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Abstract

Panel data analysis is an important topic in statistics and econometrics. Traditionally, in

panel data analysis, all individuals are assumed to share the same unknown parameters, e.g.

the same coefficients of covariates when the linear models are used, and the differences between

the individuals are accounted for by cluster effects. This kind of modelling only makes sense

if our main interest is on the global trend, this is because it would not be able to tell us

anything about the individual attributes which are sometimes very important. In this paper,

we propose a modelling based on the single index models embedded with homogeneity for panel

data analysis, which builds the individual attributes in the model and is parsimonious at the

same time. We develop a data driven approach to identify the structure of homogeneity, and

estimate the unknown parameters and functions based on the identified structure. Asymptotic

properties of the resulting estimators are established. Intensive simulation studies conducted in

this paper also show the resulting estimators work very well when sample size is finite. Finally,

the proposed modelling is applied to a public financial dataset and a UK climate dataset, the

results reveal some interesting findings.

∗The corresponding author, email: wenyang.zhang@york.ac.uk.
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1 Introduction

1.1 Preamble

Panel data analysis is an important topic in statistics and econometrics. The traditional ap-

proach for analysing panel data assumes all individuals share the same unknown parameters,

and uses cluster effects to account for the difference between individuals. For example, when

the linear models are used, the coefficients of the covariates are assumed to be the same across

all individuals, i.e.

yit = XT
itβ + εit, i = 1, · · · , m; t = 1, · · · , T,

where yit and Xit = (Xit,0, . . . , Xit,p)
T with Xit,0 = 1, a (p + 1)-dimensional vector, are re-

spectively the tth observations of the response variable and covariates of the ith individual. εit,

t = 1, . . . , T , are correlated for any given i, and the cluster effects are included in εit. See

Hsiao (2014) and the references therein. Whilst this modelling idea is useful when the global

trend of the impact of a covariate on the response variable is of our main interest, it does not

tell us anything about the individual attributes which are sometimes very important.

In order to explore the individual attributes, we need to make them more concrete and

distinctive in modelling. A simple approach to do so would be using

yit = XT
itβi + εit, i = 1, · · · , m; t = 1, · · · , T, (1.1)

to fit the data. However, this modelling approach would result in m(p+ 1) unknown coefficients

to estimate, which is too many, because m is usually of the magnitude of hundreds, or even more,

in practice. This modelling also ignores the similarity which may exist among some individuals.

Such similarity may have very important practical meaning, and could lead to some important

findings in practice. In addition to that, statistically speaking, the modelling, like (1.1) without

any conditions imposed, would also pay a price on variance side of the estimators resulted

because the available information is not used up.

In order to explore the individual attributes and account for the similarity among some in-

dividuals at the same time, Ke et al. (2015) proposed a penalised likelihood/least squares based

approach to pursue the homogeneity in the linear models, i.e. (1.1), used for panel data analysis,

under the framework of treating homogeneity as a kind of sparsity. Regression under homogene-

ity condition has also been studied by quite a few recent works, e.g. Tibshirani et al. (2005);

Friedman et al. (2007); Bondell and Reich (2008); Jiang et al. (2013) , and the references therein.

Like Ke et al. (2015), the methods in these works are all based on penalised likelihood/least

squares. Ke et al. (2016) took a different approach, they formulated the homogeneity pursuit
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problem as a problem of change point detection and applied the binary segmentation approach

to identify the homogeneity in the linear models with interactive effects.

The existing literature about homogeneity pursuit mainly focuses on the linear models. It is

well known that the linearity condition may not hold for many datasets, and the exploration of

linear relationship is not sufficient in many cases. As a consequence, the semiparametric mod-

elling is becoming more and more useful in panel data analysis. Among various semiparametric

models, the single index models have many advantages, and are a very successful tool in data

analysis, see Härdle and Stoker (1989); Carroll et al. (1997); Yu and Ruppert (2002); Zhu and

Xue (2006); Xia (2008); Peng and Huang (2011); Zhu et al. (2012); Guo et al. (2017), and the

reference therein. In this paper, we are going to investigate the homogeneity pursuit in the

single index models used for panel data analysis. The detailed definition of the models we are

going to address in this paper is given in Section 1.2

1.2 The single index models with homogeneity structure

Let yit and Xit, a (p+1)-dimensional vector, be respectively the tth observations of the response

variable and covariate of the ith individual, i = 1, · · · , m; t = 1, · · · , T . We consider the

models

yit = gi(X
T
itβi) + εit, i = 1, · · · , m; t = 1, · · · , T, (1.2)

where

gi(·) =



g(1)(·) when i ∈ G1,1,

g(2)(·) when i ∈ G1,2,
...

...

g(H1)(·) when i ∈ G1,H1 ,

βij =



β(1) when (i, j) ∈ G2,1,

β(2) when (i, j) ∈ G2,2,
...

...

β(H2) when (i, j) ∈ G2,H2 ,

(1.3)

G1 = {G1,k : k = 1, · · · , H1} is a partition of set {1, · · · , m}, G2 = {G2,k : k = 1, · · · , H2}
is a partition of set {(i, j) : i = 1, · · · , m; j = 1, · · · , p}, βij is the (j + 1)th component of

βi, and E(εit|Xit) = 0. The condition (1.3) is the homogeneity structure of the standard single

index models for panel data analysis. {G1,k : k = 1, · · · , H1} and {G2,k : k = 1, · · · , H2}
are unknown partitions. H1 and H2 are unknown integers, H1 is much smaller than m, H2 is

much smaller than mp. g(k)(·), k = 1, · · · , H1, are unknown functions to be estimated, and

β(k), k = 1, · · · , H2, are unknown parameters to be estimated.

As a special case of the proposed models, if gi(·)s are homogeneous but coefficients are

heterogeneous, the models can be simplified to

yit = g(XT
itβi) + εit, i = 1, · · · , m; t = 1, · · · , T,
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with

βij =



β(1) when (i, j) ∈ G2,1,

β(2) when (i, j) ∈ G2,2,
...

...

β(H2) when (i, j) ∈ G2,H2
.

Let βi0 = 1 be the first component of βi. In the literature, the most commonly used

identification condition for the single index models is ‖βi‖ = 1 and βi0 > 0, or βi0 = 1. We

choose the latter in this paper.

From model specification point of view, it is easy to see the commonly used fixed effect

models are a special case of (1.2). In fact, when gi(·) = g(·) + αi and βi = β in (1.2), (1.2)

becomes

yit = g(XT
itβ) + αi + εit,

which are the standard single index fixed effect models.

The models (1.2) together with (1.3) show that the homogeneity pursuit in the single index

models for panel data analysis is even more important than that in the linear models, this is

because we would have to estimate m unknown functions and mp unknown parameters in order

to explore the individual attributes, if the homogeneity pursuit is not conducted. However,

if the homogeneity pursuit is conducted, we only need to estimate H1, much smaller than m,

unknown functions and H2, much smaller than mp, unknown parameters when the homogeneity

exists. Even without taking into account the benefit resulted from the homogeneity pursuit for

the parametric part of the models, just for the part of unknown functions alone, to estimate

much fewer functions would make a big difference in the obtained estimators, in terms of the

stability of the estimators.

In addition to the methodological advantage, the proposed homogeneity pursuit also acts

as a detector to find which covariates have the same impact on the response variable. For

example, when the response variable is temperature and the linear models are employed, if the

homogeneity pursuit finds the coefficients of two environmental factors in the models are the

same, that would mean these two environmental factors have the same impact on temperature,

which would be practically very meaningful.

There is an expanding literature on panel data models with grouping structure. Ke et al.

(2016) used a similar binary segmentation method to identify grouping structure in panel data

models with interactive effects. Applying the idea of penalised least squares based CARDS,

proposed by Ke et al. (2015), Wang et al. (2018) designed an algorithm called Panel-CARDS

to identify group structure in linear models for panel data analysis. Wang and Su (2019)

considered very general parametric nonlinear models using binary segmentation. The grouping

structures in these models are determined by finite-dimensional parameters. As the models in

Wang and Su (2019) are defined through a general known function without any specific form,

the theoretical results apply for a large class of parametric nonlinear models. For nonparametric
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models, Vogt and Linton (2017) used k-means algorithm to cluster the individual functions. In

this paper, we adopt the binary segmentation approach for grouping structure identification.

The unique feature and our main contribution is that we consider semiparametric single-index

models in which the grouping structure is determined by both nonparametric functions and

finite-dimensional index parameters.

Like any statistical modelling, the proposed models have its own limitations. One limitation

is that we assume exact homogeneity within a group (parameters within the same group are

exactly the same). Such an assumption was used in all references above. One exception is

Bonhomme et al. (2017) which allows the parameters to be approximately equal within a group,

with an additional term characterizing the approximation error in their theoretical results.

Similar approximation error terms also appear in Belloni et al. (2014) for a different study. An

extension to allow for group-specific effects of covariates is briefly discussed in Bonhomme and

Manresa (2015). We conjecture that assumptions and proofs in our modelling framework can

also be modified to allow such cases.

The rest of the paper is organized as follows. We begin in Section 2 with a description

of the proposed estimation procedure which is embedded with a binary segmentation based

homogeneity pursuit. The asymptotic properties of the proposed estimators are presented in

Section 3. The finite-sample performance of the proposed estimation, in comparison with the

potential competitors, is assessed by simulation studies in Section 4. In Section 5, applying

the single index models (1.2) together with the homogeneity structure (1.3) to the 49 Industry

Portfolios data set, which can be freely downloaded from Kenneth French’s website

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html,

and the UK climate data, which can be freely downloaded from

http://www.metoffice.gov.uk/public/weather/climate-historic,

we will show the advantages of the proposed statistical methodology. We leave all technical

proofs of the asymptotic properties in the Appendix and the online supplementary material.

2 Estimation procedure

2.1 Estimation method

Our approach to deal with the unknown functions gi(·), i = 1, · · · , m, in (1.2) is based on

the B-Spline. To achieve the best result for the homogeneity pursuit, we have to decompose all

gi(·)s by the same B-Spline basis, B(·) = (B1(·), · · · , BK(·))T. B-splines and kernel smoothing

are two major approaches to estimate unknown functions in statistics literature. Either has its

advantage and disadvantage. Kernel smoothing demands computation of estimated function

value on a grid of points, which can be computationally very expensive, we therefore go for B-
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splines in this paper. Another advantage of using B-splines is it makes the binary segmentation

based homogeneity pursuit much easier.

For each i, i = 1, · · · , m, let β̃i be the estimate of βi obtained, based on the observations

for the ith individual, by a standard estimation procedure for the single index models, e.g. the

method in Yu and Ruppert (2002) or in Härdle and Stoker (1989), and

a = min
1≤i≤m

min
1≤t≤T

XT
itβ̃i, b = max

1≤i≤m
max
1≤t≤T

XT
itβ̃i.

We use the B-Spline basis of order s in this paper, and the basis, B(·), is formed by the

equally spaced knots, τk, k = 0, · · · , K − s + 1, on the interval [a, b], with τ0 = a and

τK−s+1 = b. Based on the basis B(·), gi(·) can be decomposed as

gi(·) ≈ B(·)Tθi, (2.1)

where θi = (θi1, · · · , θiK)T. So, to get the estimator of gi(·), we only need to get the es-

timator of θi. Theoretically, we have to assume there exists a θ0i such that B(·)Tθ0i is a

good approximation of gi(·). Instead of making this assumption directly, we will assume that

gi(·) is twice differentiable, which implies that as long as s > 2 we can find θ0i such that

|gi(x) − B(x)Tθ0i| ≤ CK−2 for some constant C > 0. We will also assume K → ∞ and thus

the approximation error converges to zero.

Our estimation procedure for θi and βi, i = 1, · · · , m, consists of three stages: in the first

stage, for each i, we estimate θi and βi only based on the observations for the ith individual,

and treat the obtained estimators as initial estimators; we identify, in the second stage, the

homogeneity structure in the θis and βis based on the initial estimators obtained in the first

stage; in the final stage, we estimate the θis and βis under the identified homogeneity structure.

We now present the details of the estimation procedure.

Stage 1 (Initial Estimation). Let βi = (βi1, · · · , βip)T, which is βi with the first component, which

is always 1, being dropped. For each i, based on the observations for the ith individual,

approximating gi(·) by its decomposition (2.1) and applying the least squares estimation

method, we have the following objective function

T∑
t=1

(
yit −BT(XT

itβi)θi

)2
. (2.2)

Minimise (2.2) with respect to (β
T

i , θ
T
i ), and denote the resulting minimiser by (β̃

T

i , θ̃
T

i ).

We will show how to conduct the minimisation in Section 2.2.

Stage 2 (Homogeneity Pursuit). Let β̃ij be the jth component of β̃i, we sort β̃ij , i = 1, · · · , m,

j = 1, · · · , p, in ascending order, and denote them by

b(1) ≤ · · · ≤ b(mp).

We use Rij to denote the rank of β̃ij . Identifying the homogeneity among β̃ij , i =

1, · · · , m, j = 1, · · · , p, is equivalent to detecting the change points among b(l),

l = 1, · · · , mp. To this end, we apply the Binary Segmentation algorithm as follows.
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For any 1 ≤ i < j ≤ mp, let

∆ij(κ) =

√
(j − κ)(κ− i+ 1)

j − i+ 1

∣∣∣∣∣
∑j
l=κ+1 b(l)

j − κ
−
∑κ
l=i b(l)

κ− i+ 1

∣∣∣∣∣ .
Given a threshold δ, the Binary Segmentation algorithm to detect the change points works

as follows

(1) Find k̂1 such that

∆1,mp(k̂1) = max
1≤κ<mp

∆1,mp(κ).

If ∆1,mp(k̂1) ≤ δ, there is no change point among b(l), l = 1, · · · , mp, and the process

of detection ends. Otherwise, add k̂1 to the set of change points and divide the region

{κ : 1 ≤ κ ≤ mp} into two subregions: {κ : 1 ≤ κ ≤ k̂1} and {κ : k̂1 + 1 ≤ κ ≤ mp}.

(2) Detect the change points in the two subregions obtained in (1), respectively. Let us

deal with the region {κ : 1 ≤ κ ≤ k̂1} first. Find k̂2 such that

∆1,k̂1
(k̂2) = max

1≤κ<k̂1
∆1,k̂1

(κ).

If ∆1,k̂1
(k̂2) ≤ δ, there is no change point in the region {κ : 1 ≤ κ ≤ k̂1}. Otherwise,

add k̂2 to the set of change points and divide the region {κ : 1 ≤ κ ≤ k̂1} into

two subregions: {κ : 1 ≤ κ ≤ k̂2} and {κ : k̂2 + 1 ≤ κ ≤ k̂1}. For the region

{κ : k̂1 + 1 ≤ κ ≤ mp}, we find k̂3 such that

∆k̂1+1,mp(k̂3) = max
k̂1+1≤κ<mp

∆k̂1+1,mp(κ).

If ∆k̂1+1,mp(k̂3) ≤ δ, there is no change point in the region {κ : k̂1 + 1 ≤ κ ≤ mp}.
Otherwise, add k̂3 to the set of change points and divide the region {κ : k̂1 + 1 ≤
κ ≤ mp} into two subregions: {κ : k̂1 + 1 ≤ κ ≤ k̂3} and {κ : k̂3 + 1 ≤ κ ≤ mp}.

(3) For each subregion obtained in (2), we do exactly the same as that for the subregion

{κ : 1 ≤ κ ≤ k̂1} or {κ : k̂1 + 1 ≤ κ ≤ mp} in (2), and keep doing so until there is

no subregion containing any change point.

We sort the estimated change point locations in ascending order and denote them by

k̂(1) < k̂(2) < · · · < k̂(Ĥ−1)
,

where Ĥ−1 is the number of change points detected. In addition, we denote k̂(0) = 0,

Ĥ2 = Ĥ−1 + 1, and k̂(Ĥ2)
= mp.

We use Ĥ2 to estimate H2. Let

Ĝ2,h = {(i, j) : k̂(h−1) < Rij ≤ k̂(h)}, 1 ≤ h ≤ Ĥ2,

we use
{
Ĝ2,h : 1 ≤ h ≤ Ĥ2

}
to estimate the partition {G2,h : 1 ≤ h ≤ H2}. We assume

that all the βijs with the subscript (i, j) in the same estimated partition have the same

value.
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Let θ̃ij be the jth component of θ̃i. Doing exactly the same to θ̃ij , i = 1, · · · , m, j =

1, · · · , K, we get a partition {Ĝ1,1, · · · , Ĝ1,Ĥ1
} of {(i, j) : i = 1, · · · , m; j = 1, · · · , K}.

We assume that all the θijs with subscript (i, j) in the same estimated partition have the

same value.

Stage 3 (Final Estimation). Let L(η1, · · · , ηĤ2
, ξ1, · · · , ξĤ1

) be

m∑
i=1

T∑
t=1

(
yit −BT(XT

itβi)θi

)2
. (2.3)

with βij , i = 1, · · · , m, j = 1, · · · , p, being replaced by ηk if (i, j) ∈ Ĝ2,k, and θij , i =

1, · · · , m, j = 1, · · · , K, being replaced by ξh if (i, j) ∈ Ĝ1,h. Let (η̂1, · · · , η̂Ĥ2
, ξ̂1, · · · , ξ̂Ĥ1

)

minimise L(η1, · · · , ηĤ2
, ξ1, · · · , ξĤ1

). The final estimator β̂ij of βij is η̂k if (i, j) ∈ Ĝ2,k,

and the final estimator θ̂ij of θij is ξ̂h if (i, j) ∈ Ĝ1,h. Once we have the estimator θ̂ij , the

estimator ĝi(·) of gi(·) is taken to be B(·)Tθ̂i.

Remark 1 When dealing with the unknown functions gi(·), i = 1, · · · , m, in the estimation

procedure, instead of treating each unknown function as a single undivided unit to conduct ho-

mogeneity pursuit, we work on the coefficients of its B-Spline decomposition. This is because

there may still be some kind of homogeneity between two functions even if they are different. For

example, for two different functions, it could be the case that some coefficients of the B-Spline

decomposition of one function are the same as some coefficients of the B-Spline decomposition

of another one. If we treat each unknown function as a single undivided unit to conduct homo-

geneity pursuit, we would not be able to identify or use this kind of homogeneity, which would

make our final estimators not as efficient as they should.

Our estimation procedure for grouping functions gi(·) is based on estimated values of θ0i.

Thus theoretically correct grouping indeed depend on θ0i which has different dimensions with

different choices of K. Theoretically, this does not cause any problem since gi(·) = gj(·) implies

θ0i = θ0j, so we can still get a consistent estimator of the partition even for different values of

K. As discussed in Section 2.3 below, we fix a reasonable value of K for ease of implementation.

2.2 Computational algorithm

In the estimation procedure described in Section 2.1, the minimiser of (2.2) does not have a

closed form, neither does the minimiser of L(η1, · · · , ηĤ2
, ξ1, · · · , ξĤ1

). To conduct the

minimisation of either of the two objective functions, we appeal to the standard NLS algorithm,

and use the nlsLM of minpack.lm package in R to implement it. One can also use other NLS

software, for example, the NLS routine lsqnonlin() from MATLAB and PROC NLIN from SAS.

To use the nlsLM of minpack.lm package in R, we first need to find an initial value. The initial

value for minimising (2.2) can be obtained as follows:
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(1) Apply the standard least squares estimation for the linear models to (yit, Xit), t =

1, · · · , T , and denote the resulting estimator by β̌i, the initial value for βi is taken

to be β
(0)
i = β̌−1i0 β̌i, β̌i0 is the first component of β̌i.

(2) Substitute β
(0)
i for βi in (2.2), then minimise (2.2) with respect to θi, the minimiser θ

(0)
i

is the initial value of θi.

Once we have β
(0)
i and θ

(0)
i , the minimiser of (2.2) can be obtained by the nlsLM of minpack.lm

package in R straightforwardly. We note that using the standard least squares estimation is

actually a common way to get initial values for single-index models and this method is used in

Carroll et al. (1997). One could also justify this choice based on sufficient dimension reduction

(Duan and Li; 1991) which established that even for semiparametric models, linear regression

can be used to estimate the index parameter under mild assumptions. In our simulations, this

initial value works well. One could also try generating multiple random initial values and fit the

model multiple times as a safeguard.

For any set A, let |A| be the number of elements in A. The initial value for minimising

L(η1, · · · , ηĤ2
, ξ1, · · · , ξĤ1

) can be obtained through the initial estimates of βi and θi,

obtained in Stage 1 of the estimation procedure in Section 2.1, as follows:

η(0)s =
(
|Ĝ2,s|

)−1 ∑
(i,j)∈Ĝ2,s

β̃ij , s = 1, · · · , Ĥ2

and

ξ(0)s =
(
|Ĝ1,s|

)−1 ∑
(i,j)∈Ĝ1,s

θ̃ij , s = 1, · · · , Ĥ1.

Once we have the initial value (η
(0)
1 , · · · , η(0)

Ĥ2
, ξ

(0)
1 , · · · , ξ(0)

Ĥ1
), we can have the minimiser of

L(η1, · · · , ηĤ2
, ξ1, · · · , ξĤ1

) by using the nlsLM of minpack.lm package in R straightfor-

wardly.

2.3 Selection of tuning parameters

In literature, s, the order of B-Spline, is almost always fixed to be either s = 3 (quadratic

splines) or s = 4 (cubic splines). In this paper we use the cubic splines. Furthermore, to

ease the computational burden, we fix K = 6. One could select K using cross-validation or

some information criterion but it would increase the computational burden with no appreciable

numerical advantages in our experience. For complicated models, using a fixed K is not uncom-

mon, and this is the case, for example, in Huang et al. (2010); Fan et al. (2011). This choice of

K is small enough to avoid overfitting in typical problems with sample size not too small, and

big enough to flexibly approximate many smooth functions accurately.

The threshold δ in the Stage 2 of the proposed estimation procedure, described in Section 2.1,

plays a key role for the success of the homogeneity pursuit. Obviously, when using a decreasing

sequence of δ on a fine grid, the number of change points will increase resulting in a nested
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sequence of sets of change points. This nested sequence can be identified all at the same time

using a small δ. Thus the selection of δ is equivalent to the selection of Ĥ1 and Ĥ2 and there

is only a finite number of possibilities for the values of the latter. Therefore, in this section,

instead of selecting δ, we equivalently describe a cross-validation procedure to select the two

tuning parameters, Ĥ1 and Ĥ2.

For the single index model (1.2) where Xit’s are independent across t = 1, · · · , T, we

implement a L-fold cross validation approach. In particular, for a given pair {H1, H2}, we

remove 1/Lth of the observed time points for {(yit, Xit), i = 1, · · · , m, t = 1, · · · , T} as

a validation set, estimate the single index model (1.2) with identified homogeneity structure

on the remaining data, compute the squared error between yit and fitted values ĝi(X
T
itβ̂i) =

BT(XT
itβ̂i)θ̂i, on the validation set, and repeat this procedure L times to calculate the cross-

validated mean squared error and its corresponding standard error. We search over a grid of

{H1, H2} values and apply the one-standard-error rule to choose the smallest model for which

the estimated cross-validated error is within one standard error of the lowest point on the error

surface. The rationale here is that if a set of models appear to be more or less equally good,

then we might tend to choose the simplest model. Across the candidate pairs, {Ĥ1, Ĥ2}, whose

corresponding errors are within this deviation, one can choose the smallest Ĥ1 after selecting

the smallest Ĥ2 or switch the selection order or select the smallest value of Ĥ1 +Ĥ2, we take the

first approach since it produces better model selection consistency in our numerical experiments.

A similar one-standard-deviation-rule technique has been adopted to choose the regularisation

parameter with a smaller model size for the lasso problems (James et al.; 2013).

When Xit’s are time dependent panel data, we implement a rolling procedure to per-

form cross-validation for time series. More specifically, for each r = L, L − 1, · · · , 1, we

rollingly treat {(yit, Xit), i = 1, · · · , m, t = 1, · · · , T − r} as training observations and

{(yi,T−r+1, Xi,T−r+1), i = 1, · · · , m} as validation set, calculate the squared error between

each yit and its fitted value. Finally, we apply the one-standard-deviation-rule on the lowest

cross-validated mean squared error and choose Ĥ2 and Ĥ1.

Cross-validation is often used in statistics and econometrics literature for selection of the

tuning parameters. It would be significant to provide theoretical properties for this method.

However, this is a challenging problem that we currently do not know how to solve. The model

here with the three-stage algorithm is much more complicated than other models for which

consistency of cross-validation has been established. We also note that some works (Lu and

Su; 2017; Vogt and Matthias; 2017) has used other approaches for determining the number of

groups in parametric models.

In the cross-validation procedure when we need to make predictions for the validation set,

the domain in B(XT
itβ̂i) for the training data set might not cover that for the validation set.

We adopt the idea in Wang and Yang (2009) by mapping XT
itβ̂i to Fi(X

T
itβ̂i) ∼ Unif[0, 1]

so that the domain is fixed to be [0, 1], where Fi is the cumulative distribution function of
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XT
itβ̂i. We then implement the estimation procedure in Section 2.1 by decomposing gi(X

T
itβ̂i) ≈

BT
(
F̂i(X

T
itβ̂i)

)
θi, where F̂i is the empirical estimate of Fi obtained from {Xitβ̂i}Tt=1. The

proposed approach is thus able to make predictions and, as demonstrated by some numerical

studies, provides very similar sample performance in terms of estimation accuracy.

2.4 Post-processing step

The Binary Segmentation algorithm is known not to perform well in certain unfavourable sit-

uations, since it may fit a step function with a single change-point to the data over a segment

that possibly contains multiple change-points. Motivated by the post-processing idea in Cho

and Fryzlewicz (2012), we equip the Binary Segmentation algorithm with an additional step

aiming to enhance the accuracy of detected change-points locations through a fine-scale search.

To be specific, at each estimated change-point, we re-calculate ∆ij(κ) over the interval between

two adjacent estimated change-points such that each segment only contains a single estimated

change-point and then identify the new change-point location to replace the old one. We perform

this post-processing procedure by iteratively cycling through all neighbouring change-points and

fine-tuning the change-points locations. This procedure is terminated when the set of change-

points does not change. Our numerical experiments show that this extra post-processing step

apparently improves the accuracy of each estimated change-point location and hence the iden-

tified homogeneity structure for model (1.2).

3 Asymptotic properties

In this section, we are going to investigate the asymptotic behaviour of the estimators obtained

by the proposed estimation procedure, which we call correct-fitting, and compare with the

estimators obtained without homogeneity pursuit, which is the initial estimators obtained in the

Stage 1 in the proposed estimation procedure, we call it over-fitting, and the estimators obtained

under the assumption that all individuals share the same index (namely, β1 = · · · = βm), which

we call under-fitting. The asymptotic theory presented in this section is in the sense that

T −→ ∞, m is possibly diverging to infinity, but p, H1, H2 are fixed. This agrees with many

applications in which H1 and H2 are expected to be small and thus significant reduction of

unknown parameters can be achieved by clustering the parameters. To make the presentation

neat, we state the asymptotic theorems in this section and leave all technical proofs in the

Appendix and the supplementary material. We impose the following assumptions.

(C1) For each i, (yit,Xit, εit), t = 1, . . . , T is stationary and α-mixing with mixing coefficient

αi(l) ≤ ρl for some ρ ∈ (0, 1), and the m time series are independent.

(C2) εit satisfies E[εit|Xit] = 0 and E[εdit|Xit] < C for some constants C > 0 and d > 2. The

variables Xit,j are uniformly bounded. The density of XT
itβ0i is uniformly bounded and
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bounded away from zero on its support. The order of the spline satisfies s > 2 (s is fixed

and does diverge with T ).

(C3) The link functions g0i are twice continuously differentiable. We also assume E[Xit|XT
itβi =

x] is twice continuously differentiable for βi in a neighborhood of β0i, where Xit =

(Xit,1, · · · , Xit,p)
T.

(C4) Both E[XitX
T
it] and E[(g′0i(X

T
itβi))

2(Xit−E[Xit|XT
itβi])

⊗2] have eigenvalues bounded and

bounded away from zero, uniformly over i and βi in a neighborhood of β0i, where for any

matrix A, A⊗2 = AAT.

(C5) H1 and H2 are fixed and maxi,jmij/mini,jmij and maximi/minimi are bounded, where

mi is the size of G1,h that contains i, and mij is the size of G2,h that contains βij . We set

K � (mT )1/5. Assume
m(logT )

T → 0.

(C6) Assume
√
mKlog(Tm)/T << δ1 << γ1, where γ1 is the minimum jump size for the

sequence θ0(1) ≤ · · · ≤ θ0(mK) at the change points, and δ1 is the threshold used in the

change point detection algorithm (we stop partitioning if the test statistic is below δ1).

Similarly, assume
√
mplog(Tm)/T << δ2 << γ2, where γ2 and δ2 are similarly defined

for the sequence β0(1) ≤ · · · ≤ β0(mp).

Remark 2 (C1) and (C2) contains some mild regularity assumptions. Geometric mixing con-

dition could be relaxed to αi(l) ≤ l−C for sufficiently large C but the expressions in the theoretical

derivation would become very messy. (C2) also allows heterogeneous errors. Assuming Xit.j to

be bounded is common in estimation with B-splines since the basis functions are constructed on

a compact interval. In practice, one can always transform the predictors to [0, 1] before analysis

although this is not required. (C3) contains smoothness conditions for some functions and (C4)

contains some identifiability conditions usually assumed in single-index models and involves the

projection one typically use to profile out the nonparametric part. This requires in particular

that gi(·) are non-constant otherwise the index parameter cannot be identified. Uniformity over i

in various assumptions above is void if m is fixed. (C5) specifies the required divergence rate for

T,m,K. Finally, (C6) is used in showing that stage 2 of our estimation procedure can identify

the true partition with probability approaching one. It requires the parameter values in different

groups are sufficiently different for the group to be estimated correctly.

When considering the estimator in stage 1 of our estimation procedure, we can replace (C5)

with the following assumption (C5’). For the estimator in stage 1, there is no need to assume

H1, H2 are fixed or assume all mij and mi are of the same size as in (C5).

(C5’) We set K � T 1/5.

We start with the asymptotic properties of the estimators obtained without homogeneity

pursuit. The exact expressions of the asymptotic variances in either Theorem 1 or Theorem 2

are too complicated to be presented in the main body of this paper, therefore, left in Appendix.
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Theorem 1 (Over-fitting case). For any i, i = 1, · · · , m, and 1 ≤ j ≤ p, under the conditions

(C1)-(C4) and (C5’), we have

T 1/2(ẽT
ijΘ̃2ẽij)

−1/2
(
β̃ij − βij

)
D−→ N(0, 1)

and

T 2/5(b̃T
i (u)Θ̃1b̃i(u))−1/2 (g̃i(u)− gi(u)− ri(u))

D−→ N(0, 1),

where ẽij and b̃i(u) are unit vectors, Θ̃1, Θ̃2 are matrices with eigenvalues bounded and bounded

away from zero, all these quantities are defined in the proof in the Appendix. The bias term

ri(u) = gi(u)−BT(u)θ0i satisfies |ri(u)| ≤ CK−2, where θ0i is the vector of spline coefficients

used to approximate gi as defined in the Appendix.

From Theorem 1, it is easy to see both ẽT
ijΘ̃2ẽij and b̃T

i (u)Θ̃1b̃i(u) are scalars bounded

away from zero and infinity, which implies that the convergence rate of the estimator β̃ij is

of order T−1/2, and the convergence rate of the estimator g̃i(u) is of order T−2/5, which is as

expected as we assumed the functions are twice differentiable.

To make the statement about the correct-fitting case neat, we assume that all mi are of the

same order and all mij are of the same order (maxi,jmij/mini,jmij and maximi/minimi are

bounded) as in (C5).

Theorem 2 (Correct-fitting case). For any i, i = 1, · · · , m, and 1 ≤ j ≤ p, under the

conditions (C1)-(C6), we have

(mpT )1/2(eT
ijΘ2eij)

−1/2
(
β̂ij − βij

)
D−→ N(0, 1)

and

(mT )2/5(bT
i (u)Θ1bi(u))−1/2 (ĝi(u)− gi(u)− ri(u))

D−→ N(0, 1),

where eij and bi(u) are unit vectors, Θ1, Θ2 are matrices with eigenvalues bounded and bounded

away from zero, all these quantities are defined in the proof in the Appendix.

Theorem 2 shows the convergence rate of the estimator β̂ij is of order (mpT )−1/2, and the

convergence rate of the estimator ĝi(u) is of order (mT )−2/5. This together with Theorem 1

show the estimators obtained by correct-fitting are of higher order of convergence rate than that

obtained by over-fitting, therefore, more accurate. So, the homogeneity pursuit is imperative.

Because the asymptotic variance of either β̂ij or ĝi(u) has a very complicated form and it

is not clear how to estimate it consistently, to construct a statistical inference based on the

asymptotic normality established in Theorem 2 can be very challenging. In this paper we do

not consider the inferences problem and leave it as an open question.

Let β̌i and ǧi(·) be the estimators of βi and gi(·) obtained under the assumption that all

individuals share the same unknown parameters, which is the under-fitting case. We have
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Theorem 3 (Under-fitting case). Suppose the βis are sufficiently separated in the sense that

for β̄ :=
∑m
i=1 βi/m,

1

mp

m∑
i=1

‖βi − β̄‖2 ≥ c

for some c > 0, then

1

mp

m∑
i=1

‖β̌i − βi‖2 ≥ c.

Similarly, if

1

m

m∑
i=1

∫
|gi(u)− ḡ(u)|2 du ≥ c,

where ḡ(u) = m−1
∑m
i=1 gi(u), then

1

m

m∑
i=1

∫
|ǧi(u)− gi(u)|2 du ≥ c.

Theorem 3 shows the estimators obtained by under-fitting are even not consistent, therefore,

the worst.

4 Simulation studies

In this section, we are going to use simulated examples to assess the finite-sample performance

of the proposed estimation.

Example 1. We generate a sample from model (1.2) with p = 2 and an even m,

gi(u) =

sin(πu/2) when i = 1, 2, · · · , m/2,

cos(πu/2) when i = m/2 + 1, · · · , m,

and

βi =

(1, −1.5
√

0.2, −0.5
√

0.2)T when i = 1, 3, · · · , m− 1,

(1, 0.5
√

0.2, 1.5
√

0.2)T when i = 2, 4, · · · , m,

where ‖βi‖2 = 1.5 for i = 1, · · · , m. Let Xit and εit, i = 1, · · · , m, t = 1, · · · , T be

independently generated from 1√
1.5
N(03, I3) truncated by [−1.343, 1.343]3 (the range of 5th

to 95th quantiles for N(0, 2/3)) and N(0, σ2), respectively. Once Xit and εit are generated,

yit can be generated through (1.2).

We conduct this simulated example for various ms and T s with σ = 0.2, and compare the

proposed estimation with the potential competing methods based on the following performance

metrics:

(1) Estimation accuracy. For an estimator β̂i of βi, we use the mean squared error (MSE),

namely MSE(β̂i) = E
(
‖β̂i − βi‖2

)
, to assess the estimation error of β̂i. Analogously, for
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an estimator ĝi(·) of gi(·), its estimation accuracy can be evaluated based on the mean

integrated squared error,

MISE(ĝi) = E

{∫
(ĝi(u)− gi(u))

2
du

}
.

To avoid the situation where the performance is dominated by the poor boundary be-

haviour, we let the integral domain to be non-boundary region, which is between the 1st

and 99th quantiles of {XT
itβi, t = 1, · · · , T}.

(2) Homogeneity structure identification consistency. To evaluate the distance between the

identified homogeneity structure and the true one, we use the normalized mutual infor-

mation (NMI) (Ke et al.; 2015), which measures the similarity between two partitions.

Suppose C = {C1, C2, · · · } and D = {D1, D2, · · · } are two partitions of {1, · · · , n},
the NMI is defined as

NMI(C, D) =
I(C, D)

[H(C) +H(D)]/2
,

where

I(C, D) =
∑
k,j

(
|Ck ∩Dj |/n

)
log
(
n|Ck ∩Dj |/|Ck||Dj |

)
and

H(C) = −
∑
k

(
|Ck|/n

)
log
(
|Ck|/n

)
.

The NMI takes values in [0, 1] with larger values indicating higher level of similar-

ity between two partitions. For an estimated partition Ĝ2 = {Ĝ2,1, · · · , Ĝ2,Ĥ2
} of

{(i, j) : 1, · · · , m, j = 1, · · · , p}, obtained in Stage 2 of the proposed estimation

procedure in Section 2.1, we calculate NMI(Ĝ2, G2) to assess how close to the true homo-

geneity structure in βijs the estimated one is. Similarly, for an estimated partition Ĝ1 of

{i : 1, · · · , m}, we use NMI(Ĝ1, G1) to evaluate how close the estimated homogeneity

structure in gi(·)s is to the true one.

For each case, we apply either the single index model (1.2) with the initial estimation of

the proposed estimation procedure in Section 2.1, which we call over-fitting (Over), the single

index model (1.2) with the homogeneity structure (1.3) together with the proposed estimation

procedure in Section 2.1, which we call correct-fitting, or the single index model (1.2) with all

individuals sharing both the same index vector (namely, β1 = · · · = βm) and the same link

function (namely, g1(·) = · · · = gm(·), i.e. θ1 = · · · = θm), which we call under-fitting (Under),

to the simulated data set. We also implemented two other kinds of under-fitting methods

leading to similar empirical performance as Under, so we choose to put their results only in the

Supplementary Material.

We develop three methods under the correct-fitting case. The first approach, named Correct-

C, optimises (2.3) based on the estimated componentwise homogeneity structure in βijs and θijs,

obtained in Stage 2 of the estimation procedure in Section 2.1 with the tuning parameters se-

lected by the 10-fold cross-validation procedure described in Section 2.3. The second approach,
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Correct-V, is the same as the first approach but optimises (2.3) based on the estimated com-

ponentwise homogeneity structure in βijs and vectorwise homogeneity structure in θis which is

obtained based on the estimators of θijs obtained under the estimated componentwise homo-

geneity structure in θijs. The third approach, which we call Correct-NMI, is the same as the

second approach but with the tuning parameters selected to be those maximising NMI(Ĝ2, G2)

and NMI(Ĝ1, G1). In practice without knowing the true homogeneity structure, one cannot

implement Correct-NMI. We compare over-fitting, correct-fittings and under-fittings to the or-

acle case where the true homogeneity structure is used. The computational algorithms for the

under-fittings and oracle estimators are the same as that for the correct-fittings, but use either

the identified or pre-specified homogeneity structure.

We also adopt variants of the k-means-based approach (Vogt and Linton; 2017) by first

clustering link functions and index coefficients based on their initial estimates and then averaging

the initial estimates within each cluster to produce the final estimates. Specifically, after Stage 1

of the estimation procedure in Section 2.1 where we can obtain g̃i(·) = B(·)Tθ̃i and β̃ij for

i = 1, · · · ,m, j = 1, · · · , p, we implement the k-means algorithm to cluster either only g̃i(·)s
based on the L2 distance, which we call Km-F or both β̃ijs and g̃i(·)s, which we call Km-I-F.

The corresponding tuning parameters, i.e. numbers of clusters in β̃ijs and g̃i(·)s, are still selected

by the cross-validation approach. We investigate the sample performance of all ten approaches

in the simulation study.

We report the results for estimation errors and NMIs for βis and gi(·)s averaged over 100

replicates in Tables 1 and 2, respectively. In terms of the estimation error, the overall esti-

mation accuracy is improved as m and T increase and correct-fittings and Km-I-F perform

very well as reflected in their lower values of MSEs and MISEs. Among three correct-fitting

methods, Correct-NMI provides the best performance even producing very comparable MSEs

and MISEs with the oracle estimator and Correct-C is outperformed by Correct-V in terms of

MISEs in all settings. Intuitively, this is because, unlike Correct-C optimising (2.3) based on

the detected homogeneity structure in βijs and θijs, Correct-V separates the final estimation

step from the cross-validation procedure, which is used to identify the homogeneity structure

in βijs and θis. Analogously, Correct-NMI solves a separate optimisation after detecting the

homogeneity structure based on the largest NMIs. Moreover, in comparison with k-means-based

methods, correct-fittings are substantially superior with lower MSE values in most settings, but

are outperformed in terms of MISEs in many settings due to relatively smaller NMI values es-

pecially when T is not large enough. As long as T becomes sufficiently large, Correct-V and

Correct-NMI provide prominently improved estimates over Km-F and Km-I-F with respect to

lower values of MISEs. It is also worth noting that the over-fitting and under-fitting meth-

ods, which either ignores or mistakenly specify the homogeneity structure, provide much worse

results, highlighting the importance of incorporating the appropriate homogeneity structure.

In terms of the homogeneity structure selection consistency, we observe that three correct-

16



Table 1: The Average of MSE(β̂i), i = 1, · · · , m, and Average NMIs for Ĝ2

All entries for MSEs are 104 times their actual values

T 200 400 800

m 30 60 90 30 60 90 30 60 90

MSE

Oracle 0.539 0.389 0.204 0.317 0.190 0.121 0.191 0.121 0.097

Correct-C 0.895 0.633 0.341 0.434 0.212 0.143 0.166 0.088 0.091

Correct-V 0.547 0.401 0.214 0.320 0.189 0.122 0.191 0.122 0.096

Correct-NMI 0.539 0.386 0.205 0.318 0.189 0.121 0.191 0.121 0.097

Over 10.461 10.641 10.520 5.361 5.214 5.188 2.652 2.698 2.632

Under 4015.5 4006.5 4004.9 4005.7 4003.5 4002.2 4003.5 4001.8 4001.1

Km-F 10.474 10.708 10.555 5.340 5.222 5.199 2.655 2.712 2.629

Km-I-F 0.827 0.440 0.233 0.526 0.233 0.128 0.300 0.137 0.085

NMI

Oracle 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Correct-C 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Correct-V 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Correct-NMI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Over 0.506 0.449 0.421 0.506 0.449 0.421 0.506 0.449 0.421

Under 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667

Km-F 0.506 0.449 0.421 0.506 0.449 0.421 0.506 0.449 0.421

Km-I-F 0.997 1.000 1.000 0.996 0.999 1.000 0.993 0.999 1.000
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fitting methods produce perfect identifications of the homogeneity structure in βijs and k-means

based methods provide the most accurate recovery of G1 when T = 200 or 400. For T = 800,

both Correct-NMI and k-means methods can almost perfectly identify the homogeneity structure

in gi(·)s. Moreover, the performance of Correct-C and Correct-V deteriorates when m increases,

this is intuitively due to the increased m values and the cross-validation procedure, which tends

to choose a larger number of change points as m increases, resulting in smaller NMI values for

Ĝ1.

Table 2: The Average of MISE(ĝi), i = 1, · · · , m, and Average NMIs for Ĝ1

All entries for MISEs are 102 times their actual values

T 200 400 800

m 30 60 90 30 60 90 30 60 90

MISE

Oracle 0.278 0.260 0.248 0.257 0.248 0.246 0.246 0.237 0.238

Correct-C 1.137 1.108 1.030 0.652 0.542 0.521 0.364 0.307 0.312

Correct-V 0.517 0.569 0.635 0.290 0.281 0.300 0.251 0.241 0.243

Correct-NMI 0.313 0.295 0.278 0.262 0.253 0.251 0.246 0.237 0.237

Over 0.813 0.805 0.801 0.543 0.544 0.543 0.404 0.396 0.397

Under 86.670 86.545 86.461 87.955 87.925 87.946 88.700 88.697 88.661

Km-F 0.281 0.253 0.236 0.264 0.248 0.246 0.261 0.246 0.244

Km-I-F 0.281 0.251 0.236 0.263 0.247 0.245 0.260 0.246 0.244

NMI

Oracle 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Correct-C 0.537 0.398 0.314 0.844 0.806 0.669 0.961 0.951 0.902

Correct-V 0.537 0.398 0.314 0.844 0.806 0.669 0.961 0.951 0.902

Correct-NMI 0.877 0.836 0.835 0.970 0.963 0.950 0.994 0.998 0.997

Over 0.339 0.290 0.267 0.339 0.290 0.267 0.339 0.290 0.267

Under 0 0 0 0 0 0 0 0 0

Km-F 0.990 0.993 1.000 0.988 0.996 0.998 0.987 1.000 0.998

Km-I-F 0.990 0.997 1.000 0.991 1.000 1.000 0.993 1.000 1.000

In Example 1 where gi(·)s are generated via sine and cosine functions, it is apparent that those

vectorwise-homogeneity-structure-based methods, including Correct-V, Correct-NMI, Km-F and

Km-I-F, provide more accurate estimates of gi(·)s than Correct-C. As long as the link functions

are generated in a componentwise fashion, we will use Example 2 to demonstrate the superiority

of Correct-C to its competitors. See Section S.4 of the Supplementary Material for full details.

5 Real data analysis

We will illustrate the proposed method with two real data examples in this section.
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5.1 Industrial Portfolio’s return

We first study the data set about m = 49 Industrial Portfolios’ daily simple return from

1/8/2015 to 31/12/2015. This data set can be freely downloaded from Kenneth French’s website

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html This data

set has been analysed in quite a few literature. For example, Guo et al. (2017) used this data

set to demonstrate the performance of a newly developed dynamic portfolio allocation. In this

paper, we are going to explore the homogeneity structure in this data set by our proposed

method.

Let yit be the daily simple return of the ith portfolio at the tth day, i = 1, · · · , m, t =

1, · · · , T , and Xit = (Xt1, Xt2, Xt3)T be the observation of the Fama-French three factors,

where Xt1, Xt2, Xt3 respectively represent the market (Rm-Rf), size (SMB) and value (HML)

factors at the tth day.

We apply the single index model (1.2) with the unknown homogeneity structure (1.3) to fit

the data set. From interpretation point of view, the homogeneity structure in the unknown link

functions, gi(·)s, where each gi(·) is treated as a single undivided unit would make much more

sense than the homogeneity structure in the coefficients of the B-Spline decompositions of gi(·)s.
Therefore, we use the Correct-V, described in Section 4, to identify the homogeneity structure

in βijs or gi(·)s, and estimate the unknown parameters and unknown functions.

In the implementation of the Correct-V, we apply the method in Section 2.1 with the tuning

parameters selected by the cross-validation for time dependent data as described in Section 2.3.

Specifically, we define the cross-validated mean squared error

CV =
1

mL

m∑
i=1

T∑
t=T−L+1

(yit − ŷit)2 (5.1)

where L = 30. Note that we here do not apply the one-standard-rule when performing the cross

validation to select the tuning parameters for identifying the homogeneity structure, since we

have already selected a small enough model with 11 and 2 detected groups in index coefficients

and link functions, respectively. Table 3 provides the identified clustering results for βi2, βi3,

gi(·), i = 1, · · · , 49. Table 4 presents the estimated index coefficients and Figure 1 plots

the estimated link functions. We observe a few apparent patterns. Firstly, the estimated

link functions are very linear indicating the linear relationship between portfolio returns and

Fama-French three factors, which has been verified by broad empirical studies. Secondly, many

portfolios belonging to similar industrials were grouped into the same cluster for the estimated

index coefficients, e.g. Hardw, Softw and Agric, Food, Soda were clustered into Groups 8 and 4

in terms of the estimated coefficients for factors SMB and HML respectively.

5.2 UK climate data

Our second data set, which is available from the UK Met Office website
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Table 3: Grouping Results for The Index Coefficients for SMB, HML and

Link Functions of 49 Industrial Portfolios

Agric Food Soda Beer Smoke Toys Fun Books Hshld Clths

SMB 6 5 6 4 2 8 9 7 6 6

HML 4 4 4 3 4 5 3 4 5 6

Function i ii i i ii ii ii ii ii i

Hth MedEq Drugs Chems Rubbr Txtls BldMt Cnstr Steel FabPr

SMB 9 8 9 7 7 8 8 8 9 10

HML 2 2 1 6 4 4 6 6 9 7

Function ii ii ii ii ii ii ii ii ii i

Mach ElcEq Autos Aero Ships Guns Gold Mines Coal Oil

SMB 8 9 7 6 8 6 10 9 11 9

HML 8 6 6 6 7 4 10 7 11 9

Function ii ii ii ii ii ii i ii i ii

Util Telcm PerSv BusSv Hardw Softw Chips LabEq Paper Boxes

SMB 4 8 8 7 8 8 7 7 6 6

HML 5 4 5 4 5 3 5 5 5 6

Function ii ii ii ii ii ii ii ii ii ii

Trans Whlsl Rtail Meals Banks Insur RIEst Fin Other

SMB 7 7 7 7 7 6 7 6 7

HML 6 6 4 3 6 5 5 5 6

Function ii ii ii ii ii ii ii ii i

Table 4: Estimated Index Coefficients.

β̂(1) β̂(2) β̂(3) β̂(4) β̂(5) β̂(6) β̂(7) β̂(8) β̂(9) β̂(10) β̂(11)

-0.594 -0.203 -0.087 0.056 0.134 0.259 0.393 0.462 0.599 0.657 1.456
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Figure 1: Plots of estimated link functions.

http://www.metoffice.gov.uk/public/weather/climate-historic,

contains monthly data of the mean daily maximum temperature (TMAX), days of air frost

(AF), total rainfall (RAIN) and total sunshine duration (SUN) collected from 37 stations across

the UK. We first remove the missing values and thus select data during the period of January

1993 to December 2009 from 16 locations. We then eliminate the seasonality, trend effects and

standardise the data. Let yit and Xit = (Xit1, Xit2, Xit3)T be the observations for TMAX,

AF, RAIN and SUN, respectively, from the ith station at the tth month, i = 1, · · · , 16, t =

1, · · · , 204.

Like the analysis of the Industrial Portfolio’s return data set, we apply the single index

model (1.2) with unknown homogeneity structure (1.3) together with the proposed estimation

procedure, Correct-V, to the data set. Table 5 provides the clustering results for the index

coefficients, where 5 groups were selected with estimated coefficients β̂(1) = −0.8, β̂(2) = −0.634,

β̂(3) = −0.359, β̂(4) = 0.012 and β̂(5) = 0.173. Moreover, only one group was selected while

clustering the link functions. See Figure 2 for the plot of this estimated link function.

The estimated function has a reverse S-shape and exhibits a decreasing trend with a faster

decay rate in the middle. It is easy to observe, from Table 5, that the estimated coefficients

for rainfall and sunshine duration belong to Groups 4–5 and Groups 1–3, respectively. To

summarize, days of air frost and total sunshine duration have apparently negative and positive

impacts on the monthly maximum temperature, respectively. Nevertheless, the negative impact

of rainfall is quite weak. It is also very interesting to see that Sheffield, Shawbury, Ross-On-

Wye, Oxford, Heathrow, Eskdalemuir, Bradford share exactly the same model, which implies

the impact of rainfall or total sunshine duration on monthly maximum temperature has exactly

the same pattern in these seven areas. The same finding also appears in three areas of Lerwick,

Eastbourne and Camborne, the two areas of Waddington and Cambridge, and the two areas of
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Figure 2: Plot of the estimated link function.

Paisley and Leuchars.

Table 5: Grouping Results for the Index Coefficients for RAIN, SUN at 16 Locations

Waddington Sheffield Shawbury Ross-On-Wye Paisley Oxford Leuchars Lerwick

RAIN 4 4 4 4 5 4 5 4

SUN 1 2 2 2 3 2 3 3

Hurn Heathrow Eskdalemuir Eastbourne Cambridge Camborne Bradford Armagh

RAIN 5 4 4 4 4 4 4 5

SUN 1 2 2 3 1 3 2 2
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Appendix

The Appendix includes additional notations and brief technical proofs supporting Section 3 in

Sections A.1 and A.2–A.5, respectively.
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A.1 Additional notations

Let εt = (ε1t, · · · , εmt)T, yt = (y1t, · · · , ymt)T, Xt = (XT
1t, · · · , XT

mt)
T. Due to assump-

tion (C3), there exists θ0 = (θT
01, . . . ,θ

T
0m)T, θ0i = (θ0i1, . . . , θ0iK)T such that supx |g0i(x) −

θT
0iB(x)| ≤ CK−2. Here and below we use C to denote a generic positive constant whose value

can change even on the same line. We use ‖.‖op to denote the operator norm of a matrix (the

operator norm is the same as the largest singular value) and use ‖.‖ to denote the Frobenius

norm of a matrix. We use ‖.‖L2 to denote the L2 norm of functions and ‖.‖∞ is the sup-norm

for vectors (maximum absolute value of the components).

Assume the true partition of components of θ0 and β0 is given by ∪H1

h=1G1,h = {1, . . . ,mK}
and ∪H2

h=1G2,h = {1, . . . ,mp}, respectively. The unique values of the components of θ0 and β

are denoted by ξ0 = (ξ01, . . . , ξ0H1
)T ∈ RH1 and η0 = (η01, . . . , η0H2

)T ∈ RH2 , respectively. Let

JG1
i be the K ×H1 binary matrix whose (k, h) entry is 1 if θ0ik = ξh and 0 otherwise. We have

θ0i = JG1
i ξ0. Similarly, we define JG2

i such that β0i = JG2
i η0. The sizes of G1,h and G2,h are

denoted by |G1,h| and |G2,h|. Finally, let DG1 and DG2 be the diagonal matrix with entries√
|G1,h| and

√
|G2,h|, respectively.

A.2 Proof summary

We first define the oracle estimator as the minimizer (θ̂, β̂) of

min
θ,β

m∑
i=1

T∑
t=1

(yit −BT(XT
itβi)θi)

2,

where βi = (1,β
T

i )T = (1, βi1, . . . , βip)
T and θi = (θi1, . . . , θiK)T with the constraint that

components of β = (β
T

1 , . . . ,β
T

m)T in the same partition take the same value and components

of θ = (θT
1 , . . . ,θ

T
m)T in the same partition take the same value. Here we assume the partition

is the true partition, thus the name “oracle”.

Below we first show that the oracle estimator satisfies the asymptotic normality properties

stated in Theorem 2 (we also obtained convergence rate and asymptotic normality for the entire

vector β and θ, see for example (A.9) and (A.10). Also, noting that all arguments carry over

when the partition used in the oracle estimator is finer than the true partition, Theorem 1 follows

directly as a special case that each component of θ and β forms its own group in the partition.

Then we show that the change points can be consistently estimated, and thus the estimator

we obtain in stage 3 will be exactly the same as the oracle estimator using the true partition,

with probability approaching one, and Theorem 2 is proved. The rest of the appendix contains

a sketch of the proofs outlined above while more details are relegated to the supplementary

material, as well as several lemmas.
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A.3 Proof of asymptotic property for the oracle estimator

In this part we consider the asymptotic property of the oracle estimator, denoted by (θ̂, β̂) in

this section, which assumed knowledge of the true partitions. For clarity of presentation, the

proof is split into several steps.

STEP 1. Prove the convergence rate ‖θ̂ − θ0‖+ ‖β̂ − β0‖ = Op(
√

(H1 +H2)/T +
√
mK−2).

In this section, when we use θ, we always assume θi = JG1
i ξ for some ξ ∈ RH1 (that is,

components of θ are partitioned in the same way as is the true θ0). It is easy to see that

‖θ − θ0‖ = ‖DG1(ξ − ξ0)‖. Similarly, we always assume βi = JG2
i η for some η ∈ RH2 and

‖β − β0‖ = ‖DG2(η − η0)‖.
Define rT =

√
(H1 +H2)/T +

√
mK−2. We only need to show that

inf
‖β−β0‖2+‖θ−θ0‖2=Lr2T

m∑
i=1

T∑
t=1

(yit − θT
i B(XT

itβi))
2 −

m∑
i=1

T∑
t=1

(yit − θT
0iB(XT

itβ0i))
2 > 0

with probability approaching one, if L is large enough.

We have

m∑
i=1

T∑
t=1

(yit − θT
i B(XT

itβi))
2 −

m∑
i=1

T∑
t=1

(yit − θT
0iB(XT

itβ0i))
2

=
∑
i,t

(θT
i B(XT

itβi)− θT
0iB(XT

itβ0i))
2 − 2(εit − rit)(θT

i B(XT
itβi)− θT

0iB(XT
itβ0i)),

where rit = θT
0iB(XT

itβ0i)− g(XT
itβ0i) with |rit| ≤ CK−2.

Furthermore, some algebra shows∑
i,t

(θT
i B(XT

itβi)− θT
0iB(XT

itβ0i))
2

= T ((ξT − ξT0 )DG1 , (ηT − ηT
0 )DG2) (DG1)−1 0

0 (DG2)−1

 (JG1
1 )T 0 · · · (JG1

m )T 0

0 (JG2
1 )T · · · 0 (JG2

m )T




Ã1 0 · · · 0

0 Ã2 · · · 0
...

...
...

...

0 0 · · · Ãm

 ·


JG1
1 0

0 JG2
1

...
...

JG1
m 0

0 JG2
m


 (DG1)−1 0

0 (DG2)−1

 DG1(ξ − ξ0)

DG2(η − η0)

 ,

where

Ãi =
1

T

T∑
t=1

 B(XT
itβi)

θT
0iB
′(XT

itβ
∗
i )Xit

( BT(XT
itβi) θT

0iB
′(XT

itβ
∗
i )X

T

it

) , 1 ≤ i ≤ m,
B′(.) = (B′1(.), . . . , B′K(.))T are the first derivatives of the basis functions and β∗i lies between

β0i and βi.
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With the help of Lemma 3 in the SUPPLEMENTARY MATERIAL provided in a separated

file, and noting that

O :=



JG1
1 0

0 JG2
1

...
...

JG1
m 0

0 JG2
m


 (DG1)−1 0

0 (DG2)−1

 (A.1)

is an orthonormal matrix (that is, OTO = I), we can get∑
i,t

(θT
i B(XT

itβi)−θ
T
0iB(XT

itβ0i))
2 � T (‖DG1(ξ−ξ0)‖2+‖DG2(η−η0)‖2) = T (‖θ−θ0‖2+‖β−β0‖2).

(A.2)

Now consider the term (εit − rit)(θT
i B(XT

itβi)− θT
0iB(XT

itβ0i)). We can show∑
i,t

εit(θ
T
i B(XT

itβi)− θT
0iB(XT

itβ0i))

≤
√
‖DG1(ξ − ξ0)‖2 + ‖DG2(η − η0)‖2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∑
t

OT



B(XT
1tβ1)ε1t

θT
01B

′(XT
1tβ
∗
1)X1tε1t

...

B(XT
mtβm)εmt

θT
0mB′(XT

mtβ
∗
m)Xmtεmt



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,

where O is as defined in (A.1), and further calculations reveal that

E

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∑
t

OT



B(XT
1tβ1)ε1t

θT
01B

′(XT
1tβ
∗
1)X1tε1t

...

B(XT
mtβm)εmt

θT
0mB′(XT

mtβ
∗
m)Xmtεmt



∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

≤ tr(OOT) ·

∥∥∥∥∥∥∥∥∥∥∥
∑

1≤t,t′≤T


A1,|t−t′| 0 · · · 0

0 A2,|t−t′| · · · 0
...

...
...

...

0 0 · · · Am,|t−t′|



∥∥∥∥∥∥∥∥∥∥∥
op

,

(A.3)

where

Ai,|t−t′| = E

 B(XT
itβi)

θT
0iB
′(XT

itβ
∗
i )Xit

( BT(XT
it′βi) θT

0iB
′(XT

it′β
∗
i )X

T

it′

)
εitεit′

 .
By Lemma 4 in the SUPPLEMENTARY MATERIAL provided in a separated file, and that
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tr(OOT) = H1 +H2 (note OTO = IH1+H2), we have∑
i,t

εit(θ
T
i B(XT

itβi)− θT
0iB(XT

itβ0i))

= Op(
√

(‖θ − θ‖2 + ‖β − β0‖2)(H1 +H2)T ). (A.4)

Finally, using Cauchy-Schwarz inequality∑
i,t

rit(θ
T
i B(XT

itβi)− θT
0iB(XT

itβ0i))

= C
√
mTK−2 ·Op(

√
T (‖θ − θ‖2 + ‖β − β0‖2)) (A.5)

Combining (A.2)–(A.5),

m∑
i=1

T∑
t=1

(yit − θT
i B(XT

itβi))
2 −

m∑
i=1

T∑
t=1

(yit − θT
0iB(XT

itβ0i))
2 > 0

with probability approaching one, if ‖β − β0‖2 + ‖θ − θ0‖2 = Lr2T with L sufficiently large.

Thus there is a local minimizer (θ̂, β̂) with ‖β̂ − β0‖+ ‖θ̂ − θ0‖ = Op(rT ).

STEP 2. Proof of convergence rate of β̂ and its asymptotic normality.

Let Πi be T × K matrices, i = 1, . . . ,m, with rows ΠT
it = BT(XT

itβ0i). Define Vit =

g′0i(X
T
itβ0i)Xit, Pi = Πi(Π

T
i Πi)

−1ΠT
i with rows PT

it = ΠT
it(Π

T
i Πi)

−1ΠT
i . We write, for any

(θ,β) with ‖θ − θ0‖2 ≤ Cr2T and ‖β − β0‖2 ≤ CH2/T ,∑
i,t

(yit − θT
i B(XT

itβi))
2

=
∑
i,t

(εit −ΠT
it(θi − θ0i)−VT

it(βi − β0i)−Rit)2,

where

Rit

=
{
θT
0iB(XT

itβ0i)− g0i(XT
itβ0i)

}
+
{

(θi − θ0i)
T(B(XT

itβi)−B(XT
itβ0i))

}
+
{
θT
0i(B(XT

itβi)−B(XT
itβ0i)−B′(XT

itβ0i)X
T

it(βi − β0i)
}

+
{

(θT
0iB
′(XT

itβ0i)− g′0i(XT
itβ0i))X

T

it(βi − β0i)
}

= Rit1 +Rit2(θi,βi),

with Rit1 = θT
0 B(XT

itβ0i)−g0i(XT
itβ0i) and Rit2(θi,βi) (or Rit2 for short) contains the remain-

ing terms. Using ‖θ − θ0‖2 + ‖β − β0‖2 ≤ Cr2T , we can show∑
i,t

R2
it2 = Op

(
Tr4TK

3 + Tr2TK
−2) . (A.6)

We then orthogonalize the parametric part with respect to the nonparametric part by writing∑
i,t

(εit −ΠT
it(θi − θ0i)−VT

it(βi − β0i)−Rit)2
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=
∑
i,t

(εit −ΠT
it(αi −α0i)− (Vit −VT

i Pit)
T(βi − β0i)−Rit1 −Rit2(Mi(αi,βi))

2,

where αi = θi + (ΠT
i Πi)

−1ΠT
i Viβi, α0i = θ0i + (ΠT

i Πi)
−1ΠT

i Viβ0i, Vi = (Vit, . . . ,ViT )T,

andMi is the one-to-one mapping that maps (αi,βi) to (θi,βi). Below we writeRit2(Mi(αi,βi))

as Rit2, Rit2(Mi(α̂i, β̂i)) as R̂it2, and note Rit2(Mi(α̂i,β0)) = 0. Then,

0 ≥
∑
i,t

(εit −ΠT
itα̂i − (Vit −VT

i Pit)
T(β̂i − β0i)−Rit1 −Rit2)2

−
∑
i,t

(εit −ΠT
itα̂i −Rit1)2

=
∑
i,t

(η̂ − η0)T(JG2
i )T(Vit −VT

i Pit)(V
T
it −PT

itVi)J
G2
i (η̂ − η0)

−2
∑
i,t

(η̂ − η0)T(JG2
i )T(Vit −VT

i Pit)εit

−2
∑
i,t

R̂it2εit

+
∑
i,t

R̂2
it2 + 2

∑
i,t

(
(η̂ − η0)T(JG2

i )T(Vit −VT
i Pit) + R̂it2

)
(ΠT

itα̂i +Rit1)

+2
∑
i,t

R̂it2 · (η̂ − η0)T(JG2
i )T(Vit −VT

i Pit).

(A.7)

The first term above is∑
i,t

(η̂ − η0)(JG2
i )T(Vit −VT

i Pit)(V
T
it −PT

itVi)J
G2
i (η̂ − η0)

= T (η̂ − η0)TDG2OT
2


Ĉ1 0 · · · 0

0 Ĉ2 · · · 0
...

...
...

...

0 0 · · · Ĉm

O2D
G2(η̂ − η0),

where O2 =


JG2
1

...

JG2
m

 (DG2)−1 is an mp × H2 orthonormal matrix, and Ĉi =
∑
t(Vit −

VT
i Pit)(Vit −VT

i Pit)
T/T .

Let Ci = E[(g′0i(X
T
itβ0i))

2(Xit − E[Xit|Xitβ0i])
⊗2]. Lemma 5 in the SUPPLEMENTARY

MATERIAL, provided in a separated file, shows that maxi ‖Ĉi−Ci‖op = op(1). Based on this,

we have the first term in (A.7) is bounded below by CT‖DG2(η̂ − η0)‖2.

Now consider the second term in (A.7). We have∑
i,t

(η̂ − η0)(JG2
i )T(Vit −VT

i Pit)εit
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≤ ‖DG2(η̂ − η0)‖ ·

∥∥∥∥∥∥∥∥∥
∑
t

OT
2


(V1t −VT

1 P1t)ε1t
...

(Vmt −VT
mPmt)εmt


∥∥∥∥∥∥∥∥∥ ,

and with some more detailed analyses we get (A.3), we get

E


∥∥∥∥∥∥∥∥∥
∑
t

OT
2


(V1t −VT

1 P1t)ε1t
...

(Vmt −VT
mPmt)εmt


∥∥∥∥∥∥∥∥∥
2 = O(H2T ) (A.8)

and thus the second term in (A.7) is Op(
√
H2T‖DG2(η̂ − η0)‖). The remaining terms in (A.7)

can be shown to be of order op(1). Summarizing the bounds for different terms in (A.7), we get

‖DG2(η̂ − η0)‖2 + ‖DG2(η̂ − η0)‖Op(
√
H2/T ) + op(1/T ) ≤ 0,

which implies ‖β̂ − β0‖ = ‖DG2(η̂ − η0)‖ = Op(
√
H2/T ).

To get asymptotic normality, we define

η̃ = η0 +

∑
i,t

(JG2
i )T(Vit −VT

i Pit)(V
T
it −PT

itVi)J
G2
i

−1∑
i,t

(JG2
i )T(Vit −VT

i Pit)εit.

Then for any unit vector a2 ∈ RH2 , we have

aT
2 DG2(η̃ − η0)

= T−1aT
2

OT
2


Ĉ1 0 · · · 0

0 Ĉ2 · · · 0
...

...
...

...

0 0 · · · Ĉm

O2



−1

·

∑
t

OT
2


(V1t −VT

1 P1t)ε1t
...

(Vmt −VT
mPmt)εmt

 .

Consider

b2 := T−1aT
2

OT
2


C1 0 · · · 0

0 C2 · · · 0
...

...
...

...

0 0 · · · Cm

O2



−1

·

∑
t

OT
2


(V1t −Φ1t)ε1t

...

(Vmt −Φmt)εmt

 .
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We can show using the central limit theorem under mixing conditions, for example results in

Bardet et al. (2008), that
√
Tν
−1/2
2,T b2

d→ N(0, 1),

where

ν2,T = aT
2 (OT

2 CO2)−1OT
2 Σ2O2(OT

2 CO2)−1a2,

C =


C1 0 · · · 0

0 C2 · · · 0
...

...
...

...

0 0 · · · Cm

 ,

Σ2 =
1

T

∑
1≤t,t′≤T


C1,|t−t′| 0 · · · 0

0 C2,|t−t′| · · · 0
...

...
...

...

0 0 · · · Cm,|t−t′|

 ,

where Ci,|t−t′| = E[εitεit′g
′
0i(X

T
itβ0i)g

′
0i(X

T
it′β0i)(Xit−E[Xit|XT

itβ0i])(Xit′−E[Xit′ |XT
it′β0i])

T].

Furthermore, it can be shown that

|aT
2 DG2(η̃ − η0)− b1| = op(1/

√
T ),

and

|aT
2 DG2(η̂ − η0)− aT

2 DG2(η̃ − η0)| = op(1/
√
T ),

which established the asymptotic normality of η̂.

Since β̂−β0 = O2D
G2(η̂−η0), bT

2 (β̂−β0) = bT
2 O2D

G2(η̂−η0) is asymptotically normal.

That is, for any unit vector b2 ∈ Rmp,
√
Tκ
−1/2
2,T bT

2 (β̂ − β0)
d→ N(0, 1), (A.9)

where

κ2,T := bT
2 O2(OT

2 CO2)−1OT
2 Σ2O2(OT

2 CO2)−1OT
2 b2.

STEP 3. Proof of the convergence rate of θ̂ and its asymptotic normality.

To get the convergence rate of θ̂, like for β̂, we perform a projection, which is now the

projection for the nonparametric part. Let A0i := arg minA ‖B(XT
itβ0i) − g′0i(XT

itβ0i)AXit‖2.

Obviously, we have

A0i = E
[
g′0i(X

T
itβ0i)B(XT

itβ0i)X
T

it

] (
E
[
(g′0i(X

T

itβ0i))
2XitX

T

it

])−1
.

Writing now that∑
i,t

(yit − θT
i B(XT

itβi))
2
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=
∑
i,t

(εit − (ΠT
it −QT

itΠi)(θi − θ0i)−VT
it(γi − γ0i)−Rit1 −Rit2(θi,γi − (VT

i Vi)
−1VT

i θi))
2,

where QT
it is the t-th row of Qi = Vi(V

T
i Vi)

−1VT
i and γi = βi + (VT

i Vi)
−1VT

i Πiθi, γ0i =

β0i + (VT
i Vi)

−1VT
i Πiθ0i, we can show ‖θ̂ − θ0‖2 = Op(H1/T ) and its asymptotic normality

similar to arguments used for β̂. In particular, we have that for any unit vector b1 ∈ Rmp,
√
Tκ
−1/2
1,T bT

1 (θ̂ − θ0)
d→ N(0, 1), (A.10)

where

κ1,T = bT
1 O1(OT

1 DO1)−1OT
1 Σ1O1(OT

1 DO1)−1OT
1 b1,

D =


D1 0 · · · 0

0 D2 · · · 0
...

...
...

...

0 0 · · · Dm

 ,

Σ1 =
1

T

∑
1≤t,t′≤T


D1,|t−t′| 0 · · · 0

0 D2,|t−t′| · · · 0
...

...
...

...

0 0 · · · Dm,|t−t′|

 ,
Di = E[(B(XT

itβ0i)− g′0i(XT
itβ0i)A0iXit)

⊗2],

Di,|t−t′| = E[εitεit′(B(XT
itβ0i)− g′0i(XT

itβ0i)A0iXit)(B(XT
it′β0i)− g′0i(XT

it′β0i)A0iXit′)
T].

A.4 Proof of Theorems 1 and 2

We now consider the proof of Theorems 1 and 2 as special cases of (A.9) and (A.10). Consider

first Theorem 2, under the additional assumption that the true partition is used. As shown previ-

ously, the asymptotic variance of β̂−β0 is T−1O2Θ2O
T
2 , where Θ2 = (OT

2 CO2)−1OT
2 Σ2O2(OT

2 DO2)−1.

From our proof, it is easy to see that eigenvalues of Θ2 are bounded and bounded away from

zero. By the definition of the mp ×H2 matrix O2, it is easy to see that its row corresponding

to βij , say denoted by OT
2(ij), has a single nonzero entry 1/

√
mij . Let eij =

√
mijO2(ij), which

is a unit vector, then the asymptotic variance of β̂ij − β0ij is (mijT )−1eT
ijΘ2eij .

The asymptotic variance of θ̂i − θ0i is T−1JG1
i (DG1)−1Θ1(DG1)−1(JG1

i )T, where

Θ1 = (OT
1 DO1)−1OT

1 Σ1O1(OT
1 CO1)−1

with eigenvalues bounded and bounded away from zero. By definition of JG1
i and DG1 , it can

be seen that each row of the K × H1 matrix JG1
i (DG1)−1 has a single nonzero entry 1/

√
mi

and thus if we define Ki =
√
miJ

G1
i (DG1)−1, it is easy to directly verify that KT

i v is bounded

and bounded away from zero and infinity for any unit vector v. Also, we have ‖B(x)‖ � K.

Thus the asymptotic variance of BT(x)θ̂i − BT(x)θ0i can be written as K
miT

bT(x)ΘT
1 b(x), if

we define b(x) = KT
i B(x)/‖KT

i B(x)‖, and Θ1 = Θ1‖KT
i B(x)‖2/K.
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For Theorem 1, since the result is standard, and also is a special case of Theorem 2, we

omit the repetition of arguments above. The quantities ẽij , b̃(x), Θ̃1 and Θ̃2 are defined as

above based on the trivial structure in which each single parameter forms its own group in the

partition.

The proof of Theorem 2 would be complete if we can establish consistency of homogeneity

pursuit based on change point detection. That is, we need to show that the true partition can

be identified with probability approaching one.

First, we can show ‖DG2(η̂−η0)‖2∞ = Op(log(Tm)/T ) and ‖DG1(ξ̂−ξ0)‖2∞ = Op(log(Tm)/T ).

The general strategy for establishing these is similar to showing the convergence rate of β̂, us-

ing a slightly different projection, and one needs to carefully construct bounds that are valid

uniformly over components of η̂.

Then we use sequence b(1) ≤ · · · ≤ b(n) (n = mp) for illustration, with estimated change

points k̂0 = 0 < k̂1 < · · · < k̂Ĥ2
= n. The true ordered sequence of β is β0(1) ≤ · · · ≤ β0(n) with

change points kh, h = 0, . . . ,H2. Let γ2 = min2≤h≤H2
|β0(kh+1) − β0(kh)| be the minimum jump

size. The sup-norm convergence results established above, when specializing to the estimator in

stage 1, imply that ‖β̃−β0‖∞ = Op(aT ) where aT =
√

log(Tm)/T . On the event {‖β̃−β0‖∞ ≤
CaT }. It is easy to see that

max
u−1<k<e

|∆u,e(k)−∆0
u,e(k)| ≤ aT . (A.11)

where ∆0
u,e(k) =

√
(e−k)(k−u+1)

e−u+1

∣∣∣∑e
l=k+1 β0(l)

e−k −
∑k

l=u β0(l)

k−u+1

∣∣∣ .
Now suppose u − 1 and e are both change points and there is at least one change point

inside (u− 1, e). Let k̂ = arg maxu−1<k<e ∆u,e(k) and k0 = arg maxu−1<k<e ∆0
u,e(k). We prove

consistency by way of contradiction. Suppose k̂ is not one of the true change points. Using some

results in Venkatraman (1992) and Cho and Fryzlewicz (2012), we can show that this would

lead to ∆u,e(k0) > ∆u,e(k̂) by (A.11), a contradiction by the definition of k̂. Also, in this case,

it is easy to see that maxu−1<k<e ∆u,e(k) ≥ maxu−1<k<e ∆0
u,e(k)− an ≥ Cγ2 − aT > δ2.

Now suppose still u− 1, e are both change points but there are no other change point inside

(u− 1, e). In this case, using (A.11), it is easy to see that maxu−1<k<e ∆u,e(k) ≤
√
naT .

Since we refrain from further partitioning the interval (u−1, e) if and only if maxu−1<k<e ∆u,e(k) <

δ2 with
√
naT << δ2 << γ2, we see that the algorithm consistently identifies exactly the true

change points in β0.

The proof for change point detection in θ is the same, and the proof of Theorem 2 is complete.

A.5 Proof of Theorem 3

For the first statement, we just need to note that β̄ is the minimizer of

min
a

m∑
i=1

‖βi − a‖2,

31



and all β̌i are the same, thus

1

mp

m∑
i=1

‖β̌i − βi‖2 ≥
1

mp

m∑
i=1

‖βi − β̄‖2 ≥ c.

Similarly we can show the second statement.
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Supplementary Material to “Homogeneity Pursuit in Single Index

Models based Panel Data Analysis”

This supplementary material contains detailed proofs of Theorems 1–2 in Sections S.1–S.3

and additional simulation results in Section S.4.

S.1 Proof of asymptotic property for the oracle estimator

In this part we consider the asymptotic property of the oracle estimator, denoted by (θ̂, β̂) in

this section, which assumed knowledge of the true partitions. For clarity of presentation, the

proof is split into several steps and the proofs of some lemmas were relegated to section S.3.

STEP 1. Prove the convergence rate ‖θ̂ − θ0‖+ ‖β̂ − β0‖ = Op(
√

(H1 +H2)/T +
√
mK−2).

In this section, when we use θ, we always assume θi = JG1
i ξ for some ξ ∈ RH1 (that is,

components of θ are partitioned in the same way as is the true θ0). It is easy to see that

‖θ − θ0‖ = ‖DG1(ξ − ξ0)‖. Similarly, we always assume βi = JG2
i η for some η ∈ RH2 and

‖β − β0‖ = ‖DG2(η − η0)‖.
Define rT =

√
(H1 +H2)/T +

√
mK−2. We only need to show that

inf
‖β−β0‖2+‖θ−θ0‖2=Lr2T

m∑
i=1

T∑
t=1

(yit − θT
i B(XT

itβi))
2 −

m∑
i=1

T∑
t=1

(yit − θT
0iB(XT

itβ0i))
2 > 0

with probability approaching one, if L is large enough.

We have

m∑
i=1

T∑
t=1

(yit − θT
i B(XT

itβi))
2 −

m∑
i=1

T∑
t=1

(yit − θT
0iB(XT

itβ0i))
2

=
∑
i,t

(θT
i B(XT

itβi)− θT
0iB(XT

itβ0i))
2 − 2(εit − rit)(θT

i B(XT
itβi)− θT

0iB(XT
itβ0i)),

where rit = θT
0iB(XT

itβ0i)− g(XT
itβ0i) with |rit| ≤ CK−2.

Furthermore,∑
i,t

(θT
i B(XT

itβi)− θT
0iB(XT

itβ0i))
2

=
∑
i,t

(
(θi − θ0i)

TB(XT
itβi) + θT

0iB
′(Xitβ

∗
i )X

T

it(βi − β0i)
)2

= T (θT
1 − θT

01,β
T

1 − β
T

01, . . . ,θ
T
m − θT

0m,β
T

m − β
T

0m) ·
Ã1 0 · · · 0

0 Ã2 · · · 0
...

...
...

...

0 0 · · · Ãm

 ·


θ1 − θ01

β1 − β01

...

θm − θ0m

βm − β0m
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= T ((ξT − ξT0 )DG1 , (ηT − ηT
0 )DG2) (DG1)−1 0

0 (DG2)−1

 (JG1
1 )T 0 · · · (JG1

m )T 0

0 (JG2
1 )T · · · 0 (JG2

m )T




Ã1 0 · · · 0

0 Ã2 · · · 0
...

...
...

...

0 0 · · · Ãm

 ·


JG1
1 0

0 JG2
1

...
...

JG1
m 0

0 JG2
m


 (DG1)−1 0

0 (DG2)−1

 DG1(ξ − ξ0)

DG2(η − η0)

 ,

where

Ãi =
1

T

T∑
t=1

 B(XT
itβi)

θT
0iB
′(XT

itβ
∗
i )Xit

( BT(XT
itβi) θT

0iB
′(XT

itβ
∗
i )X

T

it

) , 1 ≤ i ≤ m,
B′(.) = (B′1(.), . . . , B′K(.))T are the first derivatives of the basis functions and β∗i lies between

β0i and βi.

By Lemma 3, eigenvalues of Ãi are bounded and bounded away from zero, with probability

approaching one. Furthermore, it is easy to directly verify that

O :=



JG1
1 0

0 JG2
1

...
...

JG1
m 0

0 JG2
m


 (DG1)−1 0

0 (DG2)−1

 (S.1.1)

is an orthonormal matrix (that is, OTO = I). Thus∑
i,t

(θT
i B(XT

itβi)−θ
T
0iB(XT

itβ0i))
2 � T (‖DG1(ξ−ξ0)‖2+‖DG2(η−η0)‖2) = T (‖θ−θ0‖2+‖β−β0‖2).

(S.1.2)

Now consider the term (εit − rit)(θT
i B(XT

itβi)− θT
0iB(XT

itβ0i)). We have∑
i,t

εit(θ
T
i B(XT

itβi)− θT
0iB(XT

itβ0i))

=
∑
t

(θT
1 − θT

01,β
T

1 − β
T

01, . . . ,θ
T
m − θT

0m,β
T

m − β
T

0m) ·



B(XT
1tβ1)ε1t

θT
01B

′(XT
1tβ
∗
1)X1tε1t

...

B(XT
mtβm)εmt

θT
0mB′(XT

mtβ
∗
m)Xmtεmt
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=
∑
t

((ξT − ξT0 )DG1 , (ηT − ηT
0 )DG2)OT



B(XT
1tβ1)ε1t

θT
01B

′(XT
1tβ
∗
1)X1tε1t

...

B(XT
mtβm)εmt

θT
0mB′(XT

mtβ
∗
m)Xmtεmt



≤
√
‖DG1(ξ − ξ0)‖2 + ‖DG2(η − η0)‖2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∑
t

OT



B(XT
1tβ1)ε1t

θT
01B

′(XT
1tβ
∗
1)X1tε1t

...

B(XT
mtβm)εmt

θT
0mB′(XT

mtβ
∗
m)Xmtεmt



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,

where O is as defined in (S.1.1). We have

E

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∑
t

OT



B(XT
1tβ1)ε1t

θT
01B

′(XT
1tβ
∗
1)X1tε1t

...

B(XT
mtβm)εmt

θT
0mB′(XT

mtβ
∗
m)Xmtεmt



∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

= tr


∑

1≤t,t′≤T

OT ·


A1,|t−t′| 0 · · · 0

0 A2,|t−t′| · · · 0
...

...
...

...

0 0 · · · Am,|t−t′|

O



= tr


∑

1≤t,t′≤T


A1,|t−t′| 0 · · · 0

0 A2,|t−t′| · · · 0
...

...
...

...

0 0 · · · Am,|t−t′|

OOT



≤ tr(OOT) ·

∥∥∥∥∥∥∥∥∥∥∥
∑

1≤t,t′≤T


A1,|t−t′| 0 · · · 0

0 A2,|t−t′| · · · 0
...

...
...

...

0 0 · · · Am,|t−t′|



∥∥∥∥∥∥∥∥∥∥∥
op

,

(S.1.3)

where

Ai,|t−t′| = E

εitεit′
 B(XT

itβi)

θT
0iB
′(XT

itβ
∗
i )Xit

( BT(XT
it′βi) θT

0iB
′(XT

it′β
∗
i )X

T

it′

) ,
and the last step above uses von Neumann’s trace inequality (Mirsky; 1975). By Lemma 4 and
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that tr(OOT) = H1 +H2 (note OTO = IH1+H2), we have∑
i,t

εit(θ
T
i B(XT

itβi)− θT
0iB(XT

itβ0i))

= Op(
√

(‖θ − θ‖2 + ‖β − β0‖2)(H1 +H2)T ). (S.1.4)

Finally, using Cauchy-Schwarz inequality∑
i,t

rit(θ
T
i B(XT

itβi)− θT
0iB(XT

itβ0i))

= C
√
mTK−2 ·Op(

√
T (‖θ − θ‖2 + ‖β − β0‖2)) (S.1.5)

Combining (S.1.2)–(S.1.5),

m∑
i=1

T∑
t=1

(yit − θT
i B(XT

itβi))
2 −

m∑
i=1

T∑
t=1

(yit − θT
0iB(XT

itβ0i))
2 > 0

with probability approaching one, if ‖β − β0‖2 + ‖θ − θ0‖2 = Lr2T with L sufficiently large.

Thus there is a local minimizer (θ̂, β̂) with ‖β̂ − β0‖+ ‖θ̂ − θ0‖ = Op(rT ).

STEP 2. Proof of convergence rate of β̂ and its asymptotic normality.

Let Πi be T × K matrices, i = 1, . . . ,m, with rows ΠT
it = B(XT

itβ0i). Define Vit =

g′0i(X
T
itβ0i)Xit, Pi = Πi(Π

T
i Πi)

−1ΠT
i with rows PT

it = ΠT
it(Π

T
i Πi)

−1ΠT
i . We write, for any

(θ,β) with ‖θ − θ0‖2 ≤ Cr2T and ‖β − β0‖2 ≤ CH2/T ,∑
i,t

(yit − θT
i B(XT

itβi))
2

=
∑
i,t

(εit + g0i(X
T
itβi)− θT

i B(XT
itβi))

2

=
∑
i,t

(εit −ΠT
it(θi − θ0i)−VT

it(βi − β0i)−Rit)2,

where

Rit

= θT
i B(XT

itβi)− g0i(XT
itβ0i)− (θi − θ0i)

TB(XT
itβ0i)− g′0i(XT

itβ0i)X
T

it(βi − β0i)

= θT
0iB(XT

itβ0i)− g0i(XT
itβ0i) + θT

i (B(XT
itβi)−B(XT

itβ0i))− g′0i(XT
itβ0i)X

T

it(βi − β0i)

= θT
0iB(XT

itβ0i)− g0i(XT
itβ0i) + (θi − θ0i)

T(B(XT
itβi)−B(XT

itβ0i)) + θT
0i(B(XT

itβi)−B(XT
itβ0i))

−g′0i(XT
itβ0i)X

T

it(βi − β0i)

=
{
θT
0iB(XT

itβ0i)− g0i(XT
itβ0i)

}
+
{

(θi − θ0i)
T(B(XT

itβi)−B(XT
itβ0i))

}
+
{
θT
0i(B(XT

itβi)−B(XT
itβ0i)−B′(XT

itβ0i)X
T

it(βi − β0i)
}

+
{

(θT
0iB
′(XT

itβ0i)− g′0i(XT
itβ0i))X

T

it(βi − β0i)
}

= Rit1 +Rit2(θi,βi),
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where Rit1 = θT
0 B(XT

itβ0i) − g0i(XT
itβ0i) and Rit2(θi,βi) contains all other terms above. It is

easy to see Rit2(θi,β0i) = 0. In the decomposition above Rit2 consists of three terms, which we

denote by Rit2,1, Rit2,2 and Rit2,3, respectively (omitting the dependence in θ,β for simplicity

of notation). Using ‖θ − θ0‖2 + ‖β − β0‖2 ≤ Cr2T , we can easily show∑
i,t

R2
it2,1 = Op(Tr

4
TK

3),

∑
i,t

R2
it2,2 = Op(Tr

4
T ),

∑
i,t

R2
it2,3 = Op(Tr

2
TK
−2),

and thus ∑
i,t

R2
it2 = Op

(
Tr4TK

3 + Tr2TK
−2) . (S.1.6)

We then orthogonalize the parametric part with respect to the nonparametric part by writing∑
i,t

(εit −ΠT
it(θi − θ0i)−VT

it(βi − β0i)−Rit)2

=
∑
i,t

(εit −ΠT
it(αi −α0i)− (Vit −VT

i Pit)
T(βi − β0i)−Rit1 −Rit2(Mi(αi,βi))

2,

where αi = θi + (ΠT
i Πi)

−1ΠT
i Viβi, α0i = θ0i + (ΠT

i Πi)
−1ΠT

i Viβ0i, Vi = (Vit, . . . ,ViT )T,

andMi is the one-to-one mapping that maps (αi,βi) to (θi,βi). Below we writeRit2(Mi(αi,βi))

as Rit2, Rit2(Mi(α̂i, β̂i)) as R̂it2, and note Rit2(Mi(α̂i,β0)) = 0. Then,

0 ≥
∑
i,t

(εit −ΠT
itα̂i − (Vit −VT

i Pit)
T(β̂i − β0i)−Rit1 −Rit2)2

−
∑
i,t

(εit −ΠT
itα̂i −Rit1)2

=
∑
i,t

(η̂ − η0)T(JG2
i )T(Vit −VT

i Pit)(V
T
it −PT

itVi)J
G2
i (η̂ − η0) +

∑
i,t

R̂2
it2

−2
∑
i,t

(
(η̂ − η0)T(JG2

i )T(Vit −VT
i Pit) + R̂it2

)
(εit −ΠT

itαi −Rit1)

+2
∑
i,t

R̂it2 · (η̂ − η0)T(JG2
i )T(Vit −VT

i Pit)

=
∑
i,t

(η̂ − η0)T(JG2
i )T(Vit −VT

i Pit)(V
T
it −PT

itVi)J
G2
i (η̂ − η0)

−2
∑
i,t

(η̂ − η0)T(JG2
i )T(Vit −VT

i Pit)εit

−2
∑
i,t

R̂it2εit

+
∑
i,t

R̂2
it2 + 2

∑
i,t

(
(η̂ − η0)T(JG2

i )T(Vit −VT
i Pit) + R̂it2

)
(ΠT

itα̂i +Rit1)

+2
∑
i,t

R̂it2 · (η̂ − η0)T(JG2
i )T(Vit −VT

i Pit). (S.1.7)
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The first term above is∑
i,t

(η̂ − η0)(JG2
i )T(Vit −VT

i Pit)(V
T
it −PT

itVi)J
G2
i (η̂ − η0)

= T (η̂ − η0)TDG2OT
2


Ĉ1 0 · · · 0

0 Ĉ2 · · · 0
...

...
...

...

0 0 · · · Ĉm

O2D
G2(η̂ − η0),

where O2 =


JG2
1

...

JG2
m

 (DG2)−1 is an mp × H2 orthonormal matrix, and Ĉi =
∑
t(Vit −

VT
i Pit)(Vit −VT

i Pit)
T/T .

Let Ci = E[(g′0i(X
T
itβ0i))

2(Xit−E[Xit|Xitβ0i])
⊗2]. Lemma 5 shows that maxi ‖Ĉi−Ci‖op =

op(1). Based on this, we have the first term in (S.1.7) is bounded below by CT‖DG2(η̂−η0)‖2.

Now consider the second term in (S.1.7). We have∑
i,t

(η̂ − η0)(JG2
i )T(Vit −VT

i Pit)εit

≤ ‖DG2(η̂ − η0)‖ ·

∥∥∥∥∥∥∥∥∥
∑
t

OT
2


(V1t −VT

1 P1t)ε1t
...

(Vmt −VT
mPmt)εmt


∥∥∥∥∥∥∥∥∥ .

We write

∑
t


(V1t −VT

1 P1t)ε1t
...

(Vmt −VT
mPmt)εmt



=
∑
t


(V1t −Φ1t)ε1t

...

(Vmt −Φmt)εmt

+


((I−P1)Φ1 −P1(V1 −Φ1))Tε1

...

((I−Pm)Φm −Pm(Vm −Φm))Tεm

 ,

where εi = (εi1, . . . , εiT )T.

The covariance matrix of


(V1t −Φ1t)ε1t

...

(Vmt −Φmt)εmt

 is given by

∑
1≤t,t′≤T


C1,|t−t′| 0 · · · 0

0 C2,|t−t′| · · · 0
...

...
...

...

0 0 · · · Cm,|t−t′|

 ,
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with Ci,|t−t′| = E[εitεit′g
′
0i(X

T
itβ0i)g

′
0i(X

T
it′β0i)(Xit −E[Xit|XT

itβ0i])(Xit′ −E[Xit′ |XT
it′β0i])

T].

Using the geometric mixing rate, and similar to the proof of Lemma 4, it can be shown that the

matrix above has eigenvalues of order Op(T ).

Furthermore, we can bound the largest eigenvalue of

E




((I−P1)Φ1 −P1(V1 −Φ1))Tε1
...

((I−Pm)Φm −Pm(Vm −Φm))Tεm


⊗2 .

Denoting Ei = (I − Pi)Φi + Pi(Vi − Φi), in Lemma 5 we have shown that maxi ‖Ei‖2 =

Op(TK
−4 +KlogT ). We have

E




ET
1 ε1
...

ET
mεm


⊗2∣∣∣∣∣∣∣∣∣ {Xit}



=


ET

1 E[ε1ε
T
1 ]E1

. . .

ET
mE[εmεTm]Em

 ,

and thus ‖ET
i E[εiε

T
i ]Ei‖op = Op(TK

−4 +KlogT ) = op(T ), uniformly over i.

Using the trace inequality as in (S.1.3), we get

E


∥∥∥∥∥∥∥∥∥
∑
t

OT
2


(V1t −VT

1 P1t)ε1t
...

(Vmt −VT
mPmt)εmt


∥∥∥∥∥∥∥∥∥
2 = O(H2T ), (S.1.8)

and thus the second term in (S.1.7) is Op(
√
H2T‖DG2(η̂ − η0)‖). For the rest of the terms in

(S.1.7), we have, using (S.1.6),

(
∑
i,t

R̂it2εit)
2 = Op(Tr

4
TK

3 + Tr2TK
−2),

∑
i,t

(η̂ − η0)T(JG2
i )T(Vit −VT

i Pit)Π
T
itα̂i =

∑
i

(η̂ − η0)T(JG2
i )T(Vi −PiVi)Π

T
itα̂i = 0,

(
∑
i,t

R̂it2Rit1)2 ≤ (
∑
i,t

R̂2
it2)(

∑
i,t

R2
it1) = Op((Tr

4
TK

3 + Tr2TK
−2)mTK−4),

(
∑
i,t

R̂it2Π
T
itα̂i)

2 ≤ (
∑
i,t

R̂2
it2)(

∑
i,t

(ΠT
itα̂i)

2) = Op((Tr
4
TK

3 + Tr2TK
−2)Tr2T ),

(
∑
i,t

R̂it2(η̂ − η0)TJG2
i (Vit −VT

i Pit))
2

≤ (
∑
i,t

R̂2
it2)

∥∥∥∥∥∥∥∥∥(DG2(η̂ − η0))TOT
2


VT

1 −VT
1 PT

1

...

VT
m −VT

mPT
m


∥∥∥∥∥∥∥∥∥
2
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= Op((Tr
4
TK

3 + Tr2TK
−2)mpH2).

All these terms are order op(1) by our assumptions. Finally, consider the term

(
∑
i,t

Rit1(η − η0)T(JG2
i )T(Vit −VT

i Pit))
2

= Op(H2/T )‖
∑
i

RT
i1(Vi −PiVi)‖2,

where Ri1 = (Ri11, . . . , RiT1)T. Again, using Vi = (Vi −Φi) + Φi,

(
∑
i,t

Rit1(η − η0)T(JG2
i )T(Vit −VT

i Pit))
2

= Op(H2/T )

(
‖
∑
i

RT
i1(I−Pi)Φi‖2 + ‖

∑
i

RT
i1Pi(Vi −Φi)‖2 + ‖

∑
i

RT
i1(Vi −Φi)‖2

)
= Op(H2/T )

(
Op(mTK

−4 ·mTK−4) +Op(mTK
−3logT ) +Op(mTK

−4)
)

= op(1).

Summarizing the bounds for different terms in (S.1.7), we get

‖DG2(η̂ − η0)‖2 + ‖DG2(η̂ − η0)‖Op(
√
H2/T ) + op(1/T ) ≤ 0.

Completing the squares, we get

(‖DG2(η̂ − η0)‖+Op(
√
H2/T ))2 = Op(H2/T )

which in turn implies ‖β̂ − β0‖ = ‖DG2(η̂ − η0)‖ = Op(
√
H2/T ).

To get asymptotic normality, we similarly write∑
i,t

(εit −ΠT
itαi − (Vit −VT

i Pit)
T(βi − β0i)−Rit1 −Rit2)2

−
∑
i,t

(εit −ΠT
itαi −Rit1)2

=
∑
i,t

(η − η0)T(JG2
i )T(Vit −VT

i Pit)(V
T
it −PT

itVi)J
G2
i (η − η0)

−2
∑
i,t

(η − η0)T(JG2
i )T(Vit −VT

i Pit)εit

−2
∑
i,t

Rit2εit

+
∑
i,t

R2
it2 + 2

∑
i,t

(
(η − η0)T(JG2

i )T(Vit −VT
i Pit) +Rit2

)
(ΠT

itαi +Rit1)

+2
∑
i,t

Rit2 · (η − η0)T(JG2
i )T(Vit −VT

i Pit).

(S.1.9)

Let η̃ = η0 +
(∑

i,t(J
G2
i )T(Vit −VT

i Pit)(V
T
it −PT

itVi)J
G2
i

)−1∑
i,t(J

G2
i )T(Vit − VT

i Pit)εit,

which is actually the minimizer of the first two terms in (S.1.9) above. Then for any unit vector
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a2 ∈ RH2 , we have

aT
2 DG2(η̃ − η0)

= T−1aT
2

OT
2


Ĉ1 0 · · · 0

0 Ĉ2 · · · 0
...

...
...

...

0 0 · · · Ĉm

O2



−1

·

∑
t

OT
2


(V1t −VT

1 P1t)ε1t
...

(Vmt −VT
mPmt)εmt

 ,

Consider

b1 := T−1aT
2

OT
2


Ĉ1 0 · · · 0

0 Ĉ2 · · · 0
...

...
...

...

0 0 · · · Ĉm

O2



−1

·

∑
t

OT
2


(V1t −Φ1t)ε1t

...

(Vmt −Φmt)εmt

 ,

b2 := T−1aT
2

OT
2


C1 0 · · · 0

0 C2 · · · 0
...

...
...

...

0 0 · · · Cm

O2



−1

·

∑
t

OT
2


(V1t −Φ1t)ε1t

...

(Vmt −Φmt)εmt

 .

As when showing the convergence rate, the covariance matrix of


(V1t −Φ1t)ε1t

...

(Vmt −Φmt)εmt

 is given

by

∑
1≤t,t′≤T


C1,|t−t′| 0 · · · 0

0 C2,|t−t′| · · · 0
...

...
...

...

0 0 · · · Cm,|t−t′|

 ,
with eigenvalues of order Op(T ) and thus |b2| = Op(

√
1/T ). Using the central limit theorem

under mixing conditions, for example results in Bardet et al. (2008), we have

√
Tν
−1/2
2,T b2

d→ N(0, 1),
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where

ν2,T = aT
2 (OT

2 CO2)−1OT
2 Σ2O2(OT

2 CO2)−1a2,

C =


C1 0 · · · 0

0 C2 · · · 0
...

...
...

...

0 0 · · · Cm

 ,

Σ2 =
1

T

∑
1≤t,t′≤T


C1,|t−t′| 0 · · · 0

0 C2,|t−t′| · · · 0
...

...
...

...

0 0 · · · Cm,|t−t′|

 .

Using Lemma 5, |b1 − b2| = op(
√

1/T ). We also have that

|aT
2 DG2(η̃ − η0)− b1| = op(1/

√
T ),

since

E|aT
2 DG2(η̃ − η0)− b1|2

= Op(T
−2)λmax

E



((I−P1)Φ1 −P1(V1 −Φ1))Tε1
...

((I−Pm)Φm −Pm(Vm −Φm))Tεm


⊗2


= op(1/T ).

Now we note that, as shown in proving convergence rate, uniformly for ‖θ−θ0‖2+‖β−β0‖2 ≤
Cr2T ,

−2
∑
i,t

Rit2εit

+
∑
i,t

R2
it2 + 2

∑
i,t

(
(η − η0)(JG2

i )T(Vit −VT
i Pit) +Rit2

)
(ΠT

itαi +Rit1)

+2
∑
i,t

Rit2 · (η − η0)(JG2
i )T(Vit −VT

i Pit) = op(1).

(S.1.10)

Letting

Q(η) :=
∑
i,t

(η − η0)T(JG2
i )T(Vit −VT

i Pit)(V
T
it −PT

itVi)J
G2
i (η − η0)

−2
∑
i,t

(η − η0)T(JG2
i )T(Vit −VT

i Pit)εit,

we have ∣∣∣∣∣∣
∑
i,t

(εit −ΠT
itαi − (Vit −VT

i Pit)
T(βi − β0i)−Rit1 −Rit2)2
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−
∑
i,t

(εit −ΠT
itαi −Rit1)2 −Q(η)

∣∣∣∣∣∣ = op(1).

This implies∣∣∣∣∣∣
∑
i,t

(εit −ΠT
itαi − (Vit −VT

i Pit)
T(βi − β0i)−Rit1 −Rit2(Mi(αi,βi)))

2

−
∑
i,t

(εit −ΠT
itαi − (Vit −VT

i Pit)
T(β̃i − β0i)−Rit1 −Rit2(Mi(αi, β̃i)))

2

−(Q(η)−Q(η̃))| = op(1).

Since Q(η)−Q(η̃) =
∑
i,t(η− η̃)(JG2

i )T(Vit−VT
i Pit)(V

T
it−PT

itVi)J
G2
i (η− η̃), for any η with

‖DG2(η− η̃)‖ = δ/
√
T where δ > 0 is a small number, Q(η)−Q(η̃) is bounded away from zero.

This leads to that
∑
i,t(εit−ΠT

itαi− (Vit−VT
i Pit)

T(JG2
i )T(η−η0)−Rit1−Rit2(Mi(αi,βi)))

2

is larger than
∑
i,t(εit −ΠT

itαi − (Vit −VT
i Pit)

T(JG2
i )T(η̃ − η0) − Rit1 − Rit2(Mi(αi, β̃i)))

2

with probability approaching one. Thus there is a local minimizer (α̂, η̂) of
∑
i,t(εit −ΠT

itαi −
(Vit −VT

i Pit)
T(JG2

i )T(η − η0) − Rit1 − Rit2(Mi(αi,βi)))
2 with ‖DG2(η̂ − η̃)‖ = op(1/

√
T ).

Thus |aT
2 DG2(η̂ − η0)− aT

2 DG2(η̃ − η0)| = op(1/
√
T ).

Since β̂−β0 = O2D
G2(η̂−η0), bT

2 (β̂−β0) = bT
2 O2D

G2(η̂−η0) is asymptotically normal.

That is, for any unit vector b2 ∈ Rmp,
√
Tκ
−1/2
2,T bT

2 (β̂ − β0)
d→ N(0, 1), (S.1.11)

where

κ2,T := bT
2 O2(OT

2 CO2)−1OT
2 Σ2O2(OT

2 CO2)−1OT
2 b2.

STEP 3. Proof of the convergence rate of θ̂ and its asymptotic normality.

To get the convergence rate of θ̂, like for β̂, we perform a projection, which is now the

projection for the nonparametric part. Let A0i := arg minA ‖B(XT
itβ0i) − g′0i(XT

itβ0i)AXit‖2.

Obviously, we have

A0i = E
[
g′0i(X

T
itβ0i)B(XT

itβ0i)X
T

it

] (
E
[
(g′0i(X

T

itβ0i))
2XitX

T

it

])−1
.

In this part, Lemma 6 plays the role of assumption (C4) which was used in showing ‖β̂−β0‖2 =

Op(H2/T ) previously.

Now we show ‖θ̂−θ0‖2 = Op(H1/T ). The general strategy is similar to that used in showing

‖β̂ − β0‖2 = Op(H2/T ). We have∑
i,t

(yit − θT
i B(XT

itβi))
2

=
∑
i,t

(εit −ΠT
it(θi − θ0i)−VT

it(βi − β0i)−Rit1 −Rit2(θi,βi))
2

=
∑
i,t

(εit − (ΠT
it −QT

itΠi)(θi − θ0i)−VT
it(γi − γ0i)−Rit1 −Rit2(θi,βi))

2
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=
∑
i,t

(εit − (ΠT
it −QT

itΠi)(θi − θ0i)−VT
it(γi − γ0i)−Rit1 −Rit2(θi,γi − (VT

i Vi)
−1VT

i Πiθi))
2,

where QT
it is the t-th row of Qi = Vi(V

T
i Vi)

−1VT
i and γi = βi + (VT

i Vi)
−1VT

i Πiθi, γ0i =

β0i + (VT
i Vi)

−1VT
i Πiθ0i.

Then

0 ≥
∑
i,t

(εit − (ΠT
it −QT

itΠi)(θ̂i − θ0i)−VT
it(γ̂i − γ0i)−Rit1 −Rit2(θ̂i, γ̂i − (VT

i Vi)
−1VT

i Πiθ̂i))
2

−
∑
i,t

(εit −VT
it(γ̂i − γ0i)−Rit1 −Rit2(θ0i, γ̂i − (VT

i Vi)
−1VT

i Πiθ0i))
2

=
∑
i,t

(ξ̂ − ξ0)T(JG1
i )T(Πit −ΠT

i Qit)(Π
T
it −QT

itΠi)J
G1
i (ξ̂ − ξ0)

−2
∑
i,t

(ξ̂ − ξ0)T(JG1
i )T(Πit −ΠT

i Qit)εit

−2
∑
i,t

(R̂it2 −Rit2)εit

+
∑
i,t

(R̂2
it2 −R2

it2)

+2
∑
i,t

(
(ξ̂ − ξ0)T(JG1

i )T(Πit −ΠT
i Qit) + R̂it2 −Rit2

)
(VT

it(γ̂i − γ0i) +Rit1)

+2
∑
i,t

R̂it2(ξ̂ − ξ0)T(JG1
i )T(Πit −ΠT

i Qit),

(S.1.12)

where we write Rit2(θ̂i, γ̂i− (VT
i Vi)

−1VT
i Πiθ̂i) as R̂it2 and Rit2(θ0i, γ̂i− (VT

i Vi)
−1VT

i Πiθ0i)

as Rit2. We have ∑
i,t

(ξ̂ − ξ0)T(JG1
i )T(Πit −ΠT

i Qit)(Π
T
it −QT

itΠi)J
G1
i (ξ̂ − ξ0)

= T (ξ̂ − ξ0)TDG1OT
1


D̂1 0 · · · 0

0 D̂2 · · · 0
...

...
...

...

0 0 · · · D̂m

O1D
G1(ξ̂ − ξ0)

≥ CT‖DG1(ξ̂ − ξ0)‖2,

where O1 =


JG1
1

...

JG1
m

 (DG1)−1 is an mK × H1 orthonormal matrix, and D̂i =
∑
t(Πit −

ΠT
i Qit)(Πit − ΠT

i Qit)
T/T , and the lower bound is obtained since D̂i can be shown to have

eigenvalues uniformly bounded from zero, similar to Lemma 5 and using Lemma 6. Furthermore,

as for (S.1.8),
∑
i,t(ξ̂− ξ0)T(JG1

i )T(Πit−ΠT
i Qit)εit = Op(

√
TH1), and also the last four terms

of (S.1.12) are op(1), which leads to ‖θ̂ − θ0‖2 = ‖DG1(ξ̂ − ξ0)‖2 = Op(H1/T ).

Similarly, we can show the asymptotic normality of θ̂ using basically the same arguments
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used in showing the asymptotic normality of β̂. Let

ξ̃ = ξ0 +

∑
i,t

(JG1
i )T(Πit −ΠT

i Qit)(Π
T
it −QT

itΠi)J
G1
i

−1∑
i,t

(JG1
i )T(Πit −ΠT

i Qit)εit.

Then for any unit vector a1 ∈ RH1 , we have

aT
1 DG1(ξ̃ − ξ0)

= T−1aT
1

OT
1


D̂1 0 · · · 0

0 D̂2 · · · 0
...

...
...

...

0 0 · · · D̂m

O2



−1

·

∑
t

OT
1


(Π1t −ΠT

1 Q1t)ε1t
...

(Πmt −ΠT
mQmt)εmt

 ,

As before, it can be shown that the above is asymptotically equivalent to

T−1aT
1

OT
1


D1 0 · · · 0

0 D2 · · · 0
...

...
...

...

0 0 · · · Dm

O2



−1

·

∑
t

OT
1


(Π1t −Ψ1t)ε1t

...

(Qmt −Ψmt)εmt

 ,

where Di = E[(B(XT
itβ0i)− g′0i(XT

itβ0i)A0iXit)
⊗2] and Ψit = g′0i(X

T
itβ0i)A0iXit. This implies

that
√
Tν
−1/2
1,T aT

1 DG1(ξ̃ − ξ0)
d→ N(0, 1),

where

ν1,T = aT
1 (OT

1 DO1)−1OT
1 Σ1O1(OT

1 DO1)−1a1,

D =


D1 0 · · · 0

0 D2 · · · 0
...

...
...

...

0 0 · · · Dm

 ,

Σ1 =
1

T

∑
1≤t,t′≤T


D1,|t−t′| 0 · · · 0

0 D2,|t−t′| · · · 0
...

...
...

...

0 0 · · · Dm,|t−t′|

 ,
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Di,|t−t′| = E[εitεit′(B(XT
itβ0i)− g′0i(XT

itβ0i)A0iXit)(B(XT
it′β0i)− g′0i(XT

it′β0i)A0iXit′)
T].

Since θ̂ − θ0 = O1D
G1(ξ̂ − ξ0), bT

1 (θ̂ − θ0) = bT
1 O1D

G1(ξ̂ − ξ0) is asymptotically normal.

That is, for any unit vector b1 ∈ Rmp,

√
Tκ
−1/2
1,T bT

1 (θ̂ − θ0)
d→ N(0, 1), (S.1.13)

where

κ1,T := bT
1 O1(OT

1 DO1)−1OT
1 Σ1O1(OT

1 DO1)−1OT
1 b1.

S.2 Proof of Theorems 1 and 2

We now consider the proof of Theorems 1 and 2 as special cases of (S.1.11) and (S.1.13). Consider

first Theorem 2, under the additional assumption that the true partition is used. As shown previ-

ously, the asymptotic variance of β̂−β0 is T−1O2Θ2O
T
2 , where Θ2 = (OT

2 CO2)−1OT
2 Σ2O2(OT

2 DO2)−1.

From our proof, it is easy to see that eigenvalues of Θ2 are bounded and bounded away from

zero. By the definition of the mp ×H2 matrix O2, it is easy to see that its row corresponding

to βij , say denoted by OT
2(ij), has a single nonzero entry 1/

√
mij . Let eij =

√
mijO2(ij), which

is a unit vector, then the asymptotic variance of β̂ij − β0ij is (mijT )−1eT
ijΘ2eij .

The asymptotic variance of θ̂i − θ0i is T−1JG1
i (DG1)−1Θ1(DG1)−1(JG1

i )T, where

Θ1 = (OT
1 DO1)−1OT

1 Σ1O1(OT
1 CO1)−1

with eigenvalues bounded and bounded away from zero. By definition of JG1
i and DG1 , it can

be seen that each row of the K × H1 matrix JG1
i (DG1)−1 has a single nonzero entry 1/

√
mi

and thus if we define Ki =
√
miJ

G1
i (DG1)−1, it is easy to directly verify that KT

i v is bounded

and bounded away from zero and infinity for any unit vector v. Also, we have ‖B(x)‖ � K.

Thus the asymptotic variance of BT(x)θ̂i − BT(x)θ0i can be written as K
miT

bT(x)ΘT
1 b(x), if

we define b(x) = KT
i B(x)/‖KT

i B(x)‖, and Θ1 = Θ1‖KT
i B(x)‖2/K.

For Theorem 1, since the result is standard, and also is a special case of Theorem 2, we

omit the repetition of arguments above. The quantities ẽij , b̃(x), Θ̃1 and Θ̃2 are defined as

above based on the trivial structure in which each single parameter forms its own group in the

partition.

The proof of Theorem 2 would be complete if we can establish consistency of homogeneity

pursuit based on change point detection. That is, we need to show that the true partition can

be identified with probability approaching one. Again for clarity the proof of this is split into

three steps.

STEP 1. First consider the rate of |η̂1 − η01|.
The proof is similar as for the rates of ‖β̂ − β0‖, with more complicated notations. Write

DG2 = diag(D1,D2} where D1 =
√
|G2,1| is the the (1, 1)-entry of DG2 , write JG2

i = (Ji1,Ji2)
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with Ji1 the first column of JG2
i . Also write η = (η1,η

T
2 )T. We have∑

i,t

(yit − θT
i B(XT

itβi))
2

=
∑
i,t

(εit −ΠT
it(θi − θ0i)−VT

itJi2D
−1
2 D2(η2 − η02)−VT

itJi1D
−1
1 D1(η1 − η01)

−Rit1 −Rit2(θi,βi))
2

=
∑
i,t

(εit − Π̃
T

it(δi − δ0i)− (Uit − P̃T
itUi)D1(η1 − η01)−Rit1 −Rit2(Mi(δi, η1))2

where Ui is T -vector with entries Uit = VT
itJi1/D1, Π̃it = (ΠT

it,V
T
itJ2D

−1
2 )T, Π̃i = (Π̃i1, . . . , Π̃iT )T,

P̃i = Π̃i(Π̃
T

i Π̃i)
−1Π̃

T

i with rows P̃T
it = Π̃it(Π̃

T

i Π̃i)
−1Π̃

T

i , δ =

 θ

D2η2

+(Π̃
T

i Π̃i)
−1Π̃

T

i UiD1η1

and δ0 =

 θ0

D2η02

 + (Π̃
T

i Π̃i)
−1Π̃

T

i UiD1η01. Finally, (with abuse of notation) Mi(δi, η1)

denotes the one-to-one mapping from parameterization (δi, η1) to the parametrization (θi,βi).

Then,

0 ≥
∑
i,t

∑
i,t

(εit − Π̃
T

it(δ̂i − δ0i)− (Uit − P̃T
itUi)D1(η̂1 − η01)−Rit1 −Rit2(Mi(δ̂i, η̂1))2

−
∑
i,t

(εit − Π̃
T

it(δ̂i − δ0i)−Rit1 −Rit2(Mi(δ̂i, η01))2

=
∑
i,t

(D1(η̂1 − η01))2(Uit − P̃T
i Ui)

2

−2
∑
i,t

D1(η̂1 − η01)(Uit − P̃T
i Ui)εit

−2
∑
i,t

(R̂it2 −Rit2)εit

+
∑
i,t

(R̂2
it2 −R2

it2)

+2
∑
i,t

(
D1(η̂1 − η01)(Uit − P̃T

i Ui) + R̂it2 −Rit2
)

(Π̃
T

it(δ̂i − δ0i) +Rit1)

+2
∑
i,t

R̂it2D1(η̂1 − η01)(Uit − P̃T
i Ui)

(S.2.1)

with R̂it2 = Rit2(Mi(δ̂i, η̂1)) and Rit2 = Rit2(Mi(δ̂i, η01)). The convergence rate (η̂1 − η01)2 =

Op(1/|D2
1T |) is obtained by that the first term in (S.2.1) is bounded below by CTD2

1(η̂1−η01)2,

the second term is Op(
√
T )|D1(η̂1− η01)| while the rest are op(1). Arguments for showing these

are the same as those used in showing the rates of ‖β̂−β0‖ and ‖θ̂− θ0‖, and thus the details

are omitted.

STEP 2. Now consider the convergence rate of ‖DG2(η̂ − η0)‖∞ and ‖DG1(ξ̂ − ξ0)‖∞. More

generally, for A = {a1, . . . ,an} with any n ≤ m3T 3 non-random unit vectors, we consider the
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convergence rate of maxj |aT
j (β̂ − β0)| and maxj |aT

j (θ̂ − θ0)|.
In the study of |η̂1− η01| above, we do not make explicit that various quantities such as Uit,

Pi depends on which component of η we are focusing on. In this section, we use subscript (j),

j = 1, . . . ,H2 to make this dependence explicit.

To get convergence rate in infinity norm, we only need to get uniform bound for the terms

in (S.2.1).
∑
i,t(Uit(j) − P̃T

i(j)Ui(j))
2 is (uniformly over different components j) lower bounded

by CT using Lemma 7 and the arguments used in Lemmas 1 and 6.

For the second term in (S.2.1), using Theorem 2.19 of Fan and Yao (2003),

max
1≤i≤m,1≤j≤H2

∑
t

(Uit(j) − ψit(j))εit = Op(log(Tm)
√
T ).

Using (S.3.8)-(S.3.10),

max
1≤i≤m,1≤j≤H2

∑
t

(P̃T
i(j)Ui(j) − ψit(j))εit = Op(

√
T ).

The rest of the terms in (S.2.1) are uniformly op(1) as shown before. These calculations

combined implies and convergence rate ‖DG2(η̂ − η0)‖2∞ = Op(log(Tm)/T ).

That ‖DG1(ξ̂− ξ0)‖2∞ = Op(log(Tm)/T ) can be derived in the same way and thus omitted.

Finally, we have maxj |aT
j (β̂−β0)|2 = Op(log(mT )/T ) and maxj |aT

j (θ̂−θ0)| = Op(log(mT )/T )

using similar arguments.

STEP 3. Finally we show the consistency of change point detection.

We use sequence b(1) ≤ · · · ≤ b(n) (n = mp) for illustration, with estimated change points

k̂0 = 0 < k̂1 < · · · < k̂Ĥ2
= n. The true ordered sequence of β is β0(1) ≤ · · · ≤ β0(n) with change

points kh, h = 0, . . . ,H2. Let γ2 = min2≤h≤H2
|β0(kh+1)−β0(kh)| be the minimum jump size. The

sup-norm convergence results established above, when specializing to the estimator in stage 1,

imply that ‖β̃−β0‖∞ = Op(aT ) where aT =
√

log(Tm)/T . On the event {‖β̃−β0‖∞ ≤ CaT }.
It is easy to see that

max
u−1<k<e

|∆u,e(k)−∆0
u,e(k)| ≤ aT . (S.2.2)

where ∆0
u,e(k) =

√
(e−k)(k−u+1)

e−u+1

∣∣∣∑e
l=k+1 β0(l)

e−k −
∑k

l=u β0(l)

k−u+1

∣∣∣ . The reason is that ∆0
u,e(k) actually

has the form |aTβ0| for some unit vector a and thus by Step 2 above we have the bound (S.2.2).

Now suppose u − 1 and e are both change points and there is at least one change point

inside (u − 1, e). Let k̂ = arg maxu−1<k<e ∆u,e(k) and k0 = arg maxu−1<k<e ∆0
u,e(k). We

prove consistency by way of contradiction. Suppose k̂ is not one of the true change points.

Then there exists some h such that k̂ ∈ {kh + 1, . . . , kh+1 − 1}. From Lemma 2.2 of Venka-

traman (1992), ∆0
u,e(k) is either monotone, or decreasing and then increasing on this inter-

val, and max{∆0
u,e(kh),∆0

u,e(kh+1)} > ∆0
u,e(k̂). Assume now ∆0

u,e(k) is locally decreasing

at k̂ (the other case would be similar). Then we have ∆0
u,e(kh) > ∆0

u,e(k̂) and ∆0
u,e(kh) is

locally decreasing on the right side of kh. Then, arguing exactly as in Lemma 2.2 of Cho

and Fryzlewicz (2012), we have ∆0
u,e(kh) − ∆0

u,e(kh + 1) > Cγ2/
√
n. This in turn leads
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to ∆0
u,e(k0) − ∆0

u,e(k̂) > Cγ2/
√
n. Since we assumed aT = o(γ2/

√
n), this would lead to

∆u,e(k0) > ∆u,e(k̂) by (S.2.2), a contradiction by the definition of k̂. Also, in this case, it is

easy to see that maxu−1<k<e ∆u,e(k) ≥ maxu−1<k<e ∆0
u,e(k)− an ≥ Cγ2 − aT > δ2.

Now suppose still u− 1, e are both change points but there are no other change point inside

(u− 1, e). In this case, using (S.2.2), it is easy to see that maxu−1<k<e ∆u,e(k) ≤ aT .

Since we refrain from further partitioning the interval (u−1, e) if and only if maxu−1<k<e ∆u,e(k) <

δ2 with
√
naT << δ2 << γ2, we see that the algorithm consistently identifies exactly the true

change points in β0.

The proof for change point detection in θ is the same, and the proof of Theorem 2 is complete.

S.3 Some Lemmas

Define matrices

Ai = E

 B(XT
itβi)

g′0i(X
T
itβi)Xit

( BT(XT
itβi) g′0i(X

T
itβi)X

T

it

) , 1 ≤ i ≤ m.
Lemma 1 The eigenvalues of Ai are bounded and bounded away from zero and the bounds do

not depend on i.

Proof of Lemma 1. By the smoothness assumption (C3), there exists γi ∈ Rp×K , with rows

γT
ij , j = 1, . . . , p, such that

|g′0i(x)E[Xit,j |XT
itβi = x]− γT

ijB(x)| ≤ CK−2. (S.3.1)

We show that the operator norm of γi is bounded. If p is fixed, since ‖γij‖ � ‖γT
ijB(.)‖L2

is

bounded, we see the operator norm of γi is bounded since it is smaller than the operator norm. In

general, we use the following more complicated arguments. Since E[XitX
T
it] has bounded eigen-

values, so does V ar(Xit) (the covariance matrix of Xit) and (µit)
⊗2 where µit = E[Xit]. This

implies V ar(E[Xit|XT
itβi]) has bounded eigenvalues since V ar(Xit) = V ar(E[Xit|XT

itβi]) +

E[V ar(Xit|XT
itβi)]. This fact together with that (µit)

⊗2 has bounded eigenvalues implies

E[(E[Xit|XT
itβi])

⊗2] has bounded eigenvalues. Now using (S.3.1), E[γiB(XT
itβi)B

T(XT
itβi)γ

T
i ]

has bounded eigenvalues (if p/Kd′ → 0). Since

E[γiB(XT
itβi)B

T(XT
itβi)γ

T
i ] = γiGγT

i

for G = E[B(XT
itβi)B

T(XT
itβi)] which has eigenvalues bounded and bounded away from zero

by assumption (C1). We have that the operator norm of γiG
1/2 is bounded, which in turn

implies the operator norm of γi is bounded.

Then we show that the operator norm of I 0

−γi I

 (S.3.2)
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is bounded. This is easily shown by definition, since∥∥∥∥∥∥
 I 0

−γi I

 u

v

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 u

v − γiu

∥∥∥∥∥∥
≤ ‖u‖2 + 2(‖v‖2 + ‖γi‖2op‖u‖2) ≤ C(‖u‖2 + ‖v‖2)

Note that the inverse of (S.3.2) is

 I 0

γi I

 which also has bounded operator norm.

Premultiplying Ai by (S.3.2) and post-multiply Ai by the transpose of (S.3.2), we get the

matrix

E

 B(XT
itβi)

g′0i(X
T
itβi)Xit − γiB(XT

itβi)

( BT(XT
itβi) g′0i(X

T
itβi)X

T

it −BT(XT
itβi)γ

T
i

) .
The operator norm for the difference between the above and

E

 B(XT
itβi)

g′0i(X
T
itβi)(Xit − E[Xit|XT

itβi])

( BT(XT
itβi) g′0i(X

T
itβi)(X

T

it − E[X
T

it|XT
itβi])

) .
is (using operator norm is bounded by the maximum row sum of absolute values of entires)

CK−2(
√
K + p) = o(1). The displayed matrix above is block diagonal and the eigenvalues of

both blocks are bounded and bounded away from zero by assumptions (C1) and (C4). This

proves the statement of the lemma. �

Let

Âi =
1

T

T∑
t=1

 B(XT
itβi)

g′0i(X
T
itβi)Xit

( BT(XT
itβi) g′0i(X

T
itβi)X

T

it

) , 1 ≤ i ≤ m.
Lemma 2 The eigenvalues of Âi are bounded and bounded away from zero, uniformly over i

and β in a neighborhood of β0.

Proof of Lemma 2. For any 1 ≤ k, k′ ≤ K and 1 ≤ i ≤ m, we have

Bk(XT
itβi)Bk′(X

T
itβi) ≤ K,

and

E[(Bk(XT
itβi)Bk′(X

T
itβi))

2] ≤ KE[(Bk(XT
itβi))

2] ≤ CK.

Thus

E[(Bk(XT
itβi)Bk′(X

T
itβi))

r] ≤ CKr−2 ·K, r = 3, 4, . . . .

Using Theorem 2.19 of Fan and Yao (2003) (setting q = T/(C1logT ) in that theorem with large

enough C1), for any ε > 0,

P

(∣∣∣∣∣T−1∑
t

Bk(XT
itβi)Bk′(X

T
itβi)− E[Bk(XT

itβi)Bk′(X
T
itβi)]

∣∣∣∣∣ > ε

)
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≤ C(1 + logT + µ(ε)) exp{−C T

logT
µ(ε)}+ CT (1 +KC2/ε)T−C3 ,

where µ(ε) = ε2/(K+Kε), C2 is some positive constant, and the constant C3 can be arbitrarily

large as long as one chooses C1 large. Setting ε = δ/K, we get

P ( max
k,k′,i,i

∣∣∣∣∣T−1∑
t

Bk(XT
itβi)Bk′(X

T
itβi)− E[Bk(XT

itβi)Bk′(X
T
itβi)]

∣∣∣∣∣ > δ/K)

= o(1).

(S.3.3)

Similarly

E
[∣∣(g′0i(XT

itβi))
2Xit,jXit,j′

∣∣r] ≤ r!Cr−2,
implies

P

(∣∣∣∣∣T−1∑
t

(g′0i(X
T
itβi))

2Xit,jXit,j′ − E
[
(g′0i(X

T
itβi))

2Xit,jXit,j′
]∣∣∣∣∣ > ε

)

≤ C(1 + logT + µ(ε)) exp{−C T

logT
µ(ε)}+ CT (1 + C/ε)T−C3 ,

where µ(ε) = ε2/(1 + ε). Setting ε = δ/p, we get

P
(

max
j,j′,i,i

∣∣∣T−1∑
t

(g′0i(X
T
itβi))

2Xit,jXit,j′ − E
[
(g′0i(X

T
itβi))

2Xit,jXit,j′

]∣∣∣ > δ/p
)

= o(1). (S.3.4)

Thus maxi ‖Âi −Ai‖op = op(1) and then Lemma 1 implies the result for any fixed β.

It is easy to extend the results to obtain uniformity over β in a neighborhood of β0. Choosing

a T−a-covering, sayNi of {βi : ‖βi−β0i‖ ≤ b} for some constant a large enough. That is, for any

βi there exists a βi ∈ Ni with ‖βi−βi‖ < T−a. The size of Ni is bounded by exp{Cpalog(T )}
by Lemma 2.5 of van der Geer (2000).

To modify (S.3.3) to be uniform over β, note that by Lipschitz continuity, it is easy to see

that we have∣∣∣∣∣T−1∑
t

Bk(XT
itβi)Bk′(X

T
itβi)− T−1

∑
t

Bk(XT
itβ
′
i)Bk′(X

T
itβi)

∣∣∣∣∣ ≤ T−a′ (S.3.5)

and ∣∣E[Bk(XT
itβi)Bk′(X

T
itβi)]− E[Bk(XT

itβ
′
i)Bk′(X

T
itβ
′
i)]
∣∣ ≤ T−a′ , (S.3.6)

for some a′ > 0 (obviously we can make a′ arbitrarily large by setting a to be large).

Using Theorem 2.19 of Fan and Yao (2003) (setting now q = T 1−δ/logT ), for any ε > 0,

P

(∣∣∣∣∣T−1∑
t

Bk(XT
itβi)Bk′(X

T
itβi)− E[Bk(XT

itβi)Bk′(X
T
itβi)]

∣∣∣∣∣ > ε

)
≤ C(1 + T δ + µ(ε)) exp{−CT 1−δµ(ε)}+ CT (1 +KC2/ε) exp{−CT−δ},
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where µ(ε) = ε2/(K +Kε). By union bound, we can still have

P
(

max
k,k′,i,βi∈Ni

∣∣∣∣∣T−1∑
t

Bk(XT
itβi)Bk′(X

T
itβi)− E[Bk(XT

itβi)Bk′(X
T
itβi)]

∣∣∣∣∣ > δ/K
)

= o(1).

The uniformly of βi ∈ Ni imply the uniformity of βi in a neighborhood of β0i by (S.3.5) and

(S.3.6).

Similarly we can modify (S.3.4) to be uniform over β if p3(logT )2log(pm)/T → 0, which

finishes the proof. �

Lemma 3 Eigenvalues of Ãi are bounded and bounded away from zero, with probability ap-

proaching one, uniformly over i and β in a neighborhood of β0.

Proof of Lemma 3. First, by Lemma 2, the eigenvalues of (1/T )
∑
t B(XT

itβi)B
T(XT

itβi) are

bounded and bounded away from zero.

Since ‖βi − β0i‖ = O(rT ) and ‖β∗i − β0i‖ = O(rT ),

1

T

T∑
t=1

(
θT
0iB(XT

itβ
∗
i )
)2
Xit,jXit,j − (g0i(X

T
itβi))

2Xit,jXit,j′

=
1

T

T∑
t=1

((
θT
0iB(XT

itβ
∗
i )
)2
−
(
θT
0iB(XT

itβi)
)2)

Xit,jXit,j′

+
1

T

T∑
t=1

((
θT
0iB(XT

itβ
∗
i )
)2
− (g0i(X

T
itβi))

2

)
Xit,jXit,j′

= Op(rT +K−2),

1

T

T∑
t=1

θT
0iB(XT

itβ
∗
i )Xit,jBk(XT

itβi)− g0i(XT
itβi)Xit,jBk(XT

itβi)

=
1

T

T∑
t=1

(θT
0iB(XT

itβi)− g0i(XT
itβi))Xit,jBk(XT

itβi)

+
1

T

T∑
t=1

(θT
0iB(XT

itβ
∗
i )− θT

0iB(XT
itβi))Xit,jBk(XT

itβi)

= Op((K
−2 + rT )/K).

Thus if rT = o(1), we have ‖Ãi − Âi‖op = op(1) which proves the lemma. �

Lemma 4 Eigenvalues of

∑
t,t′


A1,|t−t′| 0 · · · 0

0 A2,|t−t′| · · · 0
...

...
...

...

0 0 · · · Am,|t−t′|


are bounded by CT for some constant C.

54



Proof of Lemma 4. By Proposition 2.5 (i) of Fan and Yao (2003), using the geometric mixing

condition, we have E[Bk(XT
itβi)Bk′(X

T
it′βi)εitεit′ ] ≤ CρC|t−t

′|. Similar bounds hold for other

entries of Ai,|t−t′|. This implies the statement of the lemma. �

Lemma 5 max1≤i≤m ‖Ĉi −Ci‖op = op(1).

Proof of Lemma 5. Let C̃i = T−1
∑T
t=1(g′0i(X

T
itβ0i))

2(Xit − E[Xit|Xitβ0i])
⊗2. Also let

Φit = g′0i(X
T
itβ0i)E[Xit|XT

itβ0i], Φi = (Φi1, . . . ,ΦiT )T. We have

Ĉi − C̃i

=
1

T

∑
t

(Vit −VT
i Pit)(V

T
it −PT

itVi)−
1

T

∑
t

(Vit −Φit)(Vit −Φit)
T

=
1

T
VT
i (I−Pi)Vi −

1

T
(Vi −Φi)

T(Vi −Φi).

Writing Vi = (Vi −Φi) + Φi, the above is equal to

1

T

(
ΦT
i (I−Pi)Φi + (Vi −Φi)

T(I−Pi)Φi + Φi(I−Pi)(Vi −Φi)− (Vi −Φi)
TPi(Vi −Φi)

)
.

(S.3.7)

By the smoothness of g′0i(X
T
itβ0i)E[Xit|XT

itβ0i] as a function of XT
itβ0i, we have

‖(I−Pi)Φi‖ ≤ C
√
TK−2. (S.3.8)

We also have trivially

max
i
‖Vi −Φi‖ = Op(

√
T ). (S.3.9)

Now consider ‖Pi(Vi −Φi)‖. We have

‖Pi(Vi −Φi)‖

= ‖Πi(Π
T
i Πi)

−1ΠT
i (Vi −Φi)‖

≤ ‖Πi(Π
T
i Πi)

−1‖op‖ΠT
i (Vi −Φi)‖,

and maxi ‖Πi(Π
T
i Πi)

−1‖2op = maxi ‖(ΠT
i Πi)

−1‖op = Op(1/T ) as proved in Lemma 2. For the

term ‖ΠT
i (Vi−Φi)‖, we can deal with it similar to (S.3.3). First note that Bk(XT

itβ0i)(Xit,j −
φit,j) has mean zero (φit,j is the j-th component of Φit, j = 1, . . . , p). Since Xit,j is bounded,

we have

Bk(XT
itβ0i)(Xit,j − φit,j) ≤ C

√
K

E[(Bk(XT
itβ0i)(Xit,j − φit,j))2] ≤ C,

and applying Theorem 2.19 of Fan and Yao (2003),

P (
∑
t

Bk(XT
itβ0i)(Xit,j − φit,j) > Tε)

≤ C(1 + logT + µ(ε)) exp{−C T

logT
µ(ε)}+ CT (1 + 1/ε)T−C2
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where µ(ε) = ε2√
Kε+1

. Setting ε =
√

logT/T , and taking union bound over (i, j, k), we can

obtain

max
i
‖ΠT

i (Vi −Φi)‖ = Op(
√
TKlogT ).

Thus

‖Pi(Vi −Φi)‖ = op(
√
T ) if KlogT/T → 0. (S.3.10)

Then using (S.3.8)-(S.3.10), (S.3.7) is op(1). Finally, using the same arguments as in the

proof of Lemma 2, we get maxi ‖C̃i −Ci‖op = op(1). �

Lemma 6 Eigenvalues of E
[
(B(XT

itβ0i)− g′0i(XT
itβ0i)A0iXit)(B(XT

itβ0i)− g′0i(XT
itβ0i)A0iXit)

T
]

are bounded and bounded away from zero, uniformly over i.

The proof is based on the following elementary lemma.

Lemma 7 Suppose a positive definite matrix

 A B

BT C

 has all eigenvalues inside the in-

terval [c, C] for some 0 < c < C < ∞. Then all eigenvalues of C − BTA−1B are also inside

the interval [c, C].

Proof of Lemma 7. Obviously eigenvalues of C − BTA−1B are no larger than that of C,

which is in turn bounded by C. Next, we have the identity I 0

−BTA−1 I

 A B

BT C

 I −A−1B

0 I

 =

 A 0

0T C−BTA−1B


Thus for any vector b with dimension same as that of C, we have

bT(C−BTA−1B)b

= (0T,bT)

 A 0

0T C−BTA−1B

 0

b


= (0T,bT)

 I 0

−BTA−1 I

 A B

BT C

 I −A−1B

0 I

 0

b


= (−bTBTA−1,bT)

 A B

BT C

 −A−1Bb

b


≥ ‖b‖2c,

which completes the proof. �

Proof of Lemma 6. Since we have

E
[
(B(XT

itβ0i)− g′0i(XT
itβ0i)A0iXit)(B(XT

itβ0i)− g′0i(XT
itβ0i)A0iXit)

T
]

= E[
(
B(XT

itβ0i)B
T(XT

itβ0i)
]

−E
[
g′0i(X

T
itβ0i)B(XT

itβ0i)X
T

it

] (
E
[
(g′0i(X

T

itβ0i))
2XitX

T

it

])−1
E
[
g′0i(X

T
itβ0i)XitB

T(XT
itβ0i)

]
,

the lemma follows from Lemma 1 and Lemma 7. �
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S.4 Additional simulation results

Example 1. In addition to those methods presented in Section 4, we also apply the single

index model (1.2) with all individuals sharing the same index vector (namely, β1 = · · · = βm),

which we call Under-I, or the single index model (1.2) with all individuals sharing the same

link function (namely, g1(·) = · · · = gm(·), i.e. θ1 = · · · = θm), which we call Under-F, to

the simulated data set. For Under-I or Under-F, the homogeneity structure in θis or βijs is

estimated in the same way as that in the proposed estimation procedure in Section 2.1 with

the tuning parameters selected by the 10-fold cross-validation. We provide results for Under-I

and Under-F in Tables 6 and 7 and observe that both under-fitting methods are substantially

outperformed by those correct-fitting methods.

Table 6: The Average of MSE(β̂i), i = 1, · · · , m, and Average NMIs for Ĝ2

All entries for MSEs are 104 times their actual values

T 200 400 800

m 30 60 90 30 60 90 30 60 90

MSE
Under-I 4009.2 4005.2 4003.9 4002.7 4002.4 4001.4 4001.9 4001.2 4000.7

Under-F 201.79 20.508 4.305 26.251 3.621 2.261 3.193 1.589 1.108

NMI
Under-I 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667

Under-F 0.945 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 7: The Average of MISE(ĝi), i = 1, · · · , m, and Average NMIs for Ĝ1

All entries for MISEs are 102 times their actual values

T 200 400 800

m 30 60 90 30 60 90 30 60 90

MISE
Under-I 12.232 11.649 10.864 10.037 9.847 10.006 9.753 9.694 9.639

Under-F 83.856 83.783 83.802 85.200 85.221 85.226 85.978 85.997 85.960

NMI
Under-I 0.712 0.670 0.649 0.956 0.958 0.949 0.989 0.996 0.994

Under-F 0 0 0 0 0 0 0 0 0

Example 2. We generate a sample from (1.2), where βis, Xits and εits are generated in the

same way as that in Example 1 but gi(·)s are generated in a componentwise fashion via

gi(u) = BT(Φ(u))θi + 0.2 sin(2πu), (S.4.1)

where Φ is the cumulative distribution function of a standard normal, m is the multiple of 5
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and the basis coefficients are generated from components in {−1,−1/3, 1/3, 1} with the form of

θi =



(1, 1/3, 1/3,−1, 1, 1/3)T when i = 1, · · · ,m/5,

(1,−1/3, 1, 1/3,−1/3,−1/3)T when i = m/5 + 1, · · · , 2m/5,

(−1, 1, 1, 1/3,−1/3,−1)T when i = 2m/5 + 1, · · · , 3m/5,

(−1/3,−1,−1/3, 1, 1,−1)T when i = 3m/5 + 1, · · · , 4m/5,

(−1/3, 1/3, 1/3, 1/3, 1, 1/3)T when i = 4m/5 + 1, · · · ,m.

(S.4.2)

To compare the performance between Correct-C and its competitors after excluding the neg-

ative impact from the low accuracies of Ĥ1 and Ĥ2 especially when T is not sufficiently large,

we only implement Correct-C, Correct-V, Km-F and Km-I-F, each of which maximise the corre-

sponding componentwise or vectorwise NMI values. We repeat this simulated example 100 times

for various ms and T s with σ = 0.1 and report the results for the estimation errors and NMIs

in Tables 8 and 9, respectively. Several conclusions can be drawn from here. Firstly, enlarg-

ing m or T results in more accurate estimates of both index coefficients and link functions for

correct-fittings and Km-I-F. Secondly, correct-fittings provide highly significant improvements

in estimation accuracy over k-means-based methods in all settings. Among two correct-fitting

methods, as one would expect, Correct-C performs much better than Correct-V especially in

terms of lower MISE values.

Table 8: The Average of MSE(β̂i), i = 1, · · · , m, and Average NMIs for Ĝ2

All entries for MSEs are 104 times their actual values

T 200 400

m 30 60 90 200 30 60 90 200

MSE

Correct-C 0.309 0.163 0.098 0.058 0.159 0.089 0.055 0.034

Correct-V 0.359 0.167 0.109 0.058 0.173 0.089 0.059 0.032

Km-F 11.208 11.040 10.972 10.982 5.373 5.186 5.210 5.328

Km-I-F 0.810 0.339 0.233 0.112 0.363 0.172 0.108 0.057

NMI

Correct-C 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Correct-V 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Km-F 0.506 0.449 0.421 0.376 0.506 0.449 0.421 0.376

Km-I-F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 9: The Average of MISE(ĝi), i = 1, · · · , m, and Average NMIs for Ĝ1

All entries for MISEs are 103 times their actual values

T 200 400

m 30 60 90 200 30 60 90 200

MISE

Correct-C 0.692 0.685 0.680 0.680 0.686 0.679 0.677 0.676

Correct-V 0.920 0.810 0.779 0.739 0.829 0.780 0.765 0.743

Km-F 0.959 0.840 0.798 0.753 0.849 0.789 0.774 0.750

Km-I-F 0.959 0.840 0.798 0.753 0.849 0.789 0.774 0.750

NMI

Correct-C 1.000 0.999 0.999 0.998 1.000 1.000 1.000 1.000

Correct-V 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000

Km-F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Km-I-F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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