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This supplementary material contains the discussion of several potential extensions in
Section A, examples for infinite-dimensional functional data satisfying Condition 2 in
Section B, proofs of main theorems in Section C, additional technical proofs in Sec-
tion D, derivations of functional stability measure for the illustrative VFAR(1) example
in Section E, some derivations for VFAR models in Section F, details of the algorithms
to fit sparse VFAR models in Section G and additional empirical results in Section H.

A. Discussion of potential extensions

We identify several important directions for future research. The first topic considers the
functional extension of high-dimensional factor models (Bai and Ng, 2002; Lam and Yao,
2012), where the observations, X;(-)’s, can be decomposed as the sum of two unobservable
and mutually orthogonal components

Xi(u) = We(u) + €(u), t=1,...,n, uel. (A1)

Here Wy(-) = Bf;(:) are the common components driven by r (much smaller than p)

functional factors £;(-) = (fu(-),- .., fir(-)) ", B € RP*" is the factor loading matrix and

e() = (en("),-.., etp(-))T are idiosyncratic components. For each h € Z and {X;(-)}}4,
~X

denote 7 (u,v) = Cov{X,(u), X411 (v)} and its sample estimator by 3, (u,v). To es-

timate such functional factor model (A.1), we discuss two different approaches. (i) The
first one is based on the following integrated covariance decomposition,

fng((u,v)dudv - B{ JJE{;(u,v)dudv}BT + ffzg(u, v)dudo. (A.2)

Intuitively, by imposing some eigenvalue conditions on two terms on the right-hand side
of (A.2) similar to those in Fan, Liao and Mincheva (2013), the above decomposition
1
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2 S. Guo and X. Qiao

is asymptotically identified as p — oo and hence B can be recovered by performing
~X

an eigenanalysis of § {3, (u,v)dudv. (ii) If {€:(-)} follows a white noise process, then,

inspired from Lam and Yao (2012) and the fact that 3 (u,v) = BE{L(U,’U)BT for h >

1, an autocovariance-based procedure can be developed to estimate model (A.1). To

theoretically support both estimation procedures under high-dimensional settings, the

main challenge is to investigate convergence properties of f]hX — EhX for h=0,1,..., and
hence our concentration results in Theorem 1 and Proposition 1 can be applied.

Second, in the dimension reduction step of the three-step procedure, one can also
perform dynamic FPCA (Hormann, Kidziniski and Hallin, 2015) based on {X;(-)}7;
for each j. Such dimension reduction technique provides an optimal truncated approx-
imation for functional time series, but is computationally intensive as it relies on the
eigenanalysis of spectral density functions fx ¢ with sample estimators given by fx ¢ =
2m) Y, wh (h)S), exp(—ihf), where wg () = w(-/H) is some appropriate weight func-
tion with H (the lag window size). To provide theoretical guarantees for relevant esti-
mated terms under a dynamic FPCA framework similar to those in Theorems 3 and 4,
our established non-asymptotic error bounds on 3, for h € Z become applicable.

Third, within the proposed functional stability measure framework, we believe our
established concentration results can be extended beyond Gaussian functional time series
to accommodate linear processes with functional sub-Gaussian errors. It is also interesting
to develop suitable concentration results for heavy-tailed non-Gaussian functional time
series under the functional generalization of the [-mixing condition in Wong, Li and
Tewari (2020).

Fourth, it is of great interest to develop new inference tools for high-dimensional func-
tional time series and to apply these techniques to quantify deviations of autocoefficient
functions in sparse VFAR models. Fifth, our analysis is based on the estimation where
smoothness parameters are assumed to be known. It is interesting to develop adaptive
estimation procedures that do not require the knowledge of the parameter space and au-
tomatically adjust to the smoothness properties. However, this would pose complicated
challenges under the high-dimensional, functional and dependent setting we consider.

These topics are beyond the scope of the current paper and will be pursued elsewhere.

B. Examples satisfying Condition 2

It is clear that Condition 2 holds for finite-dimensional functional data. In this section, we
give some illustrative examples for infinite-dimensional functional data, where the upper
bounds of their functional stability measures can be easily controlled. As long as the
denominator of M( fx) is arbitrarily small, the numerator can also be arbitrarily small,
Condition 2 in this sense still holds for a large class of infinite-dimensional functional
data including, but not limited to the examples below.

Consider the functional linear process X;(-) = >;° A;(e;—)(+) (Fang, Guo and Qiao,
2021). Denote the polynomial B(z)(u,v) = >/2, Ai(u,v)z! for u,v € U. We can derive
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the spectral density matrix function as
fx o(u,v) JJ e (u,u)B§ (', v")B (e_w)* (v,v")du'dv’ (B.3)

and the covariance matrix function as
o0
3o (u,v) = Z JJAl(u, )5 (u, v ) A (v, v")du dv’ (B.4)
1=0

where 3§ (u, v) = Cov(e(u),et(v)) and = denotes the conjugate. Note that the functional
stability measure M (fx) is defined in (3) based on the functional Rayleigh quotients
of fx ¢ in (B.3) relative to Xy in (B.4). We can express M(fx) based on (B.3) and
(B.4). However, unlike VAR or vector moving average (VMA) model, it seems difficult
to give explicit expressions of M(fx) for functional versions of VAR or VMA model to
accommodate multivariate functional time series, since one need to derive expressions
in terms of abstract functional analysis language in the direct sum of multiple Hilbert
spaces rather than the compact matrix forms for multivariate scalar time series, e.g. Basu
and Michailidis (2015). We first give two specific examples of one-dimensional case and
derive the upper bounds on the functional stability measure, which help us to understand
the usefulness of our framework.

Ezample 1: Consider the functional moving average model X;(-) = Z?io A1 (4),
where A; € R and {e;(-)} follows a white noise process. Denote X§(u, v) = Cov(et(u), e (v)),
then we can obtain that

fxo(u,v) = 5 EE (u,v ‘zAle‘m
=0

and
Yo(u,v) = (Z A?)Eg(u,v).
1=0
By (3),
’ 1 Zlooo |Al|
(fX) 2 Zl 0A2 .

Note 33,° | Ai| < o0 is a sufficient condition to guarantee the stationarity of {X¢(-)}.
Ezample 2: Consider the functional linear process X;(u) = >, Ai(u,v)e;(v)do,
where {¢;()} is a white noise process. Write X§(u,v) = ;7| witr(u)hx(v), then

Ix,0(u,v) QL i {iam ﬂel}{ialk(v)em}
k=1 =0

and

O(Uav)=iwk{2alk w)a (v }

k=1 =0
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4 S. Guo and X. Qiao

where ay,(u) = §, Ai(u,v)r(v)dv. Suppose that A;(u,v) for each [ is symmetric with
respect to u,v and can be decomposed as A;(u,v) = 37, Bibr(u)x(v) leading to
ai;(u) = Bithik(u). By the fact that (a + b)/(c + d) < max{a/c,b/d} for a,b,c,d > 0, we
can obtain that

(S xol®)
M(fx) < s¢0 o200

1w [0 B, trye i

< —sup 5
2m ¢,0 Zk 1 Wk Zl 051k<¢> i)
— 2
< sup |Zz 0 Bike 1gl| sup (21=0 |/8lk|)
2 0.k Yo B 277 D Viy: !

where 3,7 |8 < o0 can be satisfied by a wide family of parameters.

Ezample 3: When X; and X, are independent for any ¢ # s and each X;(-) is infinite
dimensional for j = 1,...,p, then M(fx) =1 < o0.

Ezample 4: It can be shown that for any p > 1, if {X41,t € Z},..., {Xy,t € Z}
are independent and suplgjgp./\/l( fx;) < o, then the functional stability measure of
Xt = (th, ey ti)T is

M(fx) < sup M(Fx,) <©
1<j<p

Ezample 5: Consider a general case Yi(u) = AX;(u) with A € RP*P and M(fx) < o©
We can easily obtain that

M(fy) < M(fx) <o,
which implies that linear transformation of X; does not increase the functional stability
measure. It is also worth noting that components of Y, can be dependent in this example.

Ezample 6: Consider a more general scenario, Y¢(u) = AX¢(u) + &, (u), where A €
RP*" X,(u) is a r-dimensional vector of Gaussian processes and X;(u), &,(u) are inde-
pendent for all ¢ and s. When r is fixed, it implies that Y(u) can be expressed under
a factor model structure. Note that (a + b)/(c + d) < max(a/c,b/d) for all positive real
numbers a, b, ¢ and d. Hence if max{M(fx), M(fe)} < oo, then

M(fy) < max{M(fx), M(fe)} < 0.

C. Proofs of main theorems

C.1. Proof of Theorem 1

(i) Define Y = (<‘~‘I>17 Xm, -, { Py, Xn>H)T, then Y ~ N(0,Q), where Q,.s = <tI>1, ET_S(@1)>H
forr,s =1,...,n. Note (@1, 20(¢1)>H =n"'ZTQZ withZ ~ N(0,1,) and (&, EO(<I>1)>H =
E(n~'Z"QZ). By the Hanson-Wright inequality in Rudelson and Vershynin (2013),

P {1 (B0~ 2 @0),] > € <205 { -cmin <|Q||Q|>}
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for some constant ¢ > 0. By |Q[%/n < |Q]? and letting € = 7||Q|, we obtain that

P{’<‘I>1, (f)o - 20)(<I>1)>H’ > nHQH} < 2exp {—cnmin (n*,n)} (C.5)

for some universal constant ¢ > 0.

Next we derive an upper bound on the operator norm |Q|. Specifically, for any w =
(wi,...,w,)" € R™ with ||w]|| = 1, define Gw(6) = >)"_, w, exp(—irf) and its conjugate
by G% (). Then we obtain that

WTQW = Z Z w7'ws<¢.1a ET'—S(@1)>H
r=1s=1
= DY wawg | (B, fx0(®1))y expli(r — s)0}do
r=1s=1 -n

(@1, fx.,0(P1) )y Gw(0)G (0)d6,

where the second line follows from the inversion formula (2). For a fixed ® € H, denote
M(fx,®) = 27 -ess supge[fﬂﬂr]KtI)7 fx.,6(®))m|. Since (@1, fx 6(®1)),, is Hermitian and
§" Gw(0)G% (0)d6 = 27, we have |Q| < M(fx, ®1). Then it follows from (6) that

Q] < M(fx,®1) < Mi(fx){(®1,Z0(P1))y-

This result, together with (C.5) implies (8).
(ii) Note that

WPy, (B0 — ) (P2))y < (1, (B0 — Z0)($1))yy — (B2, (Z0 — T0)(2) )y

where &’1 = d + Py, (’iQ =®; — P, and M(fx,&’,) < 2{M(fx,¢’1) +M(fx7‘1)2)} for
i = 1,2. Combing these with results in (i) leads to

PH<‘I>17 (flo - Eo)(@2)>H’ > {M(fx, ®1) +M(fx,‘1’2)}77]
< 22: P['<‘i>i7 (20 - 20)(‘ii)>H‘ > M(fx, &%)n] < 4exp{ — enmin (n%, ) }

for some universal constant ¢ > 0. This, together with, M(fx, ®;) < M;c(fx)<‘I>Z-, Eo(‘I’i)>H
for ¢ = 1,2, implies (9), which completes the proof. o

C.2. Proof of Theorem 2

First, we derive the concentration bound on Hflg%) - Eﬁ) |s for each j and k. Let Ajgin, =
Ajtdem) ™21, (BY) — D) (brm)) for k= 1,...,p, and l,m = 1,..., 0. Then we
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6 S. Guo and X. Qiao

have that Hf]; E(O) HS Z?Om:1 )‘lekmA?klm' By Jensen’s inequality, we have that

~ -1 &
E{HZ;? 0) } ( Z /\]l)\k:m) Z )\jl)\kmE}Aj}glqu</\gqsllirIl)E|Ajklm|2q

I,m=1 I,m=1
(C.6)
For any given (j,k,1,m), let
@1 =(0,...,0,1,"¢;,0,...,0)" and @5 = (0,...,0, X > P, 0, ..., 0)".

By the definition of Ajg,, and orthonormality of {¢,;(-)} and {¢gm ()} for each j,k =
1, .oy P, WE have Ajklm = <(I)1’ (20 — 20)(<I)2)>H’ <‘D1, 20((1)1)>H = <(I)2, EO(¢2)>H =1.
Applying (9) in Theorem 1, we can obtain that

P{|Ajklm| > 2M1(fx)n} < 4exp{ — cnmin(n27n)}, (C.7)

for jk =1,...,p, 1 =1,...,dj and m = 1,...,d;. It then follows from Lemma 6 in
Section D of the Supplementary Material that for each integer g > 1,

(2M1 (fx)} 2T E[Ajpm [T < gl4(4e ) 4 4(29)! (4 )2,
This together with (C.6) implies that
(M1 (f0)00) T B{ SR - SV E < gi(de ) + (2044 T (C8)

Finally, it follows from Lemma 6 that there exists some universal constant ¢ > 0 such
that

P{IES = Qs = 2Mi(x)honf < dexp { — enmin(n?, )}

Using the definition of Hf]o — ¥0|lmax = maX1sj7kspHi§(’)c) — Zﬁ) |s and applying the
union bound of probability, we obtain that

P{Hio = 20| max = 2M1(fx))\0n} < 4p? -exp{ — Enmin(nQ,n)}.

Let n = py/logp/n < 1 and p?¢ > 2, which can be achieved for sufficiently large n.
We obtain that

~ 1o —ap2
P {”20 - EOHmax = QMI(fX)/\OP gp} < 4p2 .

The proof is complete. o
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C.3. Proof of Theorem 3

To simplify our notation, for each j,k = 1,...,p, we will denote E;%) and f]ﬁ) by ¥,k
and fljk, respectively, in our subsequent proofs. Let §;; = minj<x<i{Ajr — Ajrs1)} and
Ajk = f]jk — Y forj,k=1,...,pand ! =1,2.... It follows from (4.43) and Lemma 4.3
of Bosq (2000) that

sup [\ = il < |Aj;]ls and sup dj1¢; — ¢l < 2V2|Aj s (C.9)
= >

Moreover, we can express le — A and $jl —¢;i1, as stated in Lemma 7 in Section D of the
Supplementary Material. The proof of Theorem 3 relies on the concentration inequalities
for eigenvalues and eigenvectors as stated in the following Lemmas 1 and 2, whose proofs
are provided in Section D.

Lemma 1. Suppose that Conditions 1-3 hold. Then there exists some universal con-
stant ¢1 > 0 such that for each j =1,...,p,l=1,...,00, and any n > 0,

|

where p; = 16\@052(1)\3.

it — Ajt

gl

> M (fx)n+ pllh“/\/l?(fx)nQ} < 4exp{ —ém min(n2,n)}, (C.10)

Lemma 2. Suppose that Conditions 1-8 hold. Then there exists some universal con-
stant ¢ > 0 such that for each j =1,...,p,l=1,...,00, and any n > 0,

j2 {H@l _ ¢le = 4\/§M1(fx))\ocgll“+1n} < 4exp{ _én min(nz,n)}. (C.11)

Proof of Theorem 3. Applying the union bound of probability in (C.10), we obtain
that

it — Ajt
A1

2041 p 42 2 ( {_~ o2 }
P{lsjéﬁ?éw > Ma(fx)n + pl= T MI(fx)n } < 4pM exp { —¢nmin(n°,n) ;.

Let n = p2r/log(pM)/n < 1 and 1+ py M2*T My (fx)n < p1, which can be achieved for
sufficiently large n = M4 2 M3 (fx)log(pM). We obtain that

Aji

I log(pM) &2
P {1<j<III)1,E%)<(l<M > p1p2M1(fx) — < 4(pM) 2, (C.12)

Finally, letting n = ﬁg\/% < 1 and following the same developments, we obtain
that

P{ nax (W) > 4v2X0c) " Ps M1 (fx) k)g(sM)} < A(pM)1=4%5,

1<j<p.1<ISM

(C.13)

imsart-bj ver. 2014/10/16 file: output.tex



8 S. Guo and X. Qiao

It follows from (C.12) and (C.13) that, for sufficiently large n = M2 M?( fx) log(pM)
and suitable choices of constants ¢, co > 0, (17) holds. o

C.4. Proof of Theorem 4
The proof of Theorem 4 is based on the following Lemma 3.

Lemma 3. Suppose that Conditions 1-3 hold. Then there exist some positive constants
P4, P5, C3 and ¢4 such that
(i) for each j =1,...,p,1l=1,... 0, and any n > 0,
50 _ 0
P{ Tl Z 23 o s (fx)m + pr ME(f)I2* 2} < 4eXp{ — &3nmin(n?, 77)}
(C.14)
(i) for each j,k =1,....,p, Im =1,...,00, but j # k orl # m, a fized h and any
n>0,

|

< éexp{ —énmin(n?,n)} + éexp { — M (fx)n(l v m)

gl

~(h h
Uj(k:;m - Uj(kl)m
)\1/2)\1/2

km

> paMa(fx) (v m)* iy + ps M (fx)( v m)3“+2n2} (C.15)

—2(a+1) }

~(0)

jjlm

Proof of Lemma 3 For the special case of (4, k, 1, m) with j = k, provided that &
/\JZI(Z =m) and o = AjiI(l =m), (C.14) follows directly from Lemma 1.

]Jlm
For general cases of (j,k,I,m) with j # k, & (h) (n—h)~! Z;:lh E4t€(t4-nykm and

jkim
h
O'J(’kgm = E(gtjkg(tJrh)lm)- Let 7. T = ¢jl — ¢jla then & Oh,jklm — Oh, jklm Cal be decomposed
as
Uj(k?m - U§]€2m = <lea E Tk'rn > + (<’I"]l, ¢km > + <¢]l7 Tk:m)>)

(<le7 jk (bkm >+ <¢jlﬂ Tkm >> + <¢jlﬂ ¢km)>
L+ I+ I3+ 1y

For a fixed h > 0, let Q) = {\\N s < Ao} and ) = {HA Is < 4M1(fx)/\077}

It follows from the same developments as in the proof of (10) in Theorem 2 and Propo-
sition 1 that there exists some universal constant ¢ > 0 such that for any n > 0, a fixed
h # 0 and each j,k=1,...,p,

P {||§AI§ Z(h) ”S > 4M1(fx))\077} < 8exp{ — énmin(nQ,n)}. (C.16)
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On the event ng) mﬁég) mfl,(;;g N 52;2), it follows from Condition 3 with Aj; = coa™ 1™,
(C.9), Lemma 8 in Section D that

Il o A~ XN (h h N
27| S IR 1A+ 125 ) P e
gl km .
< M2(fx)(I v m)Pe+2p?,
I ~(h ~ -
2 |< a/2) A ) a+1 A (0) a+1) A (0)
P S () 2| A s (12 A s + m AR s ) s

< Mi(fx)(L v m)? .

For the term Iy, it follows from (16) in Proposition 1 and the fact Aj; + Ajp, > 2)\;{2)\;{3

that
P {

Finally, we consider the term [3. By Lemma 8, we have that HES.Z)(gﬁkm)H < /\,1473)\(1)/2 and

||E;Z)(¢jl)|\ < )\;{2/\(1)/2' These results together with (C.39) in Lemma 4 in Section D and
Condition 3 with A;; > coa” ™% imply that

I

1/2,1/2
i M

> 4M1(fx)/\or]} < SQXP{ — cnmin(nQ,n)}. (C.19)

I3

NDYE < My (fx) (v m)* iy + M3(fx) (1 v m)Batd/2y)?2 (C.20)
il Nkem

holds with probability greater than 1—16 exp { —é;n min(n?,7) } -8 exp {—EQMIQ(fX)n(l\/
—2(e+D} with some positive constant .

Combining (C.16)—(C.20) and by Theorem 2, we obtain that there exist four positive
constants p4, ps, €3, ¢4 such that (C.15) in Lemma 3 holds. For the case of h = 0, we
follow the same developments as above by applying Theorems 1-2 and hence (C.15)
follows with the different choice of relevant positive constants. The proof of Lemma 3 is
complete. o

Proof of Theorem 4 . Let n = pgr/log(pM)/n < 1 and py + ps M2 My (fx)n < ps,
which can be achieved for sufficiently large n = M***2 M3 (fx)log(pM). Following the
similar techniques as used in the proof of (17) in Theorem 3, we can obtain (18), which
completes the proof. o

m)

C.5. Proof of Theorem 5

Since ]§j € RP9*9 is the minimizer of (23), we have
~ o~ 1 ~ ~~ ~ ~ 1 ~~
~(Y5.B))) + S (B TB)) + 7 [B 1 < ~(¥;,B)) + (B, TBy)) + 7B 1.
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10 S. Guo and X. Qiao

Letting A; = l§j — B; and S be the complement of S; in the set {1,... ,p}, we have
%<<A]—,1A‘Aj>> < (ALY, -TBy) + %j(HBj||§q) — By + Angq))
< ALY =B + 70 (IBys, I = 1Bys, + Ays, 11 = |45 1)
< ALY = TB) + g (188, 157 = 18051
By Lemma 10 in Section D, Condition 7 and the choice of v, ;, we have
€8y, Y5 =B < Y, —TB, 014157 < 222 (|85, 117 + 14 ]1)-

Combing the above two results, we have
1 n 3’Yn j Tnj
0< SUA;TAY) < Z A, 11 — 01 A s 1),

which implies | A;s: |\ < 3|45, |\ and therefore [ A7 < 4| A;s, |\ < 4./5|A ] 5.
This result together with Condition 5 and m > 3271q28j implies that

~ 2 T2
(AL TAD) = | Al —ng* (|17} > (= 16md’s;) |45 > T 14,13 (C-21)

Therefore,

T2 3 1/2
TIAG1E < Sl A1 < 6755 1Ay

which implies that
1/2

245

1A F < and [A;]{ <

965, (C.22)
T

as is claimed in Theorem 5. R
Next we prove the upper bound on A — A.
For k € Sj, it follows from W = {{ ¢, (v)Aji(u,v)¥;(u)"dudv, Condition 4 with

Ajr(u,v) = ¢y (v) ajpd;(u) + (mezl — Zﬁmzl)ajklmqﬁjl(u)qﬁkm(v) and orthonormality
of {&1(-)} i1 and (G (Vm1 that [ Wil = llagelle = {3,y 12, (1+m) =21} <
{p2, 51§ (= + y)’Qﬂ*ld:rdy}l/2 = O(u;1). For k € S§, we have W3, = 0. Hence

P
121 = S ([ ®slle = O( Y i) = O(sy). (C.23)
k=1 k‘ES]’

Observe that ¥, — ®; = D™'B; —-D'B; = (D! - D )B, + D"'(B; — B;) +
(D~! = D7) (B, — By). It follows from the diagonal structure of D~! and D~! that

18 — @, <D = D) [amae|B; 112 + D™ mmas| B, — B[ $?

D-!'_p-! B. _B.|@ (C24)
+( ) maxB; — Bjl;™
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By Conditions 3, 6 and the fact ﬁk = diag(j\}f, N )\Ilg/2) Dy = dlag()\llf/f, R )\,16{12), we
have H(f)_l_D_l)Hmax < a1/2081/2qa/20AM(fX) % and HD 1Hmdx < O[1/2681/2(1&/2.

By Condition 1 and (C.23), we have ||B||§q) < ||DHE§;XH\IIJ-H§(1) = O(Aéps]) These results
together with (C.22) implies that

~ 96a/2q*/% 57y,
| — ;) < 1/—23"]{1 + 0(1)}, (C.25)
Cy T2

where the constant comes from the second term in (C.24), since the first and third terms
are of smaller orders relative to the second term.
For each 7,k =1,...,p, note that

Aji(u,v) = Aju,v) = a)k(U)T'i’jka)‘(u) — ¢, (V)" 0, (w) + Ry (u,v)
S OR T {¢> () = &)} + {3 (0) = ()} Tu0p;(w)
+ ¢k( ) ( Jjk — ‘Iljk)d)g(u) + Rjk(uvv)v
We bound the first three terms. By Lemma 9 in Section D, we have

“%k(U)T‘/I}jk{(%j(u)*(ﬁj(u)}u < g2 1n<1lax 165 — bt %],
{3u) = @)} Finey)] | < 0" max 16em — dum el (C26)

1\ m<q

00 0)" (B — )5 ()| | = 50— Wl

We then bound the fourth term. By R;x(u,v) = (Zl,m=1 — mezl)ajklméjl(uwkm (v),
we have

2
IRjkllz = H 2 2 @jitm @1 (W) Prom (V )H
l=q+1m=1
o] o] 0 0
= 1) 2 Z @G < Oy Z Z (L+m) 7271 = O(udpg ).
l=q+1m=1 l=qg+1m=1
This together with Condition 4 implies that
p
max R; < O(qPt12 max 2) = O(sq P2, C.27
B o R Gy
- J

It follows from (C.23), (C.25), (C.26), (C.27) and the fact | &;[{? < |¥; — ¥;|{?
| @[ = O(s;) that
A _ 1/2 o I 1@ . w. @
|A—Ale < 2077 max ¢ — dul| max [W;]57 + max [[%; — W57 + || Rl
1<I<gq

96a1/2qa/28,yn

A {1+o(1)},
CO T

N

2
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12 S. Guo and X. Qiao

where the constant comes from max; Hlil] -¥; H(IQ), since other terms are of smaller orders
of this term. The proof is complete. o

D. Additional technical proofs

D.1. Proof of Proposition 1

Let Y1 = X+ Xepn , By, o(u,v) = Cov{Y14(u), Y1 (110 ()}, £ € Z, (u,v) € U?. Define
the spectral density operator of Y by

J— _
fyi0= o ; Yy, cexp(—ild), 0 € [—m, ]

Then we can obtain that fy, ¢ = {2 + exp(—ih6) + exp(ih8)} fx ¢. Similarly, by letting
Ya(u) = Xo(u) — Xosn(0), Syl 0) = Cov{Ya,(w), Ya 0r (@)}, ¢ € Z(u,0),€ U2,
and fy, ¢ be the spectral density operator of Yy, 6 € [—, 77] we have fy,o = {2 —
exp(—ih#) — exp(ihd)} fx o. Note that

By, (Sh — 20)(B1))y = (®1,(Zv1.0 — Zv,.0) (1)) — (P1, (B0 — Bva0)(P1))y

and M(fy,, ®1) < 4M(fx,®;1) for i = 1,2. Combing these with results in the proof of
(8) leads to

PH<<I>1, (S — zh)(@1)>H) > 2M(fx, <I>1)n]
i PH<<I>1, (Bv.0— EYi,o)(‘I’l)>H’ > M(fy., <I>1>n] < 4exp{ — cnmin (17, n) }

for some constant ¢ > 0. This result, together with, M(fx, ®1) < My (fx){®1, 20(':1)1)>H
implies (15).
Note that

KBy, (Z) — Zp)(R2))y < (81, (Bh — ) (81))yy — (B2, (Zp — Z0) (22) Dy

where ‘il = <I’1 + @27 &’2 = ‘Pl — @2 and M(fx,‘i’l) < Q{M(fx,‘ﬁl) +M(fx,q)2)} for
i = 1,2. Combing these with results and the proof of (15) leads to

Pl[(@1, (81 = 20)(®2))y] > 2(M(fx, 1) + M(fx. ®2)}n]
i PH<'i>i, (f]h - Zh)('i’i)%ﬂ‘ > 2M(fx, %Z)n] < Sexp{ — cnmin (772,7]) }

for some constant ¢ > 0. This, together with, M(fx, ®;) < My(fx){®i, To(®;)),, for
i = 1,2, implies (16), which completes the proof. o
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D.2. Proof of Proposition 2

It is easy to see that 67T = 67T6 + OT(f‘ —T)6. Hence we have
0'T6 > 0"T0 — |T — Tmax 0]}

By Condition 8, Apin(I') = p, where Ayin(T') denotes the minimum eigenvalue of T.
Together with Lemma 5 in Section D.9, this proposition follows. o

D.3. Proof of Proposition 3

Note that on the event {|/A\jl —Aji| < 2’1)\jl}, we have le = \ji1/2, Xj_ll/Q < \/5)\;11/2 and

TR T IILeTs —-3/2/3 PRTRPRE A
W < 20,77 |Aj — Aji|, which implies that |~

J <
~x
gl jl

—1/2
'’

1-1/2 —1/2
|)‘jl/ _)‘jl/ | <

9 M=

X0
¢s and cg such that the first and second deviation bounds in (25) respectively hold with
probability greater than 1 — ¢5(pg)~°¢. The proof is complete. o

. Then it follows from Theorem 3 that there exist positive constants C), Cy,

D.4. Proof of Proposition 4

Notice that
Y, -TB; = {(n —1)7'DZV, — (n— 1)‘1D‘1E(ZTVj)} (C.28)

+(n— 1)’1D’1E{ZT(Vj - ZDlej)} — (0 -T)B,.

First, we show the deviation bounds ofﬁ_l(n—l)_liT\Afj—D_lE((n—l)_lzTVj). We
decompose this term as f)*l{(nf 1)"1Z*V; —E((n— 1)*1ZTVj)} +(D =D HE((n—
1)7'Z"™V;). It follows from Theorem 4 that there exists positive constants C§, ¢5 and cg
that

1
< CYMu(fx)g™*! M,

max n

(C.29)
with probability greater than 1 — ¢5(pg)~°¢. Note that D) = diag(X,lc/f, .. .,X,lc{f) and

sup [DH{(n — 1) 2LV ~ E((n - 1) 2V, D7 |
s

Dy = diag()\llf, ceey Ai{f), it follows from Proposition 3 that there exists positive constant
C3, such that

< CEMy (228D, (C30)

max n

(>~ -p7)p
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14 S. Guo and X. Qiao

N

with probability great than 1 — ¢5(pg)~°. By Condition 1, we have max; ||D;||p
1/2 _ _ _ _ _

Ay'? and [DT'E((n —1)7'Z7V;) [ < ¢2DE((n — 1) Z"V,) D7 inax| Dy ¢

O(q"?), where the fact that, for ¢ x ¢ matrix A and a diagonal matrix B, |AB||p <

q"?| Al|max|B| F, is used. These results together with (C.29) and (C.30) imply that there
exists C¥

I

. o (@) 1
HD—l(n —1)71Z2"V, - DE((n—1)"'2"V,) [T < My (fx)qo > Ogg’q C.31)

max

Second, consider the bias term (n — 1)"'D~'E{Z"(V,; — ZD~'B;)}. By Section F.1,
R; is a (n — 1) x ¢ matrix whose row vectors are formed by {r;;,t = 2,...,n} with
rij = (Fjis o5 Tejg)™ and rr = 30y 20Dty (Ajk, Pkm))Ee—1)km for L =1,... ¢
It follows from Conditions 1, 4 and similar arguments in deriving (C.27) and (C.31) that
there exists some positive constant C} such that

H(n - 1)_1D_1E{ZT(V. _ ZD_lB. }H(q)

<¢"?|(n-1)T'D'E(Z'R;))D 7| ||D||r < C¥siq Y, (C.32)

where D = Aolg.

Third, it follows from Lemma 5 in Section D.9, Lemma 15 in the Supplementary
Material of Qiao et al. (2020) and ||B||<q> ()\1)/2s]) that there exist some positive
constants C¥ such that

~

lo
(- 1B < My(fx)syam2y B2 (s
with probability great than 1 — c5(pg)~ce.
Combing results in (C.28), (C.31), (C.32) and (C.33) implies that there exist positive
constants Cg, ¢4 and c¢5 such that

0B,

<[f -1,

max

a log(pq _ .
||Y _FB ||max CEMl(fX)SJ{q +2 %)_Fq B+1}7 .7 = 17"'ap7

with probability greater than 1 — c¢5(pg) . The proof is complete. o

D.5. Proposition 5 and its proof

Proposition 5. Suppose that Conditions 1 and 2 hold. Then there exists some universal
constant ¢ > 0 such that for anyn >0

P{|S0 — Sof > 2M1 (fx)don} < :—n(m“l +1286207Y). (C.34)
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In particular, if the sample size n satisfies the bound n > 128(p%¢* — 16¢) L, where p is
some positive constant with p > 4¢='/2, then with probability greater than 1—p—2 (166_1 +

1285*2n*1), the estimate f]o satisfies the bound

N 2
|20 — S, < 2M1(fx))\oﬁ\/§- (C.35)

Proof. It follows from the definition of [0 — o3 = X7, _, |S) — 2|2, Chebyshev’s
inequality and (C.8) with ¢ = 1 that for any n > 0,

s 1 VRS0 _ 5200
P {8 - Solr > 2Ma(fx)Aon} < BISG - =515

(2M(fx)ho)? 7 j,k2:1 ! ’
p2

< (166 'nTt 1286 % ?)
U
p2

= (166" + 128 *n~").
n°n

By letting n = p+/p?/n with p > 0, we have that

p2

P {@0 —2olF > 2M1(fx)Nop n} < p (166t + 1286 2.

The proof is complete. o

D.6. Proof of Lemma 1

By Lemma 7, we obtain that

Nt =gt _ {8t Bji (1)) L B

i=1...pl=1,..,L C.36
M Mt I P (C-36)

Note that Aj; = {@;1,%;;(¢;)). It follows from (8) in Theorem 1 that for any 7 > 0,

(i, Ny (970))
Sl

> ./\/ll(fx)n} < 2exp{ - cnmin(nz,n)}. (C.37)

We next turn to the term |Rj;/A;|. By (C.9), Lemma 7 and Condition 3 with §;; >
col~® 1 and Aji = coa 117 we have

R, ~
T < avE B Ay

Aji
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16 S. Guo and X. Qiao

It then follows from (10) in Theorem 2 that there exists some constant ¢ > 0 such that
for any n > 0

P {‘Rﬂ

Ajl

Let ¢ = min(c,é). Tt follows from p; = 164/2c; 2N, (C.36), (C.37) and (C.38) that
(C.10) in Lemma 1 holds, which completes our proof. o

> 4\/5(:52@12““{2/\/11(]‘)()/\077}2} < 4exp{ _én min(nQ,n)}. (C.38)

D.7. Proof of Lemma 2

It follows from (C.9), Condition 3 with d;; > col=*~! and (10) in Theorem 2 that there
exists some universal constant ¢ such that for any n > 0, (C.11) holds.o

D.8. Lemma 4 and its proof

Lemma 4. Suppose that Conditions 1-8 hold. Then there exists some universal con-
stant ¢ > 0 such that for each j =1,...,p,l =1,...,d;, any given function g € H and
n >0,

P{[(Bit = 610,9)| = pallg 7 InM (NP1 + pal gl M3 (S )12 2 |

(C.39)
< SGXP{ - 6znmin(n2,n)} + 4exp{ - ézM;Q(fx)nr%MD},

s 1/2 _
where g(-) = 22:1 gjm¢jm(')v lg JZHA = (Zm:m;ﬁl)\jmg?m) / y P2 = 2001 and p3 =
4(6 + 2/2)cy A2 with co < AMy(fx)Nol® L.

Proof. It follows from the expansion g(-) = > _| gjm®;m(-) and (C.43) in Lemma 7
in Section D.11 that

<$jl — ¢, 9) = 2 (Aji — )\jm)ilgjm<$jla <Ajjv Gimyy + gjl<$jl — i1, i1y

mim#l
= ] {(le — Njm) = (i — Ajm)_l}gjm@ﬂv@jj’ Bjm))
mim#l
+ 3 = Ajm) " gml b — D31, (B, dim )
mim#l
+ Z (Nt = Ajm) " gDt (D, bgmdy + g1l bi1 — bt bt
m:m#l

= L+ 1+ 13+ 14

Let Qq4, = {QHAjos < 044, }- It follows from Condition 3 and (10) in Theorem 2 with
the choice of n = {4 M (fx)Aol*'}1eo < 1 that

P(QF) < P(J1A5ls > 27 el ™7") < dexp {~167eMT2(fx)Ag 22 n )
(C.40)
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On the event (2q;, we can see that sup; <4, |le —\ji| < Aja, /2, which implies that 271\, <
Aji < 2Xj. Moreover, [Aj; — A < 274N\ — Aj| for 1 < 1 # m < d; and hence
INjt = Njm| = 27N\ — A\jm| for j = 1,...,p. By Condition 3, [Aj; — A\jm| = col ™! for
1 <m # 1 < d;. Using the above results, we have

~ 2 ~ _ _ ~
L7 < Ne=2)" D e = Nim) 21 = Ajm) 20518513

m:m%#l

~ 9 ~ B
< A=) 1851 YD g = Aim) gl
mim#l

_4y —i o ~ 2,2
< deg Mg PR (N = M) 1A 13

where ||g~7!|| = (Zm:m#g?m)l/? This together with (C.9) implies that, on the event
dey

1] < 265 lg 12D A 12

Similarly, we can show that
IRl < e lg 91 I — dll|Bgills < 27265 % g7 1PV A3
Moreover, by the result ||<;A5jl —¢il* = <q§jl — ¢j1,—2¢;,) and (C.9) we have
11l = 27 giall b — il < 4 *lgall*@ V1A 05
Combing the above upper bound results, we have
11| + D] + [Ta] < (6 +2v2)eg g2V A 5)%

Let Xg =y Ajm (Nt = Xjm) 2G5 < cy 212+ g=3Y 2. Then it follows from (9)

m:m##17'Jm

in Theorem 1 that

P{’,\;ll/QXg—l/ng‘ = 2M1(fx)77} < 4exp{ — cnmin(n?, 77)} (C.41)

Define 2, = {515 < 2010 hon} and Doy = {[1a] < 26 A}l InMa ()l

Let p2 = 2¢5 " and p3 = 4(6 + 24/2)cy 2A\2. Under the event Qa; N Q1 N Doy, We obtain
that

[Git = i 9)| < palg ™ M (SN 1 + gL ME ()12 D
Let & = min(16~'\;%c2¢, é1). It follows from (10) in Theorem 2 and (C.41) that
P(Qi7 v an) < 8€Xp{ - Egnmin(nz,n)}.
This together with (C.40) completes the proof of (C.39). o
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18 S. Guo and X. Qiao
D.9. Lemma 5 and its proof

Lemma 5. Suppose that Conditions 1-8 hold. Then there exist some positive constants
Cr, c5 and cg such that

< C'r/\/h(fx)an M

max n

T -]

C6

with probability greater than 1 — c5(pq)~

Proof. Note that

{12312 1/2—1/2
/\jl Nem 7klm_)‘gl Nem Ojkim|-

Hf —Dlmax = max
1<j,k<p,1<l,m<q

Let 8jkim = ifﬁ:: for each (4, k,l,m). Then we have

2—-1/27-1/2~ —1/2 —1/2 ~—1/2 8jklm — Ojkim ~—1/2 _Ojklm
A]l Akm Ujklm - )\ )\km U]klm = S]klm ( )\41/2)\1/2 ) + < ]klm — 1) )\1/2>\1/2

Ajl >\gl
AJ

~ At — Aji Xem — Mem Nt — Aji
el — 1= J J 1 J J .
K ( Aji * > ( Akem * Aji

Then under the event 2, we have |5jxi, — 1| < 1/2, and thus §_k1l{n V2. Moreover,
provided that fact that |(1+ z)~ "2 — 1| < = if |2| < 1/2, we have

Under the event 2, the above results together with the fact of o5, < )\ /\1/ 2 imply
that

Let Q) = {supléjgpylgléq 1/5}. Observe that

Nt = Aji
i

)\km - )\km
)\km

~—1/2
‘ jklm 1‘

/

Nt = At
Moo |

8 iklm — 04kl 12

ZJm gy T2 max

2\L/2y1/2 5 1<j<p,1<i<q
L km

IT = Tlmax < V2 max

1<j,k<p,1<l,m<q

Then it follows from Theorems 3 and 4 that there exist some positive constants Cr, c5
and cg such that

r 1
IT = T lmax < CrMi(fx)g™*! w

with probability greater than 1 — c5(pg) . The proof is complete. o
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D.10. Lemma 6 and its proof
The following lemma shows how to derive the tail probability through moment conditions.
Lemma 6. Let X be a random variable. If for some constants c1,co > 0
P(|X| > t) < ¢y exp{—cy ' min(t?,t)} for any t > 0,
then for any integer q = 1,
E(X?7) < qleg(4ea)? + (29) et (4ep) ™.

Conversely, if for some positive constants ay,as, E(X*?) < qlajal + (Qq)!alagq, q=1,
then by letting ¢ = 8 max{4(az + a3), a2} and c¥ = a1, we have that

P(|X] > t) < c¢f exp{—ci ' min(t?,t)} for any t > 0.

Proof. This lemma can be proved in a similar way to Theorem 2.3 of Boucheron, Lugosi
and Massart (2014) and hence the proof is omitted here. In the proof, the following two
inequalities are used, i.e. for any ¢ > 0 and ¢ > 0,

1 2
3 min(#?,t) < 1t+ " < min(#%, 1),
and
t t t 12 + 4t
C—+C—<C(+ i /C)<\/E+ct.u
2 2 2
D.11. Lemma 7 and its proof
Lemma 7. Foreachj=1,...,pandl=1,..., the term of le — Aj1 can be expressed
as
Ajt = Mg = {1, Ajj(6in) ) + R, (C.42)

where |Rji| < 2| @1 — ¢jil|Aj;|s. Furthermore, if inf .mz1 |Aji — Ajm| > 0, then

‘gjl — ¢ = Z (S\jl - Ajm)71¢jm<$jl7 Ajj(¢jm)> + ¢jl<€gjl — i, i) (C.43)

m:mz#l

Proof. This lemma follows directly from Lemma 5.1 of Hall and Horowitz (2007) and
hence the proof is omitted here. o

imsart-bj ver. 2014/10/16 file: output.tex



20 S. Guo and X. Qiao

D.12. Lemma 8 and its proof

Lemma 8. For apxp lag-h autocovariance function, 3y = (Egz))
we have

h=0,1,...,

1<g,k<p’
[ER1s <X and [ (0rn)] < AN form > 1.
Proof. By the expansion Zj (u, v) = Z?om 1 E{&1€ e mykm Y Oj1 (1) Prm (v), the or-
)

thonormality of {¢;;(-)} for {@rm(-)} for each (j, k) and the Cauchy-Schwarz inequality,
we have

o8] oe] /
EDls <[ Y B@0BE ] <{ D D M) <20

l,m=1 =1 m=1

Moreover, applying similar techniques, we have

DIRICESIEEE j (iE@mftkm)@l(u))?du

N

Z E ftjl gtkm) = J ij (uvu)dU)‘km < >\O)\km7
u

which completes the proof. o.

D.13. Lemma 9 and its proof

Lemma 9. For each j,k = 1,...,p, let {¢;i(-)}1<i<q and {ajl(‘)}lglgq correspond to
true and estimated eigenfunctions, respectively, and vVjum be the estimate of Yjpim for
I,m=1,...,q9. Then we have

ZZ Vst {85() = 0]

2

N
MQ

H¢Jl _(ZSJZH 2 2 wjklmv

I=1m=1

~
Il
—

S
2

q ~
2 (Vjkim — Vjkim)*.

m=1

[
MQ

4 4q
ZZ %klm Yjkim)$51(+)

o~
Il
—_

S

Proof. We prove the first result

q

Z Z m%klm z_¢’jz)

I=1m=1

s
q q A 2 q q
2
= Z Z Wikim ( < Z Z klmz Hd’ﬂ Dl
m=1||l= m=1]=1 =1
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where the first equality from the orthonormality of {akm(')}lgmgq and the second in-
equality comes from Cauchy-Schwarz inequality. By the orthonormality of of {¢xm () }1<m<q
and {¢,i(-) }1<i<q, We can prove the second result

a a 2

Z Z km w]klm 1/}jklm)¢jl

=1m=1 S

a |a a a

Z Z(’l/)jklm Vikim)P 2 E(wjklm — Yjkim)?,
m=1||l=1 m=1[=1

which completes the proof. o

D.14. Lemma 10 and its proof
Lemma 10. Let A,B € RPI*9 with j-th blocks given by A;, B; € R4, respectively.
We have -

(A, B)) < ||B|SD A" (C.44)

Proof. By the definition and Cauchy-Schwarz inequality

((A,B)) ((Aj,Bj))

VAN

LA )@ B

< max||Bylr Z 1A][F = |IBIS, A,
Jj=1

which completes the proof. o

E. An illustrative example

In the following, for any A = (Ajk)1<jk<p, B = (Bjk)1<j k<p With their (4, k)-th compo-
nents Ajy, Bji € S and x € H, write AB, Ax and x"A for

f A (u,v)B(v',v) J A(u,v)x(v)dv and f x(u)" A(u,v)du,
u

respectively. For a px p matrix, C, we denote its maximum eigenvalue, spectral radius and
operator norm by Anax(C), p(C) = |Amax(C)| and |C| = v/ Amax(CTC), respectively.
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22 S. Guo and X. Qiao
. b
Let p = 2, x; = (41, 22) ", ¥ = diag(¥1,72), C = < g a ) and e; = (es1,ep)
then the VFAR(1) model in (4) and (5) can be rewritten as

B = | $)CHER 3+ pluer,
which leads to a VAR(1) model
x; = Cxy_1 + €. (D45)

Provided that A(u,v) = 4(u)Ce¥(v) and ||C|| = /Amax(CTC) = \; with C*'Cy =
A2y for ||ly|| = 1, it is easy to see that

ATA = wa, YA v)dy = f () (0 )b (o)) Cap(w) e’ = () CT Cop ()
and
[arm) oy = [wucTepeyis = pwerey =y,

Hence ||A||z = v/ Amax(ATA) = [|C|| = A\1. The left side of Figure ?? plots ||Al||z vs b
for different values of a € (0,1).
Let (wj,v;),7 = 1,2, be the eigen-pairs of C satisfying Cv; = w;v;. Then

J Y (u)Cp(v)(v)v,dv = J A(u,v)Y(v)vidv = wip(u)v;.
u u

Hence A and C share the same eigenvalues, which are wy = ws = a. When p(A) =
p(C) = la| <1, (4) and (D.45) correspond to stationary VFAR(1) and VAR(1) models,
respectively.

For the VFAR(1) model in (4),the spectral density function and the covariance func-
tion of {X;}iez are

fx0 = % (20 + ;;1 {20(AT)h exp(—ihf) + AMS, exp(ih&)}) (D.46)

and .
X =0 ) AMAMT, (D.47)

h=1

respectively. For the VAR(1) model in (D.45), the spectral density matrix and the co-
variance matrix of {x;}cz are

Jx0 = % (So + hZ:]l {SO(CT)h exp(—ihf) + C"S, exp(ih9)}) (D.48)
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and ”
Sy =02 ) CM(Ch)T, (D.49)
h=1
respectively. Noting that A"Sq = {  (u)C'p(v)) 9 (v))Serp(v)dv' = 1 (u)C"Sep(v)
and applying similar techniques, we can obtain that fx ¢ = ¥(u)fx, gw(v) and Xy =
1 (u)Sotp(v). The functional stability measure of {X;}iez under (4) is

27 esssup w —9r-  ess 511p W®)" fxop®
be[-nx]. e, B TP be[—m,x)@et, (PP)TSep®

where ¢ ® € R? with (¢)®); = (¢;, ®),j = 1,2. Hence the functional stability measure of
{X}}tez under (4) is the same as that of {Xt}tez under (D.45), i.e. the essential supremum

of the maximal eigenvalue of 27S, 12 %650 2 over 0 e [—m, 7]. Some calculations yield
fx,0 and S as follows.
By (D.48), we have

L Sy a" exp(—iho) 0
YT op _ a_exp—i _,a"exp(—1
fxO _SO+SO hoolhh 1 heb hool h h9
n P 1ahexp(ihﬂ) > 1 a" ' exp(ih0)b S
S, alexp(ihf) 0
1 1ouaxp( 200 0 1(16)(})(1’(94)(9 - bEXp(w,z .
= % So +So bZ;;‘P(zJ) aexp(_w)) + aexp(if) (w S, | .

(1—aexp(—10)) 1—aexp(—if 0 1—aexp(i0)

By (D.49), we have

©  9n 2,2h—2p2 0 2h—1
S, — ( Dol oo+2 thl b Zh=goha . b >
2ih—o ha b 2ih=00

( L@ g )
_ 1— a2 1 a2)3 (1,{12)2 .
(1— a2 2 1—a?

F. Derivations for VFAR models

F.1. Matrix representation of a VFAR(L) model in (20)

Note that the VFAR(L) model in (19) can be equivalently represented as

Xy (u Z Z(A k() +eg(u), t=L+1,...,nj=1...p (ES50)
h=1k=1

Tt then follows from the Karhunen-Loéve expansion that (E.50) can be rewritten as

0 L p
D &bn(u) = Xy <A;Z )y Pk ()& (t—nykm + €15 (w).
=1

h=1k=1m=1
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This, together with orthonormality of {¢jm(-)}m>1, implies that

L P ak
&eji = Z Z Z (Pjis A; W (Drm)) E—nypm + i1 + €t
h=1k=1m=1

where 7oy = Yy S0y S g1 (sts ASY (@m) Yt nppom and gt = (yi,e5) for | =
1,...,qj, represent the approximation and random errors, respectively. Let vy = (rej1, ..., Ttjg;)"
and € = (€451, - -,€tjq;)" Let Rj, E;j be (n — L) x g; matrices whose row vectors are
formed by {r;j,t = L+1,...,n} and {€;,t = L+1,...,n} respectively. Then (E.50) can
be represented in the matrix form of (20).

F.2. VFAR(1) representation of a VFAR(L) model

We can represent a p-dimensional VFAR(L) model in (19) as a pL-dimensional VFAR(1)
model in the form of

Xu(w) = [ Biwo)Xea(wdo+Bma (), ue (E51)
u
Ay Ay, -+ Ap 4 A
X, I1 02 6 1 OL e
X P Et—
~ t—1 ~ 0 I 0 0 ~ t—1
where X; = . , Al = P L& =
Xi—r+1 0o o0 .. I 0 Et—L41
P

and I, denotes the identity operator. In the non-functional setting, a similar VAR(1)
representation of a VAR(L) model can be found in Basu and Michailidis (2015).

F.3. VFAR(1) representation of the simulation example
Noting that 6; = BO;_1 +n,, we have 0y; = 37 Bjz0_1), +m,; for j = 1,...,p. Mul-
tiplying both sides by s(u)™ and applying {,, s(v)s(v)"dv = I, we obtain that s(u)"60y; =

Sy 21 (1) " Bjgs(v)s(v) "0 _1)rdv+s(u)Tn,. Letting Ajx(u, v) = s(u)"Bjgs(v), Xi;(u) =
s(u)"0y; and eq;(u) = s(u)n,;, we have Xyj(u) = 37 (Ajr(u, ) X1y () + e15(u).

G. Algorithms in fitting VFAR models

G.1. Selection of tuning parameters
To fit the proposed sparse VFAR model, we need choose values for three tuning pa-

rameters, ¢; (the number of selected principal components for j = 1,...,p), n; (the
smoothing parameter when performing regularized FPCA, as described in Section G.2
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below) and 7,; (the regularization parameter in (21) to control the block sparsity level

in {\/I\IE},:) ch=1,...,Lk=1,...,p}).

We adopt a K-fold cross-validated method to choose (g;,n;) for each j. Specifically, let
Wy;s be observed values of Xy;(us) at ui,...,ur. We randomly divide the set {1,...,n}
into K groups, Dy, ..., Dk of approximately equal size, with the first group treated as a
validation set. Implementing regularized FPCA on the remaining K —1 groups we obtain
estimated mean function ,u( . 1)( ), FPC scores ft l n and eigenfunctions (;S (u n;) for
l=1,...,q5. The predlcted curve for the ¢t-th sampfe in group one can be computed by

V/[Z(Jlg) = ,ugl 1)(us) +307 t]lln) (;5( 1)(us; n;). This procedure is repeated K times. Finally,

we choose ¢; and n; as the values that minimize the mean cross-validated error,

CV(gj,n;) = Z Z Z (Wijs — Wt(jks)) .

k=1 s=1teDy

The optimal 7,;’s are selected by minimizing AICs or BICs in (29), where details can
be found in Section 3.4.

G.2. Regularized FPCA

In this section, we drop subscripts j for simplicity of notation. Suppose we observe
X() = (X1(-),.--,Xn(-))" on U, our goal is to find the first ¢ regularized principal
component functions {¢;(-),l =1,...,q}. We obtain the [-th leading principal component
¢i1(+) through a smoothing approach, which maximizes the following penalized sample
variance [(9.1) in Ramsay and Silverman (2005)]

Var ({1, Xi))
PEN _varlon, 2ip) F.52
" e e (2
subject to ||¢;|| = 1 and (¢, ¢r) + e}, P}y = 0,I' = 0 —1, where n > 0 is a

smoothing parameter to control the roughness of ¢;(-).

Suppose that X(u) = §"b(u) and ¢l(u) = ¢/ b(u) where b(-) is a G-dimensional B-
spline basis function, § € R"*% and ¢; € RY are the basis coefficients for X(-) and ¢;(-),
respectively. Let J = {b(u)b(u)"du, U = J§"8J and Q = {b”(u)b”(u)"du, (F.52) is
equivalent to maximizing

¢ g,
¢ T +7Q)¢,’
subject to ¢} J¢; = 1 and ¢ (J+7nQ)¢, = 0,1’ =1,...,1—1. By singular value decompo-
sition (SVD), we obtain eigen-pairs, (S1,P;) and (Sg, Py) such that J +nQ = P;S7*PT
and S;PTUP;S; = P,S;?P3. Then (F.53) becomes PEN, (¢1) = m, where

Xl X1
X = Sl_leCl. This suggests us to perform SVD on P7S;Ps, where we can obtain X;,
El = P;S:%X; and ggl(u) = EIT b(u )/(Cl JCl)l/Q, = 1,...,q. In practice, we can set G
to a pre-specified large enough value, and implement the cross-validation procedure as
described in Section G.1 to select ¢ and 7.

PEN, (¢1) = (F.53)
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G.3. Block FISTA algorithm to solve (21)

The optimization problem in (21) can be reformulated as follows.

pL
min g(X), g(X) = f(X) +7m; 2, IXlr, (F.54)
XeR™* % hel

where f(X) = 27 trace {(Y —BX)™(Y —=BX)}, r = 35 3" g, Y € R-E)xa;
B e R"D* and X = (XT,...,XT)" € R™% with X, € R%*% for k = 1,...,p.
(F.54) is a convex problem including the smooth part for X, i.e. f(X) and the non-
smooth part for Xy, i.e.vy; ZZil [X%| 7. To solve the minimization problem in (F.54), we
adopt a block version of fast iterative shrinkage-thresholding algorithm (FISTA) (Beck
and Teboulle, 2009) combined with a restarting technique (O’Donoghue and Candes,
2015), namely block FISTA.

The basic idea behind our proposed block FISTA is summarized as follows. Let V f(X)
be the gradient of f(X) at X. We start with an initial value X(©). At the (m + 1)-th
iteration we first try to solve a regularized sub-problem

min_trace {(Vf(X(m))T(X - X(m))} +(20)7! HX _xm
XeR"* 93

2 pL
" 3 Xl F.55)
k=1

where X (™) is the m-th iterate and C' > 0 is a small constant controlling the stepsize at
(m + 1)-th step. The second term in (F.55) can be interpreted as a quadratic regular-
ization, which restricts the updated iterate not to be very far from X("). The analytical
solution to (F.55) takes the form of

XD — (XY) with XY = (19,0120 [5Y) 20 k=1, pLF.56)
+

where Z(™) = XM — CV f(X(M)) = ((ng))T, e (ZI()T))T)T and z; = max(0, ). (See
also (3.a) and (3.b) of Algorithm 1).

We then take block FISTA (Beck and Teboulle, 2009) by adding an extrapolation step
in the algorithm (see also (3.c) and (3.d) of Algorithm 1):

X(m+1) _ X(m-&-l) + w(m-ﬁ-l)(i(m-&—l) _ i(m))’

where the weight w(™*1) is specified in Algorithm 1. Finally, at the end of each iteration,
we evaluate the generalized gradient at X(™+1 by computing the sign of

trace {(X(m) — X (mHDyT (X mt1) )Ni(m))} ,

which can be thought of a proxy of trace {(Vg(X(m)))T()N((m“) - )N((m))}. For a positive

sign, i.e. the objective function is increasing at )N((m“), we then restart our accelerated
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Algorithm 1 Block FISTA for solving (F.54)

L Input: C = 09(Amax(B™B))7', 6o = 1, XO© — x0T xOT)r _ o 7O -

B
z7, .z =0, XO = (X7, XM <o

2. Form =0,1,... do
(3.a) ZmM) = X(m) _ v f(X(m),
(8:b) X" = (1 ClZM ) 2 k=1L,

(8.¢) Oms1 = (14 /1+462,)/2,

(3.d) X (m+1) — X(m+1) + 6;::;11 (f((erl) _ }N((m))7

(3.e) If trace {(X(m) — X(m+D)T(X(m+1) _ )~(<m))} > 0, set
XA = x(m) g =1,

end do until convergence.

3. Output: the final estimator X (m+1)

algorithm by setting X(™+1) = X(™) and w(™+1) = w1 (O’Donoghue and Candes, 2015).
This step can guarantee that the objective function g decreases over each iteration. We
iterative the above steps until convergence. We summarize the restarting-based block
FISTA in Algorithm 1. In practice, one issue is how to choose the stepsize parameter C.

In general, the proposed scheme is guaranteed to converge when C' < ()\maX(BTB))fl.

Here we choose C' = 0.9(/\maX(BTB))_1, which turns to work well in empirical studies.
Alternatively, C can be selected through a line search and one simple backtracking rule.

H. Additional empirical results

H.1. Simulation studies

Figures 1 and 2 of the Supplementary Material plot the median best ROC curves (we rank
ROC curves by the corresponding AUROCS) over the 100 stimulation runs in Models (i)
and (ii), respectively. Again we see that ¢;/¢2-LS,, which explains the partial curve
information, although performing better than ¢;-LS; is substantially outperformed by
£1/02-LS, in terms of model selection consistency.

H.2. Real data analysis
Table 1 of the Supplementary Material provides tickers, company names and classified

sectors of 98 stocks under our study. Figure 3 of the Supplementary Material plots the
sparsity patterns in A (estimated transition function) for either 18 or 36 stocks. For a
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large collection of p = 98 S&P100 stocks, to better visualize a large causal network,
we set the row-wise sparsity to 3/98. We then plot a large and sparse directed graph
in Figure 4 of the Supplementary Material. We observe that companies, e.g. Allergan,
Halliburton, Target Corp., have relatively higher causal impacts on all 98 stocks in terms
of their CIDR curves.
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List of S&P 100 stocks under study.

Table 1.
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Figure 4. The directed graph with indegree=38 for p = 98 stocks.
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