tional cash-flow expression or our return-based identity:

δCF,t = 1− Et

[
M̃t+1

Dt+1

Pt

]
− Et

[
M̃t,t+2

Dt+2 + Pt+2

Pt

]
. (IA.32)

δt = −Et

[
M̃t+1R

e
t+1

]
− Et

[
M̃t,t+2

Pt+1

Pt

Re
t+2

]
, (IA.33)

where the excess return is with respect to the market return. We want to check that one

can rely on either formula to correctly find the initial abnormal price, whether or not

there is a distorted covariance with the candidate SDF.

No mispricing

In this case,

δCF,0 = 1− Et

[
M̃t,t+2

Dt+2

Pt

]
= 1− V

V
= 0.

Also,

δ0 = −E0

[
M̃1

(
0−Rmkt

1

)]
= −1

2

[
(1 + µ)

(
(1 + µ)−1 − 1

)
+ (1− µ)

(
(1− µ)−1 − 1

)]
= 0

so that we recover the initial abnormal price of zero in both cases.

Mispricing Case 1 (no initial mispricing)

In this case,

δCF,0 = 1− Et

[
M̃t,t+2

Dt+2

Pt

]
= 1− V

V
= 0.
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Also,

δ0 =
−1

2

[
M̃1,s1=H

(
R1,s1=H −Rmkt

1,s1=H

)
+ M̃1,s1=L

(
R1,s1=L −Rmkt

1,s1=L

)]
−1

2
M̃1,s1=L

P1,s1=L

P0

(
R1,s1=L −Rmkt

2,s1=L

)
=

− 1
2 [(1+µ)(0−((1+µ)−1−1))−(1−µ)(((1−µ)−1(1+2ϵ)−1)−((1−µ)−1−1))]

− 1
2
(1−µ)(1−µ)−1(1+2ϵ)

((
1

(1−µ)−1(1+2ϵ)
−1

)
−0

)
= 0

Hence, we recover an initial mispricing of zero in both cases in spite of the distorted

covariance with M̃ due to mispricing. Our identity neutralizes this distortion through

the cumulative capital gain term multiplying the cumulative candidate SDF and excess

returns. Of course, this result generalizes to the case with additional periods.

Mispricing Case 2 (initial overpricing)

In this case,

δCF,0 = 1− Et

[
Mt,t+2

Dt+2

Pt

]
= 1− V

V (1 + ϵ)
= 1− 1

1 + ϵ
=

ϵ

1 + ϵ
.

When applying the Cho-Polk identity, the difference from Case 1 arises in R1 and P1

P0
.

δ0 =
− 1

2 [(1+µ)(((1+ϵ)−1−1)−((1+µ)−1−1))−(1−µ)(((1+ϵ)−1(1−µ)−1(1+2ϵ)−1)−((1−µ)−1−1))]

− 1
2
(1−µ)(1+ϵ)−1(1−µ)−1(1+2ϵ)

((
1

(1−µ)−1(1+2ϵ)
−1

)
−0

)

=
− 1

2
(1+µ)((1+ϵ)−1−1)− 1

2
(1−µ)((1+ϵ)−1−1)(1−µ)−1(1+2ϵ)

− 1
2
(1−µ)((1+ϵ)−1−1)(1−µ)−1(1+2ϵ)

(
1

(1−µ)−1(1+2ϵ)
−1

)
= ϵ/ (1 + ϵ)

Hence, we recover an initial abnormal price of ϵ/ (1 + ϵ) in both cases in spite of the

distorted covariance with M̃ due to mispricing.
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IA.D. Additional Figure and Tables
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Figure IA.1. Estimated CAPM-implied Candidate SDF. The figure plots the
time-series realizations of the CAPM-implied candidate SDF: M̃t = exp(b0− b1r

mkt
t ) with

rmkt
t denoting log market returns.
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Figure IA.2. Autocorrelation by Estimation Approach: B/M, Quality, and
Adjusted value. The figure reports the 1- to 100-month autocorrelations in time-series
δs estimated based on the return-identity-based approach (solid grey) and the dividend-
based approach using event-time (dash orange). We provide the comparison for the low-,
high-, and high-minus-low quintile portfolios (in different columns) sorted on the book-
to-market, quality, and adjusted value (in different rows).
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Figure IA.3. GMM vs. Bootstrap Standard Errors: Monte Carlo. The figure
shows the true standard deviation of the delta estimator (red solid line), median GMM
standard error (blue solid circle), median bootstrap standard error, and the 10% and
90% values for the two standard errors based on Monte Carlo. The comparison shows
that GMM standard errors have a median that almost exactly matches the true standard
deviation of δ̂ and a much narrower confidence interval than the bootstrap standard error.
Both GMM and bootstrap standard errors use a bandwidth / blocklength of 2 years.
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Figure IA.4. Estimated δ by the Choice of J. The left plot shows the way estimated
δ changes as we vary the total number of post-formation months J used in the estimate.
The right plot shows the corresponding change in δ by J . The plotted lines are for the
high (dotted lines) and low (solid lines) quintile portfolios sorted on the market-to-book
(blue), quality (grey), and quality-to-price (orange). The two plots suggest that estimated
δs tend to plateau after J = 15 years (180 months).

34



Book-to-
market (B/M)

High

Low

 Profitability spread (V/B) 
Low High

  high price P,
  low value V

     𝛿 >> 0

 high price P, 
   high value V

      𝛿 ≈ 0

low price P, 
low value V

    𝛿 ≈ 0

low price P,
high value V

  𝛿 << 0

Figure IA.5. A Double Sort on B/M and Profitability Spread (V/B): Illus-
tration. This diagram illustrates how a double sort on the book-to-market equity ratio
and a proxy for the value-to-book ratio should generate large cross-sectional variation in
mispricing δ. We proxy the value-to-book ratio with a two-characteristic signal dubbed
profitability spread.
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Figure IA.6. Delta Based on the Gross-Return Identity vs. Cash Flows. The
figure plots the delta estimate using two theoretically equivalent approaches: the direct
discount of future cash flows and a terminal value (price in 15 years; vertical axis) and
the event-time, gross-return version of the return-identity-based approach (horizontal
axis). The two approaches yield very similar results, with only differences of a few
basis points due to measurement errors and estimation noise. The identity-based point
estimates reported in our main analysis differ from those reported here due to the use of
the calendar time rearrangement as well as the excess return restriction. Table I shows,
however, that the gross-return-identity approach is subject to a potentially large bias
(and naturally, the cash-flow-based approach as well).
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A. Net Issuance: Returns B. Net Issuance: Prices C. Investment: Returns D. Investment: Prices
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Figure IA.7. The Risk-Return Relations in Returns and Price Levels (Other
Return Anomalies). The plots, for portfolios sorted on various return anomaly char-
acteristics, the relation between long-horizon risk and long-horizon return versus that
between short-horizon risk and return. Risks are measured with respect to the market
portfolio. See the description in Figure 3 for more details. The sample period is 1948m6–
2022m12.
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Figure IA.8. Delta vs. Cumulative State Adjustment. The figure plots the
abnormal price estimate (horizontal axis) against the cumulative state adjustment (ver-
tical axis) for the twenty extreme quintile portfolios. The cumulative state adjustment
component arises from the three-way decomposition of long-horizon return presented in
Corollary 4:

J∑
j=1

ET

[
ϕ(t−j),t−1

]
ET

[
M̃t

]
ET

[
Re

(t−j),t

]
︸ ︷︷ ︸

“long-horizon return”

= − δ̂ +
J∑

j=1

ET

[
ϕ(t−j),t−1

]
CovT

(
Re

(t−j),t,−M̃t

)
︸ ︷︷ ︸

“long-horizon risk”

−
J∑

j=1

ET

[
ϕ(t−j),t−1

]
CovT

(
ϕ(t−j),t−1

ET

[
ϕ(t−j),t−1

] , M̃tR
e
(t−j),t

)
︸ ︷︷ ︸

“cumulative state adjustment”

The plot shows that the cumulative state adjustment typically has an absolute magnitude
below 10% and does not have a clear univariate cross-sectional relation with abnormal
price δ.
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A. Alphas B. Add Alpha × Return Reversal
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Figure IA.9. Predicting Abnormal Price (δ) with Short-horizon Alpha and
Other Factors. The figures plot the cross-sectional relation between estimated delta
and a fitted value based on the portfolio’s short-horizon abnormal return (alpha), its
interaction with a dummy variable for return reversal, short-horizon beta, and cumulative
state adjustment. Panel A uses only short-horizon alpha to predict abnormal price,
whereas Panel B adds the interaction of alpha and the return reversal dummy. Panel C
adds short-horizon beta and Panel D also adds the cumulative state adjustment. Short-
horizon alpha is the one-month abnormal return on the portfolio immediately following
portfolio formation. Return reversal is a dummy variable that takes the value of one if
the average excess return in years three-to-15 following portfolio formation is opposite
in sign to the average excess return in the first post-formation month. Short-horizon
beta is the portfolio’s one-month market beta immediately following portfolio formation.
Cumulative state adjustment is as defined in Section III.C. The sample period is 1948m6–
2022m12.
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Table IA.I. Size and power of the return-identity-based estimator of abnormal
price. This table reports the size and power of our abnormal price estimator for different
choices of the standard error. Panel A shows that under the null of δ = 0, a Newey-
West (NW) bandwidth of 2 years (“SE2y”) yields a conservative rejection rate of 2.4% as
opposed to the 5% significance level. Under the alternative of δ = 36.6, the null is rejected
75% of the time. For comparison, Panel B reports the size and power of a short-horizon
abnormal return (α) test, showing that an annualized alpha of around 3.2% (12×0.26bp)
paired with GMM standard errors with no lag (“SE0m”) has a similar statistical power
as a price-level test on a delta of -36.6% and GMM standard errors with a NW lag of
2 years. We choose the parameters in our Monte Carlo simulation to match the key
moments of the high-adjusted -value portfolio. For all tests, we use 1,000 simulations of
the same number periods as in the actual data (1, 074 months spanning 89.5 years).

A. Abnormal Price (δ)

True SD SE1y SE2y SE3y SE4y SE5y SE10y SE15y

Size 0.047 0.016 0.024 0.027 0.035 0.042 0.072 0.098

Power 0.750 0.686 0.750 0.796 0.818 0.835 0.873 0.891

B. Abnormal Return (α)

True SD SE0m SE3m SE3m SE1y SE2y SE3y SE5y

Size 0.051 0.056 0.053 0.050 0.054 0.058 0.064 0.069

Power 0.606 0.720 0.717 0.715 0.714 0.697 0.690 0.690
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Table IA.II. Monte Carlo Moments. The table reports the key moments from
simulations and data. The portfolio parameters are from the high adjusted value decile
portfolio.

Simulation

Portfolio parameter δ = 0 δ ̸= 0 Data Market-level parameter Simulation Data

δ 0 −0.366 n/a

E
[
δ̂
]
, δ̂ 0.003 −0.360 −0.335

σr 0.039 0.046 0.041 σmkt 0.043 0.043

r 0.008 0.010 0.010 rmkt 0.0087 0.0087

β 0.830 0.830 0.827 rf 0.0032 0.0032

ρ(r(t−1),t, r(t−2),t) 0.999 0.997 0.996

ρ(r(t−1),t, r(t−180),t) 0.875 0.778 0.817
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Table IA.III. Estimated Candidate SDF Parameters. The table reports the es-
timated parameters of the model SDF, M̃t = exp(b0 − b1r

mkt
t ) with rmkt

t denoting log
market returns, along with the 95% confidence intervals in brackets.

J b0 b1

1mo 0.015 3.294

[0.000,0.030] [1.518,5.070]

1yr 0.014 3.007

[-0.000,0.027] [1.251,4.764]

3yrs 0.014 3.127

[-0.002,0.030] [1.362,4.892]

5yrs 0.015 3.306

[-0.002,0.032] [1.548,5.064]

10yrs 0.014 3.184

[-0.002,0.031] [1.435,4.933]

15yrs 0.015 3.399

[-0.006,0.037] [1.634,5.165]
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Table IA.IV. Autocorrelation by Estimation Approach: All Characteristics.
The table reports the 1-month, 12-month, 60-month, and 180-month autocorrelations
in time-series δs estimated based on the return-identity-based approach (“Return iden-
tity”) and the dividend-based approach using event time (“Cash flow”). We provide the
comparison for the low-, high-, and high-minus-low quintile portfolios sorted on all ten
characteristics studied in the paper.

Low High Hi - Lo

Autocorrelation lag

Sort Approach 1 12 60 180 1 12 60 180 1 12 60 180

Book-to-market Cash flow 0.98 0.78 0.34 -0.86 0.98 0.77 0.18 -0.95 0.96 0.63 -0.14 -0.34

Return identity 0.15 0.15 -0.05 0.01 0.07 0.11 -0.01 0.00 0.11 0.14 -0.03 0.00

Quality Cash flow 0.98 0.77 0.26 -0.94 0.98 0.77 0.31 -0.80 0.93 0.32 0.03 -0.18

Return identity 0.23 0.11 -0.02 0.02 0.23 0.10 -0.05 -0.00 0.24 0.11 -0.03 0.01

Adjusted value Cash flow 0.98 0.80 0.32 -0.82 0.98 0.77 0.19 -0.95 0.97 0.70 0.04 -0.13

Return identity 0.15 0.07 -0.09 -0.05 0.01 0.01 -0.04 -0.05 0.08 0.03 -0.06 -0.06

Net issuance Cash flow 0.98 0.76 0.30 -0.76 0.98 0.79 0.35 -0.80 0.95 0.48 0.03 -0.32

Return identity 0.20 0.11 -0.04 -0.00 0.23 0.09 -0.10 0.04 0.20 0.11 -0.08 0.01

Investment Cash flow 0.98 0.82 0.24 -1.18 0.98 0.74 0.37 -0.71 0.97 0.66 -0.06 -0.24

Return identity 0.01 -0.00 0.02 0.04 0.02 0.12 -0.07 -0.05 -0.05 0.11 -0.02 -0.00

Beta Cash flow 0.97 0.75 0.24 -1.02 0.98 0.82 0.33 -0.80 0.96 0.65 0.01 0.07

Return identity 0.16 0.06 -0.05 -0.05 0.11 0.12 -0.09 -0.03 0.16 0.09 -0.08 -0.05

Accruals Cash flow 0.98 0.83 0.40 -0.70 0.98 0.77 0.30 -0.78 0.94 0.32 0.09 -0.29

Return identity 0.08 -0.02 -0.01 -0.02 0.21 0.06 -0.09 -0.03 0.12 -0.04 -0.02 0.01

Size Cash flow 0.98 0.80 0.23 -0.85 0.98 0.79 0.32 -0.84 0.96 0.60 -0.06 -0.51

Return identity 0.03 0.15 -0.04 0.03 0.02 0.12 -0.06 0.01 0.03 0.15 -0.05 0.03

Momentum Cash flow 0.97 0.76 0.17 -1.06 0.97 0.71 0.37 -0.77 0.94 0.45 -0.14 -0.44

Return identity 0.21 0.11 -0.05 0.01 0.20 0.05 -0.09 -0.01 0.09 0.16 -0.00 0.01

Profitability Cash flow 0.98 0.80 0.32 -0.55 0.98 0.77 0.35 -0.84 0.98 0.76 0.35 -0.08

Return identity 0.24 -0.00 -0.02 0.03 0.12 0.15 -0.02 0.01 0.22 0.08 -0.02 0.02

Average Cash flow 0.98 0.79 0.28 -0.87 0.98 0.77 0.31 -0.83 0.96 0.56 0.01 -0.25

Return identity 0.15 0.08 -0.03 0.00 0.12 0.09 -0.06 -0.01 0.12 0.09 -0.04 -0.00
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Table IA.V. Alternative Constructions of Adjusted Value. The table presents the deltas and p-values associated with
alternative constructions of our adjusted value characteristic. p-values are based on GMM standard errors with the Newey-West
kernel and a 24-month bandwidth.

AdjVal zBM + zz(Prof)−z(Beta) AdjVal (Future Prof) zBM + zz(FutureProf)−z(Beta) zProf − zBeta zBM − zBeta zBM + zProf

delta difference -0.519 -0.508 -0.547 -0.552 -0.394 -0.352 -0.467

(p-value) 0.002 0.005 0.001 0.003 0.164 0.134 0.130
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Table IA.VI. Pricing B/M-and-Profitability-Spread-sorted Portfolios: A Dou-
ble Sort. The table shows that abnormal price relative to the CAPM is large for
portfolios double-sorted on the book-to-market equity ratio (B/M) and profitability
spread, our proxy for the value-to-book ratio: Profitability Spread = zprof − zbeta,
where z is a z-score. We form nine value-weight portfolios by independently sorting
stocks into three B/M bins and three profitability spread bins based on the associ-
ated 30% and 70% NYSE breakpoints. We form portfolios and track post-formation
returns for 15 years. The reported δs are estimated values of abnormal price defined as

δ = E
[
Pt−Vt

Pt

]
≈ δ (180) = −E

[∑180
j=1M̃t−j,t

P(t−j),t−1

P(t−j),t−j
Re

(t−j),t

]
, where (t− j) denotes the

portfolio formation month and t denotes the month in which returns are realized. We

use the candidate SDF implied by the CAPM, M̃t−j,t = exp
(
b0j − b1

∑j−1
s=0 r

mkt
t−s

)
, where

rmkt
t is log market returns and b0 and b1 are chosen to make the market portfolio’s prices
(δ) and returns (δ (1)) correct in sample. We report t-statistics (in parentheses) and
p-values (in brackets) based on GMM standard errors that account for time-series and
cross-sectional covariances in the data and uncertainty in estimating the parameters of
the candidate SDF. The sample period is 1948m6–2022m12.

δ × 100 (t-statistic) [p-value]

Profitability spread

Book-to-market Lo 2 Hi Hi - Lo

Lo 26.7 4.1 -11.7 -26.4

(3.04) (2.91) (1.61) (-1.95), [0.052]

2 18.6 -12.7 -33.1 -38.4

(1.50) (2.21) (1.96) (-1.54), [0.124]

Hi 0.3 -34.4 -31.0 -19.3

(1.49) (1.43) (1.92) (-0.74), [0.462]

Hi - Lo -38.4 -51.8 -31.2

(-1.63), [0.104] (-2.11), [0.035] (-1.93), [0.053]

δ difference t-statistic p-value δRN diff (t-stat)

100× (δHH − δLL) -57.6 -3.61 0.000 -18.5 (-0.95)
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Table IA.VII. Abnormal Price vs. Cumulative Abnormal Return (CAR).The
table compares the magnitudes and the p-values of abnormal price vs. CAR estimates.
CAR is the conventional calendar-time cumulative abnormal return with respect to the
CAPM :

ĈAR =
J∑

j=1

α̂j.

When reporting CAR, we flip the sign for a better comparison with delta. To be consistent
with the delta estimates, CAR uses portfolio excess returns with respect to post-formation
market returns. p-values are based on GMM standard errors with the Newey-West kernel
and a 24-month bandwidth.

Delta Cumulative abnormal return

δ p-value CAR ×− 1 p-value

Sort Lo Hi Hi-Lo Lo Hi Hi-Lo Lo Hi Hi-Lo Lo Hi Hi-Lo

Book-to-market 0.060 -0.212 -0.272 0.625 0.206 0.337 -0.012 -0.100 -0.088 0.868 0.390 0.567

Quality 0.061 -0.053 -0.114 0.629 0.603 0.609 0.138 -0.129 -0.266 0.088 0.019 0.054

Adjusted value 0.184 -0.334 -0.519 0.001 0.007 0.002 0.243 -0.316 -0.559 0.000 0.000 0.000

Net issuance -0.164 0.072 0.237 0.008 0.278 0.006 -0.199 0.122 0.321 0.000 0.036 0.000

Investment -0.176 0.118 0.294 0.020 0.154 0.035 -0.114 0.102 0.216 0.089 0.176 0.089

Accruals 0.002 0.209 0.207 0.983 0.047 0.222 0.097 0.183 0.086 0.316 0.017 0.580

Beta -0.226 0.182 0.408 0.060 0.041 0.029 -0.311 0.302 0.613 0.001 0.000 0.000

Size -0.134 0.035 0.170 0.595 0.300 0.549 0.026 -0.009 -0.035 0.884 0.741 0.836

Momentum -0.165 0.043 0.208 0.248 0.460 0.136 -0.010 0.066 0.076 0.889 0.094 0.145

Profitability 0.133 0.044 -0.090 0.527 0.812 0.805 0.054 -0.025 -0.080 0.695 0.807 0.661
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Table IA.VIII. Explaining Delta Using Short-horizon Alpha. The table explains
the cross-section of CAPM abnormal price (δ) based on short-horizon abnormal return
(α), its interaction with a dummy variable for return reversal, short-horizon beta (β), and
cumulative state adjustment (Cumul. state adj.). Return reversal is a dummy variable
that takes the value of one if the average excess return in years three-to-15 following port-
folio formation is opposite in sign to the average excess return in the first post-formation
month. All regressors are cross-sectionally standardized for the ease of interpreting the
point estimates. We use the extreme quintile portfolios for each characteristic, resulting
in a cross-section of twenty observations. We report t-statistics (in parentheses) based
on heteroskedasticity-robust standard errors.

(1) (2) (3) (4)

α -0.09 -0.17 -0.11 -0.05

(-1.79) (-5.00) (-2.34) (-1.95)

α× Reversal 0.12 0.12 0.07

(2.74) (4.03) (4.78)

β 0.09 0.14

(2.27) (6.22)

Cumul. state adj 0.09

(9.93)

r2 0.33 0.59 0.70 0.94
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Table IA.IX. Pricing Portfolios Sorted on Other Proxies for V/P (1991m6-).
The table reports estimated abnormal price with respect to the CAPM for portfolios
sorted on characteristics proposed in the literature to proxy for the value-to-price ratio.
This table studies the analyst-forecast-based measure of Frankel and Lee (1998) and the
market-multiples-based measure of Golubov and Konstantinidi (2019) using the sample
period from 1991m6 (these signals are first available in 1976m7 and therefore the entire 15
years of post-formation return data are first available in 1991m6. We report t-statistics
(in parentheses) and p-values based on GMM standard errors that account for time-series
and cross-sectional covariances in the data and uncertainty in estimating the parameters
of the candidate SDF.

δ × 100

Sort Lo 2 3 4 Hi Hi - Lo p(Hi - Lo)

Analyst V/P -6.85 -0.12 13.66 -2.44 1.67 8.52 0.762

(-0.33) (-0.04) (0.84) (-0.27) (0.19) (0.30)

Multiples V/P 0.04 -16.76 -32.23 -12.78 -22.41 -22.45 0.368

(0.00) (-1.52) (-1.47) (-0.93) (-0.94) (-0.90)
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Table IA.X. Incremental Information About Prices: Adjusted Value vs. Others. The table studies the CAPM
abnormal price of portfolios that bet on a characteristic while controlling for the adjusted value characteristic and vice versa.
This table studies the three characteristics comprising adjusted value using nine value-weight portfolios based on independent
30% and 70% NYSE breakpoints for both adjusted value and the second sorting characteristic specified in column one. Adjusted
value combines the information in book-to-market, profitability, and beta using their z scores: zB/M+zProf−zBeta. The left-hand
side of the table reports the estimated δ and associated t-statistic for each portfolio. The right-hand-side of the table reports the
δs associated with the combination of the portfolios that results in either a characteristic-neutral portfolio that bets on adjusted
value or a adjusted-value-neutral portfolio that bets on the second characteristic. We report t-statistics (in parentheses) and
p-values (in brackets) based on GMM standard errors that account for time-series and cross-sectional covariances in the data and
uncertainty in estimating the parameters of the candidate SDF. The sample period is 1948m6–2022m12 except for profitability,
which has a sample period of 1967m6–2022m12.

AdjVal sort Second sort

Adjusted value sort (Second sort neutral) (AdjVal neutral)

Low 2 High 1
3 ∗ ((H1 +H2 +H3) 1

3 ∗ ((L3 + 23 +H3)

Second sort → 1 2 3 1 2 3 1 2 3 −(L1 + L2 + L3)) −(L1 + 21 +H1))

Book-to-market 12.49 19.43 8.50 -9.00 -14.92 -11.87 -36.50 -35.37 -32.59 -48.29 -0.98

(1.93) (1.06) (0.30) (-0.60) (-1.26) (-0.72) (-2.04) (-2.58) (-2.15) (-2.31), [0.021] (-0.04), [0.970]

Beta 14.22 7.48 18.42 -17.04 -10.14 -12.82 -32.17 -41.34 -69.01 -60.88 -9.48

(0.75) (1.12) (2.60) (-1.74) (-1.65) (-0.73) (-2.64) (-1.83) (-0.78) (-1.39), [0.164] (-0.23), [0.817]

Profitability 23.55 -3.71 20.96 -11.38 -19.73 -3.31 -26.59 -54.01 -44.94 -55.45 -4.29

(1.08) (-0.36) (0.97) (-0.65) (-1.51) (-0.18) (-1.62) (-1.89) (-2.14) (-2.74), [0.006] (-0.14), [0.887]
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IA.E. Modern Subsample

Table IA.XI. Pricing B/M- or quality-sorted Portfolios: Returns vs. Prices
(Modern Subsample). The table shows that B/M and V/B are weak signals of abnor-
mal price relative to the CAPM (the last row), although they tend to predict abnormal
one-month returns better (the first row). It repeats Table III in the paper using the mod-
ern subsample: 1972m6–2022m12. We report t-statistics (in parentheses) and p-values
based on GMM standard errors that account for time-series and cross-sectional covari-
ances in the data and uncertainty in estimating the parameters of the candidate SDF.

Panel A. CAPM δ

B/M Quality

δ × 100 δ × 100

J Lo 2 3 4 Hi Hi - Lo Lo 2 3 4 Hi Hi - Lo

1mo 0.06 -0.05 -0.12 -0.18 -0.27 -0.33 0.26 -0.06 0.03 -0.04 -0.16 -0.42

(”return”) (1.12) (-0.98) (-1.78) (-1.98) (-2.52) (-2.23) (2.76) (-0.77) (0.62) (-0.96) (-3.17) (-3.23)

1yr 0.82 -0.89 -1.12 -2.75 -3.69 -4.51 2.27 -0.34 0.17 -0.95 -1.53 -3.81

(1.02) (-1.30) (-1.02) (-2.04) (-2.52) (-2.10) (1.99) (-0.32) (0.23) (-1.84) (-2.15) (-2.22)

3yrs 1.73 -2.12 -2.15 -7.54 -10.28 -12.01 4.59 0.02 0.08 -1.81 -2.84 -7.43

(0.63) (-1.24) (-0.67) (-1.97) (-2.54) (-1.84) (1.48) (0.01) (0.05) (-1.17) (-1.27) (-1.49)

5yrs 4.16 -3.03 -4.64 -11.18 -16.26 -20.42 3.64 0.12 -0.69 -1.97 -2.38 -6.02

(0.82) (-1.15) (-0.89) (-1.72) (-2.22) (-1.69) (0.73) (0.02) (-0.21) (-0.87) (-0.58) (-0.70)

10yrs 8.69 -2.20 -4.08 -18.14 -23.81 -32.50 5.25 2.91 -0.22 -2.22 -2.74 -7.99

(0.90) (-0.46) (-0.38) (-1.55) (-1.65) (-1.37) (0.50) (0.30) (-0.03) (-0.76) (-0.33) (-0.44)

15yrs 10.96 -2.09 -5.97 -19.76 -28.78 -39.74 2.65 6.04 0.72 -4.61 -2.12 -4.77

(”price”) (0.79) (-0.29) (-0.41) (-1.23) (-1.48) (-1.22) (0.18) (0.45) (0.06) (-1.19) (-0.18) (-0.18)

Panel B. Risk-neutral δ

B/M Quality

δ × 100 δ × 100

J Lo 2 3 4 Hi Hi - Lo Lo 2 3 4 Hi Hi - Lo

1mo 0.04 -0.04 -0.08 -0.14 -0.25 -0.29 0.14 -0.06 0.04 -0.04 -0.10 -0.24

(”return”) (0.75) (-0.72) (-1.30) (-1.59) (-2.35) (-1.96) (1.49) (-0.81) (0.85) (-0.92) (-1.95) (-1.85)

15yrs 10.41 -5.18 -9.60 -15.92 -29.27 -39.68 -14.92 -1.14 -0.86 -5.04 9.50 24.42

(”price”) (0.92) (-0.95) (-0.92) (-1.16) (-1.90) (-1.52) (-1.37) (-0.11) (-0.10) (-1.11) (1.22) (1.37)
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Table IA.XII. Pricing Portfolios Sorted on Adjusted Value: Returns vs. Prices
(Modern Subsample). The table shows that the adjusted value signal that combines
B/M , profitability, and beta into single characteristic is a strong signal of CAPM ab-
normal price (the last row) and abnormal returns (the first row). It repeats Table IV
in the paper using the modern subsample: 1972m6–2022m12. We report t-statistics (in
parentheses) and p-values based on GMM standard errors that account for time-series
and cross-sectional covariances in the data and uncertainty in estimating the parameters
of the candidate SDF.

δ × 100

J Lo 2 3 4 Hi Hi - Lo p(Hi - Lo) [Hi - Lo]
RN

1mo 0.22 0.01 -0.14 -0.23 -0.49 -0.71 0.000 -0.38

(”return”) (3.19) (0.17) (-2.12) (-2.98) (-4.87) (-4.87) (-2.72)

1yr 2.63 0.21 -1.65 -3.15 -5.35 -7.99 0.000 -4.06

(2.90) (0.26) (-2.00) (-2.91) (-4.33) (-4.35) (-2.32)

3yrs 6.28 1.07 -4.10 -8.42 -13.12 -19.40 0.000 -7.75

(2.61) (0.52) (-1.55) (-2.90) (-3.83) (-3.84) (-1.56)

5yrs 9.41 3.07 -6.66 -13.01 -20.49 -29.90 0.000 -11.45

(2.99) (1.13) (-1.65) (-3.31) (-3.29) (-3.70) (-0.87)

10yrs 15.01 1.82 -9.59 -23.86 -30.64 -45.65 0.001 -15.21

(3.17) (0.51) (-1.89) (-3.61) (-2.94) (-3.40) (-0.45)

15yrs 18.92 4.26 -13.41 -33.96 -38.21 -57.12 0.002 -13.96

(”price”) (2.97) (0.78) (-2.53) (-2.70) (-2.69) (-3.10) (-0.60)
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Table IA.XIII. Pricing B/M-and-Profitability-Spread-sorted Portfolios (Mod-
ern Subsample). The table shows that abnormal price relative to the CAPM is large for
portfolios double-sorted on the book-to-market equity ratio and our proxy for the value-
to-book ratio. It repeats Table IA.VI using the modern subsample: 1972m6–2022m12.
We report t-statistics (in parentheses) and p-values based on GMM standard errors that
account for time-series and cross-sectional covariances in the data and uncertainty in es-
timating the parameters of the candidate SDF.

δ × 100 (t-statistic) [p-value]

Profitability spread

Book-to-market Lo 2 Hi Hi - Lo

Lo 24.9 5.4 -6.0 -30.0

(2.42) (2.37) (1.31) (-1.91), [0.056]

2 15.3 -18.0 -39.4 -46.1

(1.24) (1.80) (1.70) (-1.59), [0.111]

Hi -5.2 -40.6 -37.2 -31.1

(1.25) (1.15) (1.52) (-1.02), [0.308]

Hi - Lo -30.9 -54.7 -32.0

(-1.14), [0.253] (-2.07), [0.038] (-1.77), [0.078]

δ difference t-statistic p-value δRN diff (t-stat)

100× (δHH − δLL) -62.0 -3.32 0.001 -22.0 (-0.87)
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Table IA.XIV. Pricing Anomaly-sorted Portfolios (Modern Subsample). The
table reports estimated abnormal price with respect to the CAPM for portfolios sorted
on characteristics conceptually linked to abnormal price or on prominent return anomaly
characteristics. This table repeats Table V with the modern subsample, 1972m6–
2022m12, and therefore the results for investment, accruals, and profitability are the
same as in Table V. We report t-statistics (in parentheses) and p-values based on GMM
standard errors that account for time-series and cross-sectional covariances in the data
and uncertainty in estimating the parameters of the candidate SDF.

δ × 100

Sort Lo 2 3 4 Hi Hi - Lo p(Hi - Lo) [Hi - Lo]
RN

Net issuance -16.45 -4.24 2.02 -0.18 7.22 23.67 0.006 8.62

(-2.67) (-0.40) (0.52) (-0.03) (1.08) (2.72) (0.93)

Investment -17.61 -17.82 -2.96 8.99 11.80 29.41 0.035 16.68

(-2.33) (-2.50) (-0.68) (1.67) (1.43) (2.11) (1.08)

Accruals 0.18 -11.66 0.18 4.88 20.89 20.71 0.222 9.40

(0.02) (-1.97) (0.03) (0.93) (1.98) (1.22) (0.59)

Beta -22.63 -15.89 -4.95 5.28 18.21 40.85 0.029 -26.86

(-1.88) (-2.19) (-1.11) (1.00) (2.05) (2.18) (-1.21)

Size -13.44 -16.91 -20.64 -13.50 3.54 16.98 0.549 54.62

(-0.53) (-0.92) (-1.19) (-1.14) (1.04) (0.60) (1.91)

Momentum -16.49 -7.67 -3.68 2.56 4.31 20.80 0.136 22.48

(-1.15) (-1.89) (-1.10) (0.53) (0.74) (1.49) (1.85)

Profitability 13.35 -9.30 -14.43 -4.96 4.37 -8.98 0.805 2.25

(0.63) (-0.66) (-1.27) (-0.41) (0.24) (-0.25) (0.08)
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Table IA.XV. Incremental Information About Prices: Adjusted Value vs. Others (Modern Subsample). The
table studies the CAPM abnormal price of portfolios that bet on a particular characteristic while controlling for the adjusted
value characteristic and vice versa. The table studies the characteristics that do not comprise adjusted value based on the
nine portfolios from a 3 × 3 independent sort. This table repeats Table VI with the modern subsample, 1972m6–2022m12,
and therefore the results for investment and accruals are the same as in Table VI. We report t-statistics (in parentheses) and
p-values based on GMM standard errors that account for time-series and cross-sectional covariances in the data and uncertainty
in estimating the parameters of the candidate SDF.

Adj val sort Second sort

Adjusted value sort (Second sort neutral) (Adj val neutral)

Low 2 High 1
3
∗ ((H1 +H2 +H3) 1

3
∗ ((L3 + 23 +H3)

Second sort → 1 2 3 1 2 3 1 2 3 −(L1 + L2 + L3)) −(L1 + 21 +H1))

Net issuance 13.37 18.60 10.28 -18.90 -7.71 -8.86 -40.57 -39.55 -31.23 -51.21 5.43

(1.39) (3.23) (0.96) (-2.34) (-1.01) (-1.26) (-3.12) (-2.89) (-1.78) (-2.84), [0.005] (0.53), [0.595]

Investment 0.55 16.97 19.88 -25.06 -10.01 -3.90 -44.06 -41.42 -35.40 -52.76 16.39

(0.05) (2.17) (2.29) (-2.95) (-1.42) (-0.44) (-2.80) (-2.67) (-2.16) (-2.95), [0.003] (1.62), [0.106]

Accruals 8.33 12.13 26.95 -14.54 -11.05 -1.05 -43.42 -33.93 -46.72 -57.16 9.60

(0.79) (1.90) (2.46) (-1.86) (-1.23) (-0.10) (-1.94) (-2.58) (-2.16) (-2.80), [0.005] (0.81), [0.416]

Size -3.37 -7.59 17.98 -16.99 -30.10 -8.55 -52.88 -41.92 -37.50 -46.44 15.06

(-0.11) (-0.40) (3.32) (-0.64) (-1.53) (-1.06) (-1.56) (-1.89) (-2.48) (-2.67), [0.007] (0.52), [0.602]

Momentum 0.84 15.76 17.21 -29.39 -13.32 -3.57 -55.13 -39.13 -33.22 -53.76 21.37

(0.09) (2.11) (2.29) (-2.43) (-1.96) (-0.46) (-2.12) (-2.96) (-2.32) (-2.85), [0.004] (1.75), [0.080]
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