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Abstract

Current variational inference methods for
hierarchical Bayesian nonparametric models
can neither characterize the correlation struc-
ture among latent variables due to the mean-
field setting, nor infer the true posterior
dimension because of the universal trunca-
tion. To overcome these limitations, we pro-
pose the conditional and adaptively trun-
cated variational inference method (CATVI)
by maximizing the nonparametric evidence
lower bound and integrating Monte Carlo
into the variational inference framework.
CATVI enjoys several advantages over tra-
ditional methods, including a smaller diver-
gence between variational and true posteri-
ors, reduced risk of underfitting or overfit-
ting, and improved prediction accuracy. Em-
pirical studies on three large datasets re-
veal that CATVI applied in Bayesian non-
parametric topic models substantially out-
performs competing models, providing lower
perplexity and clearer topic-words clustering.

1 INTRODUCTION

Hierarchical Bayesian nonparametric (HBNP) models
are widely used in bioinfomatics, language processing,
computer vision and network analysis (Sudderth and
Jordan, 2009; Caron and Fox, 2017; Williamson, 2016;
Yurochkin et al., 2019). A major benefit of HBNP
models is their ability to relax the fixed dimension as-
sumption in parametric models. For example, in natu-
ral language processing, hierarchical Dirichlet process
(HDP) model (Teh et al., 2006) replaces the finite-
dimensional Dirichlet distribution in latent Dirichlet
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allocation (LDA) with a countable-dimensional Dirich-
let process (DP). This is done by regarding the num-
ber of topics as a random variable that can be inferred
from the data, rather than as a parametric value (Blei
et al., 2003).

However, it is much harder to implement HBNP mod-
els than their parametric counterparts. In particular,
due to a HBNP model’s infinite-dimensional nature, a
finite-dimensional truncation is needed to approximate
the posterior. Yet, the selection of the optimal trun-
cation level poses several challenges. On one hand,
the traditional Markov chain Monte Carlo (MCMC)
methods (Teh et al., 2006) can produce an adaptive
selection of the truncated dimension, but they are not
computationally scalable especially for big data. On
the other hand, standard variational inference meth-
ods (Teh et al., 2008; Wang et al., 2011; Hoffman et al.,
2013; Roychowdhury and Kulis, 2015; Xu et al., 2019)
can accelerate the computation, but they suffer from a
universal selection of the truncation level by truncat-
ing the dimension of all latent variables to a prespec-
ified value. Using a prespecified value is problematic,
because a subjective selection of the fixed truncation
level can make the model prone to overfitting or un-
derfitting, leading to low predictive accuracy. These
existing challenges in universal truncation contradict
the motivation and advantages of using HBNP models.

In this paper, we propose a general framework, called
conditional and adaptively truncated variational in-
ference (CATVI), to infer HBNP models in the fol-
lowing steps. First, we convert the inference prob-
lem to an optimization task of maximizing our pro-
posed nonparametric evidence lower bound based on
finite partitions. Second, we introduce a conditional
setting when factorizing variational distributions by
conditioning variables in the middle layers on two ad-
jacent layers. Third, to handle big data, we develop a
stochastic variational inference framework (Blei et al.,
2017) under our conditional setting. Finally, we obtain
empirical distributions from Monte Carlo sampling of
local latent variables, which are then used to update
the variational parameters for the global latent vari-
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Figure 1: The HBNP models. The blue and red boxes
correspond to J and Nj replicates, respectively.

ables. This enables us to truncate the dimension of the
latent variational distributions to that of the empirical
distribution.

Our proposed method benefits from both the inferen-
tial accuracy of Monte Carlo sampling and the compu-
tational efficiency of variational inference. First, our
method rebuilds the correlation structure and hence
attains a smaller Kullback–Leibler (KL) divergence be-
tween the variational distribution and the true poste-
rior. Such procedure removes the unrealistic mean-
field assumption, and searches for an optimal varia-
tional distribution over a wider family. Second, it ad-
justs the dimension of variation distributions, which
converges to a stable level balancing the goodness-
of-fit and model complexity. With these advantages,
CATVI provides an adaptive selection of the trun-
cated dimension, reducing the risk of overfitting or
underfitting, while also enabling more accurate predic-
tions without sacrificing the computational efficiency.
Specific to the inference for the HDP model, CATVI
enjoys several advantages over existing methods (Teh
et al., 2006; Hoffman et al., 2013; Wang and Blei, 2012;
Bryant and Sudderth, 2012), see Section 6 for our de-
tailed discussion.

2 BACKGROUND: HBNP MODELS

As a subclass of Bayesian nonparametric models,
HBNP models extend the simplicity of using random
measures (see Appendix A) as priors to the following
hierarchical structure,

G0|H ∼ P (H), β|λ ∼ p(β|λ), Gj |G0 ∼ R(G0),

zji|Gj ∼ Gj , xji|zji ∼ f(xji|β, zji),
(1)

for j = 1, . . . , J, i = 1, . . . , Nj , as illustrated in Fig-
ure 1. In the top layer, G1, . . . , GJ are generated from
a random measure R with common base measure G0,
while in the bottom layer, G0 itself is a realization of
random measure P with base measure H. To ensure
exchangeability, G1, . . . , GJ are assumed to be identi-
cal and independent given G0. Each local latent vari-
able zji is sampled from Gj independently. Finally, the
global parameter β is assigned a prior p(β|λ), and the
observation xji is generated from a likelihood function

f, parameterized by both global latent variable β and
local latent variables zji.

In topic modelling, the HDP model (Teh et al., 2006)
uses a DP for both P and R in (1) as,

G0|H ∼ DP(αH), Gj |G0 ∼ DP(γG0), (2)

where α, γ are concentration parameters, and H,G0

are normalized based measures (see Appendix A). Sup-
pose a corpus has J documents, each document j has
Nj words, and each word is chosen from a vocabu-
lary with W terms. Specifically, G0 =

∑∞
k=1G0kδφk

is generated from the distribution DP(αH), and for
each document j, a topic proportion, defined as Gj =∑∞
k=1Gjkδφk

, is independently sampled from the dis-
tribution DP(γG0). For each topic k, the distribu-
tion of words over vocabulary is sampled from a W -
dimensional Dirichlet distribution parameterized by η,
βk = (βk,1, · · · , βk,W )T ∼ Dir(η). For each word i in
document j, a topic assignment zji = φk is chosen from
zji ∼ Multinomial(Gj), where φk represents topic k.
Finally, the observation xji is generated from the as-
signed topic and the corresponding within-topic word
distribution, xji|{zji = φk} ∼ Multinomial(βk).

The necessity to let G0 be atomic can be shown in
the HDP model. If G1, . . . , GJ are sampled from a
Dirichlet process with a diffuse base measure instead
of an atomic G0, G1, . . . , GJ will not share any support
almost surely, and thus none of the topics being shared
across the documents. However, for a general HBNP
model, as long as G0 is atomic, it is not necessary to
restrict the prior for G0 to be a Dirichlet process or a
probability random measure. For example, the ΓDP
model, which has the following structure,

G0|H ∼ ΓP(αH), Gj |G0 ∼ DP(G0), (3)

allows for more flexibility by removing the constraint
on the concentration parameter in the top layer. Other
choices of the prior for G0 include beta process, sta-
ble process and inverse Gaussian process (Ghosal and
Van der Vaart, 2017).

To infer the HBNP models, we set up the theoretical
foundations for nonparametric KL divergence and evi-
dence lower bound, and then propose a novel method-
ology in the following Sections 3 and 4.

3 NONPARAMETRIC EVIDENCE
LOWER BOUND

3.1 KL Divergence between Random
Measures

The object of variational inference is to minimize the
KL divergence between the variational distribution
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and the true posterior. For two infinite-dimensional
random measures, their KL divergence is well defined
even though an infinite-dimensional density function
does not exist in a conventional sense. Given two ran-
dom measures P and Q from (Θ,M) into (Ω,F), the
Radon–Nikodym derivative dQ/dP exits if Q is abso-
lutely continuous with respect to P . Their KL diver-
gence is defined as

KL(Q ‖ P ) =

∫
Θ

log(dQ/dP )dQ,

which is intractable due to the infinite-dimensional in-
tegral (Matthews et al., 2016). We have developed
a new approach to calculate it using the limit supe-
rior of the divergence between corresponding finite-
dimensional induced measures, that is,

KL(Q ‖ P ) = lim sup
Ω

KL(qΩ ‖ pΩ), (4)

where pΩ and qΩ are respectively induced measures
from P and Q on a finite partition Ω = (A1, . . . , An),
such that pΩ(Ai) = P (Ai) and qΩ(Ai) = Q(Ai) for
each Ai ∈ Ω. With an induced random variable
ZΩ : Θ → Rn, we can also denote the induced mea-
sures by p(ZΩ) and q(ZΩ). The result in (4) is justified
in Appendix C.1. We use the following two examples
to illustrate (4).

Example 1 For Poisson processes P = PP(Λ + bδφ)
and Q = PP(Λ+aδφ), where Λ is the intensity function
defined on Ω, a, b ∈ R+, and δφ is a Dirac function at
point φ ∈ Ω. Under partition Ω = (φ,Ω/φ), the limit
superior in (4) is achieved, that is,

KL(Q ‖ P ) = KL
(
Pois(a) ‖ Pois(b)

)
,

where Pois(a) is the Poisson distribution with intensity
a.

Example 2 For Dirichlet processes P = DP(αH +∑n
i=1 biδφi

) and Q = DP(αH +
∑n
i=1 aiδφi

), where H
is the base measure, α is the concentration parameter,
ai, bi ∈ R+ and φi ∈ Ω for i = 1, . . . n. Similarly, under
the partition Ω =

(
φ1, . . . , φn,Ω/{φi}ni=1

)
,

KL(Q ‖ P ) =

KL
(
Dir(α, a1, . . . , an) ‖ Dir(α, b1, . . . , bn)

)
,

where Dir(α, a1, . . . , an) is the Dirichlet distribution
with parameters α, a1, . . . , an.

With the KL divergence between random measures
represented under a finite partition, we can then de-
fine the nonparametric counterpart of evidence lower
bound below.

3.2 Nonparametric Evidence Lower Bound

The parametric variational inference algorithm uses a
finite-dimensional variational distribution to approxi-
mate the posterior by maximizing the evidence lower
bound (Blei et al., 2017). In contrast, HBNP models
uses a random measure for the variational distribu-
tion, due to the infinite dimensionality of latent vari-
ables. We propose a general inference framework for
HBNP models by maximizing the nonparametric ev-
idence lower bound (NPELBO), defined as the limit
inferior of the parametric evidence lower bound under
a finite partition, lim infΩ(ELBOΩ), that is

lim inf
Ω

{
Eq(ZΩ) log p(X,ZΩ)− Eq(ZΩ) log q(ZΩ)

}
, (5)

where p(X,ZΩ) and q(ZΩ) correspond to the induced
measures from the joint distribution and the varia-
tional distribution on Ω, and where Z and X are the
observations and latent variables, respectively. More-
over, given the KL divergence between random mea-
sures in (4), in Appendix C.2 we show that

KL
(
Q(Z) ‖ P (Z|X)

)
+ NPELBO = log p(X). (6)

This demonstrates the equivalence between maximiz-
ing the NPELBO in (5) and minimizing the KL diver-
gence between the variational distribution Q(Z) and
the true posterior P (Z|X). The task of maximizing
the NPELBO is general and can be applied broadly
within Bayesian nonparametrics. To simplify notation,
we will use p(·) and q(·) to denote the true and varia-
tional distributions, respectively, where the context is
clear. To infer HBNP models, we aim to maximize the
defined NPELBO, while truncating the dimension of
variational distribution adaptively as follows.

4 METHODOLOGY

CATVI adopts the stochastic variational inference
framework (Hoffman et al., 2013), where the compu-
tation is accelerated by selecting a small batch of data
and updating variational parameters with an unbiased
random gradient. We first build the foundation of con-
ditional variational inference as follows.

4.1 Conditional Variational Inference

Conditional setting HBNP models in (1) con-
tain global latent variable β, local latent variables z,
global prior G0, local priors G[J] and observations x,

where z = {zj}Jj=1, zj = {zji}
Nj

i=1, x = {xj}Jj=1,

xj = {xji}
Nj

i=1 and G[J] = {Gj}Jj=1. We aim to find
the variational distribution to maximize the NPELBO.
In contrast to traditional approaches under the mean-
field setting, we factorize the variational distribution
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as

q(β,z, G0,G[J]) = q(β)q(G0)

J∏
j=1

q(Gj |G0, zj)

Nj∏
i=1

q(zji),

(7)
in the sense of the probability law. Such conditional
design facilitates the recovery of the dependence struc-
ture among G0, G[J] and z.

Combing (5) and (7), we seek to maximize the follow-
ing NPELBO:

lim inf
Ω

{
Eq(β,z,GΩ

0,G
Ω

[J]
) log p(x, β, z, GΩ

0,G
Ω

[J])

−
J∑
j=1

Eq(GΩ
0)Eq(zj)Eq(GΩ

j |GΩ
0,zj) log q(GΩ

j |GΩ

0, zj)

−H
(
q(GΩ

0)
)
−H

(
q(β)

)
−

J∑
j=1

Nj∑
i=1

H
(
q(zji)

)}
,

(8)

where the entropy H
(
q(·)
)

= Eq(·) log q(·) and Ω is a
partition of the sample space Ω for G0 and G[J].

Conditional variational distribution To max-
imize the NPELBO in (8), we first compute the
optimal variational distribution of Gj given G0

and zj for each j. As p(x, β, z, GΩ

0,G
Ω

[J]) =

p(GΩ

0, z)p(x|z)
∏J
j=1 p(G

Ω

j |GΩ

0, zj), the non-constant
term in (8) with respect to q(Gj |G0, zj) is

lim inf
Ω

{ J∑
j=1

Eq(GΩ
0)Eq(zj)Eq(GΩ

j |GΩ
0,zj) log p(GΩ

j |GΩ

0, zj)

− log q(GΩ

j |GΩ

0, zj)
}
.

Note that the above expression can be viewed as
the negative of a KL divergence whose maximum is
zero. Therefore, to enable the NPELBO to reach the
maximum, the optimal conditional variational distri-
bution for Gj should be p(Gj |G0, zj). Consequently,
NPELBO in (8) does not contain any term related to
q(Gj |G0, zj). In Appendix C.3, we derive NPELBO
with respect to q(GΩ

0) as

lim inf
Ω

{ J∑
j=1

Eq(GΩ
0)Eq(zj) log Ep(GΩ

j |GΩ
0)p(zj |GΩ

j)

−KL
(
q(GΩ

0)‖p(GΩ

0)
)} (9)

up to a constant. It is important to note that
Ep(GΩ

j |GΩ
0) is with respect to the prior p(GΩ

j |GΩ

0) instead

of the variational distribution q(GΩ

j |GΩ

0), and hence
this expectation can often be calculated analytically
in HBNP models due to the conjugacy.

4.2 Empirical Distribution and Evidence
Lower Bound

Within the conditional variational freamework, for the
task of adaptive truncation, CATVI integrates Monte
Carlo sampling to variational inference by iterating the
following steps till convergence, (i) using Monte Carlo
sampling to get an empirical optimal variational dis-
tribution for local variables z and (ii) updating the
variational distributions for global variables G0 and β.

Empirical distribution From the entire data x, we
randomly sample a subset {xs : xs ∈ x}Ss=1, where
S is the batch size with S � J . Given a partition
Ω in the current training iteration, we aim to up-
date the parameters for q(GΩ

0) conditional on q(β) and
{q(zs)}Ss=1. While standard stochastic variational in-
ference updates parameters analytically, we use Monte
Carlo sampling to draw Ts samples for each zs from
q(zs), thus constructing an empirical distribution,

q̂(zs) =
1

Ts

Ts∑
t=1

δẑs,t
, ẑs,t ∼ q(zs).

Empirical evidence lower bound Using the em-
pirical distribution q̂(zs), we obtain an empirical evi-

dence lower bound with respect to q(GΩ

0), ÊLBO
Ω

, by
replacing q(zs) in (9) with q̂(zs), that is,

S∑
s=1

Ts∑
t=1

J

STs
Eq(GΩ

0) log Ep(GΩ
s|GΩ

0)p(ẑs,t|GΩ

s)

−KL
(
q(GΩ

0)‖p(GΩ

0)
) (10)

up to a constant. It is obvious that E(ÊLBO
Ω

) =
ELBOΩ, thus satisfying the key condition for stochastic
variational inference (Hoffman et al., 2013), that is, the
random gradient is unbiased. Therefore, according to
(10), we can use the random gradient generated from
ẑs = {ẑs,t}Ts

t=1 to update the parameters for q(GΩ

0).

Resampling We next present the procedure to get
the empirical distribution q̂(zs). As Gs is integrated
out, the local latent variables {zsi}Ns

i=1 can not be sam-
pled independently when we use Monte Carlo sam-
pling to draw ẑs given q(GΩ

0) and q(β). Therefore, we
propose the following Gibbs sampling approach to get
samples under optimal variational distributions. Con-
ditional on q(GΩ

0), q(β) and samples ẑs,i− = {ẑsl : l =
1, . . . , Ns, l 6= i}, it follows from (8) that the optimal
variational distribution of log q(zsi) is proportional to

Eq(GΩ
0)Ep(GΩ

j |GΩ
0)p(zsi, ẑs,i− |GΩ

s)

+Eq(β) log p(xsi|zsi, β).
(11)

Then we sample ẑsi ∼ q(zsi) for each i iteratively,
which constructs a Markov chain. Noting that q(zsi) is
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often multinomial, sampling from its logarithm is com-
monly used. After the convergence, we can resample
ẑs,1, . . . , ẑs,Ts

from the stable Markov chain to update
the parameters of q(GΩ

0) according to (10). Similarly,
we derive the empirical evidence lower bound with re-
spect to q(β) in Appendix B.1 and can update the
parameters for q(β) using ẑs,1, . . . , ẑs,Ts correspond-
ingly.

4.3 Adaptive Truncation

Finally, we seek to obtain the finite partition Ω that
could reach the limit inferior in NPELBO. Rather than
having Ω fixed on a universal truncation level, we en-
able the dimension of Ω to gradually adjust to a sta-
ble level. This partition or truncation is dependent
on data-fitting and embedded within the optimization
process, providing another key advantage of using a
Monte Carlo sampling scheme in the stochastic varia-
tional inference framework.

Partition refinement According to the structure
of HBNP models, ẑsi are sampled from the atomic
support of G0, {φk}∞k=1. Without loss of generality, we
assume that the current partition Ω consists of atomic
elements φ1, . . . , φK ∈ {φk}∞k=1 and their complement
φ0 = Ω/{φ1, . . . , φK}. Under this partition, q(zsi ∈
φ0) is positive given (11), and hence ẑsi can be sampled
within φ0, that is, ẑsi is a new sample, distinct from
φ1, . . . , φK . If this happens, we draw a new φK+1 and
refine the partition as

(
φ0, φ1, . . . , φK , φK+1

)
, where

φ0 is updated as Ω/{φ1, . . . , φK , φK+1}.

Remark: The partition refinement procedure
reaches the limit inferior of empirical evidence lower
bound as follows. Since there is no sampling within
φ0 after each update, to minimize the KL divergence,
the posterior should be proportional to the prior on
φ0, q

(
G0(φ0)

)
∝ p

(
G0(φ0)

)
. Moreover, if we further

partition φ0 into φ1
0 ∪ φ2

0, the KL divergence stays the

same. Thus, E(ÊLBO
Ω

) = ELBOΩ = NPELBO. See
Appendix C.5 for a justification.

We summarize the CATVI algorithm in Algorithm 1.

5 APPLICATIONS IN TOPIC
MODELS

5.1 CATVI for the HDP Model

We apply the proposed CATVI method to the HDP
model. Specifically, we factorize the variational dis-
tributions in the conditional setting and specify the
variational family as follows. First, the variational dis-
tribution of Gs for each s is given by q(Gs|G0, zs) =

Algorithm 1: CATVI Algorithm

Initialize the partition Ω, the parameters for
q(G0), q(β) and set up the step-size {ρτ}τ≥1.
repeat

Randomly select x1, . . . , xS from the dataset.
for s ∈ {1, . . . , S} do

repeat
for i ∈ {1, . . . , Ns} do

Sample ẑsi | q(G0), q(β), ẑs,i− .
if Sampling a new ẑsi then

Refine the partition Ω.
end if

end for
until convergence
Resample ẑs = {ẑs,t}Ts

t=1.
end for
Update parameters for q(G0) and q(β) given
samples {ẑs}Ss=1 using the step-size ρτ .

until convergence

DP
(∑∞

k=1 nskδφk
+ G0

)
, where nsk =

∑Ns

i=1 I(zsi =
φk) and I(·) is the indicator function. Second, q(βk)
for each topic k is set as a W -dimensional Dirich-
let distribution, q(βk) = Dirichlet(λk), where λk =
(λk1, . . . , λkW )T is the parameter of vocabulary dis-
tribution for topic k. The variational distribution
for topics without any observation remains the same
as the prior, hence q(β0) = Dirichlet(η). Third, we
specify the variational family for G0 using spike and
slab distributions (Andersen et al., 2017) as q(G0) =∑K
k=1mkδφk

+ m0DP(αH), such that
∑K
k=0mk =

1. Finally, following (11) we use Monte Carlo sam-
pling to obtain samples {ẑs}Ss=1, avoiding the need to
parametrize their variational distributions.

As different samples in {ẑs}Ss=1 are used to represent
different topic clusters in topic modelling, their exact
values in the sample space do not contain any sta-
tistical information. We can then simply index the
topics from 1 to K and denote the different clusters
by distinct points φ1, . . . , φK in Ω, and cluster 0 is
the topic without any observation. Given samples
{ẑs}Ss=1, we define the number of topics with obser-

vations by K =
∑∞
k=0 I(

∑S
s=1

∑Ts

t=1 n̂sk,t > 0), where

n̂sk,t =
∑Ns

i=1 I(ẑsi,t = φk). In Appendix C.4, we rely
on (10) to derive the empirical evidence lower bound
with respect to q(G0),

α logm0 −
K∑
k=0

logmk

+

S∑
s=1

K∑
k=1

Ts∑
t=1

J

STs
log

Γ(γmk + n̂sk,t)

Γ(γmk)

(12)
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up to a constant. According to Algorithm 1, we re-
peatedly select documents of a batch size S, sample
{ẑs}Ss=1, and update parameters for G0 and β iter-
atively until the empirical evidence lower bound con-
verges to its maximum. During Gibbs sampling, once a
document is sampled in cluster 0, we add a new cluster
K + 1, thus partitioning Ω to be (K + 1)-dimensional,
with K single points {φk}Kk=1 and one complement set
φ0 = Ω/{φk}Kk=1. During the training, this procedure
is repeated until Ω is optimized. See Appendix B.2 for
detailed steps on updating the variational parameters
and refining the partition.

5.2 CATVI for Generic HBNP Models

The CATVI algorithm can also be applied to a gen-
eral class of HBNP models, where the global prior G0

is generated from a completely random measure. In
these models, the concentration parameter for any Gj
is not fixed, and G0 is not restricted to be a prob-
ability measure. The corresponding inference algo-
rithm is similar to that of the HDP model, but re-
quires a new parameter µ to approximate G0(Ω). We
choose the variational family for the global prior G0

as q(G0) = µ
(∑K

k=1mkδφk
+ m0Ñ(αH)

)
, where Ñ

is the normalization of the corresponding completely
random measure and

∑K
k=0mk = 1. We provide the

corresponding empirical evidence lower bounds and al-
gorithms to infer more general HBNP models, includ-
ing ΓDP model, in Appendix B.3.

6 RELATIONSHIP TO RELATED
WORKS

In this section, we discuss several advantages of
CATVI compared with traditional methods (Hoffman
et al., 2013; Wang et al., 2011; Wang and Blei, 2012),
although these are specific to the inference for the HDP
model. First, CATVI replaces the unrealistic mean-
field assumption with the conditional setting to cap-
ture the correlation structure among latent variables.
Second, CATVI approximates the posterior group-
wisely instead of updating the stick-breaking parame-
ters sequentially, and hence avoids the gradient vanish-
ing problem. By contrast, Hoffman et al. (2013) and
Wang et al. (2011) perform inference separately over
each atomic location and weight of G0 using the stick-
breaking representation G0K = g0K

∏K−1
k=1 (1 − g0k),

where g0ks are the representation parameters. How-
ever, this may cause the gradient vanishing problem
of G0K if k is large, because

∏K−1
k=1 (1 − g0k) is close

to zero. Third, these traditional methods universally
truncate the dimension of G0 to a fixed level, contra-
dicting the motivation and advantages of using HBNP
models. Finally, CATVI is guaranteed to maximize

the NPELBO. By comparison, Wang and Blei (2012)
update parameters using the locally collapsed Gibbs
sampling, but their work leads to an approximation
that fails to maximize the ELBO, especially when the
variance of distributions is large.

From a computational perspective, CATVI inherits
the fast speed of stochastic variational inference, while
other methods that truncate the dimension in a truly
nonparametric way are very slow, such as the split-
merge variational inference (Bryant and Sudderth,
2012) and the pure Gibbs sampling (Teh et al., 2006).
To check the split-merge criterion, the split-merge vari-
ational inference requires calculating the likelihood be-
fore and after a split or merge, which is computation-
ally infeasible in practice. Moreover, the pure Gibbs
sampling is not scalable as well. As pure Gibbs sam-
pling does not have batch selection, the Markov chains
would converge very slowly when the sample size is
large. As a result, these methods cannot be used to
handle big data.

7 EXPERIMENTS

7.1 Datasets and Architectures

We apply the CATVI algorithm to three large
datasets, arXiv , NYT and Wiki , and compare the per-
formance of CATVI with the online variational infer-
ence (OVI) (Wang et al., 2011), the memorized online
variational inference (MOVI) (Hughes and Sudderth,
2013), the split-merge variational inference (SMVI)
(Bryant and Sudderth, 2012) and Gibbs sampling (GS)
(Teh et al., 2004).

arXiv The corpus contains descriptive metadata of
articles on arXiv up to September 1, 2019, resulting in
1.03M documents and 44M words from a vocabulary
of 7,500 terms.

NYT The corpus contains all articles published by
New York Times from January 1987 to June 2007
(Sandhaus, 2008), resulting in 1.56M documents and
176M words from a vocabulary of 7,600 terms.

Wiki The corpus contains entries from all English
Wikipedia websites on January 1, 2019, resulting in
4.03M documents and 423M words from a vocabulary
of 8,000 terms.

For the preprocessing, stemming and lemmatization
are used to clean the raw text, and then words with
too high or too low frequency, as well as common stop
words, are filtered out.

To evaluate the performance of CATVI, we set aside
a test set of 10,000 documents for each dataset and
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Figure 2: Left column: plots for the perplexity vs the
running time up to 5 hours, Right column: plots for
the number of topics vs the running time.

calculate the predictive perplexity as

perplexity = exp
{
−
∑
j∈Dtest

log p(xtest
j |xtrain

j ,Dtrain)∑
j∈Dtest

|xtest
j |

}
,

where Dtrain and Dtest represent the training and test
data, respectively, xtrain

j and xtest
j are the training and

test words in test document j, respectively, and |xtest
j |

is the number of words in xtest
j (Ranganath and Blei,

2018). The perplexity measures the uncertainty of fit-
ted models, where a lower perplexity will result in
a better language model with higher predictive like-
lihood. Since the perplexity can not be computed
exactly, the standard routine uses Dtrain to compute
the variational distribution for β and G0, then ob-
tains the variational distribution for Gj based on G0

and xtest
j , and then approximates the likelihood by

p(xtest
j |xtrain

j ) =
∏
w∈xtest

j

∑K
k=0Gjkβkw, where Gjk

and βkw are the variational expectations of Gjk and
βkw, respectively (Blei et al., 2003). Experiments are
run with the three datasets above using both the HDP
and ΓDP models. For the HDP model, we set the hy-
perparameters as α = γ = η = 5, where α and γ are

Table 1: A summary of predictive perplexity results.

Model Method arXiv NYT Wiki

HDP GS 3175 2635 1807
HDP MOVI 1901 2921 1876
HDP SMVI 1917 2866 1877
HDP OVI 1005 1681 1422
HDP CATVI 832 1569 1207
ΓDP CATVI 808 1536 1157

the concentration parameters for G0 and Gj respec-
tively, and η is the hyperparameter for the prior on
the distribution of words. The initial number of topics
is set to be 100. The parameters are then optimized
using stochastic gradient descent, with a batch size
of 256 and a linear decaying learning rate adopted in
Hoffman et al. (2010). For the ΓDP model, we use
the same settings but discard γ. In the experiments,
we remove clusters with fewer than 1 document during
the training.

7.2 Empirical Results

Predictive perplexity The top row of Figure 2
plots the predictive perplexity as a function of run-
ning time for the three comparison methods using the
three datasets. As MOVI, SMVI and GS provide much
higher perplexities, we do not plot their results in Fig-
ure 2. Table 1 reports numerical summaries for all
comparison methods. In particular, as GS can not
scale to large datasets, we use a subset with 500 docu-
ments to run the experiments. Several conclusions can
be drawn here. First, on all three datasets, CATVI
uniformly outperforms competing methods. The im-
provement is highly consequential, especially for arXiv
and Wiki. For NYT, there is moderate improvement,
likely due to the long length of documents in this cor-
pus. Second, for each dataset, the ΓDP model attains
a lower perplexity than the HDP model, consistent
with the fact that the ΓDP model removes a restriction
of the HDP model and hence is more flexible. Third,
CATVI is empirically shown to be computationally ef-
ficient, reaching the lowest perplexity within the same
training time. Although it involves Monte Carlo sam-
pling, the perplexity converges fast. This is because
the convergence of local Markov chains to assign words
to topics is accelerated by a clear topic-words cluster-
ing as the global variational distributions approach to
the optimal.

Number of topics The bottom row of Figure 2
plots the number of topics during the training process.
For OVI, the number of topics remains constant at the
prespecified value, while for CATVI, this value first
increases steeply and then converges to a stable level.
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For example, the number of topics in Wiki sharply
increase from 100 to around 190 for the HDP model
and around 200 for ΓDP model. The sharp increase is
driven by the data complexity, while the stable level
is achieved due to the dimension penalty effect from
the priors in HBNP models. Although the estimation
of the number of topics is not consistent, CATVI can
provide some useful information about topics in data.
For instance, the data from the arXiv corpus in these
experiments are limited to abstracts of scientific ar-
ticles, and thus it has the smallest number of topics.
By contrast, NYT is a compilation of all new articles
covering a wider range of areas, and hence consists of
more topics. Similarly, Wiki has the largest number of
topics as it contains almost every aspect of an encyclo-
pedia. It is important to note that we do not need to
set a fixed number of topics before the inference. In-
stead, CATVI starts from an initial value, for example
100 in our experiments, then automatically converges
to a stable optimal number of topics.

Topic-words clustering CATVI is shown to reveal
much better linguistic results. To compare CATVI
with OVI for the HDP model, we report the top 12
words in the top 10 topics with biggest weights for both
methods on arXiv and Wiki in Tables 2a and 2b, re-
spectively. We observe a few apparent patterns. First,
the topic-word clusters from CATVI hardly contains
replicated topics, whereas those from OVI results have
similar word components, such as those shown in blue
in columns 1-6 in the bottom part of Table 2a. An
ideal topic-word clustering should allocate these words
into just one topic. However, the prespecified num-
ber of topics is fixed at 150 in OVI, which is larger
than the ground truth, resulting in generating repli-
cated topics. By contrast, the topic-word clustering
by CATVI does not have such redundancy. It is ap-
parent that our top 10 topics are mostly distinct. Sec-
ond, CATVI leads to much clearer topic-word cluster-
ing. For both datasets, our results indicate that all of
our detected words within any column are highly rele-
vant and should intuitively be grouped into one cluster
with clear linguistic meaning. For example, column 7
of Table 2b for CATVI presents several words all re-
lated to military, but words in the same column for
OVI seem to be a mixture of several loosely connected
topics including ‘human, character, reveal, episode,
comic, voice’, ‘human, earth’ and ‘human, kill, attack,
fight, battle, doctor’. This mixture of topics makes
the topic-word clustering in this column ambiguous.
Furthermore, CATVI identifies a topic about popular
English given names in column 5 of Table 2b. Al-
though these given names are not shown in a single
document, CATVI can successfully discover that they
belong to one topic, while OVI fails. This is because

Table 2: Top 12 words in top 10 topics.

(a) arXiv

1 2 3 4 5 6 7 8 9 10

C
A

T
V

I

galaxy group network neutrino star gaug prove algorithm collision test
cluster algebra learn higg dwarf string bound optim product error
redshift construct train matter survey brane theorem converge decay samples
samples finit neural dark object symmetry finit solve hadron statist
luminos lie image decay binari dimension class linear jet uncertainties

formation categories deep standard variable couple position approximate transverse fit
survey prove dataset couple cluster action inequalities gradient gev systematic
agnes class feature mix stellar conform dimension minim lhc accuracy

lar complex task boson period construct converge matrix cross correct
star map object lepton photometr correspond continual iter section procedure

populated invariable convolut violate distanc dual regular spars quark improve
host manifold detect symmetry samples background compact constraint collid bias

O
V

I

galaxy galaxy star xray emiss galaxy higg star emiss radio
cluster redshift cluster emiss star line neutrino planet gammaray emiss
halo source abundance source region emiss decay period source galaxy
star survey galaxy accret line gas dark orbit grb source

stellar samples stellar kev gas star boson dwarf xray xray
formation cluster metal line dust redshift matter binari ray jet
velocity luminos age variable disk absorption standard detect detect line

dark agnes populated spectral molecular samples couple stellar burst region
gas xray ngc star cloud quasar gev transit flux cluster

matter radio dwarf flux detect luminos particle variable radio detect
profile star samples spectrum formation region mix light spectrum gas
disk optic giant detect galaxy detect symmetry companion jet star

(b) Wiki

1 2 3 4 5 6 7 8 9 10

C
A

T
V

I

tell increase band human james claim armies process polit album
tried effect album natur robert issue battle model parti chart
want case guitar tradition charles announce attack inform union song
friend process vocal term david critic troop effect communist track
leave measure track idea thomas controversi command problem movement video
ask caus rock view richard proposal soldier experience independence billboard
feel require drum word michael agreement military test social label

decide rate bass theorie frank polit fight example republic peak
turn example song philosophies peter allegation tanks research leader week
good reduce tour culture andrew statement brigade specific worker digitated
away possibilities studio believe brown agree german individual socialist hot

believe occur label conception henry minister capture object liberal remix

O
V

I

album episode actor album album episode character novel animal ship
band tell movi song song televis kill character episode navies
song character character band chart drama human love character class
track kill critic tour video actor earth poem voice boat
guitar friend cast love track comedies attack london movi naval
vocal leave review blue billboard actress reveal king video command
rock tried televis artist love movi episode tell air vessel
tour relationship episode rock label theatre comic fiction dvd submarine
chart need scene track version voice fight narrated televis gun
studio love theatre label week uncredit doctor friend ray fleet
bass reveal picture chart peak nominal battle mother blu sail
drum mother love singer remix cast voice critic song destroy

CATVI does not force the topics to merge together if
the prespecified number of topics is not large enough,
thus reducing the noise in the clusters.

We also perform sensitivity analysis of CATVI using
arXiv under the HDP model as an example. The left
and right panels of Figure 3 in Appendix E respectively
plot the results as the batch size varies from 128 to
1024 and the initial number of topics varies from 60 to
140. We observe that the performance is not sensitive
to the change of these hyperparameters. Moreover, the
best results are obtained for the case with a smaller
batch size and a larger initial number of topics.

8 DISCUSSION

CATVI can also be applied to other HBNP models in-
cluding, for example, hierarchical Pitman–Yor process
model (Teh and Jordan, 2010) and hierarchical beta
process model (Thibaux and Jordan, 2007). CATVI
will provide more advantages in these applications, be-
cause the hierarchical Pitman–Yor process, with heavy
tail behavior, and the hierarchical beta process, with
sparse structure, may suffer more from the universal
truncation.
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Supplementary Material:
CATVI: Conditional and Adaptively Truncated Variational
Inference for Hierarchical Bayesian Nonparametric Models

This supplementary material contains a short review of completely random measures in Appendix A, CATVI
algorithm and its applications to the HDP model and the ΓDP model in Appendix B, technical proofs and
derivations in Appendix C, computational complexity analysis and code in Appendix D and sensitivity analysis
results in Appendix E.

A A Short Review of Completely Random Measures

Suppose that (Ω,F) is a Polish sample space, Θ is the set of all bounded measures on (Ω,F) andM is a σ-algebra
on Θ. A random measure G on (Ω,F) is a transition kernel from (Θ,M) into (Ω,F) such that (i) G 7→ G(A)
is M-measurable for any A ∈ F and (ii) A 7→ G(A) is a measure for any realization of G (Ghosal and Van der
Vaart, 2017). For example, a Dirichlet process P with base measure P0 satisfies(

P (A1), . . . , P (An)
)
∼ Dirichlet

(
P0(A1), . . . , P0(An)

)
for any partition Ω = (A1, . . . , An) of Ω, that is, a finite number of measurable, nonempty and disjoint sets
such that

⋃n
i=1Ai = Ω. The Dirichlet process is denoted by P ∼ DP(P0) or P ∼ DP(αH) with concentration

parameter α = P0(Ω) and center measure H = α−1P0. Moreover, a random measure is called a completely
random measure (Kingman, 1993) if it also satisfies the condition that (iii) P (Ai) is independent of P (Aj) for
any disjoint subsets Ai and Aj in Ω. Completely random measures and their normalizations (Ghosal and Van der
Vaart, 2017), for example, the Gamma process and Dirichlet process, respectively, are commonly used as priors
for infinite-dimensional latent variables in HBNP models, because their realizations are atomic measures with
countable-dimensional supports.

A completely random measure (Kingman, 1993) is characterized by its Laplace transform,

E
[
e−tP (A)

]
= exp

{
−
∫
A

∫
(0,∞]

(1− e−tπ)vc(dx, ds)
}
,

where A is any measurable subset of Ω and vc(dx, ds) is called the Lévy measure. If vc(dx, ds) = κ(dx)v(ds),
where κ(·) and v(·) are measures on Ω and (0,∞], respectively, the completely random measure is homogeneous
(Ghosal and Van der Vaart, 2017). In such a case, we call v(·) the weight intensity measure. We can view
completely random measure as a Poisson process on the product space Ω× (0,∞] using its Lévy measure as the
mean measure.

B CATVI Algorithm

B.1 Empirical ELBO for q(β) and q(zsi)

To maximize the NPELBO, we iterate the following three steps: (i) randomly select a small batch from the entire
data, (ii) sample {ẑs}Ss=1 by Monte Carlo method, and (iii) update q(GΩ

0) and q(β) in the stochastic variational
inference framework.

In an analogy to (9), the NPELBO with respect to q(β) is

lim inf
Ω

{ J∑
j=1

Eq(β)Eq(zj)logp(xj |zj , β)−KL
(
q(β)‖p(β)

)}
, (A.1)
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and the empirical evidence lower bound with respect to q(β), ÊLBO
Ω

, is,

S∑
s=1

Ts∑
t=1

J

STs
Eq(β) log p(xs|ẑs,t, β)−KL

(
q(β)|p(β)

)
(A.2)

up to a constant and then we can update its parameter with the corresponding random gradient in a similar
way. Moreover, the NPELBO with respect to q(zsi) is

lim inf
Ω

{
Eq(GΩ

0)Eq(zj) log Ep(GΩ
j |GΩ

0)p(zj |GΩ

j) + Eq(zj)Eq(β) log p(xj |zj , β)− Eq(zj) log q(zj)
}
. (A.3)

Factorizing Eq(zj) as Eq(zji)Eq(zj,i− ) leads to (11). We summarize the details of CATVI algorithm in Algorithm 1.

B.2 CATVI for the HDP Model

We repeatedly select documents of a batch size and update parameters iteratively according to the following
three steps, until the NPELBO attains its maximum.

Inference for G0. There is no closed-form expression for the parameters {mk}Kk=0 to attain the maximum in
(12). Moreover, the standard gradient descent algorithm fails in this case, because {mk}Kk=0 may easily exceed

the simplex during the updating procedure. Instead, given the parameters {m(τ)
k }Kk=0 in the τ -th iteration, we

first define

m∗k ∝

{
JS−1γ

∑S
s=1

{
T−1
s

∑Ts

t=1 Φ(γm
(τ)
k + n̂sk,t)− Φ(γm

(τ)
k )
}
m

(τ)
k − 1 k = 1, . . . ,K,

α− 1 k = 0,
(B.1)

where Φ(·) denotes the log-gamma function, such that
∑K
k=0m

∗
k = 1, and then we update the parameters by

m(τ+1) = (1 − ρt)m(τ) + ρτm
∗
k, where ρt is the step size defined in Algorithm 1. This updating algorithm is

consistent to the gradient descent after the inverse logit transformation. See Appendix C.6 for a justification. In
the process of updating, the condition

∑K
k=0m

∗
k = 1 always holds, and hence we eliminate the risk of exceeding

the simplex.

Inference for β. By (A.2), we update the parameters for q(β) using samples {ẑs}Ss=1. We define λ∗kw for topic
k and word w as,

λ∗kw = η +

S∑
s=1

Ts∑
t=1

Ns∑
i=1

J

STS
I(ẑsi,t = φk, xsi = w), (B.2)

and update the parameter λk by λ
(τ+1)
k = (1− ρt)λ(τ)

k + ρτλ
∗
k for each k, where λ∗k = (λ∗k1, . . . , λ

∗
kW )T.

Sampling for z. According to (11) we sample ẑsi conditional on q(G0) and ẑsi− by

q(zsi = φk) ∝

{
(γmk + n̂ks,i−) exp

(
Φ(λkxsi)− Φ(

∑W
w=1 λkw)

)
k = 1, . . . ,K,

γm0 exp
(
Φ(η)− Φ(Wη)

)
k = 0,

(B.3)

to construct the Markov chain, where n̂ks,i− =
∑

1≤l≤Ns,l 6=i I(ẑsl = φk). Whenever the sampled ẑsi is in φ0,

meaning ẑsi forms a new point not belonging to {φ1, . . . , φK}, we need to update the partition and add a new
topic indicated by φK+1. Otherwise the partition dimension remains the same. Iterating the sampling scheme
till convergence, we obtain the samples {ẑsi,t}1≤s≤S,1≤i≤Ns,1≤t≤Ts

and corresponding {n̂sk,t}1≤s≤S,1≤k≤K,1≤t≤Ts

for the selected chunk.

B.3 CATVI for the ΓDP Model

ΓDP releases the constraint of fixed concentration parameter γ in HDP. Therefore, the CATVI algorithm for
ΓDP inherits the steps in (B.1) and (B.3), except that a parameter µ replaces the concentration parameter γ in
both formulas.
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We derive the empirical evidence lower bound in Appendix C.7 with respect to q(G0) as,

K∑
k=1

log v(µmk) + log u(µm0) +

S∑
s=1

J

S
log

Γ(µ)

Γ(µ+Ns)
+

S∑
s=1

K∑
k=1

Ts∑
t=1

J

STs
log

Γ(µmk + n̂sk,t)

Γ(µmk)
+K logµ (B.4)

up to a constant, where v(·) is the weight intensity measure (see Appendix A) for the completely random measure,
and u(·) is the density function for G0(Ω) that can be derived using its Laplace transform. Therefore, we can
update {mk}Kk=0 in the same way as the HDP model.

Similar to (B.1), we update {mk}Kk=0 according to

m∗k ∝

{
JS−1µ

∑S
s=1

{
T−1
s

∑Ts

t=1 Φ(µm
(τ)
k + n̂sk,t)− Φ(µm

(τ)
k )
}
m

(τ)
k − 1 k = 1, . . . ,K,

α− 1 k = 0,
(B.5)

and m(τ+1) = (1− ρt)m(τ) + ρτm
∗
k. Moreover, in an analogy to (B.3), the probability to sample ẑsi is defined as

q(zsi = φk) ∝

{
(µmk + n̂ks,i−) exp

(
Φ(λkxsi

)− Φ(
∑W
w=1 λkw)

)
k = 1, . . . ,K,

µm0 exp
(
Φ(η)− Φ(Wη)

)
k = 0.

(B.6)

Finally, we apply the gradient ascent to update µ. In Appendix C.7, we derive the gradient of empirical evidence
lower bound with respect to µ as

g′(µ) =
α− 1

µ
− 1 +

J

S

S∑
s=1

{
Φ(µ)− Φ(µ+Ns) +

K∑
k=1

1

Ts

Ts∑
t=1

mk

(
Φ(µmk + n̂sk,t)− Φ(µmk)

)}
, (B.7)

and then update µ by µ(τ+1) = µ(τ) + ρτg
′(µ(τ)).

C Technical Proofs and Derivations

C.1 Proof for (4)

By definition of induced measure, qΩ(dΘ) = Q(dΘ) for any M-measurable dΘ , we have∫
Θ

log
dqΩ

dpΩ
dqΩ =

∫
Θ

log
dqΩ

dpΩ
dQ.

It follows from lim sup
Ω
dqΩ/dpΩ = dQ/dP and the monotone convergence theorem that

lim sup
Ω

∫
Θ

log
dqΩ

dpΩ
dQ =

∫
Θ

log
dQ

dP
dQ.

Combining the above equations yields (4). Furthermore, suppose there exists a sequence of partition {Ωi}i≥1

such that lim supΩi = Ω, we have

lim sup
Ωi

∫
Θ

log
dqΩi

dpΩi
dqΩi = lim sup

Ωi

∫
Θ

log
dqΩi

dpΩi
dQ =

∫
Θ

log
dqΩ

dpΩ
dQ =

∫
Θ

log
dqΩ

dpΩ
dqΩ.

Hence lim sup
Ωi

KL(qΩi‖pΩi) = KL(qΩ ‖ pΩ), which will be used in Appendix C.4.

C.2 Proof for (6)

By p(X,Z) = p(Z|X)p(X), we have∫
log

p(X,ZΩ)

q(ZΩ)
q(dZΩ) = log p(X) +

∫
log

p(ZΩ|X)

q(ZΩ)
q(dZΩ).

Taking the limit inferior on both sides, we have

lim inf
Ω

∫
log

p(X,ZΩ)

q(ZΩ)
q(dZΩ) = log p(X)− lim sup

Ω

{
−
∫

log
p(ZΩ|X)

q(ZΩ)
q(dZΩ)

}
.

Combing the above equation with the definition of NPELBO in (5) and the KL divergence in (4) yields (6).
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C.3 Derivation for (9)

By p(GΩ

0, {zj}Jj=1) =
∫
· · ·
∫
p
(
GΩ

0, {Gj}Jj=1, {zj}Jj=1

)
dG1dG2 · · · dGJ and the hierarchical generative structure,

the evidence lower bound under partition Ω with respect to q(GΩ

0) equals,

ELBOΩ

= Eq(GΩ
0)Eq({zj}Jj=1) log p(GΩ

0, {zj}Jj=1)− Eq(GΩ
0) log q(GΩ

0) + constant

= Eq(GΩ
0)Eq({zj}Jj=1) log q(GΩ

0)

J∏
j=1

∫
p(GΩ

j |GΩ

0)p(zj |GΩ

j)dGj − Eq(GΩ
0) log q(GΩ

0) + constant

=

J∑
j=1

Eq(GΩ
0)Eq(zj) log Ep(GΩ

j |GΩ
0)p(zj |GΩ

j) + Eq(GΩ
0) log p(GΩ

0)− Eq(GΩ
0) log q(GΩ

0) + constant.

Furthermore, based on the equation above, (8) can be expressed as NPELBO = lim infΩ ELBOΩ.

C.4 Derivation for (12)

By the formula of moments for Dirichlet-distributed random variables, we obtain

Ep(GΩ
s|GΩ

0)p(ẑs,t|GΩ

s) =
Γ(γ)

Γ(γ +Ns)

K∏
k=1

Γ(γG0k + n̂sk,t)

Γ(γG0k)
.

Based on the points {φk}Kk=1 defined in Section 5.1, we propose a sequence of partition {Ωc : Ωc =
⋃K
k=0Ωck}c≥1

to approach Ω, where Ωck = (φk − c−1, φk + c−1] for k = 1, . . . ,K and Ωc0 is the corresponding complement.
Under Ωc, q(G

Ωc
0 ) = dK+1

(
m−1

0 (GΩc
0 − MΩc)

)
and p(GΩc

0 ) = dK+1(GΩc
0 ), where dK+1(·) denotes the density

function for (K+1)-dimensional Dirichlet distribution, M =
∑K
k=1mkδφk

and MΩc is the corresponding induced
random variable. By (10), the empirical evidence lower bound under Ωc is

Eq(GΩc
0 )

{ K∑
k=1

(αHΩc

k − 1) log
m0G0k

(G0k −mk)
+ (αHΩc

0 − 1) logm0

+

S∑
s=1

K∑
k=1

Ts∑
t=1

J

STs
log

Γ(γG0k + n̂sk,t)

Γ(γG0k)

}
+ constant,

where HΩc

k = H(Ωck). Since (G0k−mk)/m0 ∼ Beta(HΩc

k ) under q(GΩc
0 ), the term Eq(GΩc

0 )(αH
Ωc

k −1) logm0(G0k−
mk)−1 is constant with respect to parameters {mk}Kk=0. Taking lim sup on both sides of the above equation with
lim sup

Ωc
Eq(GΩc

0 )(logG0k) = logmk, lim sup
Ωc
HΩc

k = 0 for k > 0 and lim sup
Ωc
HΩc

0 = 1, we obtain equation (12).

C.5 Justification for Section 4.3

In this section, we show that the empirical evidence lower bound achieves the limit inferior in NPELBO. With
the partition Ω = (φ0, φ1, . . . , φK) defined in Section 4.3, there is no sampling within φ0, and hence we have

q
(
G0(φ0), G0(φ1), · · · , G0(φK)

)
∝ p
(
G0(φ0), G0(φ1), · · · , G0(φK)

)
p
(
x | G0(φ1), · · · , G0(φK)

)
.

As the likelihood part p
(
x|G0(φ1), · · · , G0(φK)

)
does not contain G(φ0), by integrating both sides with respect

to G0(φ1), · · · , G0(φK), we can get q
(
G0(φ0)

)
∝ p
(
G0(φ0)

)
. Moreover, the KL divergence between the variational

distribution and true posterior is

KL
(
q(GΩ

0) ‖ p(GΩ

0 | x)
)

=

∫
log

q
(
G0(φ0), G0(φ1), · · · , G0(φK)

)
p
(
G0(φ0), G0(φ1), · · · , G0(φK)

)
p
(
x | G0(φ1), · · · , G0(φK)

)dq(G0(φ0), G0(φ1), · · · , G0(φK)
)

= − logN ,
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because

q
(
G0(φ0), G0(φ1), · · · , G0(φK)

)
= p
(
G0(φ0), G0(φ1), · · · , G0(φK)

)
p
(
x | G0(φ1), · · · , G0(φK)

)
/N,

where N is the normalization constant,

N =

∫
· · ·
∫
p
(
G0(φ0), G0(φ1), · · · , G0(φK)

)
p
(
x | G0(φ1), · · · , G0(φK)

)
dG0(φ1)dG0(φ1) · · · dG0(φK)

=

∫
p
(
x | G0(φ1), · · · , G0(φK)

)
dp
(
G0(φ0), G0(φ1), · · · , G0(φK)

)
=

∫
p
(
x | G0(φ1), · · · , G0(φK)

)
dp
(
G0(φ1), · · · , G0(φK)

)
.

It is obvious that N is independent of p
(
G0(φ0)

)
. Therefore, if we partition φ0 into φ1

0 ∪ φ2
0, the normalization

constant N will not change, that is, the KL divergence under Ω and Ω′ = (φ1
0, φ

2
0, φ1, . . . , φK) are the same.

Consequently, the partition Ω enables the limit superior of KL divergence to be reached. By (6), the limit inferior
of NPELBO is also attained.

C.6 Derivation for (B.1)

Consider the Lagrange multiplier of constrained optimization,

L′ = −
K∑
k=1

logmk + (α− 1) logm0 +

S∑
s=1

K∑
k=1

J

STs

Ts∑
t=1

log
Γ(γmk + n̂sk,t)

Γ(γmk)
− λ(

K∑
k=0

mk − 1),

its first order conditions satisfy,{
JS−1γ

∑S
s=1

{
T−1
s

∑Ts

t=1 Φ(γmk + n̂sk,t)− Φ(γmk)
}
mk − 1 = mkλ, k = 1, . . . ,K,

α− 1 = m0λ, k = 0.

Dividing λ on both sides of the above equations, the definition of {m∗k}Kk=0 in (B.1) follows.

We next show that this updating is consistent with the gradient descent after the inverse logit transformation,
that is, transforming {mk}Kk=0 by mk = eθk/

∑K
l=0 e

θl to remove the constraint of
∑K
k=0mk = 1. By ∂mk/∂θk =

mk −m2
k, ∂ml/∂θk = −mkml for l 6= k, and the chain rule, we have

∂L

∂θk
=

{
JS−1γ

∑S
s=1

{
T−1
s

∑Ts

t=1 Φ(γmk + n̂sk,t)− Φ(γmk)
}
mk − 1− Λmk k = 1, . . . ,K,

α− 1− Λmk k = 0,

where L denotes ÊLBO
Ω

in (12) and

Λ = α− 1 +

K∑
k=1

[
JS−1γ

S∑
s=1

{
T−1
s

Ts∑
t=1

Φ(γmk + n̂sk,t)− Φ(γmk)
}
mk − 1

]
.

As ∂L/∂θk = Λ(m∗k −mk), (m∗k −mk) represents the gradient with respect to θk after the inverse logit transfor-
mation.

C.7 Derivation for (B.4)

For the HBNP model, we use an unnormalized random measure as the prior of G0. Given moments for Dirichlet-
distributed random variables, we obtain

log Ep(GΩ
s|GΩ

0)p(ẑs,t|GΩ

s) = log
Γ(
∑K
k=0G0k)

Γ(
∑K
k=0G0k +Ns)

K∏
k=1

Γ(G0k + n̂sk,t)

Γ(G0k)
,
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(a) batch size
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(b) initial number of topics
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Figure 3: Plots for the perplexity vs running time for different batch sizes and initial numbers of topics.

In analogy to Appendix C.4, the empirical evidence lower bound under Ωc is

K logµ+ Eq(GΩc
0 )

{ K∑
k=1

log p(GΩc

0k) + log p(GΩc
00) +

J

S

S∑
s=1

K∑
k=1

T−1
s

Ts∑
t=1

log
Γ(γGΩc

0k + n̂sk,t)

Γ(γGΩc

0k)

}
,

up to a constant, where K logµ comes from the Jacob matrix from G0, G1, . . . , GK to µ,m1, . . . ,mK . As
the partition converges to single points and the corresponding complement, lim sup

Ωc
p(GΩc

0k) = v(GΩc

0k) and
lim sup

Ωc
p(GΩc

00) = u(GΩc
00). Therefore, we can obtain (B.4) by lim sup

Ωc
G0k = µmk for k 6= 0 and lim sup

Ωc
G00 =

µm0. Specially, for the ΓDP model, ÊLBO
Ω

takes the form of

µ−
K∑
k=1

logmk + (α− 1) logµm0 +
J

S

S∑
s=1

{
log

Γ(µ)

Γ(µ+Ns)
+

K∑
k=1

1

Ts

Ts∑
t=1

log
Γ(µmk + n̂sk,t)

Γ(µmk)

}
,

up to a constant and (B.7) is also attained.

D Computational Complexity Analysis, Data and Code

For CATVI, updating the global variables takes linear time, and the Monte Carlo step iteratively samples each zji
from K possible topics. Therefore, the computational complexity of Algorithm 1 is dominated by O(K+TsKNS),
where NS is the average number of words in a document, and Ts is the average of Ts defined in Algorithm 1.
To implement this algorithm, we conduct our experiments on a c5d.4xlarge instance on the AWS EC2 platform,
with 16 vCPUs and 32 GB RAM. It takes at most 5 hours to run all numerical experiments.

Python code for CATVI is available at https://github.com/yiruiliu110/ConditionalVI.We obtain the
arXiv and Wiki data from public open resources https://arxiv.org/help/bulk_data and https://dumps.

wikimedia.org, respectively. The NYT data are from Sandhaus (2008). For the comparison methods, we
implement OVI using the Python package ‘gensim.models.hdpmodel’ under GNU Lesser general public license
v2.1. Moreover, we implement MOVI and SMVI using the Python package ‘bnpy’ under 3-clause BSD li-
cense, which is available at https://github.com/bnpy/bnpy. Finally, the codes to run GS are available at
https://github.com/linkstrife/HDP.

E Sensitivity Analysis Results of CATVI

Figure 3a plots the sensitivity analysis with respect to the batch size varying from 128 to 1024. Figure 3b plots
the sensitivity analysis with respect to the initial number of topics varying from 60 to 140. We observe that the
performance is not sensitive to the change of these hyperparameters.

https://github.com/yiruiliu110/ConditionalVI
https://arxiv.org/help/bulk_data
https://dumps.wikimedia.org
https://dumps.wikimedia.org
https://github.com/bnpy/bnpy
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