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Abstract

If investors are myopic mean-variance optimizers, a stock’s expected return is linearly related to its

beta in the cross-section. The slope of the relation is the cross-sectional price of risk, which should

equal the expected equity premium. We use this simple observation to forecast the equity-premium

time series with the cross-sectional price of risk. We also introduce novel statistical methods for

testing stock-return predictability based on endogenous variables whose shocks are potentially

correlated with return shocks. Our empirical tests show that the cross-sectional price of risk (1) is

strongly correlated with the market’s yield measures and (2) predicts equity-premium realizations,

especially in the first half of our 1927–2002 sample.
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1. Introduction

The capital asset pricing model (CAPM) predicts that risky stocks should have lower
prices and higher expected returns than less risky stocks (Sharpe, 1964; Lintner, 1965;
Black, 1972). The CAPM further specifies the beta (the regression coefficient of a stock’s
return on the market portfolio’s return) as the relevant measure of risk. According to the
Sharpe-Lintner CAPM, the expected-return premium per one unit of beta is the expected
equity premium, or the expected return on the value-weight market portfolio of risky assets
less the risk-free rate.
We use this CAPM logic to construct equity-premium forecasts. We compute a number

of cross-sectional association measures between stocks’ expected-return proxies (including
the book-to-market equity ratio, earnings yield, etc.) and stocks’ estimated betas. Low
values of the cross-sectional association measures should on average be followed by low
realized equity premia and high values by high realized equity premia. Should this not be
the case, there would be an incentive for a myopic mean-variance investor to dynamically
allocate his or her portfolio between high-beta and low-beta stocks. Given that not all
investors can overweight either high-beta or low-beta stocks in equilibrium, prices must
adjust such that the cross-sectional price of risk and the expected equity premium are
consistent.
Our cross-sectional beta-premium variables are empirically successful, as evident from

the following two results. First, the variables are highly negatively correlated with the price
level of the stock market. Because a high equity premium almost necessarily manifests
itself with a low price for the market, negative correlation between our variables and the
Standard and Poor’s (S&P) 500’s valuation multiples is reassuring. In particular, our cross-
sectional measures have a correlation as high as 0.8 with the Fed model’s ex ante equity-
premium forecast (defined by us as the smoothed earnings yield minus the long-term
Treasury bond yield).
Second, our cross-sectional beta-premium measures forecast the equity premium. In the

US data over the 1927:5-2002:12 period, most of our cross-sectional beta premium
variables are statistically significant predictors at a better than 1% level of significance,
with the predictive ability strongest in the pre-1965 subsample. These predictive results are
also robust to a number of alternative methods of constructing the cross-sectional beta-
premium measure.
We obtain similar predictive results in an international sample. Because of data

constraints (we only have portfolio-level data for our international sample), we define our
cross-sectional risk premium measure as the difference in the local-market beta between
value and growth portfolios. If the expected equity premium is high (and the CAPM
holds), a sort on valuation measures will sort a disproportionate number of high-beta
stocks into the value portfolio and low-beta stocks into the growth portfolio. Thus a high
beta of a value minus growth portfolio should forecast a high equity premium, holding
everything else constant. In a panel of 22 countries, the past local-market beta of value
minus growth is a statistically significant predictor of the future local-market equity
premium, consistent with our alternative hypothesis.
In multiple regressions forecasting the equity premium, the cross-sectional beta premium

beats the term yield spread (for all measures), but the horse race between the market’s
smoothed price-earnings ratio and the cross-sectional beta premium is a draw. This is
not inconsistent with the theory. Campbell and Shiller (1988a, b) show that if growth in a
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cash-flow measure is nearly unpredictable, the ratio of price to the cash-flow measure is
mechanically related to the long-run expected stock return, regardless of the economic
forces determining prices and expected returns. Because our variables are based on an
economic theory and a cross-sectional approach that is not mechanically linked to the
market’s expected return, the fact that the two different types of variables track a common
predictable component in the equity premium is not surprising if the logic underlying our
variables is correct.

In the post-1965 subsample, the predictive ability of our cross-sectional beta-premium
measures is less strong than in the pre-1965 subsample. This is perhaps not surprising,
given that we generate our cross-sectional forecasts using a model, the CAPM, that fails to
empirically describe the cross-section of average returns in more recent subsamples (Fama
and French, 1992, and others). An optimist, seeing our results, would point out that 95%
confidence interval always covers a positive value for the forecasting coefficient in all of the
subsample partitionings. A pessimist would counter that our cross-sectional measure is not
statistically useful in predicting the equity-premium in the second half of the sample.

The market’s smoothed earnings yield and our cross-sectional beta-premium measures
are much less correlated in the second subsample than in the first subsample, strongly
diverging in the early 1980s. If the market’s smoothed earnings yield is a good predictor of
the market’s excess return and the cross-sectional beta premium a good predictor of the
return of high-beta stocks relative to that of low-beta stocks, the divergence of the two
types of equity-premium measures implies a trading opportunity. Consistent with this
hypothesis, we show statistically significant forecastability of the returns on a hedged
market portfolio, constructed by buying the market portfolio and beta hedging it by selling
high-beta and buying low-beta stocks. According to our point estimates, the annualized
conditional Sharpe ratio on this zero-beta zero-investment portfolio was close to one in
early 1982.

We also tackle a statistical question that is important to financial econometrics. In many
time-series tests of return predictability, the forecasting variable is persistent with shocks
that are correlated with return shocks. It is well known that in this case the small-sample p-
values obtained from the usual student-t test can be misleading (Stambaugh, 1999;
Hodrick, 1992, and others). Even in the Gaussian case, complex Monte-Carlo simulations
such as those performed by Nelson and Kim (1993) and Ang and Bekaert (2001) have been
the main method of reliable inference for such problems.

We describe a method for computing the small-sample p-values for the Gaussian error
distributions in the presence of a persistent and correlated forecasting variable. Our
method is an implementation of the Jansson and Moreira (2003) idea of conditioning the
critical value of the test on a sufficient statistic of the data. Specifically, we map the
sufficient statistics of the data to the critical value for the usual ordinary least squares
(OLS) t-statistic using a neural network (essentially a fancy look-up table). Our Monte
Carlo experiments show that this conditional critical value function produces a correctly
sized test (i.e., the error is less than the Monte Carlo computational accuracy) whether or
not the data series follows a unit root process.

The organization of the paper is as follows. In Section 2, we recap the CAPM and the
link between the cross-sectional beta premium and the expected equity premium. In
Section 3, we describe the construction of our cross-sectional beta-premium measures.
Section 4 describes the statistical method. In Section 5, we present and interpret our
empirical results. Section 6 concludes.
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2. CAPM can link the time series and cross-section

According to the Sharpe-Lintner CAPM, the expected-return premium per one unit of
beta is the expected equity premium, or the expected return on the value-weight market
portfolio of risky assets less the risk-free rate:

Et�1ðRi;tÞ � Rrf ;t�1 ¼ bi;t�1½Et�1ðRM ;tÞ � Rrf ;t�1�. (1)

In Eq. (1), Ri;t is the simple return on asset i during the period t. Rrf ;t�1 is the risk-free rate
during the period t known at the end of period t� 1. RM;t is the simple return on the value-
weight market portfolio of risky assets. bi;t�1, or beta of stock i, is the conditional
regression coefficient of Ri;t on RM ;t, known at time t� 1. Et�1ðRM ;tÞ � Rrf ;t�1 is the
expected market premium. In our empirical implementation, we use the Center for
Research in Securities Prices (CRSP) value-weight portfolio of stocks as our proxy for the
market portfolio.1

Intuitively, a high expected return on stock i (caused by either a high beta of stock i or a
high equity premium or both) should translate into a low price for the stock. Consistent
with this intuition, Gordon (1962) proposes a stock-valuation model that can be inverted
to yield an ex ante risk-premium forecast:

Di

Pi

� Rrf þ EðgiÞ ¼ EðRiÞ � Rrf (2)

Eq. (2) states that the expected return on the stock equals the dividend yield ðDi=PiÞ minus
the interest rate plus the expected dividend growth EðgiÞ.
Reorganizing Eq. (2), substituting the Sharpe-Lintner CAPM’s prediction for expected

return, and assuming that betas and the risk-free rate are constant yields

Di;t

Pi;t�1
� biEt�1½RM;t � Rrf � � Eðgi � Rrf Þ. (3)

In the reasonable cases in which the expected equity premium is positive, the dividend yield
on stock i can be high for three reasons. First, the stock could have a high beta. Second, the
premium per a unit of beta, that is, the expected equity premium, could be high. Third, and
finally, the dividends of the stock could be expected to grow slowly in the future.
Eq. (3) leads to a natural cross-sectional measure of the equity premium. Simply regress

the cross-section of dividend yields on betas and expected dividend growth,

Di;t

Pi;t�1
� l0;t�1 þ l1;t�1bi þ l2;t�1EðgiÞ. (4)

If expected excess returns on the market are constant, l1;t�1 recovers the expected excess
market return. The central idea in our paper is to measure l1;t�1 for each period using
1Roll (1977) argues that this proxy is too narrow, because it excludes many assets such as human capital, real

estate, and corporate debt. Although Stambaugh (1982) shows some evidence that inference about the CAPM is

insensitive to exclusion of less risky assets, a reader who is concerned about the omission of assets from our

market proxy can choose to interpret our subsequent results within the arbitrage pricing theory (APT) framework

of Ross (1976).
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purely cross-sectional data, and then use that measurement to forecast the next period’s
equity premium.2

The CAPM does a poor job describing the cross-section of stock returns in the post-1963
sample. However, that failure does not necessarily invalidate our approach. First, Kothari
et al. (1995) and Ang and Chen (2004) find a positive univariate relation between average
returns and CAPM betas. Given that both studies use a long sample as we do, their
evidence indicates that the CAPM is an adequate model for our purposes, at least for our
full-period tests. If the CAPM is a poor model in the second subsample, then it is
reasonable to expect our predictor to also perform poorly in the post-1963 sample. Second,
Cohen et al. (2003, 2005b) show that although the CAPM perhaps does a poor job
describing cross-sectional variation in average returns on dynamic portfolios, that model
does a reasonable job describing the cross-section of stock prices, which is essentially our
left-hand-side variable in Eq. (4). Third, for our method to work, we do not need the
CAPM to be a perfect model. All we need is that a higher expected equity premium
(relative to its time-series mean) results in a more positive relation between various price-
level yield measures and CAPM betas. Fourth, and most important, we do not simply
assume that l1;t�1 is the equity premium but test its predictive ability in our subsequent
time-series tests.

Our methodology can be easily extended to multi-factor models that also include a
market factor, such as the Merton (1973) intertemporal capital asset pricing model
(ICAPM) and many arbitrage pricing theory (APT) specifications of Ross (1976). For such
models, one can regress the expected-return proxies on multi-factor betas (including the
loading on the market in a multiple regression). The partial regression coefficient on the
market-factor loading is again related to the expected excess return on the market.

Neither the theory we rely on (the CAPM) nor our empirical tests provide insight into
why the expected equity premium and cross-sectional beta premium vary over time. The
hypothesis we test is whether the pricing of risk is consistent enough between the cross-
section and time series to yield a useful variable for forecasting the equity premium.
Whether the expected equity premium is the result of time-varying risk aversion (Campbell
and Cochrane, 1999), investor sentiment (Shiller, 1981, 2000), investor confusion about
expected real cash-flow growth (Modigliani and Cohn, 1979; Ritter and Warr, 2002;
Cohen et al., 2005a), or some unmodeled hedging demand beyond our myopic framework
(Merton, 1973; Fama, 1998) remains an unanswered question.

3. Data and construction of variables

We construct a number of alternative proxies for the cross-sectional risk premium. In
construction of all these cross-sectional risk-premium measures, we avoid any look-ahead
bias so that all of our proxies are valid variables in regressions forecasting the equity
premium.
2The Gordon model has the limitation that expected returns and expected growth must be constant, and thus

using the Gordon model to infer time-varying expected returns is in principle internally inconsistent.

Interpretating Eq. (4) in the context of the Campbell and Shiller (1988a, b) log-linear dividend discount model

that allows for time-varying expected returns alleviates this concern. If one repeats the above steps using the

Campbell–Shiller model and assumes that the expected one-period equity premium Et�1½RM;t �Rrf � follows a

first-order autoregressive process, the expected one-period equity premium is then linearly related to the multiple

regression coefficient l1;t�1.
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The first set of proxies, lSRC, lREG, and lMSCI, is based on various ordinal association
measures between a stock’s or portfolio’s beta and its valuation ratios. These ordinal
measures have the advantage of not only being robust to outliers in the underlying data
but also of never generating extreme values themselves. This robustness comes at a cost,
however, because the ordinal measures have the disadvantage of throwing away some of
the information in the magnitude of the cross-sectional spread in valuation multiples.
The second set of cross-sectional risk-premium proxies, lDP, lDPG, lBM, and lBMG, is

measured on a ratio scale and thus relates more closely to Eq. (4). To alleviate the outlier
problem associated with firm-level regressions, these ratios are computed from cross-
sections of value-weight portfolios sorted on valuation multiples.
The third type of proxy that we use, lER, is perhaps most directly connected to the

CAPM market premium but perhaps the least robust to errors in data. This proxy pre-
estimates the function that maps various firm characteristics into expected returns and then
regresses the current fitted values on betas, recovering the market premium implied by the
firm-level return forecasts.

3.1. lSRC measure of the cross-sectional price of risk

We construct our first measure of the cross-sectional price of risk, lSRC, in three steps.
First, we compute a number of valuation ratios for all stocks. Selecting appropriate proxies
for a firm’s valuation multiple is the main challenge of our empirical implementation.
Because dividend policy is largely arbitrary at the firm level, it would be ill-advised to use
firm-level dividend yield directly as the only variable on the left-hand side of regression Eq.
(4). Instead, we use a robust composite measure of multiple different valuation measures.
An additional complication in construction of the left-hand-side variable is that there are
likely structural breaks in the data series, stemming from changes in dividend policy,
accounting rules, and sample composition. To avoid these pitfalls, we use an ordinal
composite measure of the valuation multiple by transforming the valuation ratios into a
composite rank, with a higher rank denoting higher expected return.
We calculate four raw firm-level accounting ratios, dividend-to-price ratio ðD=PÞ, book-

to-market equity (BE=ME, the ratio of the book value of common equity to its market
value), earnings to price ðE=PÞ, and cash flow to price ðC=PÞ. The raw cross-sectional data
come from the merger of three databases. The first of these, the CRSP monthly stock file,
provides monthly prices; shares outstanding; dividends; and returns for NYSE, Amex, and
Nasdaq stocks. The second database, the Compustat annual research file, contains the
relevant accounting information for most publicly traded US stocks. The Compustat
accounting information is supplemented by the third database, Moody’s book equity
information for industrial firms as collected by Davis et al. (2000). Detailed data
definitions are as follows. We measure D as the total dividends paid by the firm from June
year t� 1 to May year t. We define BE as stockholders’ equity, plus balance sheet deferred
taxes (Compustat data item 74) and investment tax credit (data item 208, set to zero if
unavailable), plus post-retirement benefit liabilities (data item 330, set to zero if
unavailable), minus the book value of preferred stock. Depending on availability of
preferred stock data, we use redemption (data item 56), liquidation (data item 10), or par
value (data item 130), in that order, for the book value of preferred stock. We calculate
stockholders’ equity used in the above formula as follows. We prefer the stockholders’
equity number reported by Moody’s or Compustat (data item 216). If neither one is
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available, we measure stockholders’ equity as the book value of common equity (data item
60), plus the book value of preferred stock. (The preferred stock is added at this stage,
because it is later subtracted in the book equity formula.) If common equity is not
available, we compute stockholders’ equity as the book value of assets (data item 6) minus
total liabilities (data item 181), all from Compustat. We calculate E as the three-year
moving average of income before extraordinary items (data item 18). Our measure of C is
the three-year moving average of income before extraordinary items plus depreciation and
amortization (data item 14). In both the calculation of E and C, we require data to be
available for the last three consecutive years. We match D along with the BE, E, and C for
all fiscal year ends in calendar year t� 1 (1926–2001) with the firm’s market equity at the
end of May year t to compute D=P, BE=ME, E=P, and C=P.

Next, we transform these accounting ratios into a single annual ordinal composite
measure of firm-level valuation. Specifically, each year we independently transform each
ratio into a percentile rank, defined as the rank divided by the number of firms for which
the data are available. After computing these four relative percentile rankings, we average
the available (up to four) accounting-ratio percentile ranks for each firm. This average is
then re-ranked across firms (to spread the measure for each cross-section over the interval
from zero to one), resulting in our expected return measure, VALRANKi;t. High values of
VALRANK correspond to low prices and, according to the logic of Graham and Dodd
(1934) and the empirical findings of Ball (1978), Banz (1981), Basu (1977, 1983), Fama and
French (1992), Lakonishok et al. (1994), Reinganum (1981), and Rosenberg et al. (1985),
also to high expected subsequent returns.

Second, we measure betas for individual stocks. Our monthly measure of risk is
estimated market beta, bbi;t. We estimate the betas using at least one and up to three
years of monthly returns in an OLS regression on a constant and the contemporaneous
return on the value-weight NYSE-Amex-Nasdaq portfolio. We skip those months in which
a firm is missing returns. However, we require all observations to occur within a four-year
window. As we sometimes estimate beta using only 12 returns, we censor each
firm’s individual monthly return to the range ð�50%; 100%Þ to limit the influence of
extreme firm-specific outliers. In contrast to the value measures, we update our beta
estimate monthly. Our results are insensitive to small variations in the beta-estimation
method.

Third, we compute the association between valuation rank and beta, and we use this
association measure as our measure of the cross-sectional beta premium. Our first proxy is
the Spearman rank correlation coefficient, lSRC

t , at time t between VALRANKi;t and bbi;t.
The resulting monthly series for the proxies begins in May 1927 and ends in December
2002.

The lSRC proxy has the following advantages mostly resulting from simplicity and
robustness. First, averaging the ranks on available multiples conveniently deals with
missing data for one or more of our valuation multiples. Second, the use of ranks
eliminates any hardwired link between the level of the market’s valuation and the
magnitude of the cross-sectional spread in valuation levels. Third, ranks are a
transformation of the underlying multiples that is extremely robust to outliers.

This proxy also has the following disadvantages. First, in computing lSRC we do not
control for expected growth and profitability that could be cross-sectionally related to
betas, causing an omitted-variables bias in the estimates. This omitted-variable bias can be
significant, if expected growth and profitability are correlated with betas. Second, if the
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independent variation in expected firm-level growth (and profitability) explains a small
fraction of the cross-sectional spread in valuation multiples, the ordinal nature of lSRC

could cause us to throw away some significant information related to expansions and
contractions of the cross-sectional spread in betas and valuation multiples. Appendix A
shows via a calibration exercise that the latter disadvantage is unlikely to be a significant
concern in our sample.

3.2. lREG measure of the cross-sectional price of risk

Our second measure, lREG, modifies lSRC to control for growth opportunities. To
control for growth opportunities, we need proxies for expected future growth Eq. (4) to
serve as control variables in our empirical implementation. A textbook treatment of the
Gordon growth model shows that two variables, return on equity and dividend payout
ratio, drive a firm’s long-term growth. Thus, we use as our primary profitability controls
those selected by Fama and French (1999) to predict firm level profitability, excluding
variables that have an obvious mechanical link to our valuation measures.
Our first profitability control is D=BE, the ratio of dividends in year t to year t� 1 book

equity, for those firms with positive book equity. Fama and French motivate this variable
by the hypothesis that firms target dividends to the permanent component of earnings
(Lintner, 1956; Miller and Modigliani, 1961, and others). We censor each firm’s D=BE

ratio to the range (0,0.15) to limit the influence of near-zero book equity firms. Following
Fama and French (1999), our second profitability control is a non-dividend-paying
dummy, DD, that is zero for dividend payers and one for those firms not paying dividends.
Including DD in the regression in addition to D=BE helps capture any nonlinearity
between expected profitability and dividends. As Fama and French (1999) show
substantial mean reversion in profitability, our third and fourth profitability controls are
past long-term profitability and transitory profitability. We calculate long-term profit-
ability as the three-year average clean-surplus profitability, ROE � ðBEt � BEt�3þ

Dt�2 þDt�1 þDtÞ=ð3� BEt�3Þ. We define transitory profitability as ROE � ROE, where
ROE is current profitability and is equal to ðBEt � BEt�1 þDtÞ=ðBEt�1Þ. Our fifth
profitability control is a loss dummy. Firms losing money typically continue to do poorly
in the future. We motivate our final profitability control from the extensive industrial
organization literature on product market competition. This proxy is the Herfindahl index
of equity market capitalizations for the top five firms in the two-digit standard industrial
classification (SIC) code industry. Low concentration within industry should signal intense
competition and thus lower profitability. Because the selection of growth proxies is a
judgment call, it is fortunate that our main subsequent results are insensitive to the
inclusion or exclusion of these expected-growth measures.
lREG

t is the cross-sectional regression coefficient, lREG
t of VALRANKi;t on bbi;t and

growth/profitability controls, estimated with OLS:

VALRANKi;t ¼ l0;t þ lREG
t

bbi;t þ
X6
g¼1

lg
t GROWTHRANK

g
i;t þ ei;t (5)

GROWTHRANK
g
i;t is the corresponding percentile rank for six firm-level profitability

controls. Given that Cohen et al. (2003, 2005b) show that the majority of the cross-
sectional variation in valuation ratios across firms is the result of differences in expected
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future profitability, not differences in future expected returns, these controls have the
potential to improve our measurement of the cross-sectional beta premium significantly.

3.3. lMSCI measure of the cross-sectional price of risk

We also measure the cross-sectional price of risk for an international sample of 22
countries using an ordinal measure. Because we do not have security-level data for our
international sample, only portfolio returns, we work with value and growth portfolios
constructed by Kenneth French and available on his website. We take the top 30% and
bottom 30% portfolios sorted on four Morgan Stanley Capital International (MSCI) value
measures: D=P, BE=ME, E=P, and C=P. We then estimate the betas for these portfolios
using a three-year rolling window and define the predictor variable lMSCI as the average
beta of the four value portfolios minus the average beta of the four growth portfolios. The
subsequent international results are insensitive to changing the beta-estimation window to
four or five years (longer windows improve the results) and to selecting a subset of value
measures for constructing lMSCI.

3.4. lDP and lDPG measures of the cross-sectional price of risk

We also construct cross-sectional risk premium measures that use valuation multiples on
a ratio scale. The first two such measures, lDP and lDPG, are implemented using five value-
weight dividend-yield sorted portfolios. We sort stocks into five portfolios on the end-of-
May dividend yield. Then, for each portfolio we measure value-weight average dividend
yield (computed as aggregate dividends over aggregate market value) and the value-weight
average past estimated beta using the rolling betas updated each month. We then regress
these five portfolio-level dividend yields in levels on the portfolios’ betas and denote the
regression coefficient by lDP.

lDPG modifies lDP by controlling for past dividend growth. In addition to the dividend
yield, we compute the value-weight one-year dividend growth for the portfolios. lDPG is
the multiple regression coefficient of the portfolios’ dividend yields on their betas,
controlling for one-year past dividend growth rates.

3.5. lBM and lBMG measures of the cross-sectional price of risk

We construct book-to-market based proxies lBM and lBMG analogously to lDP and
lDPG. We sort stocks into five portfolios based on end-of-May BE=ME. Then, for each
portfolio we measure value-weight average BE=ME (computed as aggregate book value of
equity over aggregate market value) and the value-weight average past estimated beta
using the rolling betas updated each month. We then regress these five portfolio-level
book-to-market ratios in levels on the portfolios’ betas, and denote the regression
coefficient by lBM. lBMG is the multiple regression coefficient of the portfolios’ BE=MEs
on their betas, controlling for one-year past value-weight ROEs.

3.6. lER measure of the cross-sectional price of risk

In contrast to our other measures of cross-sectional risk premium that relate price levels
to betas, we measure the cross-sectional price of risk based on how well betas explain
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estimates of one-period expected returns. We extract this measure using a two-stage
approach. Our first stage is as follows. Each month, using a rolling ten-year panel of data
over the period t� 120 to �1, we regress cross-sectionally demeaned firm-level returns on
lagged cross-sectionally demeaned characteristics: VALRANK; bb; the raw valuation
multiples D=P, BE=ME, E=P, and C=P; and the raw profitability controls used in
construction of lREG.3 In this regression we replace missing values with cross-sectional
means and drop E=P and C=P from the specification in subperiods in which data for those
measures are not available for any firm. The resulting coefficient estimates in conjunction
with the time t observations on the associated characteristics produce forecasts of firm-
level expected returns at time t. In our second stage, we regress these forecasts on our beta
estimates as of time t. We repeat this process each month, generating our lER series as the
coefficients of these cross-sectional regressions.
3.7. Other variables

We use two measures of the realized equity premium. The first measure is the excess
return on the value-weight market portfolio ðRe

MÞ, computed as the difference between the
simple return on the CRSP value-weight stock index ðRMÞ and the simple risk-free rate.
The risk-free rate data are constructed by CRSP from Treasury bills with approximately
three months to maturity. The second measure ðRe

mÞ is the excess return on the CRSP
equal-weight stock index. For the international sample, we use an equity-premium series
constructed from MSCI’s stock market data and an interest rate series from Global
Financial Data.
We also construct variables that should logically predict the market return if the

expected equity premium is time varying. Previous research shows that scaled price
variables and term-structure variables forecast market returns. We pick the smoothed
earnings yield and term yield spreads as examples of such variables and compare their
predictive ability against that of our variables.
The log earnings–price ratio ðepÞ is from Shiller (2000), constructed as a ten-year trailing

moving average of aggregate earnings of companies in the S&P 500 index divided by the
price of the S&P 500 index. Following Graham and Dodd (1934), Campbell and Shiller
(1988a, b, 1998) advocate averaging earnings over several years to avoid temporary spikes
in the price-earnings ratio caused by cyclical declines in earnings. We follow the Campbell
and Vuolteenaho (2003) method of constructing the earnings series to avoid any forward-
looking interpolation of earnings. This ensures that all components of the time t earnings-
price ratio are contemporaneously observable by time t. The ratio is log transformed.
The term yield spread ðTY Þ is provided by Global Financial Data and is computed as

the yield difference between 10-year constant-maturity taxable bonds and short-term
taxable notes, in percentage points. The motivation of the term yield spread as a
forecasting variable, suggested by Keim and Stambaugh (1986) and Campbell (1987), is the
following: TY predicts excess returns on long-term bonds. As stocks are also long-term
assets, it should also forecast excess stock returns, if the expected returns of long-term
assets move together.
3The variables are cross-sectionally demeaned, because only cross-sectional variation in expected stock returns

matters for our premium estimates and because demeaning reduces the noise and adds to the precision of the

estimates.
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In our informal illustrations, we also use the dividend-price ratio, computed as the ratio
of trailing 12-month dividends and the price for the S&P 500 index. We also use the simple
(not log) smoothed earnings yield, which is defined simply as expðepÞ. In the Gordon (1962)
model computations, any interest rate adjustments are performed using the same ten-year
constant-maturity taxable bond yield ðY10Þ as is used in the computation of the term yield
spread.
4. Conditional tests for predictive regressions

This section describes the statistical methodology for computing the correct small-
sample critical values of the usual t-statistic in those situations in which the forecasting
variable is persistent and shocks to the forecasting variable are potentially correlated with
shocks to the variable being forecast.
4.1. Inference in univariate regressions

Consider the one-period prediction model

yt ¼ m1 þ yxt�1 þ ut; and

xt ¼ m2 þ rxt�1 þ vt, ð6Þ

with Eut ¼ Evt ¼ 0, Eu2
t ¼ s2u, Ev2t ¼ s2v , and Corrðut; vtÞ ¼ g. In a practical example

introduced by Stambaugh (1999), y is the excess stock return on a stock market index and
x is the index dividend yield. Because dividends are smooth and returns cumulate to price,
we have strong a priori reasons to expect the correlation g to be negative.

We wish to test the null hypothesis y ¼ 0, indicating that x does not predict y, or in the
Stambaugh (1999) example that the dividend yield does not predict stock returns. The
usual t-statistic for this hypothesis is

bt ¼ bs�1u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðxt�1 � xÞ2

q by, (7)

where by is the least squares estimate of y and bs2u is an estimator of s2u. Classical asymptotic
theory states that in a large sample the t-statistic is approximately distributed standard
normal. However, this is a poor approximation of the true sampling distribution of bt in
small samples. For example, Stambaugh (1999) shows that when x is the dividend yield
and y is the market excess return, the null distribution of bt is centered at a positive number,
leading to over-rejection of a true null hypothesis.

To get the size of the test right, we want a critical value q equal to the 95% quantile of
the null distribution of bt. When the errors are normal, the exact null distribution of bt
depends on the parameter r. Thus there exists a function kðrÞ so that under the null,
Pr½bt4kðrÞ� ¼ 0:05. One can calculate kðrÞ by the bootstrap or using methods described by
Imhof (1961). We cannot directly use kðrÞ as a critical value because we do not know r,
and evaluating kðrÞ at the least squares estimate br leads to size distortions.

Recently, Jansson and Moreira (2003) have proposed a solution to this problem.
Suppose that the covariance parameters s2u, s

2
v and g are known. Under the null that y ¼ 0,
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the statistics

S ¼

P
ðxt�1 � xÞðxt � svgyt=suÞP

ðxt�1 � xÞ2
;
X
ðxt�1 � xÞ2;x; y;x1; y1

( )
(8)

are sufficient statistics for the parameter r, where x ¼ ðT � 1Þ�1
PT

t¼2 xt�1 and y ¼

ðT � 1Þ�1
PT

t¼2 yt. The definition of a sufficient statistic is as follows: A statistic S is
sufficient for a parameter r if the conditional distribution of the data given S is
independent of r. While the unconditional distribution of bt depends on the unknown r, the
conditional distribution does not. The idea in their method is to set the critical value to a
quantile of the conditional distribution. Let qðs; aÞ denote the a-quantile of the conditional
null distribution of bt given S ¼ s:

Pr½btpqðs; aÞ jS ¼ s; y ¼ 0� ¼ a. (9)

When the covariance parameters are known, a test that rejects the null when bt4qðS; aÞ
has the correct null rejection probability in any sample size and for any value of r.
Jansson and Moreira (2003) do not provide a closed form expression for the conditional

distribution of t given the sufficient statistics. Our contribution is to devise a
computationally feasible implementation of their procedure. We approximate the critical
function q with qnn, a neural network:

qðS; aÞ � qnn
a ðX ;

bc;bxÞ,
qnn
a ðX ;c; xÞ � signðbgÞmðX Þ þ sðX ÞF�1ðaÞ. ð10Þ

F�1ðaÞ is the quantile function for a standard normal variable, so Pr½Nð0; 1Þp
F�1ðaÞ� ¼ a. The mean and variance are neural networks in the sufficient statistics:

mðX Þ ¼ xm0 þ
X4
j¼1

xmj gðc0je
X Þ and sðX Þ ¼ exp xs0 þ

X4
j¼1

xsj gðc0je
X Þ

 !
,

X ¼ 0;TðbrR � 1Þ=50;�T�2
X
ðxt�1 � xÞ2=bs2v ; log jbgj;�T=100

� �0
. ð11Þ

cj is a five-dimensional parameter vector. The hatted variables are the usual least-squares
estimators of the covariance parameters. signðbgÞ is þ1 if bg is positive, �1 otherwise. brR is
the constrained maximum likelihood estimate for r, given that the null is true and the
covariance parameters are known:

brR ¼

P
ðxt�1 � xÞðxt � bsvbgyt=bsuÞP

ðxt�1 � xÞ2
. (12)

g is called the activation function. We use the tanh activation function

gðxÞ ¼ tanhðxÞ ¼
ex � e�x

ex þ e�x
. (13)



ARTICLE IN PRESS
C. Polk et al. / Journal of Financial Economics 81 (2006) 101–141 113
We choose c and x to closely approximate the critical function q. The parameter values
used are

xm ¼ ð�1:7383 4:5693 2:7826 � 0:0007 3:9894Þ0,

xs ¼ ð0:1746 � 0:4631 � 0:1955 0:0210 � 0:4641Þ0,

c1 ¼ ð1:8702 2:1040 � 3:4355 0:5738 0:0119Þ0,

c2 ¼ ð3:7744 � 2:5565 � 1:9475 � 0:8120 � 0:0262Þ0,

c3 ¼ ð49:9034 2:9268 � 52:7576 � 5:0194 4:4890Þ0,

c4 ¼ ð�1:6534 � 1:0395 2:8437 � 0:2264 0:0084Þ0. ð14Þ

We provide an algorithm for choosing the parameters in Appendix B.
Fitting the neural network is a computationally demanding task, but we should

emphasize that the applied researcher does not need to fit the net. An applied researcher
can use our parameter values to easily calculate the exact small-sample critical value for
any quantile a and any sample size T, under the assumptions of data-generating process
Eq. (6) and i.i.d. Gaussian errors.

qnn can approximate the critical function q to arbitrary accuracy. qnn implies that the
t-statistic has a conditional normal distribution with mean and standard deviation given by
neural networks. This is a special case of the mixture of experts net (see Bishop, 1995,
pp. 212–222), which approximates a conditional distribution with mixtures of normal
distributions whose parameters are neural nets in the conditioning variables. The mixture
of experts net is a universal approximator: Given enough activation functions and enough
mixture distributions, the net can approximate any conditional distribution to arbitrary
accuracy (see Chen and White, 1999). We fit our simple net Eq. (10) with a single mixture
distribution and also fit larger nets with more mixture distributions. While the larger
models are a bit more accurate, for practical purposes the simple net is accurate enough.
Furthermore, the net with a single distribution leads to convenient expressions both for the
conditional quantile q and the p-value of the test. For testing the null that y ¼ 0 against the
one-sided alternative y40, the p-value is

pvalðbt Þ � 1� F
bt� signðbgÞmðX Þ

sðX Þ

� �
. (15)

The vector X differs from the sufficient statistics in several ways for computational
convenience. X transforms some of the sufficient statistics and omits the statistics x, y, x1,
and y1. X also uses parameter estimates bsu, bg, and bsv in place of the known covariance
parameters. Fortunately, the omitted statistics x, y, x1 and y1 are not particularly
informative about the nuisance parameter r. Size distortions caused by omitting these
statistics are very small.

The Jansson–Moreira theory delivers an exact test when the covariance parameters are
known. In practice one must use parameter estimates. We design the neural net training
algorithm to correct for estimation error in the covariance parameters. This is not a
completely clean application of the statistical theory. It could be the case that no exact test
exists in this model. Again, however, any size distortions caused by unknown covariance
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Fig. 1. Size of the test in a Monte Carlo experiment. Consider the data-generating process: yt ¼ m1 þ yxt�1 þ ut;

xt ¼ m2 þ rxt�1 þ vt, with i.i.d. normal error vectors. We are interested in testing the hypothesis y ¼ 0 against

y40. On the top are empirical rejection frequencies from using the usual critical value of 1:65 for a one-tailed t

test. On the bottom left are results for the bootstrap, and on the bottom right the conditional critical function qnn
a

is used. The grid values range over Corrðu; vÞ 2 f�:9;�:8; . . . ; :8; :9g and r 2 f0; :025; . . . ; :975; 1g. For each grid

point in the top and bottom right pictures there are 40 thousand Monte Carlo trials of T ¼ 120 observations. The

bootstrap is calculated as follows. For each grid point we simulate 30 thousand sample data sets, and for each

simulated sample we bootstrap one thousand new data sets from the model with normal errors, setting y ¼ 0 and

the other parameters to their least squares estimates. We set the bootstrapped critical value equal to the 95th

percentile of bootstrapped t-statistics.
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parameters are small. Furthermore, estimation error for the covariance parameters is
asymptotically negligible, whether the xt process is stationary or not.4

A Monte Carlo experiment demonstrates the accuracy of our approximation.
Fig. 1 reports empirical rejection frequencies over a range of values for r and Corrðu; vÞ.
For each ðr;Corrðu; vÞÞ pair, we simulate many samples of 120 observations each and
perform a t-test of the null y ¼ 0 against the alternative y40. Nominal test size is 5%.
The plot at the top reports results for the classical critical value of 1:65. The plot at the
bottom left reports results from using the bootstrap, and the bottom right gives results for
the conditional critical function qnn

a . The bootstrap algorithm is described in the notes to
the Fig. 1.
When r is close to one, the classical critical value under-rejects for positive Corrðu; vÞ and

over-rejects for negative Corrðu; vÞ. When r ¼ 1 and the correlation is �0:9 the usual
critical value rejects a true null about 38% of the time. The bootstrap improves on this
4While classical asymptotic theory requires stationarity, the conditional testing theory is not sensitive to unit

root problems. See the argument by Jansson and Moreira (2003) for details.
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result but remains flawed: For r ¼ 1 and g ¼ �0:9, the rejection frequency of a nominal
5% size test is 17%. Our conditional critical function leads to accurate rejection
frequencies over the entire range of r and Corrðu; vÞ values, with rejection rates ranging
from 4:46% to 5:66%. X and the t-statistic are exactly invariant to s2u and s2v , so these
results hold for any variance parameters.

The above experiments show that the size of the test is correct. The test is also powerful.
In Appendix B, we discuss the optimality properties of the test. Our conclusion from these
power considerations is that it is difficult to devise a test with a significant power advantage
relative to our conditional test, at least as long as we have no additional information about
the parameters (such as r ¼ 1).

The conditional testing procedures described above assume homoskedastic normal
errors. Our conditional testing procedures can be modified to be more robust to
heteroskedasticity. Under the so-called local-to-unity asymptotic limit used by Campbell
and Yogo (2006) and Torous et al. (2005), heteroskedasticity does not alter the large
sample distribution of the t-statistic. The local-to-unity limit takes r ¼ 1þ c=T for fixed c

and increasing T, i.e., it takes r to be in a shrinking neighborhood of unity. This is in
contrast to the traditional asymptotics, which fix r as T becomes large. Under the
traditional (fixed r) asymptotic limit, heteroskedasticity changes the null distribution of
the t-statistic. However, under the local-to-unity limit, heteroskedasticity is asymptotically
irrelevant.

In interpreting the asymptotic local-to-unity results, one should note that it is a large
sample result that holds only when r is very close to one. In a small sample, or when r is
small enough so that traditional asymptotics work, heteroskedasticity matters. In the
empirical sections of the paper, we also carry out conditional inference based on t-statistics
computed with Eicker-Huber-White (White, 1980) standard errors. We calibrate separate
critical-value functions analogous to Eq. (10) for this test statistic. This calibration process
is analgous to the calibration process for the test using the usual OLS t-statistic, and thus
we omit the details here to conserve space.

Although the combination of Eicker-Huber-White standard errors and conditional
inference appears sensible, this test comes with a caveat: The conditional distribution of
the Eicker-Huber-White t-statistic has not been studied, and it is not known whether the
conditional Eicker-Huber-White t-statistic is robust to heteroskedasticity. However, while
we have not proven any formal analytical results, unreported Monte Carlo experiments
suggest that the Eicker-Huber-White t-statistic is much more robust to heteroskedasticity
in small samples than the uncorrected t-statistic. Also, we do know that under
homoskedasticity the size of this modified test is correct.
4.2. Inference in multivariate regressions

This section extends the Janssen–Moreira methodology to a simple vector autoregres-
sion. Consider the bivariate regression

yt ¼ m1 þ y0xt�1 þ ut; and

xt ¼ l2 þ Kxt�1 þ Vt, ð16Þ

where xt, l2 and y are two-dimensional column vectors, K is a 2� 2 matrix, and Vt is a
two-dimensional vector of mean zero errors. For example, we could take the elements of xt
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to be the index dividend yield and price earnings ratio, in which case the coefficient vector y
determines the predictive content of each variable controlling for the other. We wish to test
the null hypothesis that the first element of y is zero. The usual approach is to run a
multivariate regression and reject the null for large values of the t-statistic

bt ¼ by1ffiffiffiffiffiffiffiffi
O11

p . (17)

by1 is the ordinary least squares estimate of y1, the first element of y, and O11 is an estimate
of the variance of by1, the (1; 1) element of O ¼ bs2uðP xt�1x

0
t�1Þ
�1.

Classical asymptotic theory approximates the null distribution of bt with a standard
normal variable. It is well known that this could be a poor approximation when the
elements of xt are highly serially correlated. In many cases of interest, classical theory leads
to over-rejection of a true null hypothesis.
In principle it is easy to extend the Janssen–Moreira methodology to this model.

Suppose that the errors ðut;V
0
tÞ
0 are i.i.d. mean zero normal variables with known

covariance matrix S ¼ E½ðut;V
0
tÞ
0
ðut;V

0
tÞ�. The null distribution of bt depends on the

unknown matrix K. However, the conditional null distribution of bt given sufficient
statistics for K does not depend on unknown parameters. To construct the sufficient
statistics, define the transformed variables ðeyt; ex0tÞ0 ¼ S�1=2ðyt;x

0
tÞ
0, where S1=2 is the lower

diagonal choleski decomposition of S and satisfies S1=2ðS1=2Þ
0
¼ S. The sufficient statistics

for K are

S ¼ eK ;Xðxt�1 � xÞðxt�1 � xÞ0;x; y;x1; y1

n o
, (18)

where x ¼ ðT � 1Þ�1
PT

t¼2 xt�1, y ¼ ðT � 1Þ�1
PT

t¼2 yt, and eK is the 2� 2 matrix of least
squares estimates from regressing ext on xt�1 and a constant, and premultiplying the result
by S1=2. The t-test will have correct size for any sample size if we reject the null when bt is
bigger than the 1� a quantile of the conditional null distribution of bt given S.
Computing the quantiles of the conditional null distribution for a multivariate system is

a daunting computational problem. In the univariate model Eq. (6) with just one regressor,
the t-statistic has a null distribution that depends on the two parameters r and g. Our
neural net approximation qnn

a learns the conditional quantile function by searching over a
grid of r and g values. In the two dimensional case, it is computationally feasible to search
over all grid points that are close to empirically relevant cases. In the multivariate setting
the null distribution depends on the four elements of K as well as the correlation terms in
S. It does not appear to be computationally feasible for our neural net to learn all possible
cases of this high dimensional parameter space. We experimented with different algorithms
for fitting the neural net but were unable to achieve the accuracy attained for the univariate
model.
To carry out conditional inference in the multivariate setting, we propose a modified

version of the usual parametric bootstrap. If we could simulate from the conditional
distribution of bt given S, we could use the empirical quantile of the simulated bt draws as the
critical value. While we cannot directly simulate from the distribution of bt given S, it is
straightforward to simulate from their joint distribution: For fixed parameter values
simulate data sets from the model and compute bt and S. We simulate from the conditional
null of bt given S using a nearest neighbor estimator. We simulate B draws of bt and S, and
we construct a sample of N conditional draws by choosing the bt statistics corresponding to
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the N draws of S that are closest to the sufficient statistics observed in the data. We call this
procedure the conditional bootstrap. We also carry out heteroskedasticity-robust
conditional inference using the same conditional-bootstrap procedure based on t-statistics
computed with Eicker-Huber-White (White, 1980) standard errors. Details of these
procedures are given in Appendix B.
5. Empirical results

Our empirical results can be summarized with two findings. First, the cross-sectional
price of risk is highly negatively correlated with the market price level and highly positively
correlated with popular ex ante equity-premium measures derived from the Gordon (1962)
growth model, such as the smoothed earnings yield minus the long-term Treasury bond
yield.

Second, the cross-sectional beta-premium forecasts future excess-return realizations on
the CRSP value-weight index. For the 1927:5-2002:12 period, the cross-sectional beta
premium is statistically significant at a level better than 1%, with most of the predictive
ability coming from the pre-1965 subsample. We also detect predictability in a largely
independent international sample, indicating that our results are not sample specific.
5.1. Correlation with ex ante equity-premium measures

As an informal illustration, we graph the time-series evolution of popular ex ante equity-
premium measures and our first cross-sectional measure, lSRC

t , in Fig. 2. (We focus on lSRC
t

in these illustrations to save space, but similar results can be obtained for our other cross-
sectional variables.) One popular ex ante measure is based on the comparison deemed the
Fed model, in which the equity risk premium equals the equity yield (either dividend yield
or smoothed earnings yield) minus the long-term Treasury bond yield. This measure is
often called the Fed model, because the Federal Reserve Board supposedly uses a similar
model to judge the level of equity prices.5

The Fed model and its variations provide an intuitive estimator of the forward-looking
equity risk premium. The earnings-yield component of the Fed model is easily motivated
with the Gordon (1962) growth model. As for the interest rate component, there are two
arguments why the earnings yield should be augmented by subtracting the interest rate.
First, if one is interested in the equity premium instead of the total equity return,
subtracting the interest rate from the earnings yield is natural. Second, many argue that an
environment of low interest rates is good for the economy and thus raises the expected
future earnings growth.

Asness (2002) points out that, while seeming plausible, these arguments are flawed in the
presence of significant and time-varying inflation. In the face of inflation, cash flows for the
stock market should act much like a coupon on a real bond, growing with inflation.
Holding real growth constant, low inflation should forecast low nominal earnings growth.
5The Federal Reserve Board’s Monetary Policy Report to the Congress of July 1997 argues: ‘‘Still, the ratio of

prices in the S&P 500 to consensus estimates of earnings over the coming twelve months has risen further from

levels that were already unusually high. Changes in this ratio have often been inversely related to changes in long-

term Treasury yields, but this year’s stock price gains were not matched by a significant net decline in interest

rates.’’ The Federal Reserve has not officially endorsed any stock-valuation model.
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Fig. 2. Time-series evolution of the ex ante equity-premium forecasts. This figure plots the time-series of three

equity-premium measures: (1) lSRC, the cross-sectional Spearman rank correlation between valuation levels and

estimated betas, marked with a thick solid line; (2) expðepÞ, the ratio of a ten-year moving average of earnings to

price for Standard and Poor’s (S&P) 500, marked with a dash-dotted line; and (3) expðepÞ � Y10, the ratio of a

ten-year moving average of earnings to price for S&P 500 minus the long-term government bond yield, marked

with triangles. All variables are demeaned and normalized by their sample standard deviations. The sample period

is 1927:5-2002:12.
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In a sense, stocks should be a long-term hedge against inflation. (Modigliani and Cohn,
1979; Ritter and Warr, 2002, argue that the expected real earnings growth of levered firms
increases with inflation.) Thus, in the presence of time-varying inflation, the Fed model of
equity premium should be modified to subtract the real (instead of nominal) bond yield,
for which data unfortunately do not exist for the majority of our sample period.
An alternative to the implicit constant-inflation assumption in the Fed model is to

assume that the real interest rate is constant. If the real interest rate is constant and
earnings grow at the rate of inflation (plus perhaps a constant), the earnings yield is a good
measure of the forward-looking expected real return on equities. Under this assumption,
the earnings yield is also a good measure of the forward-looking equity premium. Fig. 2
also plots the smoothed earnings yield without the interest rate adjustment.
The three variables in Fig. 2 are demeaned and normalized by the sample standard

deviation. Our sample period begins only two years before the stock market crash of 1929.
This event is clearly visible from the graph in which all three measures of the equity
premium shoot up by an extraordinary five sample standard deviations from 1929 to 1932.
Another striking episode is the 1983–1999 bull market, during which the smoothed
earnings yield decreased by four sample standard deviations. However, in 1983 both the
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Table 1

Explaining the cross-sectional risk premium with the Fed model’s equity premium forecast and smoothed earnings

yield

Variable Constant expðeptÞ expðeptÞ �Y10t Adjsuted R2

lSRC
t

¼ �0.1339 0.0628 4.6292 71.87%

(�10.54) (0.30) (36.54)

lSRC
t

¼ �0.3996 5.561 30.45%

(�24.39) (19.95)

lSRC
t

¼ �0.1303 4.6536 71.90%

(�34.02) (48.19)

The table shows the ordinary least squares (OLS) regression of cross-sectional risk-premium measure, lSRC, on

expðepÞ and expðepÞ �Y10. lSRC is the Spearman rank correlation between valuation rank and estimated beta.

Higher than average values of lSRC imply that high-beta stocks have lower than average prices and higher than

average expected returns, relative to low-beta stocks. ep is the log ratio of Standard and Poor’s (S&P) 500’s 10-

year moving average of earnings to S&P 500’s price. Y10 is the nominal yield on 10-year constant-maturity

taxable bonds in fractions. The OLS t-statistics (which do not take into account the persistence of the variables

and regression errors) are in parentheses, and R2 is adjusted for the degrees of freedom. The regression is

estimated from the full sample period 1927:5-2002:12 with 908 monthly observations.
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smoothed earnings yield less the bond yield (i.e., the Fed model) and our cross-sectional
beta-premium variable are already low and thus diverged from the earnings yield.

It is evident from the figure that our cross-sectional risk premium tracks the Fed model’s
equity-premium forecast with an incredible regularity. This relation is also shown in
Table 1, in which we regress the cross-sectional premium lSRC on expðepÞ and
expðepÞ � Y10. Essentially, the regression fits extremely well with an R2 of 72%, and the
explanatory power is entirely due to the Fed model (expðepÞ � Y10). (The OLS t-statistics
in the table do not take into account the persistence of the variables and errors and are thus
unreliable.) Our conclusion from Table 1 and Fig. 2 is that the market prices the cross-
sectional beta premium to be consistent with the equity premium implied by the Fed
model.

There is potentially a somewhat mechanical link between the market’s earnings yield and
our cross-sectional measure. Our l measures are cross-sectional regression coefficients of
earnings yields (and other such multiples) on betas. If the market has recently experienced
high past returns, high-beta stocks should have also experienced high past returns relative
to low-beta stocks. The high return on high-beta stocks implies a lower yield on those
stocks, if earnings do not adjust immediately. Therefore, high returns on the market cause
low values of our cross-sectional beta premium, which might explain the strong link
between the market’s valuation multiples and our cross-sectional measures. Unreported
experiments confirm that our results are not driven by this link.6
6We first regressed lSRC on five annual lags of the annual compound return on the CRSP value-weight index.

The coefficients in this regression are negative, but the R2 is low at 12%. Then, we took the residuals of this

regression and compared them with the earnings yield and Fed model’s forecast. Even after filtering out the

impact of past market returns, the residuals of lSRC plot almost exactly on top of the Fed model’s forecast, with a

correlation of approximately 0.8. Furthermore, using the residuals of lSRC in place of lSRC in the subsequent

predictability tests does not alter our conclusions. Thus, we conclude that our results are not driven by a

mechanical link between the market’s past returns and our cross-sectional measures.
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Fig. 2 also casts light on the Franzoni (2002), Adrian and Franzoni (2002), and
Campbell and Vuolteenaho (2003) result that the betas of value stocks have declined
relative to betas of growth stocks during our sample period. This trend has a natural
explanation if the CAPM is approximately true and the expected equity premium has
declined, as suggested by Fama and French (2002), Campbell and Shiller (1998), and
others. Value stocks are by definition stocks with low prices relative to their ability to
generate cash flow. On the one hand, if the market premium is large, it is natural that many
high-beta stocks have low prices, and thus end up in the value portfolio. On the other
hand, if the market premium is near zero, there is no obvious reason to expect high-beta
stocks to have much lower prices than low-beta stocks. If anything, if growth options are
expected to have high CAPM betas, then growth stocks should have slightly higher betas.
Thus, the downward trend in the market premium we detect provides a natural
explanation to the seemingly puzzling behavior of value and growth stocks’ betas
identified by Franzoni (2002) and others.
5.2. Univariate tests of predictive ability in the US sample

While the above illustrations show that the cross-sectional price of risk is highly
correlated with reasonable ex ante measures of the equity premium, it remains for us to
show that our variable forecasts equity-premium realizations. We use the new statistical
tests introduced in Section 4 to conclusively reject the hypothesis that the equity premium
is unforcastable based on our variables.
Table 2 shows descriptive statistics for the variables used in our formal predictability

tests. To save space we report only the descriptive statistics for one cross-sectional risk-
premium measure, lSRC. A high cross-sectional beta premium suggests that at that time
high-beta stocks were cheap and low-beta stocks expensive. The correlation matrix in
Table 2 shows clearly that the variation in the cross-sectional measure, lSRC, appears
positively correlated with the log earnings yield, high overall stock prices coinciding with
low cross-sectional beta premium. The term yield spread ðTY Þ is a variable that is known
to track the business cycle, as discussed by Fama and French (1989). The term yield spread
is very volatile during the Great Depression and again in the 1970s. It also tracks lSRC,
with a correlation of 0.31 over the full sample.
Table 3 presents the univariate prediction results for the excess CRSP value-weight index

return, and Table 4 for the excess CRSP equal-weight index return. The first panel of each
table forecasts the equity premium with the cross-sectional risk-premium measure lSRC.7

The second panel uses the log smoothed earnings yield (ep) and the third panel the term
yield spread (TY) as the forecasting variable. The fourth panel shows regressions using
alternative cross-sectional risk-premium measures. While the first three panels also show
subperiod estimates, the fourth panel omits the subperiod results to save space.
The regressions of value-weight equity premium in Table 3 reveal that our cross-

sectional risk-premium measures do forecast future market returns. For all measures
7At first, it could appear that our statistical tests are influenced by the so-called generated regressor problem.

However, because our proxy variables for the expected market premium is a function only of information

available at t� 1, our predictability tests do not over-reject. While by is a biased estimate of the coefficient on the

true, unknown market expectation of the equity premium, it is a consistent estimator of the coefficient on the

proxy variable xt�1. Further details are available from the authors on request.
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Table 2

Descriptive statistics of the vector autoregression state variables

Variable Mean Median S.D. Min Max

Re
M;t 0.0062 0.0095 0.0556 �0.2901 0.3817

Re
m;t 0.0097 0.0114 0.0758 �0.3121 0.6548

lSRC
t

�0.0947 �0.1669 0.2137 �0.5272 0.5946

ept �2.8769 �2.8693 0.3732 �3.8906 �1.4996

TY t 0.6232 0.5500 0.6602 �1.3500 2.7200

Correlations Re
M;t Re

m;t lSRC
t

ept TY t

Re
M;t 1 0.9052 0.1078 0.0305 0.0474

Re
m;t 0.9052 1 0.1333 0.0658 0.0798

lSRC
t

0.1078 0.1333 1 0.5278 0.3120

ept 0.0305 0.0658 0.5278 1 0.2223

TY t 0.0474 0.0798 0.3120 0.2223 1

Re
M;t�1 0.1048 0.2052 0.0825 �0.0475 0.0428

Re
m;t�1 0.1070 0.2059 0.1075 �0.0010 0.0726

lSRC
t�1

0.0930 0.1321 0.9748 0.5196 0.3011

ept�1 0.1140 0.1509 0.5359 0.9923 0.2279

TY t�1 0.0469 0.0812 0.3219 0.2188 0.9131

The table shows the descriptive statistics estimated from the full sample period 1927:5-2002:12 with 908 monthly

observations. Re
M is the excess simple return on the Center for Research in Securities Prices (CRSP) value-weight

index. Re
m is the excess simple return on the CRSP equal-weight index. lSRC is the Spearman rank correlation

between valuation rank and estimated beta. Higher than average values of lSRC imply that high-beta stocks have

lower than average prices and higher than average expected returns, relative to low-beta stocks. ep is the log ratio

of Standard and Poor’s (S&P) 500’s ten-year moving average of earnings to S&P 500’s price. TY is the term yield

spread in percentage points, measured as the yield difference between 10-year constant-maturity taxable bonds

and short-term taxable notes. S.D. denotes standard deviation.
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except lDPG, we can reject the null hypothesis of a zero coefficient in favor of a positive
coefficient at better than a 1% level of significance in full-sample tests assuming
homoskedasticity. Using the version of conditional test that is robust to heteroskedasticity,
the p-values are slightly higher and the evidence slightly less uniform: The measures based
on firm-level data continue to be significant at better than 1%, but the measures based on
portfolio-level data are no longer significant. Comparing the small-sample p-values to the
usual critical values for these t-statistics, it is clear that the usual t tests would perform
adequately in these cases. This is not surprising, given that the correlation between equity-
premium shocks and our cross-sectional forecasting-variable shocks is small in absolute
value.

The subperiod results for lSRC show that the predictability is stronger in the first half of
the sample than in the second half. The coefficient on lSRC drops from 0.0368 for the
1927:5-1965:2 period to 0.0088 for the 1965:2-2002:12 period. A similar drop is observed
for the other cross-sectional measures, except for lER, which performs well in all
subsamples (results unreported). However, the 95% confidence intervals suggest that one
should not read too much into these subperiod estimates. The point estimate for the first
subperiod is contained within the confidence interval of the second subperiod and the point
estimate of the second subperiod within the confidence interval of the first subperiod.
Furthermore, for every subperiod we examine, a positive coefficient is contained within the
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Table 3

Univariate predictors of the excess value-weight market return ðRe
M Þ

Specification by t-statistic p pW 95% CI br bg bs1 bs2
Prediction by the cross-sectional beta premium, xt ¼ lSRC

t

1927:5-2002:12 0.0242 2.811 o0:01 0.030 [0.008, 0.041] 0.975 0.0773 0.0553 0.0477

1927:5-1965:2 0.0368 2.450 o0:01 0.043 [0.008, 0.066] 0.960 �0.0152 0.0633 0.0562

1965:2-2002:12 0.0088 0.413 0.309 0.297 [�0.031, 0.054] 0.931 0.278 0.0460 0.0368

1927:5-1946:3 0.0663 1.967 0.030 0.091 [�0.001, 0.131] 0.934 �0.0413 0.0823 0.0585

1946:3-1965:2 0.0395 3.113 o0:01 o0:01 [0.016, 0.065] 0.957 0.080 0.0348 0.0534

1965:2-1984:1 0.0147 0.6027 0.240 0.249 [�0.03, 0.065] 0.942 0.188 0.0458 0.0429

1984:1-2002:12 �0.0190 �0.4181 40:5 40:5 [�0.099, 0.089] 0.885 0.416 0.0462 0.0292

Prediction by log smoothed earnings/price, xt ¼ ept

1927:5-2002:12 0.0170 3.454 0.014 0.215 [0.003, 0.024] 0.993 �0.669 0.0552 0.0464

1927:5-1965:2 0.0317 3.282 0.018 0.349 [0.003, 0.046] 0.987 �0.671 0.0630 0.0549

1965:2-2002:12 0.00756 1.319 40:5 40:5 [�0.009, 0.011] 0.996 �0.668 0.0459 0.0359

1927:5-1946:3 0.0410 2.670 0.096 0.374 [�0.006, 0.061] 0.981 �0.659 0.0817 0.0707

1946:3-1965:2 0.0294 2.344 0.168 0.204 [�0.009, 0.043] 0.994 �0.727 0.0351 0.0322

1965:2-1984:1 0.0204 1.817 0.291 0.380 [�0.012, 0.028] 0.987 �0.662 0.0455 0.0362

1984:1-2002:12 0.0105 1.251 40:5 0.483 [�0.012, 0.013] 0.990 �0.668 0.0460 0.0352

Prediction by term yield spread, xt ¼ TY t

1927:5-2002:12 0.00396 1.413 0.075 0.095 [�0.001, 0.009] 0.917 0.0111 0.0555 0.269

1927:5-1965:2 0.00489 1.015 0.178 0.214 [�0.005, 0.013] 0.968 �0.156 0.0636 0.151

1965:2-2002:12 0.00270 0.862 0.150 0.179 [�0.003, 0.008] 0.871 0.111 0.0460 0.346

1927:5-1946:3 0.00497 0.711 0.316 0.300 [�0.010, 0.017] 0.969 -0.174 0.0829 0.184

1946:3-1965:2 0.0201 1.978 0.030 0.030 [0.000, 0.039] 0.886 �0.0707 0.0352 0.108

1965:2-1984:1 0.00868 1.677 0.043 0.045 [�0.001, 0.019] 0.765 0.218 0.0455 0.378

1984:1-2002:12 �0.00221 �0.521 40:5 40:5 [�0.010, 0.005] 0.918 0.00463 0.0462 0.301

Full sample predictive results for alternative cross-sectional measures

xt ¼ lREG
t

0.0908 3.605 o0:01 o0:01 [0.042, 0.141] 0.937 0.0644 0.0552 0.0255

xt ¼ lDP
t

0.03539 2.53 o0:01 0.138 [0.007, 0.062] 0.926 �0.167 0.0554 0.0498

xt ¼ lDPG
t

0.02419 1.75 0.044 0.204 [�0.003, 0.051] 0.917 �0.107 0.0555 0.0531

xt ¼ lBMt
0.001121 2.63 o0:01 0.156 [0.0003, 0.0019] 0.942 �0.236 0.0554 1.440

xt ¼ lBMG
t

0.001449 2.98 o0:01 0.146 [0.0005, 0.0023] 0.919 �0.222 0.0553 1.500

xt ¼ lERt
2.175 3.15 o0:01 o0:01 [0.80, 3.53] 0.979 �0.0331 0.0459 0.0005

This table shows results from the model

Re
M;t ¼ m1 þ yxt�1 þ ut; xt ¼ m2 þ rxt�1 þ vt,

with E ut ¼ s21, E vt ¼ s22, and Corrðut; vtÞ ¼ g. The p-value tests the null y ¼ 0 against the one-sided alternative

y40, p denoting the p-value computed using the regular t-statistic and pW using heteroskedasticity-robust White

t-statistic. The confidence interval is a two-sided interval for y computed assuming homoskedasticity. The hatted

variables are unrestricted ordinary least squares estimates. 95% CI is the 95% confidence interval.
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95% confidence intervals. Again, these conclusions are not altered even if we focus our
attention on the heteroskedasticity robust version of the conditional test.
Of the two extant instruments we study, the log smoothed earnings yield is the stronger

forecaster of the equity premium, while the term yield spread has only weak predictive
ability. Consistent with economic logic, the coefficient on ep is positive for all subsamples,
and the t-statistic testing the null of no predictability is 3.45 for the full sample. Our new
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Table 4

Univariate predictors of the excess equal-weight market return ðRe
mÞ

Specification by t-stat p pW 95% CI br bg bs1 bs2
Prediction by the cross-sectional beta premium, xt ¼ lSRC

t

1927:5-2002:12 0.0469 4.012 o0:01 o0:01 [0.025, 0.070] 0.975 0.0202 0.0752 0.0477

1927:5-1965:2 0.0786 3.755 o0:01 o0:01 [0.037, 0.119] 0.960 �0.0613 0.0882 0.0562

1965:2-2002:12 0.0345 1.260 0.100 0.098 [�0.017, 0.092] 0.931 0.226 0.0589 0.0368

1927:5-1946:3 0.147 3.041 o0:01 0.030 [0.048, 0.238] 0.934 �0.0960 0.118 0.0585

1946:3-1965:2 0.0466 3.256 o0:01 o0:01 [0.020, 0.075] 0.957 0.0603 0.0392 0.0534

1965:2-1984:1 0.0457 1.357 0.076 0.082 [�0.017, 0.115] 0.942 0.139 0.0633 0.0429

1984:1-2002:12 0.00571 0.107 0.405 0.393 [�0.089, 0.132] 0.885 0.379 0.0542 0.0292

Prediction by log smoothed earnings/price, xt ¼ ept

1927:5-2002:12 0.0307 4.594 o0:01 0.234 [0.011, 0.040] 0.993 �0.683 0.0750 0.0464

1927:5-1965:2 0.0662 4.943 o0:01 0.406 [0.026, 0.086] 0.987 �0.683 0.0872 0.0549

1965:2-2002:12 0.0104 1.420 0.470 40:5 [�0.011, 0.015] 0.996 �0.689 0.0589 0.0359

1927:5-1946:3 0.0839 3.833 0.014 0.284 [0.016, 0.112] 0.981 �0.683 0.117 0.0707

1946:3-1965:2 0.0285 2.004 0.250 0.299 [�0.015, 0.045] 0.993 �0.707 0.0398 0.0322

1965:2-1984:1 0.0290 1.866 0.300 0.381 [�0.017, 0.039] 0.987 �0.705 0.0631 0.0362

1984:1-2002:12 0.00131 0.132 40:5 40:5 [�0.026, 0.004] 0.990 �0.684 0.0542 0.0352

Prediction by term yield spread, xt ¼ TY t

1927:5-2002:12 0.00935 2.452 o0:01 o0:01 [0.002, 0.016] 0.915 0.0140 0.0756 0.269

1927:5-1965:2 0.0106 1.572 0.074 0.089 [�0.003, 0.023] 0.968 �0.151 0.0893 0.151

1965:2-2002:12 0.00774 1.933 0.026 0.020 [0.00, 0.015] 0.871 0.124 0.0588 0.346

1927:5-1946:3 0.00867 0.857 0.243 0.220 [�0.013, 0.026] 0.969 �0.171 0.120 0.186

1946:3-1965:2 0.0208 1.808 0.043 0.029 [�0.002, 0.043] 0.886 �0.0699 0.0398 0.108

1965:2-1984:1 0.0172 2.410 o0:01 o0:01 [0.004, 0.032] 0.765 0.184 0.0628 0.378

1984:1-2002:12 0.00420 0.844 0.138 0.192 [�0.005, 0.013] 0.918 0.0809 0.0541 0.301

Full sample predictive results for alternative cross-sectional measures

xt ¼ lREG
t

0.165 4.811 o0:01 o0:01 [0.098, 0.232] 0.937 0.0238 0.0749 0.0255

xt ¼ lDP
t

0.07916 4.17 o0:01 0.044 [0.041, 0.115] 0.926 �0.206 0.0751 0.0498

xt ¼ lDPG
t

0.06813 3.63 o0:01 0.051 [0.031, 0.104] 0.917 �0.136 0.0753 0.0531

xt ¼ lBMt
0.002609 4.51 o0:01 0.043 [0.0015, 0.0037] 0.942 �0.245 0.075 1.440

xt ¼ lBMG
t

0.003129 4.76 o0:01 0.052 [0.0018, 0.0043] 0.919 �0.242 0.0749 1.500

xt ¼ lERt
3.371 3.74 o0:01 o0:01 [1.55, 5.12] 0.979 �0.0697 0.0599 0.0005

This table shows results from the model

Re
m;t ¼ m1 þ yxt�1 þ ut; xt ¼ m2 þ rxt�1 þ vt,

with E ut ¼ s21, E vt ¼ s22, and Corrðut; vtÞ ¼ g. The p-value tests the null y ¼ 0 against the one-sided alternative

y40, p denoting the p-value computed using the regular t-statistic and pW using heteroskedasticity-robust White

t-statistic. The confidence interval is a two-sided interval for y computed assuming homoskedasticity. The hatted

variables are unrestricted ordinary least squares estimates. 95% CI is the 95% confidence interval.
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statistical methodology maps this t-statistic to a one-sided p-value of 1.4% under the
homoskedasticity assumption. While the t-statistic on ep is higher than on our first cross-
sectional measure lSRC (2.81 versus 3.45), the p-value for ep is higher than the p-value for
lSRC. This is the motivation for our econometric work in Section 4; the earnings yield is
very persistent, and its shocks are strongly negatively correlated with equity-premium
shocks, making standard statistical inference misleading.
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Using the heteroskedasticity-robust version of our conditional test, which is based on
the Eicker-Huber-White t-statistics, greatly weakens the case for predictability based on
ep. When predicting the value-weight CRSP excess return over the entire sample, ep is not
a statistically significant predictor, with a one-sided p-value of 21.5%. The p-value for the
term yield spread is less affected by the heteroskedasticity adjustment. However, it is also
only marginally statistically significant predictor as its p-value is 9.5%.
As with most return-prediction exercises, equal-weight index results are a more extreme

version of those for the value-weight index. Table 4 shows that our main cross-sectional
measure, lSRC, forecasts monthly excess equal-weight returns with a t-statistic of 4.01.
Similarly high t-statistics are obtained for the earnings yield (4.59) and alternative cross-
sectional measures (ranging from 3.63 to 4.81), while the term yield spread’s is slightly
lower (2.45). All OLS t-statistics imply rejection of the null at a better than 1% level, even
after accounting for the problems caused by persistent and correlated regressors. However,
as above, heteroskedasticity adjustment has a dramatic impact on the statistical evidence
concerning ep (but not for other predictors). While under the homoskedasticity
assumption ep is significant at better than 1% level, the heteroskedasticity-robust p-value
is 23%.
Another way of addressing the issue of heteroskedasticity is to note that stock returns

were very volatile during the Great Depression. A simple check for the importance of
heteroskedasticity is to omit this volatile period from estimation. When we estimate the
model and p-values from the 1946–2002 sample, lSRC remains statistically significant at a
better than 1% level, while the log earnings yield is no longer significant, even at the 10%
level.

5.3. Univariate tests of predictive ability in the international sample

We also examine the predictive ability of cross-sectional risk-premium measures in an
international sample and obtain similar predictive results as in the US sample. Because of
data constraints (we only have portfolio-level data for our international sample), we define
our cross-sectional risk premium measure as the difference in the local-market beta
between value and growth portfolios. We work with value and growth portfolios
constructed by Kenneth French and available on hisweb site, focusing on the top 30% and
bottom 30% portfolios sorted on four MSCI value measures: D=P, BE=ME, E=P, and
C=P. We then estimate the betas for these portfolios using a 36-month rolling window and
define the predictor variable lMSCI as the average beta of the four value portfolios minus
the average beta of the four growth portfolios.
If the CAPM holds, the beta difference between two dynamic trading strategies, a low-

multiple value portfolio and a high-multiple growth portfolio, is a natural measure of the
expected equity premium. The underlying logic is perhaps easiest to explain in a simple
case in which individual stocks’ growth opportunities and betas are constant for each stock
and cross-sectionally uncorrelated across stocks. During years when the expected equity
premium is high, the high-beta stocks have low prices (relative to current cash-flow
generating ability) and are thus mostly sorted into the value portfolio. Symmetrically, low-
beta stocks have relatively high prices and those stocks mostly end up in the growth or
high-multiple portfolio. Consequently, a high expected equity premium causes the value
portfolio’s beta to be much higher than that of the growth portfolio. In contrast, during
years when the expected equity premium is low, multiples are determined primarily by
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growth opportunities. The high beta and low-beta stocks have approximately the same
multiples and are thus approximately equally likely to end up in either the low-multiple
value portfolio or the high-multiple growth portfolio. Thus during years when the expected
equity premium is low, the beta difference between value and growth portfolio should be
small. This simple logic allows us to construct a cross-sectional risk-premium proxy
without security-level data.

We find that the past local-market beta of value minus growth is generally a statistically
significant predictor of the future local-market equity premium. In the individual country
regressions of Table 5, 17 out of 22 countries have the correct sign in the associated local-
market equity premium prediction regression, with nine out of 22 estimates statistically
significant at the 10% level. Moreover, the five negative estimates are not measured
Table 5

Predicting the equity premium, country-by-country regressions

Country Time period N by OLS t White t br bg
Australia 1975:1-2001:12 324 0.0237 1.70 (0.111) 1.60 (0.132) 0.989 �0.229

Austria 1987:1-2001:12 180 �0.0251 �0.61 (0.584) �0.48 (0.540) 0.935 0.241

Belgium 1975:1-2001:12 324 0.0234 1.36 (0.064) 1.43 (0.056) 0.972 0.196

Denmark 1989:1-2001:12 156 0.0149 0.78 (0.240) 0.78 (0.238) 1.02 0.027

Finland 1988:1-2001:12 168 �0.0150 �0.81 (0.710) �0.78 (0.701) 1.00 0.151

France 1975:1-2001:12 324 0.0444 2.08 (0.028) 2.08 (0.028) 1.00 0.033

Germany 1975:1-2001:12 324 0.0226 1.32 (0.078) 1.25 (0.089) 0.985 0.018

Hong Kong 1975:1-2001:12 324 0.0200 0.50 (0.278) 0.49 (0.282) 0.977 0.11

Ireland 1991:1-2001:12 132 0.0100 0.39 (0.374) 0.36 (0.386) 0.911 �0.061

Italy 1975:1-2001:12 324 0.0268 0.92 (0.233) 0.92 (0.234) 1.01 0.081

Japan 1975:1-2001:12 324 0.0172 1.40 (0.095) 1.66 (0.058) 0.992 �0.037

Malaysia 1994:1-2001:10 94 0.0418 0.81 (0.089) 0.76 (0.096) 0.918 0.306

Mexico 1982:1-1987:12 72 0.3490 1.41 (0.044) 1.50 (0.036) 0.844 0.311

Netherland 1975:1-2001:12 324 �0.0061 �0.37 (0.596) �0.30 (0.573) 0.984 0.105

New Zealand 1988:1-2001:12 168 0.0456 1.95 (0.018) 1.98 (0.017) 0.959 0.023

Norway 1975:1-2001:12 324 �0.0053 �0.54 (0.708) �0.50 (0.697) 0.994 �0.024

Singapore 1975:1-2001:12 324 0.0159 0.76 (0.201) 0.66 (0.229) 0.977 0.094

Spain 1975:1-2001:12 324 0.0366 2.76 (0.004) 2.79 (0.004) 0.986 �0.051

Sweden 1975:1-2001:12 324 0.0177 1.57 (0.046) 1.37 (0.068) 1.01 0.019

Switzerland 1975:1-2001:12 324 �0.0025 �0.15 (0.552) �0.15 (0.552) 0.974 0.030

United Kingdom 1975:1-2001:12 324 0.0115 0.53 (0.341) 0.44 (0.372) 0.971 �0.153

United States 1926:7-2002:12 918 0.0166 2.41 (0.008) 2.02 (0.019) 0.993 0.089

This table shows results from the model

Re
M;t;i ¼ m1;i þ yixt�1;i þ ut;i ; xt;i ¼ m2;i þ rixt�1;i þ vt;i,

with Corrðut; vtÞ ¼ g. xt;i ¼ lMSCI
t;i for country i in year t. lMSCI

t;i is constructed by taking the top 30% and bottom

30% portfolios sorted on four Morgan Stanley Capital International value measures: D=P, BE=ME, E=P, and

C=P. We then estimate the betas for these portfolios using a three-year rolling window and define the predictor

variable lMSCI as the average beta of the four value portfolios minus the average beta of the four growth

portfolios. The dependent variable in the regressions is the local-market equity premium, for which the stock

market returns are from Kenneth French’s files and the local risk-free returns are from Global Financial Data.

The regressions are estimated using country-by-country ordinary least squares regressions. The OLS t is the

homoskedastic t-statistic for testing the null that y ¼ 0. White t is the t-statistic robust to heteroskedasticity. The

p-values in parentheses are based on the conditional critical functions and test the null y ¼ 0 against the one-sided

alternative y40. N is the number of observations. The hatted variables are unrestricted ordinary least squares

estimates.
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precisely. Finally, the parameter estimates for all the countries are similar to those
obtained for the United States (with the exception of Mexico with its extremely short
sample).
In addition to the country-by-country regressions, we pool the data and thus constrain

the regression coefficients to be equal across countries. Fortunately, our pooled regression
specification does not suffer significantly from the usual problems associated with equity-
premium prediction regressions. This is because of two reasons. First, the shocks to the
predictor variable are largely uncorrelated with the return shocks. In fact, the correlation
point estimates are close to 0.05, suggesting that the usual asymptotic test is slightly
conservative. Second, even if the shocks for a given country were negatively correlated, the
cross-sectional dimension in the data set lowers the pooled correlation between the
predictor variable and past return shocks.
However, the usual OLS standard errors (and hypothesis tests based on them) suffer

from another problem. The OLS standard errors ignore the potential cross-correlation
between the residuals. To deal with this problem, we compute standard errors that cluster
by cross-section. Our Monte Carlo experiments show that for our parameter values,
clustered standard errors provide a slightly conservative hypothesis test.
Table 6

Predicting the equity premium, pooled international regressions

No FE Country FE Country, time FE

All Excluding US All Excluding US All Excluding US

by 0.0102 0.0090 0.0132 0.0123 0.00961 0.00756

t Homoskedastic 3.21 2.53 3.76 3.09 3.32 2.34

p Homoskedastic (0.0007) (0.0057) (0.0001) (0.0010) (0.0004) (0.0010)

t Heteroskedastic 2.69 2.12 3.31 2.73 2.97 2.14

p Heteroskedastic (0.0036) (0.0171) (0.0005) (0.0032) (0.0015) (0.016)

p Clustering by year 2.08 1.65 2.31 1.89 2.57 1.78

p Clustering by year (0.0189) (0.0494) (0.0105) (0.0295) (0.0051) (0.0376)br 0.992 0.992 0.990 0.990 0.988 0.987bg 0.0519 0.0469 0.0545 0.0497 0.0578 0.0483

This table shows results from the model

Re
M;t;i ¼ m1;t;i þ yxt�1;i þ ut;i; xt;i ¼ m2;t;i þ rxt�1;i þ vt;i,

with Corrðut;i; vt;iÞ ¼ g. xt;i ¼ lMSCI
t;i for country i in year t. lMSCI

t;i is constructed by taking the top 30% and bottom

30% portfolios sorted on four Morgan Stanley Capital International value measures: D=P, BE=ME, E=P, and

C=P. We then estimate the betas for these portfolios using a three-year rolling window and define the predictor

variable lMSCI as the average beta of the four value portfolios minus the average beta of the four growth

portfolios. The dependent variable in the regressions is the local-market equity premium, for which the stock

market returns are from Kenneth French’s files and the local risk-free returns are from Global Financial Data.

FE denotes fixed effects, meaning we estimate different intercepts m1;t;i and m2;t;i for each country or each country

and time point. No FE indicates that we estimate a common intercept for all countries and time points. t

homoskedastic and t heteroskedastic indicate the usual ordinary least squares (OLS) t-statistic and the

heteroskedasticity-robust White t-statistic. t clustering by year indicates that we calculate standard errors robust

to correlations between firms as well as heteroskedasticity, but assume independence over time. The analogously

defined p-values in parentheses test the null y ¼ 0 against the one-sided alternative y40. p-values are based on the

usual standard normal approximation to the null distribution of a t-statistic. The hatted variables are unrestricted

OLS estimates.
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Table 6 shows that we can reject the null hypothesis of no predictability in favor of the
alternative that the betas of the country-specific value minus growth portfolios are
positively related to the country-specific expected equity premiums. This conclusion is
robust to inclusion or exclusion of the US data and inclusion or exclusion of country fixed
effects in the pooled regression. All p-values are under 5%. Thus we conclude that our
simple proxy, lMSCI, predicts equity premium realizations in a sample largely independent
of our main US sample, as well as in the US sample.

5.4. Multivariate predictability tests

The above tests demonstrate that our new cross-sectional variables can forecast the
equity premium. In this section, we perform multivariate tests to see whether the predictive
information in our new variables subsumes or is subsumed by that in the earnings yield
and term yield spread. We show the results from these horse races for the value-weight
index in Table 7. Unreported results for the equal-weight index are similar but statistically
stronger.

The horse race between lSRC and ep is a draw, at least under the homoskedasticity
assumption. In regressions forecasting the value-weight return over the full period, we fail
to reject at the 5% level of significance the hypothesis that lSRC has no predictive ability
independent of ep (p-value 15.8%). Likewise, we cannot reject the hypothesis that ep

has no predictive ability controlling for lSRC (p-value 10.8%). Because these p-values
are relatively close to 10% for both the earnings yield and our cross-sectional measures,
we are cautious about drawing clear conclusions about the independent predictive
ability of these variables. Allowing for heteroskedasticity changes this conclusion,
however. Using the heteroskedasticity-robust test, the p-values are always much larger
for ep.

Though the horse race between lSRC and ep is a draw under the homoskedasticity
assumption, many of our alternative cross-sectional measures win their respective races
with ep. When lREG, lBMG, and lER are raced against ep, the above conclusions change.
We now fail to reject the hypothesis that ep has no independent predictive power ( p-values
ranging from 7.8% to 28.4%) but do reject the hypothesis that lREG, lBMG, and lER have
no independent predictive power ( p-values ranging from 1.5% to 5.0%). These
conclusions change slightly in unreported forecasts of the future excess return on an
equal-weight portfolio of stocks. For all combinations, both the cross-sectional risk
premium and the market’s earnings yield are statistically significant. Our result that equal-
weight returns are more predictable is consistent with results in the previous literature. The
term yield spread is unimpressive in multiple regressions. All other variables beat the term
yield spread, and TY is insignificant even in most regressions that forecast the equal-weight
equity premium.

5.5. Implications of premia divergence in the 1980s

Across specifications, our cross-sectional beta-premium variables show their poorest
performance as predictors of the equity premium in the second subsample, especially in the
1980s. Curiously, as Fig. 2 shows, the second subsample also exhibits occasionally large
divergences between the market’s smoothed earnings yield and the cross-sectional beta
premium. For example, in 1982 both our cross-sectional measures and the Fed model
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Table 7

Multivariate predictors of the excess value-weight market return ðRe
M Þ

Specification by1 t1 p1 pW
1

by2 t2 p2 pW
2

Fp FpW

Prediction equation: Re
M;t ¼ y0 þ y1lSRC

t�1 þ y2ept�1 þ ut

1927:5-2002:12 0.012 1.17 0.158 0.191 0.013 2.32 0.108 0.294 0.020 0.409

1927:5-1965:2 0.001 0.045 0.532 0.533 0.031 2.17 0.091 0.366 0.056 0.596

1965:2-2002:12 0.011 0.527 0.285 0.295 0.008 1.36 0.447 0.516 0.592 0.696

1927:5-1946:3 �0.002 �0.030 0.573 0.571 0.042 1.79 0.176 0.342 0.139 0.585

1946:3-1965:2 0.037 2.03 0.038 0.039 0.004 0.225 0.798 0.784 0.086 0.082

1965:2-1984:1 0.027 1.08 0.183 0.209 0.023 2.03 0.172 0.209 0.210 0.283

1984:1-2002:12 �0.034 �0.738 0.778 0.756 0.012 1.39 0.341 0.371 0.527 0.566

Prediction equation: Re
M;t ¼ y0 þ y1lSRC

t�1 þ y2TY t�1 þ ut

1927:5-2002:12 0.023 2.49 0.006 0.051 0.002 0.564 0.289 0.307 0.017 0.126

1927:5-1965:2 0.038 2.23 0.017 0.095 �0.001 �0.132 0.604 0.582 0.051 0.208

1965:2-2002:12 0.005 0.233 0.357 0.360 0.003 0.791 0.184 0.181 0.670 0.666

1927:5-1946:3 0.069 1.84 0.043 0.162 �0.001 �0.158 0.634 0.614 0.160 0.337

1946:3-1965:2 0.035 2.55 0.006 0.014 0.010 0.912 0.201 0.233 0.005 0.003

1965:2-1984:1 0.010 0.398 0.280 0.283 0.008 1.61 0.038 0.047 0.229 0.223

1984:1-2002:12 �0.012 �0.257 0.524 0.514 �0.002 �0.403 0.633 0.649 0.849 0.849

Full sample results for alternative cross-sectional risk premium measures

Prediction equation: Re
M;t ¼ y0 þ y1xt�1 þ y2ept�1 þ ut

xt ¼ lREG
t

0.066 2.36 0.015 0.030 0.012 2.12 0.151 0.350 0.003 0.283

xt ¼ lDP
t

0.0200 1.32 0.107 0.265 0.0143 2.69 0.056 0.175 0.005 0.336

xt ¼ lDPG
t

0.0076 0.516 0.321 0.409 0.0160 3.02 0.027 0.140 0.010 0.261

xt ¼ lBMt
0.0005 1.03 0.174 0.330 0.0140 2.46 0.062 0.101 0.007 0.290

xt ¼ lBMG
t

0.0009 1.71 0.050 0.257 0.0131 2.44 0.078 0.122 0.003 0.294

xt ¼ lERt
1.766 2.40 0.019 0.029 0.0081 1.57 0.284 0.393 0.011 0.057

Full sample results for alternative cross-sectional risk premium measures

Prediction equation: Re
M;t ¼ y0 þ y1xt�1 þ y2TY t�1 þ ut

xt ¼ lREG
t

0.088 3.35 0.000 0.016 0.001 0.474 0.316 0.333 0.001 0.046

xt ¼ lDP
t

0.0335 2.38 0.013 0.172 0.0032 1.13 0.136 0.158 0.017 0.248

xt ¼ lDPG
t

0.0215 1.53 0.066 0.225 0.0032 1.13 0.129 0.153 0.121 0.343

xt ¼ lBMt
0.0010 2.39 0.012 0.226 0.0026 0.910 0.184 0.223 0.028 0.275

xt ¼ lBMG
t

0.0014 2.82 0.003 0.211 0.0029 1.03 0.159 0.174 0.006 0.272

xt ¼ lERt
2.154 3.08 0.001 0.001 0.0005 0.172 0.400 0.411 0.006 0.014

byi is the ordinary least squares estimate of yi, with yi ¼ ðy1 y2Þ0 in the model Re
M;t ¼ m1 þ y0xt�1 þ ut; xt ¼ l2þ

Kxt�1 þ Vt. t is the usual t-statistic for testing the null yi ¼ 0. The table also reports the p-values for testing the

null yi ¼ 0 against yi40, p denoting the p-value computed using the regular t-statistic (t) and pW using

heteroskedasticity–robust White t-statistic. F p and F pW denote the p-values for the F-test of the null y1 ¼ y2 ¼ 0

with and without imposing the homoskedasticity assumption. All p-values are computed using the conditional

bootstrap described in Appendix B.
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forecast a low equity premium, while the smoothed earnings yield forecasts a high equity
premium.
If ep is a good predictor of market’s excess return and lSRC of the return of high-beta

stocks relative to that of low-beta stocks, the divergence implies a trading opportunity. In
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1982, an investor could have bought the market portfolio of stocks (which had a high
expected return) and then hedged this investment by a zero-investment portfolio long low-
beta stocks and short high-beta stocks (which had a low expected return). At this time, this
hedged market portfolio should have had a high expected return relative to both its
systematic and unsystematic risk.

We test this hypothesis by constructing a zero-investment portfolio consisting of 1.21
times the CRSP value-weight excess return, minus the return difference between the
highest-beta (10) and lowest-beta (1) deciles. The beta-decile portfolios are formed on past
estimated betas, value weighted, and rebalanced monthly. We picked the coefficient 1.21 to
give the portfolio an approximately zero in-sample unconditional beta, but our subsequent
results are robust to using more elaborate and complex portfolio constructions schemes.
The excess return on this beta-hedged market portfolio is denoted by Re

arb.
Table 8 confirms this implication of premia difference. When we forecast the beta-

hedged market return with lSRC and ep, the former has a negative coefficient and the latter
a positive coefficient (although ep’s t-statistic is only 1.13). Although we do not have a
clear prior about the unconditional mean of Re

arb, a natural alternative hypothesis is that
the coefficient on lSRC should be negative while the coefficient on ep should be positive.
Re

arb is a combination of two bets: (1) buying the market on margin and (2) hedging this
equity-premium bet by shorting high-beta stocks and investing the proceeds in low-beta
stocks. First, holding the cross-sectional beta premium among stocks constant, a higher
Table 8

Multivariate predictors of the hedged value-weight market return ðRe
arbÞ

Specification by1 t1 p1 pW
1

by2 t1 p1 pW
1

Fp FpW

Prediction equation: Re
arb;t ¼ y0 þ y1l

SRC
t�1 þ y2ept�1 þ ut

1927:6-2002:12 �0.030 �2.87 0.002 0.001 0.007 1.13 0.140 0.249 0.013 0.013

1927:6-1965:2 �0.018 �0.965 0.161 0.168 �0.014 �1.10 0.877 0.763 0.018 0.014

1965:2-2002:12 �0.063 �2.29 0.016 0.016 0.010 1.34 0.108 0.196 0.022 0.007

1927:6-1946:3 0.004 0.087 0.522 0.514 �0.018 �0.907 0.821 0.764 0.440 0.728

1946:3-1965:2 �0.016 �1.05 0.150 0.139 0.009 0.600 0.486 0.468 0.605 0.608

1965:2-1984:1 �0.070 �2.75 0.006 0.009 0.007 0.599 0.300 0.308 0.012 0.011

1984:1-2002:12 �0.083 �1.19 0.121 0.152 0.025 1.89 0.028 0.042 0.126 0.108

Full sample results for alternative cross-sectional risk premium measures

Prediction equation: Re
arb;t ¼ y0 þ y1xt�1 þ y2ept�1 þ ut

xt ¼ lREG �0.062 �2.32 0.011 0.015 0.001 0.467 0.305 0.384 0.062 0.085

xt ¼ lDP �0.072 �4.66 0.000 0.000 0.0073 1.34 0.099 0.189 0.000 0.005

xt ¼ lDPG �0.066 �4.36 0.000 0.000 0.0064 1.19 0.130 0.225 0.000 0.006

xt ¼ lBM �0.0029 �5.80 0.000 0.000 0.0146 2.53 0.007 0.033 0.000 0.001

xt ¼ lBMG �0.0029 �5.31 0.000 0.001 0.0098 1.79 0.041 0.097 0.000 0.004

xt ¼ lER �2.21 �2.61 0.005 0.011 0.0114 1.94 0.036 0.104 0.019 0.063

byi is the ordinary least squares estimate of yi , with yi ¼ ðy1 y2Þ
0 in the model Re

arb;t ¼ m1 þ y0xt�1 þ ut; xt ¼ l2þ

Kxt�1 þ Vt. Re
arb is the return on a zero-investment portfolio consisting of 1.21 times the value-weight excess

market return, minus the return difference between the highest-beta (10) and lowest-beta (1) deciles. The table

reports the p-values for testing the null yi ¼ 0 against yi40, p denoting the p-value computed using the regular t-

statistic (t) and pW using heteroskedasticity-robust White t-statistic. Fp and FpW denote the p-values for the F-test

of the null y1 ¼ y2 ¼ 0 with and without imposing the homoskedasticity assumption. All p-values are computed

using the conditional bootstrap described in Appendix B.
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expected equity premium (as evidenced by a high ep) should translate into a high expected
return on Re

arb. Second, holding the expected equity premium constant, a higher cross-
sectional beta premium (manifest by a high lSRC) should translate into a low expected
return on Re

arb. Thus, one-sided tests are appropriate.
The variables are jointly significant for the full period as well as for both subperiods.

However, because lSRC and ep are so highly correlated in the first subsample, the
identification for the partial regression coefficients must come from the second sample.
Consistent with this conjecture, the nulls for both variables are rejected at a better than
10% level in the second subsample, while the p-values are consderably higher in the first
subsample. Similar conclusions can be drawn from regressions that use other measures of
cross-sectional beta premium.
These results on the predictabilty of Re

arb are relatively insensitive to using tests that are
more robust to heteroskedasticity. While the volatility of the realized equity premium is
systematically related to the earnings yield, the volatility of the beta-hedged market return
is much less so. Therefore, the relative insensitivity of these tests to heteroskedasticity
adjustments makes sense.
Even a cursory examination of the fitted values suggests that these predictability results

are also economically significant. In the beginning of year 1982, the predicted value for
Re

arb is over 20% annualized in the regression that uses lSRC and ep as forecasting
variables. (For reference, this conditional mean is more than three standard errors from
zero.) Because the unconditional volatility of Re

arb is under 20% annualized (and various
conditional volatility estimates even lower), the fitted values imply a conditional
annualized Sharpe ratio of over one at the extreme point of divergence. In summary,
the evidence in Table 8 clearly shows that divergence of lSRC and ep creates a both
economically and statistically significant trading opportunity for an investor who can
borrow at the Treasury bill rate. An alternative but equivalent way to describe our results
is that the zero-beta rate in the universe of stocks deviates predictably from the Treasury
bill rate.
6. Conclusions

This paper tells a coherent story connecting the cross-sectional properties of expected
returns to the variation of expected returns through time. We use the simplest risk model of
modern portfolio theory, the Sharpe-Lintner CAPM, to relate the cross-sectional beta
premium to the equity premium. When the cross-sectional beta premium is high, the
Sharpe-Lintner CAPM predicts that the equity premium should also be expected to be
high.
We construct a class of cross-sectional beta-premium variables by measuring the cross-

sectional association between valuation multiples (book-to-price, earnings yield, etc.) and
estimated betas. Consistent with the Sharpe-Lintner CAPM, our time-series tests show
that the cross-sectional beta premium is highly correlated with the market’s yield measures.
Furthermore, the cross-sectional variable forecasts the equity premium, both on its own
and in a multiple regression with the smoothed earnings yield, although the high
correlation between the two variables makes the multiple-regression results less conclusive.
Results obtained from an international sample support our main conclusions drawn from
the US sample.
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Because equity-premium realizations are very noisy, forecasting the equity premium
with univariate methods is a nearly impossible task. Fortunately, simple economic logic
makes predictions about the equity premium, such as high stock prices should imply a low
equity premium (Campbell and Shiller, 1988a, b; Fama and French, 1989), the equity
premium should usually be positive because of risk aversion (Merton, 1980), and the cross-
sectional pricing of risk should be consistent with the time-series pricing of risk. We join
others in arguing that imposing such economically reasonable guidelines can be of great
practical utility in formulating reasonable equity-premium forecasts.

Beyond simply forecasting the equity premium, our results provide insight into the
process by which the market prices the cross-section of equities. According to our
estimates, the stock market prices one unit of beta in the cross-section with a premium that
is highly correlated with the equity premium derived from the Fed model, the earnings
yield minus the long-term bond yield. In our sample, the Fed model explains 72% of the
time-series variation in our main cross-sectional risk-price measure. Our claim is not that
one should use the CAPM and the Fed model for relative valuation of stocks. We merely
show that the cross-section prices are set approximately as if the market participants did
so.

We also provide a practical solution to a long-standing inference problem in financial
econometrics. A volume of studies has asked whether the equity premium can be predicted
by financial variables such as the dividend or earnings yield (Rozeff, 1984; Keim and
Stambaugh, 1986; Campbell and Shiller, 1988a, b; Fama and French, 1988, 1989; Hodrick,
1992). Although the usual asymptotic p-values indicate statistically reliable predictability,
Stambaugh (1999) notes that the small-sample inference is complicated by two issues.
First, the predictor variable is often very persistent, and second, the shocks to the predictor
variable are correlated with the unexpected component of the realized equity premium.
Together, these two issues can cause large small-sample size distortions in the usual tests.
Consequently, elaborate simulation schemes (e.g., Ang and Bekaert, 2001) have been
necessary for finding reasonably robust p-values even in the case of homoskedastic
Gaussian errors.

We use a novel method to solve for the exact small-sample p-values in the case of
homoskedastic Gaussian errors. The method is based on the Jansson and Moreira (2003)
idea of first reducing the data to a sufficient statistic and then creating the nonlinear
mapping from the sufficient statistic to the correct critical value for the OLS t-statistic. For
a single forecasting variable and the now usual setup proposed by Stambaugh (1999) with
homoskedastic Gaussian errors, we provide the finance community with a function that
enables an applied researcher to implement a correctly sized test of predictability in
seconds.

Appendix A. lSRC identification requires cross-sectional variation in growth rates

This appendix explains how identifying expected-equity premium variation with the
measure lSRC requires cross-sectional variation in expected growth rates. Let D=Pi be the
dividend yield, gi the expected growth rate (in excess of the risk-free rate), and bi the beta
for stock i. Let k� be the typical expected excess return on the market and ke the deviation
of the expected excess return on the market from k�. The Gordon model and the CAPM
state that D=Pi ¼ biðk

�
þ keÞ � gi. We calibrate the model such that when the equity

premium is at k�, the cross-sectional variance of gi is c times that of bik
�. We make two
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further simplifying assumptions that (1) expected growth rates and discount rates are
uncorrelated and that (2) both variables are uniformly distributed. (Uniform distributions
are convenient, because in this case simple correlations are equal to rank correlations in
large samples.)
Simple algebra shows that the (rank) correlation (G) between dividend yields and betas is

equal to

G ¼
k� þ keffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk� þ keÞ
2
þ ck�2

q . (19)

The change in this correlation in response to a small change in ke at ke ¼ 0 is

qG
qke

����
ke¼0

¼
ck�

½k�2 þ ck�2�3=2
. (20)

As long as c is positive and growth rates vary across stocks, the (rank) correlation of bi

with D=Pi will vary with the equity premium. Furthermore, as one can see from these
formulas, increasing the cross-sectional variation in expected growth rates makes many of
our ordinal equity-premium measures more sensitive to changes in the equity premium, at
least as long as betas and expected growth rates are not correlated in the cross-section.
We calibrate the above equations using an estimate of c from Cohen et al. (2003, 2005b).

Those authors estimate that approximately 75% of the cross-sectional variation in
valuation multiples is caused by expected growth rates and only 25% by discount rates,
giving a variance ratio of c ¼ 75%=25% ¼ 3. The following exhibit illustrates how even a
very modest level of cross-sectional spread in growth rates allows changes in the (rank)
correlation between beta and dividend yield to be strongly related to changes in the equity
premium.
c
 0
 0.5
 1
 2
 3
 4
 5
k� ¼
 0.07
 0.07
 0.07
 0.07
 0.07
 0.07
 0.07
G
 1.00
 0.82
 0.71
 0.58
 0.50
 0.45
 0.41

qG
qke
0.00
 55.54
 72.15
 78.55
 76.53
 73.01
 69.43
qG
qke
=100
 0.00
 0.56
 0.72
 0.79
 0.77
 0.73
 0.69
qG
qke
=G
 0.00
 68.03
 102.04
 136.05
 153.06
 163.27
 170.07
qG
qke
=ð100GÞ
 0.00
 0.68
 1.02
 1.36
 1.53
 1.63
 1.70
Appendix B. Statistical appendix

B.1. Algorithm for computing qnn
a

In this section, we describe the algorithm for computing qnn
a , the neural network

approximation to the critical values defined in Eq. (10). We choose the parameters
of the neural net to minimize the sum of squared size distortions over a grid of
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ðr; g;TÞ values:

ðbc;bxÞ ¼ argminðc;xÞ
XJ

j¼1

XN

i¼1

aj � B�1
XB

b¼1

1h½btb;i4qnn
aj
ðX b;i;c; xÞ �

 !2

. (21)

i ¼ 1; . . . ;N indexes a grid of ðri; gi;TiÞ triplets. For each i, we simulate B data sets from
the null model, with y ¼ 0, i.i.d. normal errors, m1 ¼ m2 ¼ 0, and s2u ¼ s2v ¼ 1. btb;i is the t-
statistic for the bth simulated sample generated from ðri; gi;TiÞ, and X b;i is the X vector
generated from this sample. We can estimate the rejection frequency based on the critical
value qnn

a by averaging over the simulated draws:

Pr½bt4qnn
a ðX ;c; xÞ; ri; gi;Ti� � B�1

XB

b¼1

1½btb;i4qnn
a ðX b;i;c; xÞ�. (22)

1ðxÞ is the indicator function, equal to one when xX0 and zero otherwise. Thus our
minimization problem is a simulation-based way to minimize the sum of squared size
distortions. Because the indicator function is not differentiable, we replace it with the
differentiable function

1hðxÞ ¼ ð1þ e�x=hÞ
�1. (23)

As h goes to zero, 1h converges pointwise to the indicator function. Because our objective
function is differentiable in c and x, we can use efficient minimization methods.

The neural net critical values used in this paper were computed setting B ¼ 10; 000 and
h ¼ 0:01. Reparameterizing r ¼ 1þ c=T , the grid points were all possible combinations of

�c 2 ðT ; 75; 50; 30; 20; 15; 12; 10; 8; 6; 4; 2; 0Þ=T ,

�g 2 ð0; 0:2; 0:4; 0:5; 0:6; 0:7; 0:8; 0:85; 0:86; 0:88; 0:90; 0:92; 0:94; 0:96; 0:98Þ,

T 2 ð60; 120; 240; 480; 840Þ,

a 2 ð0:01; 0:025; 0:05; 0:10; 0:50; 0:90; 0:95; 0:975; 0:99Þ. ð24Þ

We do not need to simulate over different values of m1, m2, s
2
u or s2v because both btb;i and

X b;i are exactly invariant to these parameters.
Even though we simulated only over negative correlations, qnn

a is valid over the entire
range, �1ogo1. To understand why, first consider the case in which g is negative. Our
rejection rule is

if bgo0 reject when bt4� mðX Þ þ sðX ÞF�1ð:95Þ. (25)

Next consider the case in which g is positive. We replace xt by �xt, thus reversing the sign
of the correlation and making our approximate quantile function valid. This transforma-
tion also reverses the sign of y, so instead of testing the null y ¼ 0 against the positive
alternative y40, we test the null y ¼ 0 against the negative alternative yo0. Instead of
rejecting when the t-statistic bt (computed from xt) is greater than the 95% quantile of the
conditional null distribution we reject when the transformed t-statistic �bt (computed from
�xt) is less than the 5% quantile of the conditional null. Because X is invariant to replacing
xt with �xt, we reject when

�bto� mðX Þ þ sðX ÞF�1ð:05Þ. (26)
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Because F�1ðaÞ ¼ �F�1ð1� aÞ, the rejection rule becomes

if bg40; reject when bt4mðX Þ þ sðX ÞF�1ð:95Þ. (27)

This leads to our general rejection rule bt4signðbgÞmðX Þ þ sðX ÞF�1ð0:95Þ, valid whether bg is
positive or negative.
The simulated sample sizes range from 60 to 840 observations. The quantile function

perhaps is not accurate for samples smaller than 60 observations, but unreported Monte
Carlo simulations indicate that it is accurate for any sample size greater than 60
observations, including samples larger than 840 observations. There are sound theoretical
reasons to believe that the function works for samples larger than 840 observations. As T

becomes large, asymptotic approximations become accurate. If xt is stationary, the input
vector X converges to ð1; 0; 0; 1; gÞ0 and the critical function returns the usual standard
normal approximation. If r is modeled as a unit root (or local to unity) as in Jansson and
Moreira (2003), their asymptotic approximations imply that the conditional critical
function qðS; aÞ converges to a function that does not depend on T and delivers the correct
test size in any large sample. So our critical function returns asymptotically sensible critical
values whether we have a unit root or not.
Minimizing objective functions in neural networks is computationally demanding. The

objective function is not convex in the parameters and has many local minima. We used the
following algorithm, which draws on suggestions in Bishop (1995, Chapter 7) and Masters
(1993, Chapter 9). After generating all the X and bt values, we standardize them to have
zero sample means and unit variances. Following Bishop (1995, p. 262), we randomly draw
each element of c and x from an independent Normal(0; 1=5) distribution. We then iterate
from the starting values for c and x using the Broyden-Fletcher-Goldfarb-Shanno
optimization algorithm. All computations were done using Ox 3.00, a programming
language described in Doornik (2001).
We repeated this algorithm for many different randomly drawn starting values for c and

x. Some of the starting values led to solutions with minimal size distortions; the rejection
frequencies were visually similar to those in Fig. 1. Some starting values converged at
parameters that did not lead to accurate solutions.
B.2. Constructing confidence intervals for the univariate case

Confidence intervals consist of all the nulls we fail to reject. We construct confidence
intervals for y by inverting a sequence of hypothesis tests.
Let P ¼ ðm1;m2; y; r;s

2
u;s

2
v ; gÞ

0 denote the parameters of the model. A 100a% confidence
set C for y has the property that it contains the true parameter value with probability at
least a:

inf
P

Pr½y 2 C;P�Xa for all P. (28)

C is a random interval, because it is a function of the data, and Pr½y 2 C;P� denotes the
probability that y is in C given the parameters P. Suppose that, for each point y in the
parameter space, we carry out the conditional t test of size 1� a for the hypothesis y ¼ y.
We define C as the set of all y that we fail to reject. C is a valid interval because it contains
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the true y with probability equal to a:

Pr½y 2 C;P� � Pr½fail to reject null y ¼ y when null is true;P�

¼ 1� a for all P. ð29Þ

Thus we have an algorithm for constructing confidence intervals. We (1) construct a grid of
J null hypotheses y1oy2o � � �oyJ , (2) test each null y ¼ yj versus the two-sided
alternative yayj and (3) take the confidence interval to be all the yj’s that are not rejected.

8

The conditional tests we have described so far are designed to test the null that y is zero.
To test the general null y ¼ yj, transform the model so that the null is again zero. Create
the variable eyt ¼ yt � yjxt�1, so the first equation becomes

eyt ¼ m1 þ eyxt�1 þ ut, (30)

with ey ¼ y� yj. Then compute a conditional test of the null ey ¼ 0.

B.3. Conditional bootstrap algorithm for the multivariate model

In this section, we describe the conditional bootstrap used to carry out inference in the
multivariate model.

(1) Compute bS, the unrestricted regression estimate of S. Compute the transformed

vector ðeytex0tÞ0 ¼ bS�1=2ðytx
0
tÞ
0, where bS1=2

is the lower diagonal choleski decomposition of bS
and satisfies bS1=2

ðbS1=2
Þ
0
¼ bS. Compute by2;R by regressing eyt on the second element of ext�1

and a constant. Compute bKR by regressing ext on xt�1 and a constant and premultiplying

the result by bS1=2
. by2;R and bKR are the maximum likelihood estimators for y2 and K when bS

is the known covariance matrix and the null y1 ¼ 0 is imposed. Define the vector

X ¼ ðvecð bKRÞ
0 seðx1Þ seðx2Þ dCorrðx1;x2ÞÞ

0, (31)

where xt ¼ ðx1;t; x2;tÞ, ½seðx1Þ�
2 ¼ 1=ðT � 1Þ

P
ðx1;t�1 � x1Þ

2 is the estimated variance of x1,

½seðx2Þ�
2 is the estimated variance of x2, and dCorrðx1;x2Þ is their estimated covariance.

(2) Simulate B data sets from the parameter values y1 ¼ 0, by2;R, bKR, and bS. Let tb denote
the t-statistic for the bth simulated data set, and let X b denote the X vector for the bth
sample.

(3) Create the variable db ¼ maxijðX i � X b;iÞ=sij, where X i and X b;i are the ith elements
of X and X b, and s2i ¼ ðB� 1Þ�1

P
b ðX b;i � X iÞ

2, the standard deviation of X b;i. db is a
measure of the distance between the sufficient statistics computed from the actual and the
simulated data.

(4) Let d ðbÞ denote the bth sorted d value, sorted in ascending order, so
d ð1Þpdð2Þp � � �pd ðBÞ. Let D denote the set of btb where the corresponding X b is among
the N that are nearest to the actual sufficient statistics:btb 2 D iff d ðbÞpdðNÞ. (32)
8Throughout the paper a size 1� a test rejects the null y ¼ yj in favor of yayj when bt4qðS; ð1þ aÞ=2Þ orbtoqðS; ð1� aÞ=2Þ.
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(5) The set of draws D are treated as draws from the conditional distribution of bt given
S. We estimate the 100ath quantile of the conditional distribution with the 100ath
empirical quantile of the sample of draws D.
This bootstrap procedure computes a nonparametric nearest neighbor estimate of the

conditional quantile of bt given X. Chaudhuri (1991) shows that as B and N increase to
infinity, with N becoming large at a slower rate than B, the boostrapped quantile converges
in probability to the true conditional quantile. However, because X is a high-dimensional
vector the curse of dimensionality requires B to be extraordinarily large, possibly in the
billions. Thus if we take the Chaudhuri (1991) theory literally, it is not computationally
feasible to precisely estimate the conditional quantile. However, the Monte Carlo results
reported below suggest that the conditional bootstrap accomplishes the more modest goal
of improving on the parametric bootstrap.
We simulate five thousand samples of 120 observations each, setting y1 ¼ 0 and the rest

of the model parameters equal to the unrestricted least squares estimates when y is Re
M , the

value-weighted CRSP excess return, and xt contains the two predictors lSRC
t and ept. For

each simulated sample we test the null y1 ¼ 0 against the one-sided alternative y140. We
compute critical values using the parametric bootstrap and the conditional bootstrap. For
the parametric bootstrap we simulate 20 thousand new data sets from the model with
normal errors, setting y1 ¼ 0 and the other parameters to their unrestricted least squares
estimates. The conditional bootstrap is computed taking B ¼ 20; 000 and N ¼ 1; 000.
The above experiment yields the following results. When y1 is the coefficient on lSRC

t , the
parametric bootstrap rejects the null 5:48% of the time and the conditional bootstrap
rejects 3:84% of the time. When y1 is the coefficient on ept the rejection frequencies are
11.46% and 4.78%, respectively. We then simulate from the model with K ¼ I , to see how the
bootstraps perform when the predictors follow unit roots. When y1 is the coefficient on lSRCt ,
the parametric bootstrap rejects 6:36% of the time and the conditional bootstrap rejects
3:32% of the time. When y1 is the coefficient on ept the rejection frequencies are 15:64% and
7:80%. These Monte Carlo results suggests that conditional inference yields a significant
improvement even in the computationally more challenging multivariate problem.
We choose the N and B used for Tables 7 and 8 as follows. For the p-values that test the

nulls y1 ¼ 0, y2 ¼ 0, and y1 ¼ y2 ¼ 0, we set N ¼ 10; 000 and B ¼ 200; 000.

B.4. Discussion of test power

The Monte Carlo experiments in Section 4, as well as the theory underlying conditional
inference, demonstrate that the size of our conditional test is correct. The test is also
powerful. Jansson and Moreira (2003) show that the conditional t test is most powerful
among the class of similar tests. Similar tests deliver correct size for all values of the
nuisance parameters r, m1, and m2. Therefore, a test can only be more powerful than ours if
it either under-rejects or over-rejects for some values of the nuisance parameters. One way
to add power to a test is to make strong a priori assumptions about the values of r, m1, and
m2. For example, if one knows the value of r, then it is straightforward to construct a test
that is more powerful than ours. If one’s belief in r is incorrect, the test has power or size
problems or both.
In particular, our procedure has good power relative to alternative procedures proposed

by Lewellen (2004), Torous et al. (2005), and Campbell and Yogo (2006). Lewellen (2004)
provides a good example of a clever test that improves power by making strong
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assumptions about nuisance parameters. Lewellen (2004) derives an one-sided test
(alternative hypothesis is y40) assuming that r ¼ 1 and go0. If we know for sure that r
equals one, then Lewellen’s test has a power advantage over our test. However, Lewellen
(2004) shows that the power of his test declines dramatically as r declines. To address the
power issue, Lewellen (2004) also describes a Bonferroni procedure to improve power for r
below one. (For some of our predictive variables ro1 and g40, thus Lewellen’s tests
would over-reject the null.)

Torous et al. (2005) use a Bonferroni procedure first proposed by Cavanaugh et al.
(1995). They form a confidence interval for r, then construct the optimal test of y ¼ 0 at all
values of r in the interval. If none of the tests rejects for any r in the interval, they do not
reject the null that y ¼ 0. Their test is also designed to have high power if r is close to one.

Campbell and Yogo (2006) make stronger assumptions about the nuisance parameters
than we do, and if their assumptions are correct, their test could therefore be more
powerful. Campbell and Yogo (2006) and Torous et al. (2005) both use Bonferroni tests
that rely on a first-stage confidence interval for r. Campbell and Yogo (2006) differ in that
they form the interval using a newer, more powerful test: the Dickey-Fuller generalized
least squares (DF-GLS) test of Elliot et al. (1996). The DF-GLS test is potentially more
powerful than traditional methods but also makes stronger assumptions about nuisance
parameters.

To better understand Campbell and Yogo’s approach in practice, suppose that the
intercept in the second equation, m2, is known to be zero and does not need to be estimated.
Incorporating this prior information into a test should improve the power of the test. In
practical applications m2 is probably not exactly zero. However, suppose that m2 is by some
metric small, and further suppose that r is close to one. Then, over time, xt varies so much
that it dominates any small value of m2 (in other words, m2 is small relative to the standard
deviation of xt,) and the data behave approximately as if m2 were zero. Therefore, one can
construct tests under the assumption that m2 is zero, and in a large sample the assumption
does not lead to size problems. This approximation is the basis for the DF-GLS test used
by Campbell and Yogo. In summary, Campbell and Yogo are thus implicitly making the
assumption that r is close to one and m2 is close to zero.

Monte Carlo experiments confirm the above logic. The tests by Lewellen (2004), Torous
et al. (2005), and Campbell and Yogo (2006) have better power than our test if r is close to
one and g is close to negative one. As r decreases and g increases, our test becomes more
powerful. In the simulations, we focus on a long (1926–2002) monthly time series of log
dividend yields and excess returns, available from Motohiro Yogo’s website. We use this
time series for the following reasons. First, this series is the most persistent of the
commonly used predictor variables. Second, shocks to dividend yield have much stronger
negative correlation with returns than shocks to any other of the commonly used predictor
variables. Third, this series has a long time span, and thus many of the asymptotic
approximations are likely be accurate. Fourth, a series that starts in 1926 has a relatively
low intial value, which is relevant for some of the tests we examine.

For our Monte Carlo experiments, we estimate the following model:

yt ¼ m1 þ yxt�1 þ ut,

xt ¼ em2 þ zt; and

zt ¼ rzt�1 þ vt, ð33Þ
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Fig. 3. Power of alternative tests. The plots compare small-sample rejection probabilities for various tests. The

labels are Polk-Thompson-Vuolteenaho (PVT), Campbell-Yogo (CY), Lewellen’s test ðL1Þ, Lewellen’s Bonferroni

test ðL2Þ, and Torous, Valkanov, and Yan’s Bonferroni test (TVY). We provide results for various values of

c ¼ Tðr� 1Þ, b ¼ y=T , and g. There are ten thousand Monte Carlo simulations.
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with r ¼ 1þ c=T and y ¼ b=T . This specification appears in the current version of
Campbell and Yogo’s working paper. It is equivalent to the two-equation system in Eq. (6)
that we use in the rest of the paper, with m2 ¼ em2ð1� rÞ. The point estimates are

m1 ¼ 0:0319; em2 ¼ �3:3621; x0 ¼ �3:0015; z0 ¼ 0:3606; and

s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðutÞ

p
¼ 0:0545; s2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðvtÞ

p
¼ 0:0565,

g ¼ Corrðet; vtÞ ¼ �0:9543. ð34Þ

The confidence interval for c � Tðr� 1Þ, based on inverting the Dickey-Fuller statistic,
ranges approximately from c ¼ �16 to c40.
Fig. 3 compares the small-sample rejection probabilities of five alternative tests: our test

(PTV), the Campbell-Yogo test (CY), Lewellen’s test ðL1Þ, Lewellen’s Bonferroni test ðL2Þ,
and the Bonferroni test of Torous, Valkanov, and Yan (TVY). The Monte Carlo results
use the parameter estimates and starting values given above, with a few variations. We set
c ¼ 0, i.e., a unit root, and c ¼ �15, both of which are in the confidence interval. The value
c ¼ �15 calibrates to r ¼ 1þ c=T ¼ 0:9836 for 913 observations. We set the correlation
g ¼ �0:95, the correlation in Campbell and Yogo’s data, and g ¼ �0:50, which is closer to
the correlations we see for many other predictor series.
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We calculate the CY test by following the instructions in their Appendix C, except that
we do not implement any of the corrections for serial correlation in the errors et or vt. To
implement the CY test we electronically store the critical-value tables from the most recent
version of their working paper.

The Lewellen test ðL1Þ is optimal for r ¼ 1. As Lewellen has shown, it has poor power
when r is below one. Lewellen proposes but did not empirically implement a Bonferroni
version of the test ðL2Þ to improve power for small r. Our implementation of the ðL2Þ test is
partly based on suggestions and clarifications by Jonathan Lewellen in private
correspondence. The p-value for Lewellen’s Bonferroni test is

pbonferroni ¼ min½2P;PþD�, (35)

where

P ¼ min½plewellen; pstambaugh�, (36)

and D is the p-value for a unit root test of r ¼ 1, based on the sampling distribution of br.
plewellen is the p-value for the Lewellen test ðL1Þ, and pstambaugh is the p-value for the
Stambaugh test. We calculate pstambaugh assuming that the Stambaugh bias-corrected
t-statistic is normally distributed. We also ran the simulations using a bootstrap procedure
to calculate the p-values. The results are qualitatively similar.

When c equals zero and the correlation g is very close to negative one, the competing
procedures (CY, L1, L2, TVY) have more power than our test. The competing procedures
also do not over-reject in this case. This is not surprising, as the alternative tests are
developed with this particular situation in mind. Our test is superior in terms of power for
smaller values of c and larger values of g. When c ¼ �15, many of the alternative
procedures have size distortions, causing them to under-reject the null and have low power.
The CY and L1 tests have particularly low power for c ¼ �15 and g ¼ �0:50. In
particular, for the predictor variables and sample periods we test in our paper, c point
estimates range approximately from �1 to �75 and g point estimates from �0:7 to þ0:4.
As the above experiments show, these ranges include many values of g for which our test is
superior.
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