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Abstract

This paper addresses the fundamental task of estimating covariance matrix func-
tions for high-dimensional functional data/functional time series. We consider two
functional factor structures encompassing either functional factors with scalar loadings
or scalar factors with functional loadings, and postulate functional sparsity on the co-
variance of idiosyncratic errors after taking out the common unobserved factors. To
facilitate estimation, we rely on the spiked matrix model and its functional general-
ization, and derive some novel asymptotic identifiability results, based on which we
develop DIGIT and FPOET estimators under two functional factor models, respec-
tively. Both estimators involve performing associated eigenanalysis to estimate the
covariance of common components, followed by adaptive functional thresholding ap-
plied to the residual covariance. We also develop functional information criteria for the
purpose of model selection. The convergence rates of estimated factors, loadings, and
conditional sparse covariance matrix functions under various functional matrix norms,
are respectively established for DIGIT and FPOET estimators. Numerical studies in-
cluding extensive simulations and two real data applications on mortality rates and
functional portfolio allocation are conducted to examine the finite-sample performance

of the proposed methodology.

Keywords: Adaptive functional thresholding; Asymptotic identifiablity; Eigenanalysis; Func-
tional factor model; High-dimensional functional data/functional time series; Model selec-

tion.



1 Introduction

With advancements in data collection technology, multivariate functional data/functional
time series are emerging in a wide range of scientific and economic applications. Examples
include different types of brain imaging data in neuroscience, intraday return trajectories
for a collection of stocks, age-specific mortality rates across different countries, and daily
energy consumption curves from thousands of households, among others. Such data can be
represented as y:(-) = {yu(-), ..., ysp(-)}" defined on a compact interval U, with the marginal-
and cross-covariance operators induced from the associated kernel functions. These operators
together form the operator-valued covariance matrix, which is also referred to as the following

covariance matrix function for notational simplicity:

By = {Zy k0 Voxps Bygr(u,v) = Coviy(u), yu(v)}, (u,v) € U,
and we observe stationary y,(-) for t =1,... n.

The estimation of covariance matrix function and its inverse is of paramount impor-
tance in multivariate functional data/functional time series analysis. An estimator of X,
is not only of interest in its own right but also essential for subsequent analyses, such as
dimension reduction and modeling of {y,(-)}. Examples include multivariate functional prin-
cipal components analysis (MFPCA) (Happ and Greven, 2018), functional risk management
to account for intraday uncertainties, functional graphical model estimation (Qiao et al.,
2019), multivariate functional linear regression (Chiou et al., 2016) and functional linear
discriminant analysis (Xue et al., 2023). See Section 4 for details of these applications. In
increasingly available high-dimensional settings where the dimension p diverges with, or is
larger than, the number of independent or serially dependent observations n, the sample co-
variance matrix function ZA]j performs poorly and some regularization is needed. Fang et al.

(2023) pioneered this effort by assuming approximate functional sparsity in X,, where the

Y
Hilbert—Schmidt norms of some 3, j;’s are assumed zero or close to zero. Then they applied

adaptive functional thresholding to the entries of EA]; to achieve a consistent estimator of X,.
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Such functional sparsity assumption, however, is restrictive or even unrealistic for many
datasets, particularly in finance and economics, where variables often exhibit high correla-
tions. E.g., in the stock market, the co-movement of intraday return curves (Horvéth et al.,
2014) is typically influenced by a small number of common market factors, leading to highly
correlated functional variables. To alleviate the direct imposition of sparsity assumption, we
employ the functional factor model (FFM) framework for y,(-), which decomposes it into
two uncorrelated components, one common x,(-) driven by low-dimensional latent factors
and one idiosyncratic €,(-). We consider two types of FFM. The first type, explored in Guo

et al. (2022), admits the representation with functional factors and scalar loadings:

vi() = x: () + &) =BE() + &), t=1,...,n, (1)

where f;(+) is a r-vector of stationary latent functional factors, B is a p x r matrix of factor
loadings and €,(-) is a p-vector of idiosyncratic errors. The second type, introduced by Hallin

et al. (2023), involves scalar factors and functional loadings:

Yt(') = Xt(') + Et(') = Q(')'Vt + 57&(')7 t=1,....n, (2)

where -, is a r-vector of stationary latent factors and Q(-) is a p x r matrix of functional
factor loadings. We refer to ¥4, 3, and X, as the covariance matrix functions of f;, x, and
€, respectively.

Within the FFM framework, our goal is to estimate the covariance matrix function 3, =
3, + X.. Inspired by Fan et al. (2013), we impose the approximately functional sparsity
assumption on X, instead of 3, directly giving rise to the conditional functional sparsity
structure in models (1) and (2). To effectively separate x,(-) from e;(-), we rely on the
spiked matrix model (Wang and Fan, 2017) and its functional generalization, i.e. a large
nonnegative definite matrix or operator-valued matrix A = L + S, where L is low rank
and its nonzero eigenvalues grow fast as p diverges, whereas all the eigenvalues of S are

bounded or grow much slower. The spikeness pattern ensures that the large signals are



concentrated on L, which facilitates our estimation procedure. Specifically, for model (2),

with the decomposition

2y (,%) = Q()Cov(1)Q(x)" + Ee(-, #), (3)
< Y T T

we perform MFPCA based on 2;, then estimate 3, using the leading r functional prin-
cipal components and finally propose a novel adaptive functional thresholding procedure
to estimate the sparse 3.. This results in a Functional Principal Orthogonal complEment
Thresholding (FPOET) estimator, extending the POET methodology for large covariance
matrix estimation (Fan et al., 2013; 2018; Wang et al., 2021) to the functional domain. Al-
ternatively, for model (1), considering the violation of nonnegative definiteness in X, (u,v)

for u # v, we utilize the nonnegative definite doubly integrated Gram covariance:

fny(u, 0)E,(u,v) dudv = B{ JjEf(u, v)B"BXf(u, v)Tdudv}BT + remaining terms, (4)

~~ " S

A L

which is shown to be identified asymptotically as p — c0. We propose to carry out eigenanal-
ysis of the sample version of A in (4) combined with least squares to estimate B, f;(-) and
hence X, and then employ the same thresholding method to estimate 3.. This yields an
Eigenanalysis of Doubly Integrated Gram covarlance and Thresholding (DIGIT) estimator.

The new contribution of this paper can be summarized in four key aspects. First, though
our model (1) shares the same form as the one in Guo et al. (2022) and aligns with the
direction of static factor models in Bai and Ng (2002) and Fan et al. (2013), substantial
advances have been made in our methodology and theory: (i) We allow weak serial correla-
tions in idiosyncratic components €;(-) rather than assuming the white noise. (ii) Unlike the
autocovariance-based method (Guo et al., 2022) for serially dependent data, we leverage the
covariance information to propose a more efficient estimation procedure that encompasses
independent observations as a special case. (iii) More importantly, under the pervasiveness

assumption, we establish novel asymptotic identifiability in (4), where the first r eigenvalues

of L grow at rate O(p?), whereas all the eigenvalues of S diverge at a rate slower than O(p?).
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Second, for model (2), we extend the standard asymptotically identified covariance de-
composition in Bai and Ng (2002) to the functional domain, under the functional counterpart
of the pervasiveness assumption. Based on these findings, we provide mathematical insights
when the functional factor analysis for models (1) and (2) and the proposed eigenanalysis of
the respective A’s in (3) and (4) are approximately the same for high-dimensional functional
data/functional time series.

Third, we develop a new adaptive functional thresholding approach to estimate sparse 32..
Compared to the competitor in Fang et al. (2023), our approach requires weaker assumptions
while achieving similar finite-sample performance. Fourth, with the aid of such thresholding
technique in conjunction with our estimation of FFMs (1) and (2), we propose two factor-
guided covariance matrix function estimators, DIGIT and FPOET, respectively. We derive
the associated convergence rates of estimators for 3., 3, and its inverse under various
functional matrix norms. Additionally, we introduce fully functional information criteria to
select the more suitable model between FFMs (1) and (2).

The rest of the paper is organized as follows. Section 2 presents the corresponding
procedures for estimating 3, under two FFMs as well as the information criteria used for
model selection. Section 3 provides the asymptotic theory for involved estimated quantities.
Section 4 discusses a couple of applications of the proposed estimation. We assess the finite-
sample performance of our proposal through extensive simulations in Section 5 and two real
data applications in Section 6.

Throughout the paper, for any matrix M = (M;;),x,, we denote its matrices ¢, norm, (q,
norm, operator norm, Frobenius norm and elementwise /,, norm by |M|; = max; >, |M,],
M. = max; 33, [ My, [M] = AY2(MIMY), [M = (5, M2)Y and [M] ey = maxy; [ M),
respectively. Let H = Ly(U) be the Hilbert space of squared integrable functions defined
on the compact set U. We denote its p-fold Cartesian product by H? = H x --- x H and
tensor product by S = H® H. For f = (fi,...,f,)",g = (¢1,...,9p)" € HP, we denote the

inner product by (f,g) = §, f(u)"g(u)du with induced norm | - | = {-,-)"/2. For an integral
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matrix operator K : H? — H? induced from the kernel matrix function K = {K;;(-,)}qxp
with each K;; € S, K(f)(-) = §,K(-,u)f(u)du € H? for any given f € HF. For notational
economy, we will use K to denote both the kernel function and the operator. We de-
fine the functional version of matrix ¢; norm by |K|s; = max; Y, |K;;|ls, where, for each
K;; € S, we denote its Hilbert-Schmidt norm by |K;;|s = {§§ Kij(u,v)?dudv}/? and trace
norm by |Kji|y = § Ki(u,u)du for ¢ = j. Similarly, we define |K|s = max; 2 1K ]s,
S,F = ‘{Zu

{4, Frobenius and elementwise ¢, norms, respectively. We define the operator norm by

|K

|Ki;|231Y? and |K||s.max = max; ;| K;j|s as the functional versions of matrix

IK|z = supPxems jx<1 [K(x)|. For a positive integer m, write [m] = {1,...,m} and denote
by I, the identity matrix of size m x m. For z,y € R, we use z A y = min(z,y). For two
positive sequences {a,} and {b,}, we write a,, < b, or a, = O(b,) or b, 2 a, if there exists
a positive constant ¢ such that a,/b, < ¢, and a,, = o(b,) if a,/b, — 0. We write a, = b, if

and only if a,, < b, and a, = b, hold simultaneously.

2 Methodology

2.1 FFM with functional factors

Suppose that y,(-) admits FFM representation (1), where r common functional fac-

tors in £i(-) = {fu("),..., fir(-)}" are uncorrelated with the idiosyncratic errors &;(-) =
{etr(+), ..., ep(-)}" and r is assumed to be fixed. Then we have
3, (u,v) = BE;(u,v)B" + 2. (u,v), (u,v)elU?, (5)

which is not nonnegative definite for some u, v. To ensure nonnegative definiteness and accu-
mulate covariance information as much as possible, we propose to perform an eigenanalysis

of doubly integrated Gram covariance:
Q= JJEy(u, )X, (u,v) 'dudv = Qp + Qg, (6)
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where Q; = B{{{X;(u,v)B"BX(u,v)"dudv}B* and Qr = {{2.(u,v)2.(u,v) dudv +
§ (B (u, v)B"S (u, v)"dudv + { § . (v, v)BE ¢ (u, v)"B*dudv. To make the decomposition

(6) identifiable, we impose the following condition.

Assumption 1. p7'B™B = I, and § { 3/ (u, v)X ¢ (u, v)"dudv = diag(bs, . .., 0,), where there

exist some constants 0 > 0 > 0 such that 0 > 0, > 0y > --- > 0, > 0.

Remark 1. Model (1) ezhibits an identifiable issue as it remains unchanged if {B,f;(-)} is
replaced by {BU,U',(-)} for any invertible matriz U. Bai and Ng (2002) assumed two
types of normalization for the scalar factor model: one is p'B™B = I, and the other is
Cou(fy) = I,. We adopt the first type for model (1) to simplify the calculation of the low rank
matriz Q in (6). However, this constraint alone is insufficient to identify B, but the space
spanned by the columns of B = (by,...,b,). Hence, we introduce an additional constraint
based on the diagonalization of §§X¢(u,v)X¢(u,v)"dudv, which is ensured by the fact that
any nonnegative-definite matriz can be orthogonally diagonalized. Under Assumption 1, we

can express Qe = >, pdib;bl, implying that |zl = [Qzllmin = p*

17

We now elucidate why performing eigenanalysis of €2 can be employed for functional
factor analysis under model (1). Write B = p~/2B = (by, -+ - , b,), which satisfies BB = I,.
Under Assumption 1, it holds that Q, = p* 3., QZIN)IIN);F, whose eigenvalue/eigenvector pairs
are {(p*0;, Bi)}iem. Let A\; = -+ = ), be the ordered eigenvalues of 2 and §,...,§, be the

corresponding eigenvectors. We then have the following proposition.

Proposition 1. Suppose that Assumption 1 and |Qz| = o(p?) hold. Then we have
(i) |7 = p*0;| < Q] for j € [r] and |N;] < [Qr] for j € [pN\[r];
(ii) 1€ = b = O *[9]) for j & [r].

Proposition 1 indicates that we can distinguish the leading eigenvalues {\;} e[, from the

remaining eigenvalues, and ensure the approximate equivalence between eigenvectors {&€ ; }ielr]

and the normalized factor loading columns {lN)j}jE[T], provided that |Qz[ = o(p®). Towards
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this, we impose an approximately functional sparsity condition on 3. measured through

p
1—q)/2 1—q)/2
sp = max ) [l S5, for some g € [0,1), (7)
j=1

where o;(u) = . ;(u,u) for u € U and i € [p]. Specially, when ¢ = 0 and {|o;||s} are

bounded, s, can be simplified to the exact functional sparsity, i.e., max; 3,; I(|2c ;5[5 # 0).

Remark 2. Our proposed measure of functional sparsity in (7) for non-functional data
degenerates to the measure of sparsity adopted in Cai and Liu (2011). It is worth mentioning

that Fang et al. (2023) introduced a different measure of functional sparsity as

p
Sy = max 3 o] 42 o 0 2
j=1

E
S
where |04 = Sup,ey 0i(w) = |oi|a. As a result, we will use s, instead of 5.

(11) With bounded {||o;|nx}, we can easily obtain |X.|s1 = |X:]s00 = O(sp), which, along

with Lemmas A6, B10 of the Supplementary Material and Assumption 1, yields that

1/2 1/2
1] < |Zcls0lZ:ls1 + 2 (IBEB |5, BEfB [5,) " (1Zel5,1[Be5.00)"* = O(s + psp)-

3|

Hence, when s, = o(p), Proposition 1 implies that functional factor analysis under model (1)

and eigenanalysis of & are approximately the same for high-dimensional functional data.

To estimate model (1), we assume the number of functional factors (i.e., r) is known,
and will introduce a data-driven approach to determine it in Section 2.3. Without loss of
generality, we assume that y,(-) has been centered to have mean zero. The sample covariance
matrix function of 3,(-,-) is given by iz(u, v) =n Y0 yvi(u)yi(v)". Performing eigen-

decomposition on the sample version of €2,

O f J S5 (u, 0) 85 (4, v) " dudo, (8)

leads to estimated eigenvalues M, ... ,;\p and their associated eigenvectors El, . ,Ep. Then

the estimated factor loading matrix is B = \/]5(21, . ,ET) = (Bl, . ,BT).



To estimate functional factors {f;(-)}.e[,], we minimize the least squares criterion

EHyt Br, |2 Z f {ye(u) — BE(w)} {y+(u) — BE (u)}du (9)

with respect to fi(-),...,f,(-). By setting the functional derivatives to zero, we obtain the
least squares estimator E() = p‘lﬁTyt(-) and the estimated idiosyncratic errors are given by
e(-) = (1I,— pilﬁﬁT)yt(‘). Hence, we can obtain sample covariance matrix functions of esti-
mated common factors and estimated idiosyncratic errors as 3 slu,v) =n"t30 E(u)ft(v)T
and ig(u,v) = {is,ij(u,v)}pxp S n e (w)g(v)", respectively.

Since X, is assumed to be functional sparse, we introduce an adaptive functional thresh-
olding (AFT) estimator of X.. To this end, we define the functional variance factors ©;;(u, v) =

Var{e(u)eij(v)} for 4, j € [p], whose estimators are
1 R -
= 7 25 (BB ) = D)}

with (1) = yu(-) — bzﬁ() and b; being the i-th row vector of B. We develop an AFT

procedure on EAJS using entry-dependent functional thresholds that automatically adapt to

the variability of igyij’s. Specifically, the AFT estimator is defined as f] {Ea i (s ) Yo

. . log p 1
2y = 1637 » SA( i/ [037]s ) with A = C( —t \/—]3)7 (10)

where C' > 0 is a pre-specified constant that can be selected via multifold cross-validation and
the order 4/log p/n+1/ \/P is related to the convergence rate of S, i/ H@l/ 2 H s under functional
elementwise /., norm. Here sy is a functional thresholding operator with regularization
parameter A > 0 (Fang et al., 2023) and belongs to the class sy : S — S satisfying: (i)
[sx(Z)|s < ¢|Y|s forall Z,Y € S that satisfy || Z—Y|s < A and some ¢ > 0; (ii) [[sA(Z)|s =0
for |Z|s < A; (iil) |sa(Z) — Z|s < A for all Z € S. This class includes functional versions
of commonly adopted thresholding functions, such as hard thresholding, soft thresholding,

smoothed clipped absolute deviation (Fan and Li, 2001), and the adaptive lasso (Zou, 2006).

Remark 3. By comparison, Fang et al. (2023) introduced an alternative AFT estimator

>~ A

5 = 5 )pep with S2, = O x SA( w/@m) (11)

€,ij €,
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which uses a single threshold level to functionally threshold standardized entries isw/@llf
across all (i,7), resulting in entry-dependent functional thresholds for EA]E,Z-]-. Since i;‘tjk re-
quires stronger assumptions (see Remark 2 above and the remark for Assumption 5 below),
we adopt the AFT estimator igjjk leading to comparable empirical performance (see Section F'

of the Supplementary Material).

Finally, we obtain an Eigenanalysis of Doubly Integrated Gram covarlance and Thresh-

olding (DIGIT) estimator of ¥, as

A D A A

%, (u,v) = BXj(u, v)B” + f)j(u, v), (u,v)elU? (12)

2.2 FFM with functional loadings

The structure of FFM is not unique. We could also assume y;(-) satisfies FFM (2) with
scalar factors and functional loadings Q(-) = {qi(+),...,qp(-)}" with each q;(-) € H", where
r common scalar factors v, = (41, .., % )" are uncorrelated with the idiosyncratic errors in

g:(-) and r is assumed to be fixed. Then we have the covariance decomposition
3, (u,v) = Qu)E, Q)" + X (u,v), (u,v) €U (13)

By Mercer’s theorem (Carmeli et al., 2006), which serves as the foundation of MEPCA (Happ
and Greven, 2018), there exists an orthonormal basis consisting of eigenfunctions {¢,(-)}7,

of ¥, and the associated eigenvalues 7 > 75 = --- = 0 such that

Sy(u,0) = Y repi (e (v)”, () €U (14)

We now provide mathematical insights into why MFPCA can be applied for functional
factor analysis under model (2). To ensure the identifiability of the decomposition in (13),

we impose a normalization-type condition similar to Assumption 1.

Assumption 1'. X, = I, and p~* { Q(u)"Q(u)du = diag(d, . .., ), where there exist some

constants 9 > 9 > 0 such that 9 > ¥ > 9y > -+ > 0, > V.
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Suppose Assumption 1' holds, and let q;(+), ..., q,(-) be the normalized columns of Q(+)
such that |q;|| = 1 for j € [r]. By Lemma A9 of the Supplementary Material, {q;(-)} ;e[

T

are the orthonormal eigenfunctions of the kernel function Q(-)Q(-)" with corresponding

eigenvalues {pv;}7_, and the rest 0. We then give the following proposition.

Proposition 2. Suppose that Assumption 1" and ||z = o(p) hold. Then we have
(1) |7 = pi| < |Ze|c for j e [r] and |7;| < |Zc|z for j € [PNr];

(i) |; = qll = O~ Z:lle) for j € [r].

Proposition 2 implies that, if we can prove |¥.|; = o(p), then we can distinguish the
principle eigenvalues {7;} e[ from the remaining eigenvalues. Additionally, the first r eigen-
functions {¢,(-)}e[,] are approximately the same as the normalized columns of {q;(-)}je[r]-
To establish this, we impose the same functional sparsity condition on X. as measured
by s, in (7). Applying Lemma A7(iii) of the Supplementary Material, we have ||X.[; <
HZaH‘ls/iHEsH‘ls/io = O(s,). Hence, when s, = o(p), MFPCA is approximately equivalent to
functional factor analysis under model (2) for high-dimensional functional data.

We now present the estimation procedure assuming that r is known, and we will develop
a ratio-based approach to identify r in Section 2.3. Let 7y > 75--- = 0 be the eigenvalues
of the sample covariance f]j and {®;()}72, be their corresponding eigenfunctions. Then EA];

has the spectral decomposition

r
A~ S A

X, (u,v) = ) 7p;(u)p;(v)" + Rlu,v),
1

<.
Il

T is the functional principal orthogonal complement.

where R(u,v) = Z;O:TH %jfoj(u)g?oj(v)
Applying AFT as introduced in Section 2.1 to R yields the estimator R, Finally, we obtain

a Functional Principal Orthogonal complEment Thresholding (FPOET) estimator as

A~

A~ F r PN ~
2, (u,0) = Y #5@,(w)@;(v)" + R (u,v). (15)
j=1
It is noteworthy that, with X, satisfying decompositions (5) and (13) under FFMs (1)

and (2), respectively, both DIGIT and FPOET methods embrace the fundamental concept of
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a “low-rank plus sparse” representation generalized to the functional setting. Consequently,
the common estimation steps involve applying PCA or MFPCA to estimate the factor load-
ings, and applying AFT to estimate sparse .. Essentially, these two methods are closely
related, allowing the proposed estimators to exhibit empirical robustness even in cases of
model misspecification (See details in Section 5). See also Section E.2 of the Supplementary
Material for a discussion about the relationship between two FFMs.

We next present an equivalent representation of FPOET estimator (15) from a least

squares perspective. We consider solving a constraint least squares minimization problem:

n

(Q).E) = arg min [ 1Y(0) = QT Bdu = arg | win Dy~ Quf’s (1)

subject to the normalization constraint corresponding to Assumption 1', i.e.,

1 < 1
- Z vy: =1L and — JQ(u)TQ(u)du is diagonal,
i3 p

where Y(-) = {y1(*),...,yn(-)} and T'" = (v,,...,7,). Given each I, setting the functional
derivative of the objective in (16) w.r.t. Q(-) to zero, we obtain the constrained least
squares estimator Q(+) = n~VY(-)T. Plugging it into (16), the objective as a function of T
becomes § Y (u) —n 'Y (u)I'T (u)"|3du = §tr{(L, —n'TT")Y (u)"Y (u) }du, the minimizer
of which is equivalent to the maximizer of tr[I"{{Y (u)"Y(u)du}T]. This implies that
the columns of n~ 2T are the eigenvectors corresponding to the r largest eigenvalues of
(Y (u)"Y (u)du € R™", and then Q(-) = n 'Y (-)T"

Let &()) = yi(-) — Q(-)¥, and 3. (u,v) = n~? Do &(u)g(v)". Applying our proposed
AFT in (10) to 3. yields the estimator f)? Analogous to the decomposition (13) under

Assumption 1', we propose the following substitution estimator

A~ ~

S (u,0) = Q)Q()™ + = (u, v). (17)

The following proposition reveals the equivalence between the FPOET estimator (15)

and the constrained least squares estimator (17).
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Proposition 3. Suppose the same regularization parameters are used when applying AFT

>~ A

to R and ig. Then we have EA]: = f]; and R* = 3

€ -

Remark 4. (i) While our FFM (2) shares the same form as the model studied in Tavakoli
et al. (2023), which focused on the estimation of scalar factors and functional loadings from
a least squares viewpoint, the main purpose of this paper lies in the estimation of large
covariance matrixz function. Consequently, we also propose a least-squares-based estimator
of 3, which turns out to be equivalent to our FPOET estimator by Proposition 3.

(11) Using a similar procedure, we can also develop an alternative estimator for X, under
FFM (1) from a least squares perspective. However, this estimator is distinct from the
DIGIT estimator (12) and leads to declined estimation efficiency. See detailed discussion in

Section F.1 of the Supplementary Material.

2.3 Determining the number of factors

We have developed the estimation procedures for FFMs (1) and (2), assuming the known
number of functional or scalar factors (i.e. r). In this section, we take the frequently-used
ratio-based approach (Lam and Yao, 2012; Wang et al., 2021) to determine the value of r.

Under model (1), welet A; > --- > A, be the ordered eigenvalues of Q in (8), and propose

to estimate r by

PP = arg min Api1/\r, (18)

referp
where we typically take ¢, = 0.75 to circumvent the fluctuations caused by extremely small
values. In practical implementation, we set /A\Z-/p2 to be 0 if its value is smaller than a pre-
specified small threshold € (e.g., 0.01), and treat the ratio 0/0 as 1. Hence, 5\i+1/5\i =
(Mix1/P?)/(Ni/p?) = 0/0 = 1 if neither A;yy/p? nor A;/p® exceeds € as p — 0.

For model (2), we employ a similar eigenvalue-ratio estimator given by:

77 = arg min 7.1 /7, (19)

re [7’0]
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~S
where {7;}{Z, represents the ordered eigenvalues of the sample covariance 3, (-, ). Similar to

the previous case, we set 7;/p as 0 if its value is smaller than €, and 0/0 = 1.

2.4 Model selection criterion

A natural question that arises is which of the two candidate FFMs (1) and (2) is more
appropriate for modeling {y;(-)}. This section develops fully functional information criteria
based on observed data for model selection.

When r functional factors are estimated under FFM (1), motivated from the least squares

criterion (9), we define the mean squared residuals as

VP(r) = (pn)™ Z lye — ' B, By,

t=1

where ]§r is the estimated factor loading matrix by DIGIT. Analogously, when r scalar
factors are estimated under FFM (2), it follows from the objective function in (16) that the

corresponding mean squared residuals is
V() = () ) lye = YT A, P
t=1

where f‘: = (Y14s -+ »Vn,) is formed by estimated factors using FPOET.

For any given r, we propose the following information criteria:

PCP(r) = V®(r) + rg(p,n), IC?(r) =logV?®(r)+rg(p,n), 20)
PC7(r) = V7 (r) + rg(p,n), 1C7(r) =logV”(r) + rg(p,n),
where g(p,n) is a penalty function of (p,n). While there is much existing literature (c.f. Bai
and Ng, 2002; Fan et al., 2013) that has adopted this type of criterion for identifying the
number of factors in scalar factor models, we propose fully functional criteria for selecting the
more appropriate FFM. Following Bai and Ng (2002), we suggest three examples of penalty
functions, referred to as PCq, PCy, PC3 and 1Cy, 1C,, IC3, respectively, in the penalized loss

functions (20),

(@) 9(p.m) = 1og (ppfn> (i) glpm) = " log(p A m). (i) g(p.m) = —bg;pA "),
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For model selection, we define the differences in the corresponding information criteria be-
tween the two FFMs as APC; = PC?(7?) — PC/ (#7) and AIC; = IC7(#?) — IC] (#7) for
i = 1,2,3. The negative (or positive) values of APC;’s and AIC;’s indicate that FFM (1)

(or FFM (2)) is more suitable based on the observed data {y;(-)}se[n]-

3 Theory

3.1 Assumptions

The assumptions for models (1) and (2) exhibit a close one-to-one correspondence. For

clarity, we will present them separately in a pairwise fashion.

Assumption 2. For model (1), {f;(-)}i=1 and {&:(-) }1=1 are weakly stationary and E{ey;(u)} =
E{eyi(u) fij(v)} =0 for all i € [p],j € [r] and (u,v) € U

Assumption 2'. For model (2), {y;}:>1 and {€:(-)}i=1 are weakly stationary and E{ey;(u)} =

E{eti(u)yj} = 0 for allie [p],je[r] anduel.

Assumption 3. For model (1), there exists some constant C' > 0 such that, for all j € [r],

ten], (i) |bjlmax < C, (ii) E|p~ e |* < C, (iii) |Z.]c < C, (iv) maxiepy |Xeillv < C.

Assumption 3'. For model (2), there exists some constant C" > 0 such that, for all i € [p],
tt' e [n]: (i) ol < € (i) Elp~ 2 37, Sai(w)en(w)dult < C" and E{p~'[{er,ev) —

Ee, e)]}t < €', (iii) | Se]c < €', (iv) maxiepy | Seai|w < C".

Assumption 3(i) or 3'(i) requires the functional or scalar factors to be pervasive in the
sense they influence a large fraction of the functional outcomes. Such pervasiveness-type
assumption is commonly imposed in the literature (Bai, 2003; Fan et al., 2013). Assump-
tion 3(ii) involves a standard moment constraint. Assumption 3'(ii) is needed to estimate
scalar factors and functional loadings consistently. Assumption 3(iii) and 3'(iii) generalize

the standard conditions for scalar factor models (Fan et al., 2018; Wang et al., 2021) to the
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functional domain. Assumptions 3(iv) and 3'(iv) are for technical convenience. However we

slow rate as p increases.

can relax them by allowing max; |2, ;

We use the functional stability measure (Guo and Qiao, 2023) to characterize the se-
rial dependence. For {y,(-)}, denote its autocovariance matrix functions by E;h) (u,v) =
Cov{y(u),yisn(v)} for h € Z and (u,v) € U? and its spectral density matrix function at fre-
quency 0 € [—m, «| by £, o(u,v) = 27)71 Y, ., E;h) (u,v) exp(—ihf). The functional stability

measure of {y;(-)} is defined as

_ (D, ,0(0))
M ey 6.5,(6))
where 3, ( = §,Z,(,v)p(v)dv and Hf = {¢p € HP : (¢, 3, (¢)) € (0,0)}. When

vi(:),...,yn(-) are independent, M, = 1. See also Guo and Qiao (2023) for examples sat-
isfying M, < o0, such as functional moving average model and functional linear process.
Similarly, we can define M. of {g,()}. To derive relevant exponential-type tails used in
convergence analysis, we assume the sub-Gaussianities for functional (or scalar) factors and
idiosyncratic components. We relegate the definitions of sub-Gaussian (functional) process

and multivariate (functional) linear process to Section E.3 of the Supplementary Material.

Assumption 4. For model (1), (i) {f;(-) }iepn) and {&.(-) }sen) follow sub-Gaussian functional

linear processes; (i1) M. < o0 and M?logp = o(n).

Assumption 4'. For model (2), (i) {~;}te[n] follows sub-Gaussian linear process and {€(-) }te[n]

follows sub-Gaussian functional linear process; (ii)M. < 0 and M?logp = o(n).
Assumption 5. There exists some constant T > 0 such that min, jefy |Var(eyuesy)|s = 7
Assumption 6. The pair (n,p) satisfies M?1logp = o(n/logn) and n = o(p?).

Assumption 5 is required when implementing AFT, however, it is weaker than the similar
assumption inf, ,)ey2 min jefy) Var(es (u)ey;(v)] = 7 imposed in Fang et al. (2023). Assump-

tion 6 allows the high-dimensional case, where p grows exponentially as n increases.
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3.2 Convergence of estimated loadings and factors

While the main focus of this paper is to estimate X,, the estimation of factors and
loadings remains a crucial aspect, encompassed by DIGIT and FPOET estimators, as well
as in many other applications. We first present various convergence rates of estimated factors

and loading matrix when implementing DIGIT. For the sake of simplicity, we denote

@y = Me/logp/n +1/4/p.

Theorem 1. Suppose that Assumptions 1-4 hold. Then there exists an orthogonal matrix
U € R™" such that (i) H]A3 — BU"||pax = Op (wnyp); (1) n71 200, H/f\t — Uf)|> = Op(M?/n +
1/p); (iii) maxiepn) HE - Uf| = Op(/\/le\/log n/n + \/nl/Q/p).

The orthogonal matrix U above is needed to ensure that bJTBj > 0 for each j € [r].
Provided that ]ABUUTE = ]A3E, the estimation of the common components and 3, remain
unaffected by the choice of U. By Theorem 1, we can derive the following corollary, which
provides the uniform convergence rate of the estimated common component. Let BZ and ‘tv)Z

denote the i-th rows of B and ]§, respectively.

~ T~ v
Corollary 1. Under the assumptions of Theorem 1, we have maxXe[p)sefn |b; £ — b | =

OP(Q)> where 0= ME\/IOgnlogp/n + \/nl/Q/p'

In the context of FPOET estimation of factors and loadings, we require an additional
asymptotically orthogonal matrix H such that 4, is a valid estimator of H~,. Differing
from DIGIT, we follow Bai (2003) to construct H in a deterministic form. Let V € R™"
denote the diagonal matrix of the first r largest eigenvalues of ZA]Z in a decreasing order.
Define H = n‘lV_lf‘TI‘SQ(u)TQ(u)du. By Lemma B35 of the Supplementary Material, H

is asymptotically orthogonal such that I, = H'H + 0,(1) = HH" + 0,(1).

Theorem 1'. Suppose that Assumptions 1'-4" hold. (i) n=* >3, |5, —H,[|* = O, (M2/n+
1/p) ; (ii) MaXie[n) 17, —H~,| = Oy (ME/\/E"" V nl/Q/p) ; (iii) maXe(p] |g; —Haq;| = Op(wn,p)~
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Corollary 1'. Under the assumptions of Theorem 1', we have maxXe[p) te[n] |Ar Ve — s Ve =

O,(0), where ¢ is specified in Corollary 1.

The convergence rates presented in Theorem 1 and Corollary 1 for model (1) are, respec-
tively, consistent to those established in Bai (2003) and Fan et al. (2013) when M. = O(1).
Additionally, the rates in Theorem 1' and Corollary 1' for model (2) align with those in
Theorem 1 and Corollary 1 . These uniform convergence rates are essential not only for

estimating the FFMs but also for many subsequent high-dimensional learning tasks.

Theorem 2. Under the assumptions of Theorems 1 and 1', we have (i) P(r” =r) — 1, and

(ii) P(77 =1) — 1 as n,p — o, where 77 and 77 are defined in (18) and (19), respectively.

Remark 5. With the aid of Theorem 2, our estimators explored in Sections 3.2 and 3.3 are
asymptotically adaptive to r. To see this, consider, e.g., model (2), and let 7, ; and q;#(-) be
constructed using - estimated scalar factors and functional loadings. Then, for any constant
¢ >0, P07 maxepy)uein] Q770 — aF vl > ) < P07 maxiepp e [G7Y, — of v, || > ¢f" =
r)+P(F7 # 1), which, combined with Corollary 1', implies that maXiefy] ] |77, 5 —ar Ve =
O,(p). Similar arguments can be applied to other estimated quantities in Sections 3.2 and

3.3. Therefore, we assume that r is known in our asymptotic results.

3.3 Convergence of estimated covariance matrix functions

Estimating the idiosyncratic covariance matrix function 3. is important in factor mod-
eling and subsequent learning tasks. With the help of functional sparsity as specified in (7),
we can obtain consistent estimators of ¥, under functional matrix ¢; norm | - |s; in the
high-dimensional scenario. The following rates of convergence based on estimated idiosyn-
cratic components are consistent with the rate based on direct observations of independent

functional data (Fang et al., 2023) when M. = O(1) and plogp = n.

Theorem 3. Suppose that Assumptions 1-6 hold. Then, for a sufficiently large constant C

) ~ A
in (10), |2, — X]s1 = Op(w; 2s,).

n,p
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Theorem 3'. Suppose that Assumptions 1'—4', 5, 6 hold. Then, for a sufficiently large

constant C in (10), Hﬁ*‘ =B |s1 = Op(wyfsp)-

When assessing the convergence criteria for our DIGIT and FPOET estimators, it is
crucial to note that functional matrix norms such as |- |s; and |- |z are not suitable choices.
This is because iy may not converge to ¥, in these norms for high-dimensional functional
data, unless specific structural assumptions are directly imposed on X,. This issue does
not arise from the poor performance of estimation methods but rather from the inherent
limitation of high-dimensional models. To address this, we present convergence rates in

functional elementwise (o, norm | - | s max-

Theorem 4. Under the assumptions of Theorem 3, we have Hf); -3,

S,max — Op(wn,p>-
Theorem 4'. Under the assumptions of Theorem 3', we have Hf]; — 2y [smax = Op(w@np)-

Remark 6. (i) The convergence rates of DIGIT and FPOET estimators (we use ZA]y to
denote both) comprise two terms. The first term O,(M./logp/n) arises from the rate of
EA];, while the second term Op(p*m) primarily stems from the estimation of unobservable
factors. When M. = O(1), our rate aligns with the result obtained in Fan et al. (2013).

(ii) Compared to f)j, we observe that using a factor-guided approach results in the same
rate in || - ||smax as long as plogp 2 n. Nevertheless, our proposed estimators offer several
advantages. First, under a functional weighted quadratic norm introduced in Section 4.1,
which is closely related to functional risk management, fly converges to X, in the high-
dimensional case (see Theorem 6), while f]j does not achieve this convergence. Second, as

evidenced by empirical results in Sections 5 and 6, f]y significantly outperforms EA]Z in terms

of various functional matrix losses.

Finally, we explore convergence properties of the inverse covariance matrix function es-
timation. Denote the null space of 3, and its orthogonal complement by ker(3,) = {x €

HP : ¥,(x) = 0} and ker(Ey)l = {x e H : (x,y) = 0,Vy € ker(X,)}, respectively.
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The inverse covariance matrix function 3 1 corresponds to the inverse of the restricted
covariance matrix function X, |ker(3%,)*, which restricts the domain of 3, to ker(X,)*.
The similar definition applies to the inverses of ¥; and X.. With the DIGIT estimator
ﬁyp(, )= B 7(, )]§T —1—2?(-, -), we apply Sherman—Morrison-Woodbury identity (Theorem
3.5.6 of Hsing and Eubank, 2015) to obtain its inverse (f)j)_l = (f)j)_l — (i?)_lﬁ{ﬁ;l +
BT (S

)

)71]§}71]A3T (2?)71. The inverse FPOET estimator can be obtained similarly. Then,
within finite-dimensional Hilbert space, both the inverse DIGIT and FPOET estimators are

consistent in the operator norm, as presented in the following theorems.

Theorem 5. Suppose that the assumptions of Theorem 4 hold, wrll;qsp = o(1), and both
Amin(X:) and Apin(Xy) are bounded away from zero. Then, f]:j has a bounded inverse with

7 : S P\-1 -1 1—q
probability approaching 1, and H(Ey) 3, HL Op(w@, 5p)-

Theorem 5'. Suppose that the assumptions of Theorem /' hold, w}l;qsp = 0(1), and A\pin(2:)
15 bounded away from zero. Then, ﬁ: has a bounded inverse with probability approaching 1,

and H(EA):)*I — E;l“ﬁ = Op(wi;)qsp).

Remark 7. (i) The condition that Apmin(2:) and Apin(Xy) are bounded away from zero can
also imply that Min(Xy) is bounded away from zero, which means that ¥, has a finite number
of nonzero eigenvalues, denoted as d,, < 00, i.e., {y:(-) }ie[n) are finite-dimensional functional
objects (Bathia et al., 2010). While the inverse of the sample covariance matriz function
fails to exhibit convergence even though it operates within finite-dimensional Hilbert space,
our factor-quided methods can achieve such convergence. It should be noted that d,, can be
made arbitrarily large relative to n, e.q., d, = 2000, n = 200. Hence, this finite-dimensional
assumption does not place a practical constraint on our method. See also applications of
wmverse covariance matrixz function estimation including functional risk management in Sec-
tion 4.1 and sparse precision matriz function estimation in Section 4.2.

(i1) Within infinite-dimensional Hilbert space, Zy_l becomes an unbounded operator, which is

discontinuous and cannot be estimated in a meaningful way. However, 3/ Uis usually asso-
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ciated with another function/operator, and the composite function/operator in ker(2,)* can
reasonably be assumed to be bounded, such as regression function/operator and discriminant
direction function in Section 4.2. Specifically, consider the spectral decomposition (14), which

dn T

is truncated at d, < o0, i.e., Xy (u,v) = D" 70, (w)p;(v)". Under certain smoothness

conditions, such as those on coefficient functions in multivariate functional linear regression

T on as-

(Chiou et al., 2016), the impact of truncation errors through 3., | 7. ¢;(u)e;(v)
sociated functions/operators is expected to diminish, ensuring the boundedness of composite
functions/operators. Consequently, the primary focus shifts towards estimating the inverse

of ¥y 4., and our results in Theorems 5 and 5' become applicable.

Upon observation, a remarkable consistency is evident between DIGIT and FPOET meth-
ods developed under different models in terms of imposed regularity assumptions and asso-

ciated convergence rates, despite the substantially different proof techniques employed.

4 Applications

4.1 Functional risk management

One main task of risk management in the stock market is to estimate the portfolio
variance, which can be extended to the functional setting to account for additional intraday
uncertainties. Consider a portfolio consisting of p stocks, where the i-th component of y,()
represents the cumulative intraday return (CIDR) trajectory (Horvath et al., 2014) for the
i-th stock on the ¢-th trading day. Additionally, let w(u) = {wy(u),...,w,(u)}" denote the
allocation vector of the functional portfolio at time u € U. For a given w(-), the true and
perceived variances (i.e. risks) of the functional portfolio are (w,X,(w)) and (w, f)y(w)>,
respectively. According to Proposition S.1 of the Supplementary Material, the estimation

error of the functional portfolio variance is bounded by
KW, Ey(w)> —{w, Ey(w»‘ < sz - Ey”S,maX(Z ”wZH) )
i=1
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in which Theorems 4 and 4' quantify the maximum approximation error Hfly — X, | s .max-
In addition to the absolute error between perceived and true risks, we are also interested
in quantifying the relative error. To this end, we introduce the functional version of weighted
quadratic norm (Fan et al., 2008), defined as |K|sx, = p~/?|2,’KX, | sr, where K €
HP ® HP and the normalization factor p~'/2 serves the role of [, |sx, = 1. To ensure the
validity of this functional norm, we assume that X, has a bounded inverse, which does not
place a constraint in practice (see Remark 7(i)). With such functional norm, the relative

error can be measured by
p71/2“2;1/22y2;1/2 - ipHS,F = sz - EyHS,Eyv (21)

where I, denotes the identity operator. Provided that HEA]; — 3y |sx, = Op(Mca/p/n), the
sample covariance estimator fails to converge in || - |s 5, under the high-dimensional setting

with p > n. On the contrary, the following theorem reveals that our DIGIT estimator f);

converges to X, as long as MZp = o(n?) and w, s, = o(1). The same result can also be

extended to the FPOET estimator.

Theorem 6. Under the assumptions of Theorem 5, we have ||§]§—Ey sz, = Op(M2p2n~14

whisy).
By Proposition S.2 of the Supplementary Material, the relative error is bounded by
|<W7 Ey(w)>/<wa Zy(w)> - 1‘ < qujlpzyz;lp - ip”b

which, in conjunction with Theorem 6 and (21), controls the maximum relative error.

4.2 Estimation of precision matrix, regression, and discriminant

direction functions

The second application considers estimating functional graphical models (Qiao et al.,

2019), which aim to identify the conditional dependence structure among components in
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yi(+). For Gaussian data, this task is equivalent to estimating the sparse inverse covariance
(i.e., precision) matrix function, which is bounded for finite-dimensional functional objects.
Our inverse DIGIT or FPOET estimators combined with functional thresholding can thus
be utilized.

The third application explores multivariate functional linear regression (Chiou et al.,

2016), which involves a scalar response z; or a functional response

=y, B(,0)) +e(v), ve,

where B(-,-) = {51(-,-),. .., Bp(-,)}" is operator-valued coefficient vector to be estimated.
We can impose certain smoothness condition such that B(u,v) = > 72 | Fip;(u)p;(v)" is suf-
ficiently smooth relative to X, (u, v) = > Tipi(u)p;(v)", ensuring the boundedness of the
regression operator 3(u, v) Su (u, u")Cov{y(u'), z(v)}du'. Replacing relevant terms by
their (truncated) sample versions, we obtain B(u,v) = n=* 3| S f);(lin(u, )y (u)z (v)du'.

This application highlights the need for estimators E as studied in Theorems 5 and 5'.

Y,dn?

The fourth application delves into linear discriminant analysis for classifying multivariate
functional data (Xue et al., 2023) with class labels w; = {1, 2}. Specifically, we assume that
yi(-)Jwy = 1 and y,(-)|w; = 2 follow multivariate Gaussian distributions with mean functions
w1 (+) and po(-), respectively, while sharing a common covariance matrix function 3,. Our
goal is to determine the linear classifier by estimating the discriminant direction function
$ 2, (u,v){py (v) — py(v) }do, which takes the same form as the regression function B(u) =
$, 2, (u,v)Cov{y(v), z }dv encountered in the third application with a scalar response z.

~—1
By similar arguments as above, both applications call for the use of estimators 33, , .

4.3 Estimation of correlation matrix function

The fifth application involves estimating the correlation matrix function and its inverse,
which are essential in various graphical models for truly infinite-dimensional objects, see,

e.g., Solea and Li (2022) and Zapata et al. (2022). Our proposed covariance estimators can
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be employed to estimate the corresponding correlation matrix function and its inverse.
Specifically, let D,(-,-) = diag{Z,11(-,"),..., 2y p(-,-)} be the p x p diagonal matrix
function. According to Baker (1973), there exists a correlation matrix function C, with
|Cylz < 1 such that X, = D)/ QCyDgl/ ?. Under certain compactness and smoothness as-
sumptions, C, has a bounded inverse, denoted by ©,, and its functional sparsity pattern
corresponds to the network (i.e., conditional dependence) structure among p components
in y:(-); see Solea and Li (2022). In general, the estimator f)y = diag(iy,n, . ,iy,pp)
is non-invertible, so we can adopt the Tikhonov regularization to estimate C, by (AJ;H) =
(D, + kI,)"¥28, (D, + kI,)~*/2 for some regularization parameter s > 0. The estimator of
0, is then given by (:);H) = ]5;,/2@3?/ + mIp)_lf);,p. Consequently, we can plug into the DIGIT

or the FPOET estimator for estimating C, and its inverse ©,,.

5 Simulations

For the first data-generating process (denoted as DGP1), we generate observed data from
model (1), where the entries of B € RP*" are sampled independently from Uniform[—0.75,0.75],
satisfying Assumption 3(i). To mimic the infinite-dimensionality of functional data, each
functional factor is generated by fi;(-) = 30, &j(-) for j € [r] over U = [0,1], where
{#:(-)}22, is a 50-dimensional Fourier basis and basis coefficients €,; = ({15, - - -, i)™ are gen-
erated from a vector autoregressive model, §;; = Ag, ;| ;+u, with A = {Aj, = 0.40=k+1y
and the innovations {uti}te[n] being sampled independently from N(0,,i21,). For the sec-
ond data-generating process (denoted as DGP2), we generate observed data from model
(2), where r-vector of scalar factors =, is generated from a vector autoregressive model,
¥ = A7,y + uy with {u}ep,,) being sampled independently from A(0,,I,). The functional
loading matrix Q(-) = {Q;x(-)}pxr is generated by Qir(-) = 320, i qiui(+), where each gy,
is sampled independently from the N(0,0.3?), satisfying Assumption 3'(i).

The idiosyncratic components are generated by €,(-) = 312, 27/2ap, ¢(-), where each
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¥, is independently sampled from N(0,, C;) with C, = DCyD. Here, we set D =
diag(Ds, ..., D,), where each D; is generated from Gamma(3,1). The generation of C,
involves the following three steps: (i) we set the diagonal entries of Cto 1, and generate the
off-diagonal and symmetrical entries from Uniform[0, 0.5]; (ii) we employ hard thresholding
(Cai and Liu, 2011) on C to obtain a sparse matrix C7, where the threshold level is found
as the smallest value such that maxiep,) >37_, I(CVZ # 0) < pt@ for a € [0,1]; (iii) we set
Co = C7 + 6L, where 6 = max{—Anin(C),0} + 0.01 to guarantee the positive-definiteness
of Cy. The parameter o controls the sparsity level with larger values yielding sparser struc-
tures in Cy as well as functional sparser patterns in ¥.(+,-). This is implied from Proposi-
tion S.3(iii) of the Supplementary Material, whose parts (i) and (ii) respectively specify the

true covariance matrix functions of y;(-) for DGP1 and DGP2.
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Figure 1: The boxplots of APC; and AIC; (i € [3]) for DGP1 and DGP2 with p = 100,n =

100, = 0.5, and r = 3,5, 7 over 1000 simulation runs.

We firstly assess the finite-sample performance of the proposed information criteria in
Section 2.4 under different combinations of p,n and a for DGP1 and DGP2. The results
demonstrate that we can achieve almost 100% model selection accuracy in most cases. For

instance, Figure 1 presents boxplots of APC; and AIC; (i = 1,2,3) for two DGPs under

25



the setting p = 100,n = 100, = 0.5, and r = 3,5,7. See also similar results for p =
200,n = 50, = 0.5 in Figure S.1 of the Supplementary Material. We observe that, for
DGP1 (or DGP2), nearly all values of APC; and AIC; are less than (or greater than) zero,
indicating that the observed data are more likely to be generated by the correct model (1)
(or model (2)). Furthermore, different penalty functions g(n,p) have similar impacts on the

information criteria when p and n are relatively large.

Table 1: The average relative frequency estimates for P(7# = r) over 1000 simulation runs.

100 0.854 0.828 0.762 0.715 0.618 0.597

10 200 0.862 0.853 0.806 0.803 0.733 0.733

02 100 0.922 0.868 0.832 0.792 0.739 0.667
20 200 0.924 0.905 0.896 0.853 0.816 0.746

100 0.958 0.973 0.931 0.932 0.896 0.890

10 200 0.960 0.974 0.952 0.950 0.936 0.943

-0 100 0.991 0.987 0.977 0.972 0.956 0.957
20 200 0.991 0.993 0.984 0.985 0.979 0.971

100 0.990 0.998 0.986 0.991 0.979 0.976

10 200 0.996 0.994 0.986 0.992 0.984 0.994

070 100 0.997 1.000 0.998 1.000 0.995 0.999
20 200 0.999 1.000 1.000 1.000 0.997 1.000

Once the more appropriate FFM is selected based on observed data, our next step adopts
the ratio-based estimator (18) (or (19)) to determine the number of functional (or scalar)
factors. The performance of proposed estimators is then examined in terms of their abilities
to correctly identify the number of factors. Table 1 reports average relative frequencies 7 = r
under different combinations of r = 3,5,7, n = 100, 200, p = 100, 200 and o = 0.25,0.5,0.75
for both DGPs. Several conclusions can be drawn. First, for fixed p and n, larger values of

a lead to improved accuracies in identifying r as the strength of factors (i.e. signal-to-noise
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ratio, see Proposition S.3(iii) of the Supplementary Material) increases. Second, we observe
the phenomenon of “blessing of dimensionality” in the sense that the estimation improves as
p increases, which is due to the increased information from added components on the factors.

Estimator —- Sample -+ DIGIT -=- FPOET -+ GQW
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Figure 2: The average losses of f]y in functional elementwise ¢y, norm (left column), Frobenius

norm (middle column) and matrix ¢; norm (right column) for DGP1 over 1000 simulation runs.

We next compare our proposed AFT estimator in (10) with two related methods for
estimating the idiosyncratic covariance ¥., where the details can be found in Section F
of the Supplementary Material. Following Fan et al. (2013), the threshold level for AFT is
selected as A = C (\/W +1//p) with C = 0.5. We also implemented the cross-validation
method to choose C. However, such method incurred heavy computational costs and only

gave a very slight improvement. We finally compare our DIGIT and FPOET estimators
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with two competing methods for estimating the covariance X,. The first competitor is the
sample covariance estimator EA]; For comparison, we also implement the method of Guo,
Qiao and Wang (2022) in conjunction with our AFT (denoted as GQW). This combined
method firstly employs autocovariance-based eigenanalysis to estimate B and then follows the
similar procedure as DIGIT to estimate f;(-) and .. Although DIGIT and GQW estimators
(or FPOET estimator) are specifically developed to fit model (1) (or model (2)), we also
use them (or it) for estimating ¥, under DGP2 (or DGP1) to evaluate the robustness of
each proposal under model misspecification. For both DGPs, we set a = 0.5 and generate
n = 60,80,...,200 observations of p = 50,100, 150,200 functional variables. We adopt
the eigenvalue-ratio-based method to determine r. Figures 2 and 3 display the numerical
summaries of losses measured by functional versions of elementwise ¢, norm, Frobenius
norm, and matrix ¢; norm for DGP1 and DGP2, respectively.

A few trends are observable. First, for DGP1 (or DGP2) in Figure 2 (or Figure 3), the
DIGIT (or FPOET) estimator outperforms the three competitors under almost all functional
matrix losses and settings we consider. In high-dimensional large p scenarios, the factor-
guided estimators lead to more competitive performance, whereas the results of 2; severely
deteriorate especially in terms of functional matrix ¢; loss. Second, although both DIGIT and
GQW estimators are developed to estimate model (1) and the idiosyncratic components are
generated from a white noise process, our proposed DIGIT estimator is prominently superior
to the GQW estimator for DGP1 under all scenarios, as seen in Figure 2. This demonstrates
the advantage of covariance-based DIGIT over autocovariance-based GQW when the factors
are pervasive (i.e. strong), however, DIGIT may not perform well in the presence of weak
factors. Third, the FPOET estimator exhibits enhanced robustness compared to DIGIT and
GQW estimators in the case of model misspecification. In particular, for DGP2, DIGIT
and GQW show substantial decline in performance measured by functional Frobenius and
matrix ¢, losses, while, for DGP1, FPOET still achieves reasonably good performance. This

suggests a preference for FPOET over DIGIT when the model form cannot be determined
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Figure 3: The average losses of f]y in functional elementwise f, norm (left column), Frobenius

norm (middle column) and matrix ¢; norm (right column) for DGP2 over 1000 simulation runs.

confidently (i.e. information criteria between two FFMs are relatively close).

6 Real data analysis

6.1 Age-specific mortality data

Our first dataset, available at https://www.mortality.org/, contains age- and gender-
specific mortality rates for p = 32 countries from 1960 to 2013 (n = 54). Following Tang et al.
(2022) which also analyzed such dataset, we apply a log transformation to mortality rates and

let vy (ux) (t € [n],i € [p], k € [101]) be the log mortality rate of people aged u, = k—1elU =
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[0,100] living in the i-th country during the year 1959 +t. The observed curves are smoothed
based on a 10-dimensional B-spline basis. Figure S.9 of the Supplementary Material displays
rainbow plots (Hyndman and Shang, 2010) of the smoothed log-mortality rates for females
in six randomly selected countries, which use different colors to represent the curves from
earlier years (in red) to more recent years (in purple). We observe a similar pattern for the
USA, the U.K., and Austria, with their curves being more dispersed, indicating a uniform
decline in mortality over time. However, this pattern differs significantly from those for
Russia, Ukraine, and Belarus, where the decreasing effect disappears, and the curves are
more concentrated. It is also worth mentioning that the U.K. and Austria are far from the
USA, but Austria is closer to Russia, Ukraine, and Belarus. This phenomenon inspires us to
employ multivariate functional time series methods, such as two FFMs, instead of spatial-

temporal models that typically rely on geographical distance as the similarity measure.
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Figure 4: Spatial heatmaps of factor loadings of some European countries for females.

For model selection, we calculate the information criteria with PCT = 0.168 < PC] =
0.177, and IC7 = —3.806 < IC{ = —3.448. Therefore, we choose FFM (1) with age-specific
factors for estimation. The leading two eigenvalues of Q in (8) are much larger than the rest
with cumulative percentage exceeding 90%, so we choose 7P = 2 for illustration. Figures 4
and S.10 of the Supplementary Material present spatial heatmaps of factor loading of some

European countries for females and males, respectively. It is apparent that the first factor
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mainly influences the regions of Western and Northern Europe, such as Italy, the U.K., Spain,
and Sweden, while the former Soviet Union member countries such as Russia, Ukraine, Be-
larus, and Lithuania are heavily loaded regions on the second factor. Additionally, countries
like Poland and Hungary that have experienced ideological shifts have non-negligible load-
ings on both factors. For countries far from Europe, such as the USA, Australia, and Japan,
the first factor also serves as the main driving force.

Figures 5 and S.11 of the Supplementary Material provide the rainbow plots of the
estimated age-specific factors for females and males, respectively. We observe that, for the
first factor of female mortality rates, the curves of more recent years mostly lie below the
curves of earlier years. This suggests a consistent improvement in mortality rates across
all ages over the years. However, for the second factor, the curves of more recent years are
located below the curves of earlier years when u < 30, and above them when u > 30, implying
a downward trend under age 30 and an upward trend over age 30. Similar conclusions can
be drawn for male mortality rates. By applying our factor-guided approach for multivariate
functional time series, we achieve clustering results that are comparable to those obtained

by Tang et al. (2022).
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Figure 5: The estimated age-specific factors for females.
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6.2 Cumulative intraday return data

Our second dataset, collected from https://wrds-www.wharton.upenn.edu/, consists
of high-frequency observations of prices for a collection of S&P100 stocks from 251 trading
days in the year 2017. We removed 2 stocks with missing data so p = 98 in our analysis. We
obtain five-minute resolution prices by using the last transaction price in each five-minute
interval after removing the outliers, and hence convert the trading period (9:30-16:00) to
minutes [0, 78]. We construct CIDR (Horvéth et al., 2014) trajectories, in percentage, by
yi(ug) = 100[log{ Py (ux)} — log{ P;(uq)}], where Py(u) (t € [n],i € [p],k € [78]) denotes
the price of the i-th stock at the k-th five-minute interval after the opening time on the t-th
trading day. We obtain smoothed CIDR curves by expanding the data using a 10-dimensional
B-spline basis. The CIDR curves, which always start from zero, not only have nearly the
same shape as the original price curves but also enhance the plausibility of the stationarity
assumption. We performed functional KPSS test (Horvéth et al., 2014) for each stock, and
found no overwhelming evidence (under 1% significance level) against the stationarity.

For model selection, the information criteria PCT = 0.567 > PC{ = 0.558, and ICT =
—0.619 > IC] = —0.640. These values suggest that FFM (2) is slightly more preferable and
imply that the latent factors may not exhibit any intraday varying patterns. We consider the
problem of functional risk management as discussed in Section 4.1. Our task is to obtain the
optimal functional portfolio allocation w(-) by minimizing the perceived risk of the functional

portfolio, specifically,
W = arg mgl {w, fly(w)> subject to w(u)'1, = 1 for any u e U,
weHP

where 1, = (1,...,1)" € R?. Following the derivations in Section E.4 of the Supplementary

Material, we obtain the solution:
w(u) = Jffl;l(u, v)diag{H (v, 2),--- , H (v, 2)}1,dvdz

a1
with H(-,-) = 1)%  (-,-)1,, which allows us to obtain the actual risk. In practical imple-
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mentation, we treat components of y,(-) as finite-dimensional functional objects and hence
~—1 ~
can obtain bounded inverse X, (and H~") using the leading eigenpairs of 3, (and H) such

that the corresponding cumulative percentage of selected eigenvalues exceeds 95%.

Table 2: Comparisons of the risks of functional portfolios obtained by using DIGIT, FPOET,

GQW, and sample estimators.

Estimator DIGIT FPOET GQW Sample
Month Fr=1 r=2 7=3 =1 =2 =3 =1 7=2 =3

July 0.052 0.060 0.058 0.057 0.060 0.057 0.083 0.062 0.052 0.099
August 0.044 0.045 0.048 0.045 0.044 0.049 0.050 0.089 0.085 0.092

September  0.092 0.051 0.065 0.093 0.053 0.058 0.108 0.056 0.060 0.097
October 0.077 0.045 0.042 0.079 0.044 0.041 0.082 0.067 0.051  0.086
November  0.078 0.060 0.043 0.079 0.063 0.045 0.063 0.073 0.076  0.090
December  0.075 0.075 0.043 0.077 0.079 0.042 0.083 0.079 0.095 0.091

Average 0.070 0.056 0.050 0.072 0.057 0.049 0.078 0.071 0.070  0.093

Following the procedure in Fan et al. (2013), on the 1st trading day of each month from
July to December, we estimate iy using DIGIT, FPOET, GQW and sample estimators
based on the historical data comprising CIDR curves of 98 stocks for the preceding 6 months
(n = 126). We then determine the corresponding optimal portfolio allocation w(uy) for
k € [78]. At the end of the month after 21 trading days, we compare actual risks calculated by
7872 X weprsy Wlug) {217 S v (ur)ye(ve) "YW (ug ). Following Fan et al. (2013) and Wang
et al. (2021), we try 7 = 1,2 and 3 to check the effect of r in out-of-sample performance. The
numerical results are summarized in Table 2. We observe that the minimum risk functional
portfolio created by DIGIT, FPOET, and GQW result in averaged risks over six months as
0.05, 0.049, and 0.07, respectively, while the sample covariance estimator gives 0.093. The

risk has been significantly reduced by around 46% using our factor-guided approach.

33



References

Bai, J. (2003). Inferential theory for factor models of large dimensions, Econometrica 71: 135-
171.

Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models,
Econometrica 70: 191-221.

Baker, C. R. (1973). Joint measures and cross-covariance operators, Transactions of the
American Mathematical Society 186: 273-289.

Bathia, N., Yao, Q. and Ziegelmann, F. (2010). Identifying the finite dimensionality of curve
time series, The Annals of Statistics 38: 3352-3386.

Cai, T. and Liu, W. (2011). Adaptive thresholding for sparse covariance matrix estimation,
Journal of the American Statistical Association 106: 672—-684.

Carmeli, C., De Vito, E. and Toigo, A. (2006). Vector valued reproducing kernel Hilbert
spaces of integrable functions and Mercer theorem, Analysis and Applications 4: 377-408.

Chiou, J.-M., Yang, Y.-F. and Chen, Y.-T. (2016). Multivariate functional linear regression
and prediction, Journal of Multivariate Analysis 146: 301-312.

Fan, J., Fan, Y. and Lv, J. (2008). High dimensional covariance matrix estimation using a
factor model, Journal of Econometrics 147: 186-197.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its
oracle properties, Journal of the American Statistical Association 96: 1348-1360.

Fan, J., Liao, Y. and Mincheva, M. (2013). Large covariance estimation by threshold-
ing principal orthogonal complements, Journal of the Royal Statistical Society: Series B
75: 603-680.

Fan, J., Liu, H. and Wang, W. (2018). Large covariance estimation through elliptical factor
models, The Annals of Statistics 46: 1383.

Fang, Q., Guo, S. and Qiao, X. (2023). Adaptive functional thresholding for sparse covariance
function estimation in high dimensions, Journal of the American Statistical Association,

m press .

Guo, S. and Qiao, X. (2023). On consistency and sparsity for high-dimensional functional
time series with application to autoregressions, Bernoulli 29: 451-472.

Guo, S., Qiao, X. and Wang, Q. (2022). Factor modelling for high-dimensional functional
time series, arXw:2112.13651v2 .

34



Hallin, M., Nisol, G. and Tavakoli, S. (2023). Factor models for high-dimensional functional
time series I: Representation results, Journal of Time Series Analysis, in press .

Happ, C. and Greven, S. (2018). Multivariate functional principal component analysis for
data observed on different (dimensional) domains, Journal of the American Statistical
Association 113: 649-6509.

Horvath, L., Kokoszka, P. and Rice, G. (2014). Testing stationarity of functional time series,
Journal of Econometrics 179: 66-82.

Hsing, T. and Eubank, R. (2015). Theoretical Foundations of Functional Data Analysis, with
an Introduction to Linear Operators, John Wiley & Sons, Chichester.

Hyndman, R. J. and Shang, H. L. (2010). Rainbow plots, bagplots, and boxplots for func-
tional data, Journal of Computational and Graphical Statistics 19: 29-45.

Lam, C. and Yao, Q. (2012). Factor modelling for high-dimensional time series: Inference
for the number of factors, The Annals of Statistics 40: 694-726.

Qiao, X., Guo, S. and James, G. (2019). Functional graphical models, Journal of the Amer-
1can Statistical Association 114: 211-222.

Solea, E. and Li, B. (2022). Copula gaussian graphical models for functional data, Journal
of the American Statistical Association 117: 7T81-793.

Tang, C., Shang, H. L. and Yang, Y. (2022). Clustering and forecasting multiple functional
time series, The Annals of Applied Statistics 16: 2523-2553.

Tavakoli, S., Nisol, G. and Hallin, M. (2023). Factor models for high-dimensional functional

time series II: Estimation and forecasting, Journal of Time Series Analysis, in press .

Wang, H., Peng, B., Li, D. and Leng, C. (2021). Nonparametric estimation of large covariance
matrices with conditional sparsity, Journal of Econometrics 223: 53-72.

Wang, W. and Fan, J. (2017). Asymptotics of empirical eigenstructure for high dimensional
spiked covariance, The Annals of Statistics 45: 1342.

Xue, K., Yang, J. and Yao, F. (2023). Optimal linear discriminant analysis for high-

dimensional functional data, Journal of the American Statistical Association,in press .

Zapata, J., Oh, S. Y. and Petersen, A. (2022). Partial separability and functional graphical

models for multivariate Gaussian processes, Biometrika 109: 665—681.

Zou, H. (2006). The adaptive lasso and its oracle properties, Journal of the American
Statistical Association 101: 1418-1429.

35



Supplementary Material to “Factor-guided estimation of large

covariance matrix function with conditional functional sparsity”

Dong Li, Xinghao Qiao and Zihan Wang

This supplementary material contains technical proofs in Sections A-D, further deriva-
tions in Section E, additional simulation results in Section F and additional real data results
in Section G. Throughout, we denote the multiplications of matrix kernel functions as follows.

For K, G € HP ® H?, we write M = KG € HP ® HP, where

M(u,v) = LK(u,w)G(w,v)dw. (S.1)

A Proofs of theoretical results in Section 2

A.1 Technical lemmas and their proofs

We first introduce useful theorems to prove Proposition 1. In the following two lemmas,
{\j}jep) are the eigenvalues of 3 € RP*P in a descending order and {§;};c[, are the cor-
responding eigenvectors. Similarly, {)Tj}je[p] and {Ej}je[p] are the corresponding eigenvalues

and eigenvectors of 3 € RPXP , respectively.
Lemma Al. (Weyl’s theorem; Weyl (1912)). \Xj -\ < |3 — 2| for j € [p].

Lemma A2. (A useful variant of sin(f) theorem; Davis and Kahan (1970); Yu et al.
(2015)). [f%;Ej = 0 for j € p], then

IZ - =)/v2

1€, — €] < ——= ~-
T min (N = Al I — Aal)

The functional version of Weyl’s theorem has been studied in Lemmas 4.2 and 4.3 of
Bosq (2000). Let {7}, be the eigenvalues of the kernel function ¥(-,-) in a descending
o0

order and {;(-)}2, are the corresponding eigenfunctions. Similary, {7;}72, and {@;(-)}2,

are the corresponding eigenvalues and eigenfunctions of i(, -), respectively.
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Lemma A3. (Lemma 4.2 in Bosq (2000)). |7 — 7| < |E — 3| for all i.

Lemma A4. (Lemma 4.3 in Bosq (2000)). If {@;, ;> = 0, then

2v2|% - =,

min (m‘fl - Tz’|7 |Ti - 7-i+1‘) ‘

18; — il <

The following lemmas introduce some functional norm inequalities, which are useful in

subsequent proofs.

Lemma A5. Suppose that K € HP @ HP is a Mercer’s kernel with the spectral decomposition
K(u,v) = 3.7 Mo, (u);(v)", where {\;}2, are the eigenvalues of K in a descending order
and {@;(-)} are the corresponding eigenfunctions. Then, we have

(i) tr {§ S K(u,v)K(u,v)"dudv} = tr{f KK" (u, u)du} = K3 = 2372, \;

(ii) ||§ § K(u, v)K(u, v)"dudv| = || KK (u,uv)du| = [K[2 = L.

Proof. (i) Note that § { K(u, v)K(u,v)"dudv = {3777, A2¢;(u)¢;(v)"du, and thus

tr{ JJK(U v)K(u,v)Tdudv} - tr{ 2 A2 J(bi(u)Tqﬁi(u)du} - g)\f.

The equality tr{§§K(u,v)K(u,v)"dudv} = |K|%p can be verified by simple calculation.
The first equality can be obtained by K(u,v)" = K" (v, u) and the multiplication of kernel
functions defined in (S.1).

(ii) Similarly,
[ [ (oK o) dudo] -] @m(um(u)%u“ ] | iA?@(um(u)Tdu}
SRS f (1) B () du | = hyue | A’ f B (u)" ®(u)du |

=Amax(A%) = A} = |KIZ,

where A = diag(A1, Ao, ... ), ®() = {d1(-), d5(),. ..}, and the fact that the oo x 00 matrix
§ ®(u)"®(u)du shares the same nonzero eigenvalues with the p x p matrix § ®(u)®(u)"du,

which can be obtained following the proof of Proposition 2 in Bathia et al. (2010). H



Lemma AG6. Suppose that K, G € H? Q HP are Mercer’s kernels, then we have
(i) [§ S K (u,v)G(u, v)"dudv], < [K|s1]|Gls0;

(ii) ||§ § K (u, v) G (u, v) dudv]| , < [K]s.0]Gls.1/

(iii) |§ § K(u, v)G(u, v)"dudv| < (HKHs,oo|!KHs,1)1/2 (IG5l Gllsa) "

(iv) |§ § K(u,v)G(u,v)"dudv| < {|| § { K(u,v)K(u U)Tdude}l/2 {55 G(u,v)G(u,v)"dudo|}

H JJK(“ v)G(u, U)Tdude

P
=1ma K (u,v)Gg(u, v)dudo
epZH; a0}

p
<max ) 3. 1KulslCuls (5:2)

L 1=1k=1
p
<oy 519 (s S 1)
=1

=Kls1|Gls.c0-

Proof. (i) Note that

(ii) By similar arguments, we obtain that

|| & o6 o] < Kis.lGls: (8.3)

(iii) The inequality follows immediately from (S.2), (S.3), the matrix norm inequality |A[? <
|Al|All; for any p x p matrix A and the choice of A = {{K(u,v)G(u,v)"dudwv.

(iv) An application of Holder’s inequality yields the result. ]

Lemma A7. Suppose that X = {3;;(,)}pxp with ¥;; € S and S e HP @ HP are Mercer’s
kernels. Then we have (i) |22, < |2z - |Zlz. (i) |12z < |Slse, and (iii) |2, <
ISIS3IZ15 Purthermore, if |Sills = [Sills for alli,j € [p], then [£]e < [Sls1-

1/2



Proof. (i) By Lemma B14 or Theorem 4.2.5 in Hsing and Eubank (2015), we have

N ~1/2 ~1/2 N
S (x,E22(x)) B <E x), %{X X)}> (x,%(x))
|23X]; =max ~———~ = max :

xeHP x]|? xeHP H S 1/2 H [[x||?

e P EOY L EBED oS

vellr  y[? et x|

(ii) By Lemma A5, |X[, = A\ and |X|lp = 4/>,2; AZ, where {)\;}{2, are the eigenvalues of
3 in a descending order. Apparently, |X|; < [X]sr holds.

(iii) By Lemmas A5(ii) and A6(iii), [S[2 = || §§3(w, v)E(u,v)*dudv| < [Z]s1]Z]s0-
Furthermore, if |X;|s = |Xjls for all 4,5 € [p], we have |X|s1 = ||X|sw, and thus

|2]2 < [Z[s1 holds. 0O

Lemma AS8. Suppose that K, G € HP? Q HP are Mercer’s kernels, then we have
(i) tr{§ KG(u, w)du} = tr{{ GK (u,u)du}, i.c., |[KG|y = [GK];

(i1) tr{§ KG (u, u)du} < |K|tr{§ Glu, w)du}, ice., [KGlx < K] |Gly:

(i) |KGsp < [K]c]Gls -

Proof. (i) Note that
KGuudu =t K(u,v)G vududv tr{K(u, v)G(v, u) }dudv
ot et s ] [ al
=tr Gvquudvdu =tr GK(v,v)dv .
{[ etk { | exw.vya}

(ii) Suppose that K(u,v) = 375 Nih;(u),;(v)" and G(u,v) = 377, wjrh;(u)ap;(v)™ where
{&;(-)} and {9,(-)} are both orthonormal basis functions. Then, we have

tr{ JKG(u, u)du} :tr{ ffK(u )G (v, u)dudv}
22 zwijb v)dv J Y (u)" ¢ (u)du
if A [ < zw

o]

max A Z — K |Gy = ]KHgtr{JG(u, u)du},

/N



where the first inequality follows by using similar arguments to prove von Neumann’s trace
inequality (see Carlsson, 2021).
(iii) From Lemma A5(i) and the part (ii) above, we have
IKG2 =tr{ f KGG™K (u, u)du} - tr{ JKTKGGT(u, u)du}
<IKK|etr{ | GG (u,udu}  [KI2IGIE

which implies the desired result. [

A.2 Proof of Proposition 1

(i) Note that {\;}¥_, are the non-vanishing eigenvalues of Q = §§33,(u,v)3,(u, v)"dudv,
and {p?0, }%_, are nonzero eigenvalues of {2, while the other p —1 eigenvalues are zero. Then

applying Lemma A1 yields that, for each j € [r],
;=10 < |9 - Q| =[],

and for r + 1 < j <p, [N| = [N = 0] < [Qx].
(ii) By Lemma A2, for j € [r] and EJTIN)J >0,

|2z]/v2

bl < — _
I€; = b min(|Aj—1 — p?6;|, [p*0; — Ajia)

Note that there exists a generic constant ¢ > 0 such that |\, — p*6;| > p?|0,_1 — 0;| —
INj—1 — p?0;1| > ep? since |\j_1 — p*0,_1] < |Qr| = o(p?) from part (i). If j < r, a similar
argument implies that |p?0; — A\j 41| > ep?. If j = r, [p?0, — N\py1| > p?0, — [A\ry1| > cp? since

2

Ari1] < [|Qr] = o(p?) by using part (i) again. Hence, min(|\;_1 — p*0;|, |p*0; — N\j11]) = P,

and if E}lw)j > 0, we have

&; ;1 = O ?|Q)). for j e [r].

A.3 Proof of Proposition 2

To prove Proposition 2, we first present a technical lemma with its proof.
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Lemma A9. Suppose that Assumption 1' holds. Then, {p¥;}e-) are the non-vanishing

eigenvalues of Q(-)Q(-)" € HP @ HP with the corresponding eigenfunctions {q;(-)}je[r]

Proof. Let q;(-) for j € [r] be the columns of Q(-). By Assumption 1', we know that

(4;,d,) = pYil (i = j), which implies that q;(-) = (pd;)/?q,(:). Then, for j € [r],

[1@uana - a0, ) - o)

which indicates that pv; is the eigenvalue of Q(-)Q(-)" with the corresponding eigenfunc-
tion q;(-). Since (q;,q;) = I(i = j) for i,j € [r], we can expand {q;(-)}e] into a set of
orthonormal basis functions in H?, denoted as {q;(-)};Z,. Considering that {(q;,qx) = 0 for
any j < rand k = r + 1, we obtain that {{Q(u)Q(v)"}qx(v)dv = 0 for k = r + 1. Thus, the

rest eigenvalues of Q(-)Q(-)" are zero. O

We are now ready to prove Proposition 2.
(i) Note that {7;}i2, are the eigenvalues of 3,(-,-), and {p¥;};_, are the r non-vanishing

eigenvalues of QQ"(+,-) by Lemma A9. Applying Lemma A3, we have, for j € [r],

75 = Uil < 2y — QQc = [z,

and, for j >r+ 1, |1 = | — 0] < [|2.| .

ii) By Lemma A7(iii), we have |S.|; < |Z.]3S.] <% = O(s,) = o(p), which yields that
(ii) By P y

7; = p¥; = p for j € [r]. Under Assumption 1', ¥J; are distinguishable and bounded away
from both zero and infinity, then min(|pd;_ — 75|, |7; — pY;41|) = p for j € [r]. It follows

from Lemma A4 that |¢; — q;|| = O(p~"|X.| ) for j € [r].

A.4 Proof of Proposition 3

The sample covariance matrix of estimated idiosyncratic components by using the con-

strained least squares follows that

$.(0,0) = Y ()~ QT HY ()" - PR} = LY ()Y (1) ~ Qu)Q()"



where we use the normalization condition n~'T I' = I, and Q() = n Y()T. If we can
show that Q(u)Q(v)T = 251 7@, (u)@;(v)T, then by the spectral decompositions of the

sample covariance estimator

~

S, (u,0) = ~Y(@)Y(0)" = Y. %8;(w)@;(0)" + Ru,v) = Qu)Qv)* + E.(u,v),

we have f{(, ) = is(-, -). Thus, by applying the adaptive functional thresholding with the
same regularization parameters to the same residual covariance matrix functions, we have
RA(-, ) = i;(-, -), and then i;(, ) = 2;(, -), which gives the desired result.

We next show that Q(u)Q(v)" = 21 7@ (u)@;(v)" holds. To do this, we impose
another identifiability condition that can serve as an alternative (see also Remark 1) to

Assumption 1'.

Assumption S.1. p~!' {Q(u)"Q(u)du = L. and X, is diagonal with distinct diagonal ele-

ments being bounded away from both 0 and o as p — 0.

Note that Assumptions 1' and S.1 can be converted to each other by orthogonal transfor-
mation. Thus, for the minimization problem (16), we can use the following two equivalent
normalization constraints:

n
-1 Z . .
)n vv; =1, and p~ JQ Q(u)du is diagonal,
t=1

n (S.4)
-1 2 ~,7; is diagonal, and p ! JQ(u)TQ(u)du =1,
t=1

Note that (S.4)(i) is used in Section 2.2 to obtain FPOET estimator. Following the similar
procedure, we obtain that Q(-) = VP(@1(-), ..., ,(-)) and I = p ' {Y(u)"Q(u)du is the
solution to (16) under (S.4)(ii). One can show that the two solutions under normalization
constraints (S.4)(i) and (ii) are equivalent and can be converted to each other through an

orthogonal matrix, i.e., there exists an r x r orthogonal matrix H such that Q(-) = Q(-)H

and ' = TH. Notice that Q(-) = /p{@,(),-..,&,()} and T = p~' Y (u)"Q(u)du, then



we have
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B Proofs of theoretical results in Section 3

B.1 Technical lemmas and their proofs

Lemma B10. For A € RP*? and K = {K;;(-, ) }gxq € H @ HY, we have

(1) |AK] s max < Al K] smax, and [KAT|[smax < [Klsmax|AT[1 = | Ao Ks max;
(i) |AK]|sp < |Ale|K|sr, and [KAT|sp < [K]sp|AT[e = [Alr[K]se;

(i) | AK]s 00 < [Alo|Kls 0, and [KAT |50 < [Kls ol A0 = [Af1][K]s.0;

() [AK[s1 < |A|L[Kl]s1, and [KAT]s1 < [Kls1|AT1 = [AfoK]s,1-
Proof. (i) It follows that

|AK]|| s max = max
i€[pl,j€lq

kKk]

q
< max Z \Aik’”KijS
1€ ],JE[Q] k=1

<<maXZ ‘Azk|> ’ HKHS,maX = HAHOOHKH&maX'
i€[p) e

Further,
KA s max =[(KAT)" s max = [AK"|smax < | Alloo[ K |.5max

= Ao [Klls max = [ A1 Kl max-



(ii) It follows that

p q p q q q
AKE =2 DD dur || < 213 (343 3 1813)
i=1j=1" k=1 i=1j=1 k=1 k=1
p q q q p q q q
33 (Sin) - (53 ) (353 i)
i=1j=1 k=1Il= i=1k=1 1=1j5=1
=|Alr[KlsF,

where the inequality follows from the Cauchy—Schwartz inequality. Furthermore,

KA s p = [(KAT) s p = [AK s < [Ale|Klsp = [K]sp|AT]e.

(iii) and (iv) It follows that

|AK|s,00 = maXZ Z | Aik Kl s = max Z Z | Akl Ks.s

kljl k=17=1

//\

A; Kyj
) Z| el mas | s

=<gga§<;Aikl>(maXZ|Kmls> Ao K s o

Furthermore,

KA 51 = [AK 500 < Al [K" 5,00 = [ Alloo [ K51

The other two arguments can be proved similarly.

Lemma B11. Forf,ge H", and A € RP*", we have
(1) |Af] < [A]-]f];
(i) | K|s < |f| - |lg|| where K(-,-) €S is defined as K (u,v) = f(u)"g(v).

Proof. (i) By the definition, it follows that

|Af] = {J (1) "AT AR, (u )du}m < {J)\max(ATA)ft(u)Tft(u)du}1/2 1A [f].



(ii) By the Cauchy—-Schwartz inequality,

it = [ [trrgaa] <[ [ | {Z g (o) duds]”
< f f 2 fj(U)Qigj(v)Qdudv}m ~{ J ()" F () fg gl

=Ifll - lel-

/2

Lemma B12. Under Assumptions 3(iv) and 4, we have that,

(i) for any i, j € [r], |n" 2, fifiy — Brijls = Op(1/v/n), and |n~' XL, £ — |5 max =
Op(1/4/n);

(ii) for any i, j € [p], [n™" 2, crig—Seijls = Op(Me/v/n), and [n™' 2L, eref = Ee] s max =
Op(-/\/le\/m);

(iii) for any i, € [p], In™' XLy vy — Syails = Op(Me/yv/n), and |n=' 35, yiyi —

2yHS,max = Op(Ms’\/ logp/n).

Proof. For parts (i) and (ii), see Theorem 2, equations (12) and (14) in Guo and Qiao (2023)
for the corresponding proofs.
(iii) The autocovariance matrix functions of {y;(-)}«z at lag h satisfy Eéh) (,) = BZ;h) (-, ) B+

Egh)(-, -), and the corresponding spectral density matrix function at frequency 6 € [—7, 7] is

given by
1

g =— Z El(jh) exp(—ih0) Z BE T exp(—ihb) + — Z E ) exp(—ihf)
2m heZ heZ heZ

:BffﬁBT + f&g.

10



By definition, the functional stability measure of {y;(-)}z is

B <¢7 \ y,0\F)/ )>
My o e (6. 5,(9)

(¢
y(@

:27r- esssup Lol U;wa u,v)p(v)dudv
u)

ety § § B() T8y (u, v)d(v)dudo

Bf BT
<27r- esssup §5 o 1.0(u,v)BT¢(v)dudv
D TV TB, o B o)

(v
§§op(u) Eguv) (v)dudv
)

+ 27 - ess sup

—,m],¢pcHb SS¢ ) ('U dudv
_ & £10(8)) _ (P, £.0())
<27 eeesﬂsiugZHT & 3,(6) + 27 . eis:udin AT
=M;+ M. = M..

The other conditions imposed by Guo and Qiao (2023) for {y:(-)}«z can be easily verified.

Then the desired results can be obtained immediately by combining the above results. [

We next introduce a lemma to give the perturbation rate in elementwise ¢,, norm of the
eigenvectors if a matrix is perturbed. Suppose that A € RP*P is a symmetric matrix. Let
the perturbed matrix be A=A+ E, where E € RP*?P is a symmetric perturbation matrix.
Suppose the spectral decomposition of A is given by A = >77_ | v, vl + 3]

i~ AiViV; , where

M| > |Ao] > -+ > [N, Clearly, A, = >, \;v;v] is the best rank-r approximation

of A. Analogously, the spectral decomposition of A = DU AVIVE 4+ \iViVT. Write
V= (vi,...,v,) eERP" and V = (¥,,...,¥,) e RP*".

Lemma B13. Suppose ¢ satisfies . > |E| and for any i € [r], the interval (\; — ¢, \;+ 1) does
not contain any eigenvalues of A other than X;. Then, there exists an orthogonal matrix

U e R™" such that

N 19122 B
VU = V] = O ( ) |
(‘)‘r‘ - ”A - Ar”oo)\/ﬁ

where pp = (V) is the coherence of V defined as (V) = (p/r) max; 335, Vi3

Proof. The proof can be found in Fan, Wang and Zhong (2018) and thus is omitted here. []

11



Lemma B14. (Theorem 4.2.5 in Hsing and Eubank (2015)). If K(-,-) is a compact and

nonnegative definite kernel matriz function with associated eigenvalue/eigenfunction pairs

(e ()2, then
(e, K(e))

\, — AN R/
k eespan{reri%fekq H H € ” 2

where K(e)(+) = {K(-, u)e(u)du.

Lemma B15. Suppose that K, G € H? @ HP are Mercer’s kernels, and Apin(G) > ¢, for a

sequence ¢, > 0. If |[K — G|z = 0,(¢,), then Apmin(K) > ¢,/2, and
K™ = Gz = Op(c,”) K = G

Proof. Note that (x, K(x)) = { {x(u)"K(u, v)x(v)dudv x € HP. Then for any x € HP such

that ||x| = 1, we have
UJM@T&%@—Gmwk@va<RFWK—Gh=%m)

Thus, for n large enough, (x,K(x)) > (x,G(x)) — ¢,/2 > ¢,/2, since for any x| = 1,
(x,G(x)) = Anin(G) > ¢, using Lemma B14. Hence, for all k > 1, the k-th eigenvalue of K

is larger than ¢, /2, which implies that \,,;,,(K) > ¢,/2. In addition,
K™ =G =|K™(G - K)G | < [KT|K - GG,
=0y(;2)|K = G,

where the last line comes from |[K™!|z = Apax(K™) = [Auin(K)] ™' = O,(c;;1). O

Lemma B16. Under Assumptions 3'(iv) and 4', we have that,

(i) for any i, 5 € [r],In™" 2y wiveg — Sl = Op(1/v/n), and [n™" 301, ¥¥ — 3 max =
Op(1/4/n);

(i) for any i, j € [p], [n™' X0, eue—2eijls = Op(Me/v/n), and [n~' 37, eref =] smax =
Op(Mey/log p/n);

(iii) for any i € [p], j € [r], [n™" Xy €wnsll = Op(Me/v/n), and maxicpy) jepry [n ™" 2y €yl =

Op(Mc+/logp/n).

12



Proof. For parts (i) and (ii), see Theorem 2, equations (12) and (14) in Guo and Qiao (2023)
for the corresponding proofs.

(iii) See Remark 3 and equation (2.16) in Fang et al. (2022) for a proof. O

Lemma B17. Under Assumptions 4 and 4', we have (i) maxp) £ = Op(v/logn); (ii)

maXien) |7, = Op(v/logn).

Proof. Notice that f;(-) in model (1) and -, in model (2) follow the sub-Gaussian functional
linear process and sub-Gaussian linear process (see Section E.3), respectively, with E||f;| =
O(1) and E|v,| = O(1). Applying Bonferroni’s method yields that for j € [r] and any given

n>0,
P (a7 ~ BLAP) > ) <nimps P (14l Bl 12 1)

<2nexp{—cmin(n? n)},

where ¢ > 0 is some constant and the second inequality follows from Lemma 5 in Fang et al.
(2022). Letting n = logn gives that maxep,) [f:|* = Op(logn) + O,(E|f,]|?), which implies

that maxep, [|[ft]| = Op(+v/logn). The second argument can be proved similarly. O

B.2 Proof of Theorem 1

The proof of part (i) of Theorem 1 mainly relies on Lemma B13. To prove Theorem 1,

we first present some technical lemmas with their proofs.

Lemma B18. Suppose that Assumption 1 holds. Then there exist some constants Cpay, Cop >

0 such that (i) [Xf|smax < Cmax, (1) max(|Xss.co, [Zrls1, [Brllsr) < Co.

Proof. (i) In Assumption 1, we assume that

Jfﬁf(u, 0) X (u,v) dudv = diag(by,...,0,),

ie.,

JJZ Y14 (u,v)*dudv = 6;, for i€ [r].
j=1

13



Then we have

HEfH‘QS,maX = Ae[H]l&X HEfU”S maX szfm u, U dudv

<maxff2 Yrij(u,v) )2dudv = max ; = 0,

i€[r]

which implies that |2/]s.max < 0% = Crnax.
(ii) Note that X¢(u,v) € R™", we have max(|X¢|s.c, | Xfls1, [Zfllsr) < 7]Ef]smax <

r0)? = C.y. O

Lemma B19. Suppose that Assumptions 1-3 hold. Then we have (i) |3,|smax < 1, (i)

1Zylls.0 < p, and (ii) |By[s1 <
Proof. (i) By Lemma B10(i) and the fact |3 |smax < |2c]z, we have
sz”é‘,max :HBEfBT + Ez;‘HS,maLx < HBE]‘BTHS,max + HESHS,max
<IBlloo | lsmax| BT l1 + 1% smax € 7*C*Crnax + O(1) =
(ii) By Lemma B10(iii), we have
[Zyls.0 =IBEB" + Xels.w < [BEB |50 + [ Zes.0
<[Blol B |eo [ 24 ls.0 + [Belso < 7pC*Co + 5 < p.

Part (iii) can be proved similarly. ]
Lemma B20. Supposing that Assumptions 1-3 hold, we have || = p* and |Qz| < p.

Proof. For the first part of the lemma, notice that |Q| < [Qz]r < A/7||Q,|| where r is the

rank of Q,, so [Q2z| = ||, and

2

22 = HpB f f S, 0) 5, ) duduB”

F

=p*tr (diag{6y, ..., 0,}diag{6,,...,0,}") = p* Z 0? = p*,
—1

14



where the second equality follows from Assumption 1 that §{X:(u,v)X;(u,v)"dudv =

diag{fy,...,0.} and B™B = pI,. Thus we have || = p?. For the second part, we have

|Q=] <

J f S (u, 0) 5. (u, v) " dudy

+ ‘UJBEf(u,v)BTEE(u,U)Tdudv

N ' f f S (u, v)BS (u, ) "B dudv

<[ %)% + 2|BXBY ]| 2. .
=0(p),

where the second inequality follows from Lemmas A5(ii) and A6(iv), and the last line follows

from Lemmas A7(i)(ii) and B18(ii). O
Lemma B21. Under the assumptions of Theorem 1, we have |Qr| < ps, = o(p?).

Proof. Notice that

|92 <| J f . (1, 0) 5 (1, 0) duce |
a0
+ H JJBEf(u,v)BTEE(u,U)TdudUH + H JJEE(U, U)BEf(u,v)TBTdude
o0 e}
<|Zells | Eellsy + 2[BEB|s,00]1 25,1
<[ Zells | Bells + 2[Ee]s1[Bloo B loc |3 5,00
o2 2 2 2
<8, +2rC°Cyspp < 8, + psy < ps, = o(p),
where the second inequality follows from Lemma A6(ii), the third inequality follows from

Lemma B10(iii), and the fourth inequality follows from Lemma B18. O

Lemma B22. Under the assumptions of Theorem 1, we have (i) Q-8 = Op(M:p*y/1/n) =

0,(p?), and (ii) |Q — Qs = O,(M.p*y/log p/n) = 0,(p?).

15



Proof. (i) Note that

10—l - UJ (1, ) udeudv—JJ (1, 0) %, (u, v) " dudo

HJJ (85 (.0) — 2y (u,0)} 5w )"
S, (u, v) {iy (u,0)™ — 3, (u, v) }dude

HJJ (85 u,0) = 2y 0,0) } {85 (. 0)" = 2y (0,0)7 + 3, (u,0)")
(1w, 0) {z (4, v)" Ey(u,v)T}dude

HJJ {S50m0) = 2y 0) S (w,0) - By(w,0)} dude

p ' J f S (u,0) — 2,1, 0) } By, 0)

<8, - 2% + 28 - ]2, e

~S 2 S
<IZy = 2y lse +20%, = 2y [s By [sr

- 1/2
= Z Z Int Z Yl — Lyij |5 +2 (Z Z In! Z YtiYhej — y,ij”?s) 12y sr

i=1j=1 i=1j5=1

=0, (MgpQ 1/”) = Op(p2),
(S.5)

where the second inequality follows from Lemmas A5(ii) and A6(iv), the third inequality
follows from Lemma A7(ii), and the last line follows from Lemmas B12(iii), the fact that
|K|lsr < p|K|smax and Assumption 4(ii).

(ii) The argument can be proved in matrix ¢,, norm following the similar procedure. Specif-

ically,
10— Q| < HJJ {5 .0) = Sy, 0) 5 (w,0) - 2,y (u, v)}T dudv
+2 HJJ AS (u,v) (u,v)} S, (u, v) " dudo

<IE, = Byls el = Zylsa + 218, = Zyls el Syl

~S /logp
x292“23/ =3yl 5.max = Op (MEPQ o > = Op(p2)>

where the first inequality can be obtained in a way similar to (S.5), the second inequality

o0]

o]
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follows from Lemma A6(ii), and the last line follows from Lemma B12(iii) and Assump-

tion 4(ii). 0

Lemma B23. Let {5\]-}?:1 be the eigenvalues of Q ina descending order. Under the as-

sumptions of Theorem 1, it holds that A = p? with probability approaching 1. Furthermore,

~

A — 5\]» > p? for all 1 <i < j < r with probability approaching 1.

Proof. By Proposition 1 and Lemma B20, the r-th largest eigenvalue A\, of €2 satisfies
A = 20, — |\ — 0?0, = 0, — Q| 2 p*.

Applying Lemma Al yields that

A =Nl < Q- 9], for j e [p].

From Lemma B22(i), we have Hﬁ — Q| = 0,(p?) and hence ), = p? with probability ap-

proaching 1. Furthermore, for all 1 <i < j <7,
A=Az =N = 1A = Xl = 1A = A = 020 — ) — 0,(0°) 2 P
with probability approaching 1. O
Lemma B24. Under the assumptions of Theorem 1, we have
B~ BU" [ = Op(Mer/p/n+ 1/Vp).
Proof. By Proposition 1(ii) and Lemma B20, if EJTIN)J > 0, then
1€ = Db, = 0,(0 2|2k ) = Oy(p~"), for j e [r]. (S.6)

Applying Lemma A2 yields that, if E;é ; = 0, we have

| - Q)/v2

At = Nl A = 5\j+1|>
where {; }i_, are the eigenvalues of Q in a descending order, and {E] }i_, are their corre-

1€; - &l < (5.7)

sponding eigenvectors. Then, for j € [r], we have [\j_1 — A;| = [\j_1 — Aj] — [\ — 5\j|,

17



where the first term |5\j_1 — ;\]] > p? with probability approaching 1 by Lemma B23, and
the second term |\; — A;| = 0,(p?) by Lemmas Al and B22(i). Hence, |\;_; — \;| 2 p? with
probability approaching 1 for all j € [r]. We can also show the similar result for [A; — A1
ifjelr—1]. If j=r|\ — 5\,,+1| > A — A1 = P20, — \piq = p? since A\pyq = 0,(p?), which
can be implied by Proposition 1 and Lemma B20 that \,;; = o(p?), and Lemmas A1l and
B22(i) that [A,1 — Ary1| = 0p(p?). Thus,

min (|Nj_1 — N, [\ — Aja]) = P2

Applying (S.7), Lemma B22(i) and the above argument, we have, if ng»Ej > 0, then
&~ &1 = 0 (M/1/n), for je |
Combing with (S.6) we have, if EJTIN)J > 0, then
1€, — b, = op<M5 Un + 1/p>, for j e [r].

Since lA)j = \/]323 and b; = \/ﬁlw)j, one can obtain that there exists an orthogonal matrix
U e R™" such that
B = BU"[x = O,(Mv/p/n +1/yp).

where the matrix U is used to adjust the direction so that each b]T-Bj >0 for j € [r]. O

We are now ready to prove Theorem 1.

(i) Let E = Q — Q be the p X p perturbation matrix. By Lemma B22, we have

~ log p
[Els < [ =1 = 0, (M| =28 = 0,0,

Corresponding to Lemma B13, here A = (2, A= ﬁ, and the r-th eigenvalue of A satisfies

A\, = p? by Proposition 1 and Lemma B20. Then, [|[A—A, |, < [Q—Q¢]x = |Qr |0 = DPSp =
o(p®) from Lemma B21. Note that V = (£,,...,£,) € RP”", and denote &; = (&, ..., &;)"

The coherence of V is given by

p - p [ ~
p= (V) = Tmax D165 < Pmax 37 (B +[; ~ by [?) = 00,
j=1

T iglp] o)
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since maxiefy) by = maxiepy) p2by; < pV2|Blmax = O(p~?) and [€; — by| = O(p7") if
£;Bj > (0 by Proposition 1(ii) and Lemma B20. In addition, supposing that ¢ ~ |E| = 0,(p?)
but ¢ > ||E|, we can show that for any j € [r], the the interval (A; —¢, A;+¢) does not contain
any eigenvalues of {2 other than A, for efficient large p. Thus by applying Lemma B13, we

have for j € [r], if EJTEJ =0,

~ 2% | E log p
1€; — &llmax = O (W) =0 | M. m )

For j € [r], if £]T't~)j > 0, we have [§; — IN)meaX < | — B]H = O(p~'), which implies that

~

1€ =Bjlmax = Op(Mer/logp/pn+1/p). Since B = \/p(&y, .-, &,) and B = \/p(bi, ..., by),
one can obtain that there exists an orthogonal matrix U € R™" (=the same as that in
Lemma B24) such that

~ log p 1
IB —BU"|jpax = O, (ME - + \/_ﬁ> = 0,(1),

where the matrix U is used to adjust the direction so that each b]T-Bj >0 for j € [r].

(ii) Note that E() = pilﬁTyt(-) = p*1]A3T{Bft() + &4(-)}or t € [n] and then
f() = Uf() =p ' (B'B -~ UB"B)f,() + p 'B'e,()). (58)
For the first term of (S.8), applying Lemmas B11 and B24 yields that
[p~(B"B - UB"B)f,| <p ' |B" - UB"| - |B| - | = O, <M€ 1/n + 1/29) :

since [BT — UB”| < |B = BU"|r = Oy(Mcy/p/n + 1/y/p), |B| = Miax(B™B) = /p and
|f,] = O,(1). For the second term of (S.8), denote b; € R” the i-th row of B and

— pfl{ Ji em-(u)zf)ilv):du}lﬂ
i=1

<2 Bluacp ™ led] = Op(1/v/p),

p
7B = ) Bies
=1

since |Blmax < C + 0,(1) and |e;| = O,(p*?) by Assumption 3(ii). The result follows

immediately that for t € [n],

| — Ut| = 0, (M./v/n+1/y/p) ,
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and thus n=2 3" | |f, — UL|2 = O,(M2/n + 1/p).
(iii) The proof procedure is similar to part (ii). We only need to notice that maxyep,) || =
O,(v1ogn) by Lemma B17 and maxep, |e:] = Op(n'/*p"/?) by applying the Chebyshev’s

inequality and Bonferroni’s method combined with Assumption 3(ii).

B.3 Proof of Corollary 1

By Theorem 1(i)(iii), Lemma B17, and Assumption 3(i), we have

max b, § — bTf,| <max [B; — Ub| - max [£] + max [b] - max [U'E, — £
i€[p],te[n] i€[p] te[n] i€[p] te[n]

=0, (@, - A/1ogn) + Op(M.a/logn/n + n'/* /p'/?)

logp n'/*
Op{(log n)“ M. . + 7 }

B.4 Proof of Theorem 3

To prove Theorem 3, we first present some technical lemmas with their proofs.

Lemma B25. Under the assumptions of Theorem 3, it holds that
(i) maXie(p - Zt L — enl? = Op(wwzl,p>;
(i1) max; jepp) [n~' 20 Euyy — n7 20l enictils = Op(@nyp);

(i) | S — Ze)smax = Op(nyp)-

Proof. (i) Notice that £;(-) —u(-) = {yui(-) = Ii()} — {yu(-) = b; £()} = (b; — Uby;) (") -
Bf(UTE —£)(+), where b; and b; are the i-th rows of B and ]§, respectively. Applying the

inequality (a + b)? < 2a* + 2b* and the Cauchy—Schwartz inequality yields that

n

max—ZHen—EmH <2max|\b — Ub, H2 Z||fH2—|—2mabe |\2n2\|UTE—ftH2

i€lp] N ni3a =1

=0y(@2,) + Op(MZ/n + 1/p) = Oy ).

n7p
(ii) Notice that max;ef, Ele||* = maxep E § ey (v)?du = maxep, § Xcii(u, u)du = O(1) from

Assumption 3(iv), thus we have maxep,n ' 21, lew|? = Op(1). By the Cauchy—Schwartz
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inequality,

n
1<~ 1 ~ ~ ~
max |— » Eufy — — Z £u€rj| = max 2(5” —e1)E + €l — €15)
Ljelpl I 4= S ajelp]in = S

n

1 ~ 9
< max — Z 1€ — €uil
ilp] M

1& 1/2
(max— Z (=4 ) (maxﬁ Z I1E; — el )

t=1

=0 ( ) + Op(@np) = Op(@np).

(iii) The result is immediately implied by part (i) above and Lemma B12(ii). O

Lemma B26. Under the assumptions of Theorem 3, there exist some constants ©1,0, > 0

such that with probability approaching 1,

0 < mln H@ ’Is < max H@ ’ls < ©,.
i€[pl.je i€[p].je

Proof. We first prove the upper bound. By the definition of C:)ij, we have

6ui(u,v) == 3 {Eu)E (0) = = 3 By (v) |
t=1 s=1
9 n 2 1 n 2
S Ai Etj _Zai‘ ) } 2 { &% - } )
2 20 (B0 = St} 2 s {0 - 538

t

I
—_

which implies that

I6:7°1% _J f (u, v)dudo < f f S (W) () — Sessu,0)} dudo + 2|8, — Sl s
t=1

== JJ; {@i(u)&j(v) — 26,2’]’(“77})} dudv + 0,(1),
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where the last line follows from Lemma B25. Moreover

t=1 t=1
+2 {eni(u)ey(v) — Seyi(u,v)}
t=1
<4Zeg]l?é< (Bu(u) — en(u)} max [; 2{2,;(v) — 2 ()} + 32, (0)2]

Here, we bound each term above as follows: (a) by Corollary 1, we have maxe(y] e[n] |6 —
ei* = Op{(logn)2M.+/log p/n + n'/*/,/p} = 0,(1) under Assumption 6; (b) by Lemma
B25(i), maxjep, ' Y0 [Ey —ey? = Op(wl,) = 0,(1); (c) by Lemma B12(ii) and Assump-
tion 3(iv), maxje n 2oy ey]® < 0p(1) + maxjey § X055 (uw, w)du = O,(1). Combing these

results yields that

H®1/2HS JJZ {5tz St] — 5 Zj(u, 1})}2dud’0 + Op(l)'
t=1

Similar arguments as those in the proof of Lemma Cai and Liu (2011) results in

n

1
ﬁ Z(Stigt]’ — 2571']')2 — Var(etistj)

t=1

max
i€[p],j€lp]

$ = op(1).

Combining with Assumption 5 implies that maxepy) jepp) |77 2o (Erigt; —2e.ij)?| s is bounded
away from both zero and infinity with probability approaching 1. Therefore, max; je[, H@l/ 2 |s

is bounded away from infinity with probability approaching 1.
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We next prove the lower bound. Notice that
n n 2
Z {gtz 5t] - ZE ’L] } 42 {51?1 5t] gti( )5 j(U)}

t:1 t

—_

which implies that

%JJZ {6ti<u)5tj(v> - Ea,ij(u, U)}Qdudv g% fjgl[gti(u)gtj(v) _ é\ti(u>é\tj(v>]2dltd7j
+ 46,3 + 0,(1),

where the LHS is bounded away from both zero and infinity uniformly in ¢, j. Then,
n R R 2
S {eutw)en(v) - Bl (o)}
t=1
N 2
226 {St] — Et] } + nggt {Etz - Etz }

t=1 t=1

<4 max {em — &ui(u }maxZ[ Eit(v 5tj(1))}2+€jt(’l])2:|.

i€[p]te[n

As demonstrated in the proof of the upper bound above, we have

% fjg {5ti(u)6tj<’0) — Eri(u)yj (v)}zdudv = 0,(1).

Hence, min;e(y) je(p H@ ?||s is bounded away from zero with probability approaching 1. [

We are now ready to prove Theorem 3. By Lemmas B25(iii) and B26, we have Hfla —
3| smax = Op(wnp) and max;jep [|045]s = Op(1). Consequently, for any € > 0, there exist

some positive constants N, ©; and ©, such that each of events

~

Yieyij — Yeij

T :{ max

i€[p],j€[p] ‘ S < an,p} ) TQ = { ”@1/2“5 @2, all 2,] € [p]}

hold with probability at least 1—e. The thresholding in (10) is equivalent to Ze i = Sij (f]sﬂ-j),
where s45(-) = sy, (-) with A\j; = Cwan@ ’|s and Wnp = /logp/n + 1/,/p which is smaller
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than w,, ,. For C > 2NO; (@, p/wnyp), under the event T N Ty, we obtain that
~ A P A~
|2 = Zefsq = = max Z 1S4, — Beislls = max D lsii(Eeis) = Teisls
; =
< S A1/2
gr}é%ﬁiz I555(Xe,ij) — 6@3”81<st ijls > Cwnp”@ ”S)
j=1
5 AL/2
+ ﬂﬂf‘},’fz_z 155 = SeailsI(1845ls > Cwnpl€7%]s)
+ maxz 1Zeiils T (1505 < Coonp|©3)7s)
~ . p ~ .
< Helﬁ?fZ A I (|Zei5]s > Cwnpy©1) + rgfﬁZ Nyl (|Eeijlls > Cwnp©1)
i — i —
p ~ .
+ Tﬁgfﬁz 12 iillsT(1Zei5ls < Cwnp©2)
=1

p
<(CO2 + N)wn, m&[ﬁz I(|Ze5lls > Nown,)
€ ,_

+ maXZ 15055 (|2e5ls < (CO2 + Ny, )

<(COy + N)w,, maxz 1= MJHSI(HZE,UHS > Nw,,)
elp] 2

N‘lwnp
(C@Q + N)lqu}zy q
|Seills

p
+max 3 [Zes I(|Zesls < (€82 + N)mny)
j=1

(C@2+N{N + ( C@2+N q}w maXZHE“JHS

——1—q
’_‘wn,p 8?’

where the third inequality follows from C@lwnp > 2Nw,,, and the last line follows from

1 2 1 2
H q)/ q/HE

the fact that s, = maxep) 27, [log [ JH eijl§ = maxiepy) D, [Xe )% since
maxe[y) |0i| A = maxep, SZE(u,u)du = O(1) by Assumption 3(iv). Therefore, with prob-
ability at least 1 — 2e, Hf] — X.[s1 < @, s, Considering that € > 0 can be arbitrarily

small, we have the desired result

oA

135 = Bele < IE7 = eflsa = Oplwnyisy).
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B.5 Proof of Theorem 4

To prove Theorem 4, we first present a technical lemma with its proof.

Lemma B27. Suppose that the assumptions of Theorem 4 hold. For the sample covariance

of £, ice., p(u,v) = n X0 F(w)f,(0)", we have

IS = US U s max = Op(M./v/0 + 1//p).

Proof. Consider f,(u)f,(v)" — Uf,(u)f,(v)"UT = {ft Uft(u)}ﬁ(v)T + Uft(u){ﬁ(v) —
Uf, (v } Then

)li(ﬁT ~ UREUY) Hli —un)Er| o+ Hlim (£, - Ut)"

n ) b b S,max n p—ry t S,max n ) P t S,max

<(z Z\Ift—UftH) ( Zfﬂ)m
c - une)” (% > \Ufﬂ) )

t=1

:Op(wn,p)a

where the second inequality follows from the Cauchy—Schwartz inequality, and the last line
follows from n=! 3" |[f,— U2 = O,(M?2/n+1/p) by Theorem 1(ii), and n=* 37 | [Uf|2 =
O,(1) since |[U| = 1 and E||f;|*> = O(1). Together with Lemma B12(i), the desired result

follows immediately. [

We are now ready to prove Theorem 4. Consider that
BX,B" - BZ;B" = BU'UX,;U"UB" — BS,B"

—BU"(Ux,;U" — £,)UB" + (BU" — B);UB" + B3 ;(UB" — B").
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Then we have
|BE/B” — BX/B" s max
<[BU" oo UZ/U" — £ max [ UB" [
+2|BU" — By, (|UZ;U" s max + [USFUT — Zf]l,max) [BU (S.9)
<PC?|US U™ = 3 s.max + 2r72C (rChax + [UZ U™ = £ 5.max) |BUT = Bmax

=0p(Me/v/n + 1/3/p) + Op(@np) = Op(@ny),
where the first inequality follows from Lemma B10(i), the second inequality follows from
IBU o < 7[BU |inax < 7[Bllmax[Ulec < 7¥2C provided that Ul < r[U| = /7,
|IBU™ — By, < 7[BU” = Blax and [UZ U] s max < Crnax|U[|% < 7Crnax in Lemma B18(i),
and the last line follows from Lemma B27 and |[BU™ — ]§HmaX = Op(wnp) in Theorem 1(i).

Then note that
~ A ~ A ~ ~
”25 - EaHS,max <H25 - EEHS,max + ”25 - ESHS,maX

< max (|6, %sA) + Op(np) = Op(ny)

where the last line follows from Lemma B25(iii), the choice of A = C'(y/logp/n + /1/p) <

A1/2

@pp, and the fact max; jepy) |0;;7[s = Op(1) by Lemma B26. By combining (5), (12) and

(S.9), we obtain the desired result.

B.6 Proof of Theorem 5

For the sake of brevity, in this section, we suppose that the orthogonal matrix U in
Theorem 1 and Lemmas B24-B27 is an identity matrix, which means, when we perform
eigen-decomposition on SAI, we can always select the correct direction of Ej to ensure E]TIN)J = 0.
The proofs of Theorems 4 and 3 verify that the choice of U does not affect the theoretical

results. To prove Theorem 5, we first present some technical lemmas with their proofs.

Lemma B28. Under the assumptions of Theorem 5, then, ij has a bounded inverse with

probability approaching 1, and ||(§A]?)’1 -2 = Op(w) 5p).-
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Proof. Provided that @, s, = o(1) and Ayin(2:) > ¢; for some constant ¢; > 0, we combine
oA
3

Lemma B15 and Theorem 3 to yield that Ay, (X.) > ¢;1/2 with probability approaching 1,
and thus EA]? has a bounded inverse with probability approaching 1 together with the desired

result [[(52)7! = 57V = Op(w05,). O
Lemma B29. Under the assumptions of Theorem 5,
[B*(S])"'B ~ B'S'B| = O,(pw)%s,) = 0,(p).
Proof. Consider
[B*(S)"'B - B'S:'B| <2|(B - B)"(2) 7B + [B{(E]) " - =B,

~ SA SAN - —
<2|B = B|[{Auin(Z)} 7 IB] + BP0 - 27,

=0, (p@nyp) + Op<pw711;7q3p) = Op(pwiqusp) = 0,(p),

where the last line follows from Lemmas B24 and B28. O

Lemma B30. Under the assumptions of Theorem 5, then, with probability approaching 1,
(i) Amin(E7' + B"S'B) 2 p;

(ii) Aun(E, +B7(E)'B) 2 p.
Proof. (i) Note that

Amin(E71 + B2 'B) = Anin(B"E'B) = Ain (B2 ) Amin(B"B) 2 p,

)

where the first inequality follows from the fact 3¢ is a Mercer kernel.
(i) Since Amin(Xf) > ¢ and Hﬁf — 3¢z = Op(wnyp) = 0p(1), by using Lemma B15, we have

Hf);l - E;ng = Op(wnyp). Thus, by Lemma B29,
oA
(

{E, +B &) "B} - {=7' + B'S'BY| = o,0).

Combing with Lemma A3, we obtain that )\min(f];l + ]§T(§]?)_1]§) 2 p. O
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We are now ready to prove Theorem 5. Using the functional version of Sherman—
. . . &P 1 —1 4
Morrison-Woodbury identity, we have | (3, )™ — X[z < >;,_; Ly, where

A -1

Li=|E)1t-%

’

.

£

L, =|{&H"'B-x; 1B}{2f LB 1B} BT 1H£,

Ly = |[B7'B{E, + B (&) BY {B'(E) " - B

Li=|=B[{Z, + B (S "B} —{2;1+BT2;13}‘1] B'Y!

‘c'
Clearly, Ly = Op(w,s,) by Lemma B28. Then, note that I(= ) 'B-X'B|, < H(iA)_l—
EQ1\|£||]§H + ”E_l|’£HB_B|| = Op(y/pw, sp). From Lemma B30, we obtain that L, = L3 =
Oyp(w, 7sp). Lastly, since )\mm(E +B"S.'B) = p and H{Ef +BT(S ) 1B} — {E +

B*S_'B}|; = O,(pw},s,) = 0,(p), we apply Lemma B15 to obtain that
5, +B'E) B — (T + B'EIBY Y = O, 0,6 0s,) = 0,07 w0 1s),

which implies that Ly = Op(w,s,). Combining the above results, 25 has a bounded
inverse with probability approaching one, and

L= Oylmhtsy)

B.7 Proof of Theorem 1'

To prove Theorem 1', we first present some technical lemmas with their proofs.

Lemma B31. Under Assumption 4', it holds that

maxz |E<€t, e =O0(M.), and max —’E<€tl’€t>|

= O0(M.).
t/ te[n] p ( )

Proof. From Assumption 4', the functional stability measure of {&;(-)}ez is bounded (M. <

), and we would like to associate it with the equation of interest in this lemma. Since
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{e/(-)}1ez is stationary, we have, uniformly in n,

ey IENRY
Z| <€t &)l <max ZZ Edey;, e)| < maxmaxz [Eevi, €1)l

telnl PiZ i teln] iele] j=)

3 E f e1i(uw)ep;(u)du

max

< max
i€[p] W

oe]

1/2
<max 2 { chh Jevi(u)du - Jﬁz’(”)&%(“)dv}
<rZI;E9;x Z ffsh w)epi(v)dudv

— T h
rzréaxéff(p 2" (4, v) g, (v)dudv

(@i, f-0-0(,))
(@i, (i)

<L27wj - ) [ess sngp EZZ f;gg ;; = wiM. = O(M,),

where ¢,(-) = (0,...,1,...)" with its i-th element being 1 and the rest being 0, Hf . = {¢ €

=2m - mfﬂj(<¢w foo—0(e;)) < 27wy - ma
i€[p i€

HP : (¢, E.(p)) € (0,00)}, f. 4 is the spectral density matrix function of {€;(-)}ez defined in

Section 3.1, and w§ = maxjep, § Xc j; (¢, u)du. Furthermore, we also obtain that

]E<st/ gyl ]E(st, €l
G p e Z = OM.).

[]

Recall the definition of the asymptotically orthogonal matrix H introduced in Section

3.2. Applying the equation (C.2) in Fan et al. (2013) or (A.1) in Bai (2003), we have

nAE<st/st> 1 & 1 1.
—H~y, = (p> { Z p Eﬂgl’yt,(tlt—i_ﬁt,zzlqwmlt—i_ﬁp)/tlgt/t}’ (S.lO)

where

1 1
Ct't = ]_9<€t’7 €t> — ];E<€t’7 €t>7
1 p
wr =292 [ (wzuludu
=1
1 V4
D) f a(w)ers(u)du
=1
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Lemma B32. Under the assumptions of Theorem 1', it holds that

(i) maieguy [ (np) ™ S, FuElew, €]l = Op(M./y/n);
(i1) masiciag [0 Xy Ay Corll = Op(x/n7P/p):
fiii) maiegu) |1 So_y Ao = Opn/n/p);
(iv) maxicga) [0~ Sy Aponll = Op(n/m /).

Proof. (i) By the Cauchy—Schwartz inequality and the fact that n=' 37" | |7,]* =
}2] 1/2
}2] 1/2

Z ) Eley,er)

/E ! < 2
Itrel[c?}]}]( np; Yo E v, &) maxl Z 17l =
<O, (1 . Z {
max
te[n] | ]
Eleu
<0,(1) max (v, &0
t/ te[n] p
Op(Mc/v/n),

where the last equality follows from Lemma B31.

(ii) By the Cauchy—Schwartz inequality and the fact that n=*> 7 | |5,]? =

3¢

=1

max

Z 7t’€t’t

<mas ] (2 ol ; )
)

[l A \p

L

t’l

E<€tl, €t>

p

0,( 1)(

Eley, )

p

el

t/

1
max —
te[n] M

1

t/

2
t't

where the last equality follows from Assumption 3'(ii) that E(n™! > _, (2,)? <

Op(1),

3

Op(1),

)1/2

) 1/2
(<stf &) - —E<etf,st>)} = 0,(n""/y/p),

maXt/ te[n

1 B =

O(1/p?), and then using Chebyshev’s inequality and Bonferroni’s method that leads to

maXe[n - Zt’ 1 Ct’t Op(v/1/p).

(iii) By the Cauchy—Schwartz inequality and the fact that |[n™' > _ J,v5| =

- 2 qu gtz dU

max

Z YNt Z Yove

t’l

max

\

where the last equality follows from Assumption 3'(ii) that E|p~1/2

Op(n

1qu

Op(1),
Y/p).

Jeri(u)dul|* =

O(1), and then using Chebyshev’s inequality and Bonferroni’s method that leads to
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maxeepn) [p7" 357 § ai(w)ews(u)dul = Op(n'*//p).
(iv) Similar to (iii), we can show that ||(np)~" >3_; 20 | §aqi(w)epi(w)dud, | = O,(1/\/p).
Additionally, maxef [v,] = Op(n'/*), implied by E|v,|* = O(1) and the use of Bonferroni’s

method. The desired result follows immediately that

n p
2 Sk =0 @i,
P 5o

max

= Oy(n'"/ /).

grg[‘og A
O

Lemma B33. Denote 4, = (31, ..., %)"- Under the assumptions of Theorem 1', it holds
that, forie [r],

(i) n=t 2 [(np) ™ 2y AvilBer, en]* = Op(MZ/n);

(ii) =t 3 (7 2y Arilen)? = Op(1/p);

(iii) =t 344 (7 2y Avinwe)? = Op(1/p);

(iv) n= 25 (071 2y Avikin)* = Op(1/p).

Proof. (i) By the Cauchy-Schwartz inequality and the fact that >,_, 32, = n

Y

2
1 (1 & Eley,e) 11/ o\ 1 & (Eep,e))’
(L En) S Sl 5 (e
t=1 =1 p t=1"" "p=1 =1 p
Lyls <E<>> <max LY <E<>)
nsin — P teln] n = D
< max Eev, &) Z Ecev, &) = O(MZ/n),
¢/ te[n] P te[n] n = P
where the last equality follows from Lemma B31.
(ii) By the Cauchy—Schwartz inequality and the fact that >,_, 37, = n
L y ’Yt/th't :% ’AYt/i’AYti y Ct'tClt
n n
=1 "o #.1e[n] -
1 o 1/2
A3z (Seo)
', le[n] t'\le[n
1/2 1 12
Z ’Vt/ { Z (2 Ct'tClt) } = { Z <Z Ct'tClt) .
t'le[n t'le[n
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Notice that E{ Zt’,le[n](Z?:l CriCu)?} = n*E(X, Gniu)? < n*maxy E|¢p|!, and by As-
sumption 3'(ii) we have maxy ; E|C|* = O(1/p?), which yields the desired result by using
Chebyshev’s inequality.

(iii) By the Cauchy—Schwartz inequality, and the facts that >, 72, = nandn™' Y7 _, [v,|* =
Op(1),

1 /18 1S
22 (5 X3em) < Nl T 2 Z Jaweswal
1 & L1 I G
<(5;1 zzﬁgvt/w)n_ﬁ ;H Z f a (u)ety ()l
p
=0,(1) %}922 quj(u)sm(u)duuz
t=1 j=1

Notice that we have E|| 337, { q;(u)e;(u)dul* = O(p) by Assumption 3'(ii), which implies
that n="E[35, [ >7_, §a;(u)ey(u)dul*] = O(p) and yields the result.

(iv) By the Cauchy-Schwartz inequality, and the facts that >, 72, = nand n™' Y7_, [|vu|*> =
Op(1),

n

DHCHIETAECHETDIPIED)

t=1 t'=1
<0, (3 23) 5 3|

t'=1

where the result in the last equality has been obtained in part (iii). O

Lemma B34. Let {7;}’_, be the first r largest eigenvalues of EA];(, -) in a descending order.

Under the assumptions of Theorem 1', it holds that 7, = p with probability approaching 1.

Proof. By Proposition 2, we obtain that

7 = [pd|? = |m —pd| 2 p— s, =p.

To show 7, 2 p with probability approaching 1, it suffices to show that |7, — 7.| = 0,(p). By
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applying Lemma A3 again, we only need to show Hij — ¥, |sr = 0,(p). Note that

€
S,F

Hiz — 3y [sr :H_ Z(Q'Yt +e)(Qv, + &) —QQ" —

1 & -
SF * HE ;Etst — 2
1 n
G X,
L) -]QQsy + ( Z 2 [n~ Zetz%

n
-1 T
an Z'Yt')’t -
t=1 i=17=1

+2(2 Zun zemu) Vpmaxa]

:Op<p/\/ﬁ) + Op(pME\/W) + Op(pMe\/W) = Op(p)

where the second inequality follows from Lemma B10(ii), the fact |[K|sr < p|K|smax any

S F

>1/2

K(-,-) e H» ® H?, and the Cauchy-Schwartz inequality. The last line of the above equation

follows from Lemma B16, M? = o(n), and the fact

1QQ"|sr = ZZ f {a:(u)"q;(v }dudv] <pmaX||qZ|| = p.

Therefore, we have obtained that 7, = p with probability approaching 1. O

Lemma B35. Under the assumptions of Theorem 1', it holds that
(i) |H| = O,(1);

(ii) HH" = I, + O,(M./\/n + 1/,/p);

(iii) H'H = 1, + O, (M./\/n + 1//p).

Proof. (i) By Lemma B34, [V~ = 771 = 0,(p~1). Also, |T| = AUZ(E'T) = A2 (n,) =
v/ from the normalization (S.4), and [T = Ax(T'T) = Aac(S0 vE) = Op(v/n)
by Lemma B16(i). In addition, | {Q(u)"Q(u)du| = O(p). By the definition of H, i.e.,
H = n_lV_lf‘TI‘SQ(u)TQ(u)du, we have |H|| = O,(1), which is also satisfied for |H|g

since H € R"™*".
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(i) Notice that

1 ¢ 1 ¢
[HH" — 1, [r < HHHT — ) Hyy/H'| + Hﬁ 2 HyH - L (5-11)
t=1 t=1

n (S.11), the first term can be bound by |[HH" — n~'> " Hy~H"|r < |H|E|L. —

nt Y Y Yl = Op(1/4/n) by Lemma B16(i). The second term can be bounded by

1 n
H - Z HyvH' -1,
n = F

1 < 1A a A

=H—ZH ACHT == ) A
nt=1 nt

"‘ H_Z'Yt H") -
1

<(n2uﬂvt 77 Znﬂm)

(g -t )
_OP(Ms/\/ﬁ + 1/\/5);

where the third line follows from Cauchy—-Schwartz inequality, and the last line follows from

1 n
<H;Z(H'n )y H

Theorem 1'(i) and the fact n=1 3" | [|9,]]* = O,(1).

(iii) From part (ii), we have HH" = I, + O,(M./y/n + 1/,/p) and |H| = O,(1). Therefore

HH'H = H + O,(M./\/n+1//p).

Also, |[H™'| < |H| + 0,(1)|[H ™|, which implies that [H™!| = O,(1). Multiplying the LHS

of the above by H™! yields that H™H = I, + O,(M./y/n + 1//D). O

We are now ready to prove Theorem 1'.
(i) By Lemma B34, the diagonal elements of V/p = diag(71/p, ..., 7,/p) are bounded away
from 0. By the inequality (a + b+ c+ d)? < 4(a® +b? + ¢® + d?), equation (S.10) and Lemma

B33, we have

=
jav)
»

| —
1=
=

|
T
2
SO
174\
5
>
S|
=
~
S|
=
=2
s
A
o
®
<
~——
no
+
52
S5

| —
=
§I>—‘

n

( Z ’Yt/th/t)
t=1 1 i3 =1 p t=1 —1
1 1 & . 2 1 G /1 &
+ max " Z <ﬁ Z %fmt/t) + Hlai( n s (5 Z ’Yt'zft/t)

t=1 t'=1 = t'=1



The desired result immediately follows that
1 n N n

n Z |9, = Hy,|? < Z —H~,)} =0, (MQ/n + 1/29)
t=1 t=1

(ii) Note [(V/p)~'| = O(1). Applying the inequality (a + b+ ¢ + d)* < 4(a* + b* + 2 + d?),

equation (S.10) and Lemma B32, we have

Z Y Gt
Z 'Ytlgt't

max 154, — H,| < max H— Z N Eey, e)| + maX

np 2
+ [t
e | Z Yomin

=0y (Me/ v+ fn2p).

(iii) Using the facts that q;(-) = n=' >0, v ()7, and yu(-) = @i(-)™y; + u(-), we have, for

+ max

i€ [p]

() — Hay() Zyn %Z Foy, () — a7y, + 2()} — Hay()

:—ZH’YtEt'L %Zytz —Hy,) +H< Z'Vﬂ’t ) Qi)

The first term in (S.12) can be bounded by
1/2 1
o)

(S.12)

Z H~,e| < |H| max { Z H— 2 Vej€ti

where the inequality follows from Lemma B11(i), and the last equality follows from Lemmas

max

B16(iii) and B35(i). For the second term, since X, ;; = q; 2, ;iq; + 2. ;; with |q,|| = O(1) and
|2 ]smax < |Ze|c = O(1), we have [Sylls = Elyu[* = O(1), and thus n™ 3", yu[® =
O,(1) by Chebyshev’s inequality. Using the Cauchy—-Schwartz inequality in the second term

of (S.12), we obtain that

1 ¢ 1/2 M 1
LS < (L S (£ Sy ) -0, (2 L)
max H Eyt Y| <m Z lyei n;H% Yl AW 7
In addition, |[H| = O,(1) from Lemma B35(i), |n ' >, v~f — L] = O,(1/4/n) from
Lemma B16(i) and maxe) |qs]| = O(1) from Assumption 3'(i) yield that the third term is

of order O,(1/4/n). Combining the above results, we obtain that

~ [logp 1
i H il = € - = n,p):
E‘Iel[%{ la qi O, (M " + \/]3> Op(w ;p)
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B.8 Proof of Corollary 1'

By Theorem 1'(ii)(iii), Lemmas B35(ii) and B17, we have
max |q; 9, — q; v,|| <max|q; — Hq;|| - max ||y, — H
omax a7 — iyl smaxa; - Hag| - max |y, — Hy,

+ max |Hq;| - max |4, — H

e [Ha| - 4, — Ho

+ max ||q; — Ha,| - max [Hr,|
ielp) t€in]

+ max |q;] - max ||lv,| - [H™H - L|
iclp] te[n]

ZOp{wn,p ) (Ms/nl/Q n n1/4/p1/2)} +0, (./\/ls/nm n n1/4/p1/2)

+ Op(wmp . \/@) 4+ Op{\/@- (Mg/nl/g T p1/2)}

logp n'/*
Op{(logn) M. - + v }

B.9 Proof of Theorem 3'

To prove Theorem 3', we first present a technical lemma with its proof.

Lemma B36. Under the assumptions of Theorem 3', it holds that
(i) maXie[p] n! Z?:l € — eul® = Op(wi,p){
(i) max; jerp) [ Y Eulyy — n7t 2L, Euicejlls = Op(@np);

(i) | Be — Be smax = Op(wnp).

Proof. (i) Note that e,i(-) =84 (") = {yu()— @ ()™ ve} —{vu() =@ ()" ¥} = Q)" Ve—ai() e
which can be decomposed as @;(-)"¥;, — ai(-)"™y, = {@ ()" — a:()"H}A, + a;(-)" H' (3, —
H~,) + q;(-)"(H"H — I,)v,. Applying the inequality (a + b + ¢)* < 3a® + 3b* + 3¢* and the
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Cauchy—Schwartz inequality yields that

max — Zl\é‘n—ém\\ <3maxq; — Ha, "~ ZH%H2

i€[p] ni=

+3maX||qz|| B2 ZH% Hy,|*

t 1
n

+ 3max ol HTH = L% ) v

t=1

=0y(w@? ) + Op(MZ/n + 1/p) = Oy(w? ).

n?p

(ii) Notice that max;ef, Eley||* = maxep E § ey;(v)?du = maxepy) § Xcii(u, u)du = O(1) from
Assumption 3'(iv), thus we have max;ep,y ™' >0, [ewu|? = Op(1). By the Cauchy-Schwartz

inequality, we have

1, ISP A A
max |- t:15ti5t] - = Z S| = max |- ;(é‘u —€ui)ey +enl@y — ey
13 ,
<max — €t — E4i
e 3 6w el
1/2
(mw—Zwm)(@w—kaem)
t=1
=0 ( p) T Op(@np) = Op(@np).
(ili) By part (ii) and Lemma B16(ii), the result follows immediately. O

We are now ready to prove Theorem 3'. By Corollary 1' and Lemma B36(i), we can
follow nearly the same procedure as in the proof of Theorem 3 to show the similar argument

that there exist some constants C', Cy > 0 such that with probability approaching 1,

C7 < min @ max @ < (s,
v< min B s < max |8} <

Together with Lemmas B36(iii), we can show that for any € > 0, there exist some positive

constant N such that each of events

~

Yieij = Yeij

i€[p],j€lp]

T, = { max < < an,p}, T, = { ”@1/2HS Cy, alli,j € [p]}

hold with probability at least 1 —e. Then for C' > 2NC; *(w,,/wn,) and under the event

Y1 n Y5, we obtain that HENJ? — X.|s1 < @, ts, by using the same way as the proof of
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Theorem 3. By Proposition 3, we know that R = i: Therefore, with probability at least
1 — 2, Hf{““ — X.|ls1 < @, %sp. Considering that € > 0 can be arbitrarily small, we have

|RA — .|z < |[RA — B|ls1 = Op(wl%s,).

n?p

B.10 Proof of Theorem 4'

Under Assumption 1', we have ¥,(u,v) = Q(u)Q(v)" + X (u,v). By the Cauchy-

Schwartz inequality and Lemma B11, we have
1QQ" — QQ|s;max = max la;a; — ai'qjls

< Max {l(@; = Hai)"qls + la;H'(q; — Hay)[s + [a; (H'H = 1,)q; s}

i,j€[p]

<max [q; — Ha,|* + 2|H|| max | q,] |a; — Ha|
i€[p] ie[p]
+ |[H"H — I max |
ie[p]

:Op(wi,p) + Op(w@ny) + Op(Ms/\/ﬁ + 1/\/@ = Op(@nyp),
where the last line follows from Theorem 1'(iii) and Lemma B35. Then by Lemma B36, we
have |3, — 3. | s max = Max; jep] Hf]g” — Yeijls = Op(wn,), and hence

~ A ~ A ~ ~
||25 - EsHS,max <H25 - 2sHS,max + ||Ee - 2EHS,maX

< maX(H@ “IsA) + Opl(@np) = Op(@ny),

ijelp]
where @” (u,v) = n 'Y {G(wWE;(v) — iaij(u,v)}Q, the last line follows from Lemma
B36(iii), the choice of A = C(\/W +4/1/p) € @nyp, and the fact max; jep, H@l/QHS =
O,(1) that can be proved following a similar argument compared to the proof of Lemma

B26. The desired result follows immediately.

B.11 Proof of Theorem 5'

By Proposition 3, we can rewrite the FPOET estimator as ﬁj(u,v) - Q)Qv)" +

A~

R*(u,v), (u,v) € U?. By Sherman—Morrison-Woodbury identity (Theorem 4.2.5 in Hsing
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and Eubank (2015)) to obtain the inverse FPOET (2;)_1 - R — (RY)'QI, +
QT(PA{A)*IQ}AQT(IA{A)A. Note that under Assumption 1', 3, = I, and EAJW = I.. To

prove Theorem 5', we first present some technical lemmas with their proofs.

Lemma B37. Under the assumptions of Theorem &', then, R+ has a bounded inverse with

probability approaching 1, and ||(RA)™! — B2z = O,(wl 9s,).

n7p

Proof. Provided that wi;qsp = 0(1) and A\yin(X:) > ¢; for some constant ¢; > 0, we combine
Lemma B15 and Theorem 3' to yield that )\min(ﬁA) > ¢1/2 with probability approaching 1,
and thus R* has a bounded inverse with probability approaching 1 together with the desired

result [(RA)™! — 2212 = O,(wl Is,). O

Lemma B38. Under the assumptions of Theorem &',
Q"(RY)T'Q - HQ'E'QH"| ;. = Oy(pwy,'sp) = 0,(p)-

Proof. In model (2), Q(-) can be viewed as a bounded linear operator from R" to H?, and

(

thus we can also regard it as a kernel matrix function satisfying Q(u,v) = Q(u), Vu,v € U.
+ v,

),
From this perspective, [QJ2; = Y7, lail? = § Qu)*Qu)du = p(y + -+ +9,) = p under
Assumption 1'. By Theorem 1'(iii), |Q — QH"| sy = {20 lai - Hqi|]2}1/2 = Op(\/P@np).-
Hence,

|Q*(R*)7'Q - HQ'S'QH" | <2|(Q — QH)"(RY) Q|
+[HQ'{(RY) ™ — =" }QH"|
<2|Q - QHTHS,F{)‘min(ﬁA»ilHQHS,F
+ QU eI HIP N (R~ = 57
=0y(p@np) + Op(p@y '5p) = Op(pw,,"5p) = 0p(p),
where the second inequality follows from Lemma A7(i)(ii), and the last line follows from

Lemmas B35 and B37. O
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Lemma B39. Under the assumptions of Theorem 5', then, with probability approaching 1,

(i) Amin{I, + HQ"S'QH"} 2 p;
(i1) Amin{Ls + Q"(RA)'Q} 2 p;

(iii) Auin(L, + QTE'Q) 2 p;

(iv) Auin{(HH") ™ + Q"S7'Q} 2 p.

Proof. (i) By Lemma B35, with probability approaching 1, Ay, (HH™) is bounded away

from 0. Hence,
A, + HQ'S,'QH"} >, (HQ S, 'QH"}
2 Amin (B2 ) Amin (QQ™) Armin(H'H) 2 p,
where A\pin (QQ") = pd, by Assumption 1'.
(ii) The result follows from part (i) and Lemmas B15 and B38.

(iii) The result follows from a similar argument to that for part (i).

(iv) The result follows from part (iii) and Lemmas B15 and B35.

[]

We are now ready to prove Theorem 5'. Using the functional version of Sherman—

. . . &7\ -1 6
Morrison—Woodbury identity, we have [[(X3,)™" — X, |z < >J)_; Lk, where

L, = (ﬁA)—l _ !

£

)

L

Lo = (R = 37101, + Q" (RY Q) 'QTRY |

.
L

Y

Ly = |{RY ™ = =7Q(L + Q"RYH'Q}'Q s

Ly =|27Y(Q - QH"{L + Q"(RY)'Q} Q"= !

.

Ls = |=71(Q - QHM{L + Q"(RY)7'Q}'HQ = !

"
L

Ly =|='QET|{L + Q" (RY) Q) ! - (I + HQ'S,'QHY) ! [HQ'S;

Combining with Lemmas B37 and B39, the desired result follows from a similar argument

to the proof of Theorem 5.
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B.12 Proof of Theorem 2

(i) By Proposition 1 and Lemma B20, |\; — p?6;| < ||Qz] = p for j € [r] which implies
that A\; = p? for j € [r], and |\;| < p for r +1 < j < p. Applying Lemma Al and Lemma
B22, we have |\, — \;| < [Q — Q| = O,(M.p*\/logp/n) = 0,(p?), which indicates that
5\]- = p? with probability approaching 1 for j € [r], and S\j =op(p*) forr+1<j<p
which implies that A\j41/A; = (Aj41/p%)/(\;/p%) =, 0/0 = 1 for 7 + 1 < j < p. Furthermore,
MAi1 = O(p) and \yy = O, (M. p*+/logp/n + p). The desired result follows immediately
since 5\j+1/5\j = 1 with probability approaching 1 if j # r, and 5‘7’—}-1/5\7‘ = 0,(1).

(ii) By Proposition 2, |7; — pd;| < |3.|z = O(1) for j € [r], which implies that 7; = p for
j €r], and |rj| = O(1) for j = r + 1. Using Lemma A3 and the proof of Lemma B34, we
have |7; — ;| < Hf); -3, |lsF = Op(Mcpr/log p/n) = 0,(p), which indicates that 7; = p with
probability approaching 1 for j € [r], and 7; = o,(p) for j = r + 1. Furthermore, 7,1 = O(1)

and 7,41 = Op(M.:py/logp/n + 1). The desired result follows immediately since 7;11/7; = 1

with probability approaching 1 if j # r, and 7,41/7, = 0,(1).

C Proofs of theoretical results in Section 4

For the sake of brevity and readability, in this section, we suppose that the orthogonal
matrix U in Theorem 1 and Lemmas B24-B27 is an identity matrix, which means that,
when we perform eigen-decomposition on ﬁ, we can always select the correct direction of Ej
to ensure ngIN)J > (0. The proofs in Section 3 verify that the choice of U does not affect the

theoretical results.

C.1 Propositions S.1-S.2 and their proofs

The following two propositions are used in Section 4.1 to quantify the maximum absolute

and relative approximation errors of the functional portfolio variance.
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Proposition S.1. Let ¥ = {3;;(, ) }pxp, and S = {XA]Z](, ) }pxp with each Zij,flij € S. For

any fized w(-) € HP, we have

[, Siw)) — S| < 18— Sl e (3 Iual)

i€[p]

Proof. Consider that

(w,X(w)) = w;(w)w;(v)X;;(u, v)dudv
inez[p] J%]

1/2 1/2
<i§]j€% { J fz,j(u,v) dudv} { f fwi(u) w; (v) dudv}

1/2 1/2
2 2
\ze[r;lax 12:ls - Z Z {f du} {fwj(v) dv}
2
~[Slsmax - Yy 2, hwnlllws] = 18 sumax (Y lil)
i€[p] j€[p] i€[p]

Thus, [(w, (W) — (w, 2<w)>] -

(B = D)W)| < 12— S man( X i), =

Proposition S.2. Suppose ¥ = {¥;;(-, ) }pxp has a bounded inverse. For any fized w(-) € HP,

we have ~
(w,3(w))

1< |ZTPER 2
(w, E(w))

pHE'

Proof. For any given w € HP, we denote x = W and w =XV 2x, provided that ¥ has

a bounded inverse. Consider that

(w, B(w)) = JJW v)dudv = ffw Uzm(u,w)zlﬂ(w,v}dw}w(v)dudv
-] w<u>T21/2<u,w>du} {22 0wlein} du = [xtwistup - b

The relative error can be bounded by

'<w, S(w))

wsw)y |

(w,E(w)) — (w, B(w))
(w,B(w))

e B AE - D))

I

<|=Es2 o,

where the last line follows from Lemma B14. O
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C.2 Proof of Theorem 6

Since there exist constants ¢; and ¢ > 0 such that A\pin(X:) > ¢, Amin(Xf) > c2, we
can obtain that all the eigenvalues of ¥, are bounded away from zero, and thus for any
K ¢ HP @ WP, K2y, — O(pY) K2 by Lemma AS(iii).

To prove Theorem 6, we first present some technical lemmas with their proofs.
Lemma C40. Under the assumptions of Theorem 6, we have |BTS,'B|; = O(1).

Proof. By Theorem 3.5.6 of Hsing and Eubank (2015), we obtain that
¥, =2 -3 'B(Z;' +B"S'B) 'B"S .

Then it follows that
B'S'B=B"X.'B-B'X.'B(%;' + B"'S'B) 'B"S'B
=B"Y.'B(X;' +B"S'B) %! (S.13)
=¥ -2 (2 + BTEB) IR,
which also implies that ¥;' > ¥;1(X;' + B2 'B)™'X; ! since B, 'B > 0. Here, for
two Mercer’s kernels K, G € H" ® H", we denote K > G as the eigenvalues of K — G are
nonnegative, i.e., K — G is still a Mercer’s kernel. Similar to the monotonicity of matrix

spectral norm, it can be shown that the operator norm is monotone, i.e., K > G implies

|K|z = |G|z. Thus, from (S.13) we have
IB"S, Bl < |27 + [271(27 + B'SB) R < 2[25 e < 267 = O(),
where the second inequality follows from the monotonicity of the operator norm. O]

Lemma C41. Under the assumptions of Theorem 6, it follows that
(i) |57 — S|y, = Op(w2,212);

(i) |(B —B)X;(B - B)'|%y, = Op(wl p);

(iii) [BE;(B — B)"[3 5, = Op(2,);

(iv) [B(S; — 2B |25, = Op(w2,/p).
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Proof. (i) Since all the eigenvalues of ¥, are bounded away from zero, and by Theorem 3,
oA A oA _
IZ2 = Bellsm, =p7'IEL = Belsr = X0 = Bz = Op(@,,7s)).
(ii) By applying Lemmas A8(iii) and B24, we have
|(B=B)X(B - B) sz, <p ' |B=B[e|ZZ[Z, [z = Op(Mip/n* + 1/p*) = Op(w, ).
(iii) Consider
IBS,(B - B)"|2y, =p 'tr { J [ﬁf(f% ~B)"S; (B - B)ﬁfBTE?;lB] (u, u)du}
<p'IB"E, 'Blc[Z,"[]|%/]Z|B - B
:Op(Mg/n + 1/p2) = Op(w'r%,p)a

where the last line follows from Lemmas A8(ii), C40 and B24.

(iv) A similar argument shows that
IB(S; — 25)B" |3y, =p 'tr {f [(fb ~ 25)B'E'B(E; - Ef)BnglB] (u, U)du}
<p B, BIZIE; - B¢lclEy - Bpln
=0,(M2/np + 1/p*) = Oy(w}, /),
where the last line follows from Lemmas B27(ii), C40 and B24. O
We are now ready to prove Theorem 6. By Lemma C41,

A~ D ~ A ~ A~ ~
1%, = ylss, <2E0 - Zelss, +21(B -B)X(B - B)"[sx,

+4|BX¢(B - B)"[5 5, +2[B(X; - 2p)B"[5 s,

Mip 2-2¢ .2
=Op< n; +@,, 1S, |,

which then implies that

P

A~ D Mg P -
I£ — %5, = O, ( nf + @) qsp> .
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D Proposition S.3 and its proof

The following proposition supporting Section 5 gives the true covariance matrix functions

for two DGPs and the functional sparsity condition.

Proposition S.3. (i) For y,(-) generated from model (1),

25

B{Z 2 0i(u)i(v) (I — A%) BT + ) 27y (u) i (v) Ce

=1

(ii) Fory.(-) generated from model (2),

2, (u,v) = Qu) (I, — A?)~ +22 i (u

(iii) The functional sparsity condition on X. as specified in (7) satisfies s, < p'=* for

€ [0,1] and g = 0.
Proof. (i) Note that E{f,(-)} = 0 and
%y (u,v) = Cov{Sigp(u), Zi(v))} = Zem (v)Var(€,),

provided that Cov(&,;, €,) = 0,x, for any i # i'. Let C; = Var(§,;) and C, = i1, be the

covariance matrix of the innovation uy. For weakly stationary VAR(1), it holds that

C; =C, + AC,A™ + A’C,(A")? Z A°C
—i iAAT = —QZAQS: (I, — A?)
s=0

Similarly, 3. (u,v) = 377, 27 1 (u) gy (v) Var () = 37, 27 i (u)di(v)C,. Hence we have

3, (u,v) = BEf(u,v)B" + 2. (u,v) = {Z¢Z oi( }BT—l—ZQ o1(u)di(v)Ce

(ii) The desired result follows immediately from the proof of part (i).

(iii) To see the functional sparsity condition on X, notice that
oi(u) = B 22 &1(u)’Di(1+6) and oy = Jai(u)du = cD?,
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where ¢ = (1 —272)(1 + §) is a constant. Then, for ¢ = 0 in (7), we have
g (072 (a2 ;
sp = max 3 1ol o 47 = max 31 DD, ([ ils #0)
= =

p
<(cmax D;) maXZ I(Cy,j #0) < maxz I(CL #0) < p=.

i€[p] ie[p] “

E Further derivations and definitions

This section contains further derivations and definitions supporting the main context of

the paper.

E.1 Estimating FFM (1) from a least squares perspective

Similar to Section 2.2, we develop a least squares method to fit model (1) with functional
factors. Let Y(-) = {y1(:),...,yn()} € RP*" and F(u)" = {f1(-),...,£,(-)} € R™*"™. Consider

solving the least-squares minimization problem

3 o T2 _ : . 2
mgﬂW@BMMMa%%;MBE, (S.14)

subject to the normalization p~'B™B = I,.. Following the similar procedure in Section 2.2,
we obtain that, for each given B, the constrained least squares estimator f‘() =p'B"Y(").
Plugging this into (S.14), objective function becomes {tr[(I, — p~'BB™)Y (v)Y (v)"]|du,
whose minimizer is equivalent to the maximizer of tr{B"[{ Y (u)Y (u)"du]B}. Apparently,
]§/ /P are the eigenvectors corresponding to the r largest eigenvalues of the p x p matrix
$Y (u)Y (u)"du = ngﬁj(u, w)du.

For the DIGIT method, the loading matrix B is estimated by the eigenanalysis of
Sgiz(u, 'U)ZAlj(u,v)Tdudv, while the above shows that minimizing the least squares crite-
rion (S.14) is equivalent to performing eigenanalysis of Si;(u,u)du By comparison, the

DIGIT method contains more covariance information by taking into account not only the
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diagonal entries ﬁj(u, u) but also the off-diagonal entries i;(u, v) for u # v. Although such
increased information may not alter the convergence rate of the proposed estimator, it will

reduce the variance to improve the estimation efficiency.

E.2 Relationship between two FFMs

We rewrite model (1) as y:(-) = Bfi(:) + &(-) = x,() + &:(-), and model (2) as y:(-) =
Q()v, + et(t) = ke(+) + &(+), where x,(-) and k() are the common components of the two

FFMs. The covariance matrix function of x,(-) is

B (1:0) = B (1 )BT = B L (1) ()7 }BT = 3 it (w)i (o)

where, by Mercer’s theorem, Xy(u,v) = 37, wig;(u)p;(v)" and 9;(-) = Bep,(-)/\/p. Sup-

i(v
pose that Assumption S.1 is satisfied with 3, = dlag(TS‘ 19 +). The covariance matrix

function of ky(+) is
S (u,v) = Q(u) me q Zpﬁ v;(u ,

where {q;(-)}’_, is the set of columns of Q(-) such that {|q;[}’_, is in a descending order,
and v(-) = q;(-)/y/p- Note that

| e, wau = [ 6,075 BB, (wdu = [ 6,0)7 @, (wedu = 1 = 1), and

fl/i(u)Tuj(u)du =p! fﬁi(u)T(ﬁj(u)du = I(i = j) from Assumption S.1.
Consequently, {1,(-)}72, are the eigenfunctions of ¥, with nonnegative eigenvalues {pw;}7,
and {v;(-)}7_;, which can be extended to a set of orthonormal basis functions, are the
eigenfunctions of 3, with nonnegative eigenvalues {p?? } >, satisfying 19 =0 when j > r.

In this point of view, FFM (1) can be converted to FFM (2) if and only if w; = 0 when

i > r. On the contrary, model (2) can be regarded as a special case of model (1) if and
only if the solutions of {¢;(-)}}_, to the functional equations Bg,(-) = q;(-) for j € [r] exist
given B and {q;(-)};_,. Since the rank of the space spanned by columns of matrix B is 7,
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the equivalent condition for the existence of the solutions follows that the rank of the space

T

spanned by {q;(-)};_; is 7.

E.3 Sub-Gaussian (functional) linear process

We first define sub-Gaussian functional process.

Definition S.1. Let z4(-) be a mean zero random wvariable in H and ¥y : H — H be a

covariance operator. Then x,() is a sub-Gaussian process if there exists a constant o = 0

such that for all x € H, E(exp{z, z;)) < exp{a?(z, Xo(z))/2}.

To develop finite-sample theory for relevant estimators in Section 3, we focus on multi-
variate functional linear process with sub-Gaussian errors, namely sub-Gaussian functional
linear process. Specifically, we assume z;(-) = {21 (-), ..., 2,(-)}" € HP admits the represen-

tation

M8

zi() = ) Au(xi), tEZ, (S.15)

where A; = (Ajj)pxp With each A;;; € S and x¢(-) = {xn(-),..., 24 ()}" € HP, whose

o~

components are independent sub-Gaussian processes satisfying Definition S.1, and the coef-
ficient functions satisfy >,,°, |Ai]s.c = O(1). In Section 3, we assume that f;(-) in model
(1) and &(-) follow sub-Gaussian functional linear processes, and -, in model (2) follows
sub-Gaussian linear process, which can be correspondingly defined from the non-functional

versions of (S.15) and Definition S.1.

E.4 Optimal functional portfolio allocation

In this section, we derive the optimal functional portfolio allocation w(-) that is required

in Section 6.2. Specifically, we aim to solve the following constrained minimization problem:

& = arg min (w. $ - oo 1d
w argvrvréil%<w, y(W)) subject to w(u)"1, or any u € U,
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where 1, = (1,...,1)" € RP. To solve this, we apply the method of Lagrange multipliers by

defining the Lagrangian function as

JJW (Mwh—fA@Hw@f%—le

where A(-) € H. Setting the functional derivative of L(w, \) with respect to w(-) to zero,

ie., (3,0, v)w(v)dv — A()1, = 0, we obtain that
wmyzfﬁijM@nm%ueu

f); (-,)1,. With the constraint 1;w(u) = 1 for any u € U, we have

gwwy:fxmgijmmﬂﬂvzfxmﬂmwmv:L

which indicates that A(u) = § H™'(u,v)dv for any u € Y. Combining the above results yield

the desired solution

JJ (u, v)diag{H (v, 2), - , H (v, 2)}1,dvdz.

F Additional simulation results

This section provides additional results supporting Section 5. Figure S.1 presents boxplots
of APC; and AIC; (i € [3]) for two DGPs under the setting p = 200,n = 50, = 0.5, and
r=3,5,17.
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Figure S.1: The boxplots of APC; and AIC; (i € [3]) for DGP1 and DGP2 with p = 200,n =

50, = 0.5, and r = 3, 5,7 over 1000 simulation runs.

We compare our AFT estimator in (10) with two related methods for estimating the id-
iosyncratic covariance 3., specifically, the sample covariance estimator defined as f]j(u, v) =
n~t 3 E(u)g(v)T, and Fang et al. (2023)’s AFT estimator in (11). Figures S.2 and S.3
plot average losses of ﬁg measured by functional matrix ¢; norm and operator norm for DGP1
and DGP2, respectively, under the settings n = p = 60,80, ...,200 and o = 0.25,0.5,0.75.
We observe several evident patterns. First, the estimation accuracy measured by both func-
tional matrix norms substantially improves when using the AF'T estimators compared to ﬁ:
Second, despite our AFT proposal requiring weaker assumptions compared to Fang et al.
(2023)’s method, both AFT estimators exhibit very similar empirical performance. Third,
for a = 0.25 and 0.5, the performance of the sample and AFT estimators deteriorates as
p increases. However, when a = 0.75, both losses of two AFT estimators decrease as p in-
creases. This phenomenon can be attributed to the fact that {(log p/n)"?+p~1/2}p'=* = o(1)

as n,p — o if @ > 0.5, which is implied by Theorems 3 and 3' under the setting n = p,q =
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0, M. = O(1). These simulation results nicely validate Theorems 3 and 3'.
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Figure S.2: The average losses of 3. in functional matrix ¢; norm (top row) and operator

norm (bottom row) for DGP1 over 1000 simulation runs with n = p = 60,80,...,200 and

a = 0.25,0.5,0.75.
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Figure S.3: The average losses of ZAL_; in functional matrix ¢; norm (top row) and operator
norm (bottom row) for DGP2 over 1000 simulation runs with n = p = 60,80,...,200 and

a = 0.25,0.5,0.75.

We also give results for C=1in Figures S.4 and S.5 to illustrate the robustness of our

threshold choice.
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a = 0.25,0.5,0.75.
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Figure S.5: The average losses of 3. in functional matrix ¢, norm (top row) and operator norm
(bottom row) for DGP2 with C = 1 over 1000 simulation runs with n = p = 60,80, ...,200 and

a = 0.25,0.5,0.75.

Figures S.6 and S.7 plot average losses of fly measured by functional versions of element-

wise o, norm, Frobenius norm and matrix ¢; norm for DGP1 and DGP2, respectively, when

C=1
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1000 simulation runs.
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This section presents additional results supporting Section 6. Table S.1 gives a list of
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inclusive countries with corresponding ISO Alpha-3 codes. Figure S.8 provides the rainbow
plots of observed and smoothed age-specific log-mortality rates for females in GBR. Fig-
ure 5.9 displays smoothed log-mortality rates for females in six randomly selected countries.

Figure S.10 presents spatial heatmaps of factor loading of some European countries for males.



Figure S.11 provides the rainbow plots of the estimated age-specific factors for males.

Table S.1: List of inclusive countries with corresponding ISO Alpha-3 codes.

Country Code Country Code Country Code Country Code
Australia AUS Estonia  EST Lithuania LTU Russia RUS
Austria AUT Finland FIN Latvia LVA Slovakia SVK
Belgium BEL France FRA Luxembourg LUX Spain ESP
Belarus BLR Hungary HUN Norway NOR Sweden SWE
Bulgaria BGR Iceland ISL  Portugal PRT Switzerland CHE
Canada CAN TIreland IRE Poland POL Great Britain GBR
Denmark DNK Italy ITA Netherlands NLD United States USA
Czech Republic CZE Japan JPN New Zealand NZL Ukraine UKR
Unsmoothed female mortaliy rates of GBR Smoothed female mortaliy rates of GBR

% e %5 -5.0

5 5

S B 3 ) L/ /

oo ; . . " L ool 5 5 ; - -
Age Age

Figure S.8: The observed and smoothed age-specific log-mortality rates for females in GBR from

1960 to 2013.
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Figure S.10: Spatial heatmaps of factor loadings of some European countries for males.
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