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Abstract

This paper addresses the fundamental task of estimating covariance matrix func-

tions for high-dimensional functional data/functional time series. We consider two

functional factor structures encompassing either functional factors with scalar loadings

or scalar factors with functional loadings, and postulate functional sparsity on the co-

variance of idiosyncratic errors after taking out the common unobserved factors. To

facilitate estimation, we rely on the spiked matrix model and its functional general-

ization, and derive some novel asymptotic identifiability results, based on which we

develop DIGIT and FPOET estimators under two functional factor models, respec-

tively. Both estimators involve performing associated eigenanalysis to estimate the

covariance of common components, followed by adaptive functional thresholding ap-

plied to the residual covariance. We also develop functional information criteria for the

purpose of model selection. The convergence rates of estimated factors, loadings, and

conditional sparse covariance matrix functions under various functional matrix norms,

are respectively established for DIGIT and FPOET estimators. Numerical studies in-

cluding extensive simulations and two real data applications on mortality rates and

functional portfolio allocation are conducted to examine the finite-sample performance

of the proposed methodology.

Keywords: Adaptive functional thresholding; Asymptotic identifiablity; Eigenanalysis; Func-

tional factor model; High-dimensional functional data/functional time series; Model selec-

tion.
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1 Introduction

With advancements in data collection technology, multivariate functional data/functional

time series are emerging in a wide range of scientific and economic applications. Examples

include different types of brain imaging data in neuroscience, intraday return trajectories

for a collection of stocks, age-specific mortality rates across different countries, and daily

energy consumption curves from thousands of households, among others. Such data can be

represented as ytp¨q “ tyt1p¨q, . . . , ytpp¨quT defined on a compact interval U , with the marginal-

and cross-covariance operators induced from the associated kernel functions. These operators

together form the operator-valued covariance matrix, which is also referred to as the following

covariance matrix function for notational simplicity:

Σy “ tΣy,jkp¨, ¨qupˆp, Σy,jkpu, vq “ Covtytjpuq, ytkpvqu, pu, vq P U2,

and we observe stationary ytp¨q for t “ 1, . . . , n.

The estimation of covariance matrix function and its inverse is of paramount impor-

tance in multivariate functional data/functional time series analysis. An estimator of Σy

is not only of interest in its own right but also essential for subsequent analyses, such as

dimension reduction and modeling of tytp¨qu. Examples include multivariate functional prin-

cipal components analysis (MFPCA) (Happ and Greven, 2018), functional risk management

to account for intraday uncertainties, functional graphical model estimation (Qiao et al.,

2019), multivariate functional linear regression (Chiou et al., 2016) and functional linear

discriminant analysis (Xue et al., 2023). See Section 4 for details of these applications. In

increasingly available high-dimensional settings where the dimension p diverges with, or is

larger than, the number of independent or serially dependent observations n, the sample co-

variance matrix function pΣ
S

y performs poorly and some regularization is needed. Fang et al.

(2023) pioneered this effort by assuming approximate functional sparsity in Σy, where the

Hilbert–Schmidt norms of some Σy,jk’s are assumed zero or close to zero. Then they applied

adaptive functional thresholding to the entries of pΣ
S

y to achieve a consistent estimator of Σy.
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Such functional sparsity assumption, however, is restrictive or even unrealistic for many

datasets, particularly in finance and economics, where variables often exhibit high correla-

tions. E.g., in the stock market, the co-movement of intraday return curves (Horváth et al.,

2014) is typically influenced by a small number of common market factors, leading to highly

correlated functional variables. To alleviate the direct imposition of sparsity assumption, we

employ the functional factor model (FFM) framework for ytp¨q, which decomposes it into

two uncorrelated components, one common χtp¨q driven by low-dimensional latent factors

and one idiosyncratic εtp¨q. We consider two types of FFM. The first type, explored in Guo

et al. (2022), admits the representation with functional factors and scalar loadings:

ytp¨q “ χtp¨q ` εtp¨q “ Bftp¨q ` εtp¨q, t “ 1, . . . , n, (1)

where ftp¨q is a r-vector of stationary latent functional factors, B is a p ˆ r matrix of factor

loadings and εtp¨q is a p-vector of idiosyncratic errors. The second type, introduced by Hallin

et al. (2023), involves scalar factors and functional loadings:

ytp¨q “ χtp¨q ` εtp¨q “ Qp¨qγt ` εtp¨q, t “ 1, . . . , n, (2)

where γt is a r-vector of stationary latent factors and Qp¨q is a p ˆ r matrix of functional

factor loadings. We refer to Σf , Σχ and Σε as the covariance matrix functions of ft, χt and

εt, respectively.

Within the FFM framework, our goal is to estimate the covariance matrix function Σy “

Σχ ` Σε. Inspired by Fan et al. (2013), we impose the approximately functional sparsity

assumption on Σε instead of Σy directly giving rise to the conditional functional sparsity

structure in models (1) and (2). To effectively separate χtp¨q from εtp¨q, we rely on the

spiked matrix model (Wang and Fan, 2017) and its functional generalization, i.e. a large

nonnegative definite matrix or operator-valued matrix Λ “ L ` S, where L is low rank

and its nonzero eigenvalues grow fast as p diverges, whereas all the eigenvalues of S are

bounded or grow much slower. The spikeness pattern ensures that the large signals are
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concentrated on L, which facilitates our estimation procedure. Specifically, for model (2),

with the decomposition

Σyp¨, ˚q
loomoon

Λ

“ Qp¨qCovpγtqQp˚q
T

loooooooooomoooooooooon

L

`Σεp¨, ˚q
loomoon

S

, (3)

we perform MFPCA based on pΣ
S

y , then estimate Σχ using the leading r functional prin-

cipal components and finally propose a novel adaptive functional thresholding procedure

to estimate the sparse Σε. This results in a Functional Principal Orthogonal complEment

Thresholding (FPOET) estimator, extending the POET methodology for large covariance

matrix estimation (Fan et al., 2013; 2018; Wang et al., 2021) to the functional domain. Al-

ternatively, for model (1), considering the violation of nonnegative definiteness in Σypu, vq

for u ‰ v, we utilize the nonnegative definite doubly integrated Gram covariance:

ż ż

Σypu, vqΣypu, vqTdudv
looooooooooooooooomooooooooooooooooon

Λ

“ B
!

ż ż

Σf pu, vqBTBΣf pu, vqTdudv
)

BT

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

L

` remaining terms
looooooooomooooooooon

S

, (4)

which is shown to be identified asymptotically as p Ñ 8. We propose to carry out eigenanal-

ysis of the sample version of Λ in (4) combined with least squares to estimate B, ftp¨q and

hence Σχ, and then employ the same thresholding method to estimate Σε. This yields an

Eigenanalysis of Doubly Integrated Gram covarIance and Thresholding (DIGIT) estimator.

The new contribution of this paper can be summarized in four key aspects. First, though

our model (1) shares the same form as the one in Guo et al. (2022) and aligns with the

direction of static factor models in Bai and Ng (2002) and Fan et al. (2013), substantial

advances have been made in our methodology and theory: (i) We allow weak serial correla-

tions in idiosyncratic components εtp¨q rather than assuming the white noise. (ii) Unlike the

autocovariance-based method (Guo et al., 2022) for serially dependent data, we leverage the

covariance information to propose a more efficient estimation procedure that encompasses

independent observations as a special case. (iii) More importantly, under the pervasiveness

assumption, we establish novel asymptotic identifiability in (4), where the first r eigenvalues

of L grow at rate Opp2q, whereas all the eigenvalues of S diverge at a rate slower than Opp2q.
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Second, for model (2), we extend the standard asymptotically identified covariance de-

composition in Bai and Ng (2002) to the functional domain, under the functional counterpart

of the pervasiveness assumption. Based on these findings, we provide mathematical insights

when the functional factor analysis for models (1) and (2) and the proposed eigenanalysis of

the respective Λ’s in (3) and (4) are approximately the same for high-dimensional functional

data/functional time series.

Third, we develop a new adaptive functional thresholding approach to estimate sparseΣε.

Compared to the competitor in Fang et al. (2023), our approach requires weaker assumptions

while achieving similar finite-sample performance. Fourth, with the aid of such thresholding

technique in conjunction with our estimation of FFMs (1) and (2), we propose two factor-

guided covariance matrix function estimators, DIGIT and FPOET, respectively. We derive

the associated convergence rates of estimators for Σε, Σy and its inverse under various

functional matrix norms. Additionally, we introduce fully functional information criteria to

select the more suitable model between FFMs (1) and (2).

The rest of the paper is organized as follows. Section 2 presents the corresponding

procedures for estimating Σy under two FFMs as well as the information criteria used for

model selection. Section 3 provides the asymptotic theory for involved estimated quantities.

Section 4 discusses a couple of applications of the proposed estimation. We assess the finite-

sample performance of our proposal through extensive simulations in Section 5 and two real

data applications in Section 6.

Throughout the paper, for any matrix M “ pMijqpˆq, we denote its matrices ℓ1 norm, ℓ8

norm, operator norm, Frobenius norm and elementwise ℓ8 norm by }M}1 “ maxj
ř

i |Mij|,

}M}8 “ maxi
ř

j |Mij|, }M} “ λ
1{2
maxpMTMq, }M}F “ p

ř

i,j M
2
ijq

1{2 and }M}max “ maxi,j |Mij|,

respectively. Let H “ L2pUq be the Hilbert space of squared integrable functions defined

on the compact set U . We denote its p-fold Cartesian product by Hp “ H ˆ ¨ ¨ ¨ ˆ H and

tensor product by S “ H b H. For f “ pf1, . . . , fpqT,g “ pg1, . . . , gpqT P Hp, we denote the

inner product by xf ,gy “
ş

U fpuqTgpuqdu with induced norm } ¨ } “ x¨, ¨y1{2. For an integral
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matrix operator K : Hp Ñ Hq induced from the kernel matrix function K “ tKijp¨, ¨quqˆp

with each Kij P S, Kpfqp¨q “
ş

U Kp¨, uqfpuqdu P Hq for any given f P Hp. For notational

economy, we will use K to denote both the kernel function and the operator. We de-

fine the functional version of matrix ℓ1 norm by }K}S,1 “ maxj
ř

i }Kij}S , where, for each

Kij P S, we denote its Hilbert–Schmidt norm by }Kij}S “ t
ş ş

Kijpu, vq2dudvu1{2 and trace

norm by }Kii}N “
ş

Kiipu, uqdu for i “ j. Similarly, we define }K}S,8 “ maxi
ř

j }Kij}S ,

}K}S,F “ t
ř

i,j }Kij}
2
Su1{2 and }K}S,max “ maxi,j }Kij}S as the functional versions of matrix

ℓ8, Frobenius and elementwise ℓ8 norms, respectively. We define the operator norm by

}K}L “ supxPHp,}x}ď1 }Kpxq}. For a positive integer m, write rms “ t1, . . . ,mu and denote

by Im the identity matrix of size m ˆ m. For x, y P R, we use x ^ y “ minpx, yq. For two

positive sequences tanu and tbnu, we write an À bn or an “ Opbnq or bn Á an if there exists

a positive constant c such that an{bn ď c, and an “ opbnq if an{bn Ñ 0. We write an — bn if

and only if an À bn and an Á bn hold simultaneously.

2 Methodology

2.1 FFM with functional factors

Suppose that ytp¨q admits FFM representation (1), where r common functional fac-

tors in ftp¨q “ tft1p¨q, . . . , ftrp¨quT are uncorrelated with the idiosyncratic errors εtp¨q “

tεt1p¨q, . . . , εtpp¨quT and r is assumed to be fixed. Then we have

Σypu, vq “ BΣf pu, vqBT
` Σεpu, vq, pu, vq P U2, (5)

which is not nonnegative definite for some u, v. To ensure nonnegative definiteness and accu-

mulate covariance information as much as possible, we propose to perform an eigenanalysis

of doubly integrated Gram covariance:

Ω “

ż ż

Σypu, vqΣypu, vq
Tdudv ” ΩL ` ΩR, (6)
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where ΩL “ Bt
ş ş

Σf pu, vqBTBΣf pu, vqTdudvuBT and ΩR “
ş ş

Σεpu, vqΣεpu, vqTdudv `

ş ş

BΣf pu, vqBTΣεpu, vqTdudv `
ş ş

Σεpu, vqBΣf pu, vqTBTdudv. To make the decomposition

(6) identifiable, we impose the following condition.

Assumption 1. p´1BTB “ Ir and
ş ş

Σf pu, vqΣf pu, vqTdudv “ diagpθ1, . . . , θrq, where there

exist some constants θ ą θ ą 0 such that θ ą θ1 ą θ2 ą ¨ ¨ ¨ ą θr ą θ.

Remark 1. Model (1) exhibits an identifiable issue as it remains unchanged if tB, ftp¨qu is

replaced by tBU,U´1ftp¨qu for any invertible matrix U. Bai and Ng (2002) assumed two

types of normalization for the scalar factor model: one is p´1BTB “ Ir and the other is

Covpftq “ Ip. We adopt the first type for model (1) to simplify the calculation of the low rank

matrix ΩL in (6). However, this constraint alone is insufficient to identify B, but the space

spanned by the columns of B “ pb1, . . . ,brq. Hence, we introduce an additional constraint

based on the diagonalization of
ş ş

Σf pu, vqΣf pu, vqTdudv, which is ensured by the fact that

any nonnegative-definite matrix can be orthogonally diagonalized. Under Assumption 1, we

can express ΩL “
řr

i“1 pθibib
T
i , implying that }ΩL} — }ΩL}min — p2

We now elucidate why performing eigenanalysis of Ω can be employed for functional

factor analysis under model (1). Write rB “ p´1{2B “ prb1, ¨ ¨ ¨ , rbrq, which satisfies rBT
rB “ Ir.

Under Assumption 1, it holds that ΩL “ p2
řr

i“1 θi
rbi
rbT
i , whose eigenvalue/eigenvector pairs

are tpp2θi, rbiquiPrrs. Let λ1 ě ¨ ¨ ¨ ě λp be the ordered eigenvalues of Ω and ξ1, . . . , ξp be the

corresponding eigenvectors. We then have the following proposition.

Proposition 1. Suppose that Assumption 1 and }ΩR} “ opp2q hold. Then we have

(i) |λj ´ p2θj| ď }ΩR} for j P rrs and |λj| ď }ΩR} for j P rpszrrs;

(ii) }ξj ´ rbj} “ Opp´2}ΩR}q for j P rrs.

Proposition 1 indicates that we can distinguish the leading eigenvalues tλjujPrrs from the

remaining eigenvalues, and ensure the approximate equivalence between eigenvectors tξjujPrrs

and the normalized factor loading columns trbjujPrrs, provided that }ΩR} “ opp2q. Towards
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this, we impose an approximately functional sparsity condition on Σε measured through

sp “ max
iPrps

p
ÿ

j“1

}σi}
p1´qq{2
N }σj}

p1´qq{2
N }Σε,ij}

q
S , for some q P r0, 1q, (7)

where σipuq “ Σε,iipu, uq for u P U and i P rps. Specially, when q “ 0 and t}σi}N u are

bounded, sp can be simplified to the exact functional sparsity, i.e., maxi
ř

j Ip}Σε,ij}S ‰ 0q.

Remark 2. Our proposed measure of functional sparsity in (7) for non-functional data

degenerates to the measure of sparsity adopted in Cai and Liu (2011). It is worth mentioning

that Fang et al. (2023) introduced a different measure of functional sparsity as

s̃p “ max
iPrps

p
ÿ

j“1

}σi}
p1´qq{2
8 }σj}

p1´qq{2
8 }Σε,ij}

q
S ,

where }σi}8 “ supuPU σipuq ě }σi}N . As a result, we will use sp instead of s̃p.

(ii) With bounded t}σi}N u, we can easily obtain }Σε}S,1 “ }Σε}S,8 “ Opspq, which, along

with Lemmas A6, B10 of the Supplementary Material and Assumption 1, yields that

}ΩR} ď }Σε}S,8}Σε}S,1 ` 2 p}BΣfB
T}S,8}BΣfB

T}S,1q
1{2

p}Σε}S,1}Σε}S,8q
1{2

“ Ops2p ` pspq.

Hence, when sp “ oppq, Proposition 1 implies that functional factor analysis under model (1)

and eigenanalysis of Ω are approximately the same for high-dimensional functional data.

To estimate model (1), we assume the number of functional factors (i.e., r) is known,

and will introduce a data-driven approach to determine it in Section 2.3. Without loss of

generality, we assume that ytp¨q has been centered to have mean zero. The sample covariance

matrix function of Σyp¨, ¨q is given by pΣ
S

ypu, vq “ n´1
řn

t“1 ytpuqytpvqT. Performing eigen-

decomposition on the sample version of Ω,

pΩ “

ż ż

pΣ
S

ypu, vqpΣ
S

ypu, vq
Tdudv, (8)

leads to estimated eigenvalues λ̂1, . . . , λ̂p and their associated eigenvectors pξ1, . . . ,pξp. Then

the estimated factor loading matrix is pB “
?
pppξ1, . . . ,

pξrq “ ppb1, . . . , pbrq.
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To estimate functional factors tftp¨qutPrns, we minimize the least squares criterion

n
ÿ

t“1

}yt ´ pBft}
2

“

n
ÿ

t“1

ż

U
tytpuq ´ pBftpuqu

T
tytpuq ´ pBftpuqudu (9)

with respect to f1p¨q, . . . , fnp¨q. By setting the functional derivatives to zero, we obtain the

least squares estimator pftp¨q “ p´1
pBTytp¨q and the estimated idiosyncratic errors are given by

pεtp¨q “ pIp ´p´1
pBpBTqytp¨q. Hence, we can obtain sample covariance matrix functions of esti-

mated common factors and estimated idiosyncratic errors as pΣf pu, vq “ n´1
řn

t“1
pftpuqpftpvqT

and pΣεpu, vq “ tpΣε,ijpu, vqupˆp “
řn

t“1 n
´1
pεtpuqpεtpvqT, respectively.

Since Σε is assumed to be functional sparse, we introduce an adaptive functional thresh-

olding (AFT) estimator ofΣε. To this end, we define the functional variance factors Θijpu, vq “

Vartεtipuqεtjpvqu for i, j P rps, whose estimators are

pΘijpu, vq “
1

n

n
ÿ

t“1

␣

pεtipuqpεtjpvq ´ pΣε,ijpu, vq
(2
,

with pεtip¨q “ ytip¨q ´

p

b
T

i
pftp¨q and

p

bi being the i-th row vector of pB. We develop an AFT

procedure on pΣε using entry-dependent functional thresholds that automatically adapt to

the variability of pΣε,ij’s. Specifically, the AFT estimator is defined as pΣ
A

ε “ tpΣA
ε,ijp¨, ¨qupˆp

pΣA
ε,ij “

›

›pΘ
1{2
ij

›

›

S ˆ sλ

´

pΣε,ij{
›

›pΘ
1{2
ij

›

›

S

¯

with λ “ 9C
´

c

log p

n
`

1
?
p

¯

, (10)

where 9C ą 0 is a pre-specified constant that can be selected via multifold cross-validation and

the order
a

log p{n`1{
?
p is related to the convergence rate of pΣε,ij{

›

›pΘ
1{2
ij

›

›

S under functional

elementwise ℓ8 norm. Here sλ is a functional thresholding operator with regularization

parameter λ ě 0 (Fang et al., 2023) and belongs to the class sλ : S Ñ S satisfying: (i)

}sλpZq}S ď c}Y }S for all Z, Y P S that satisfy }Z´Y }S ď λ and some c ą 0; (ii) }sλpZq}S “ 0

for }Z}S ď λ; (iii) }sλpZq ´ Z}S ď λ for all Z P S. This class includes functional versions

of commonly adopted thresholding functions, such as hard thresholding, soft thresholding,

smoothed clipped absolute deviation (Fan and Li, 2001), and the adaptive lasso (Zou, 2006).

Remark 3. By comparison, Fang et al. (2023) introduced an alternative AFT estimator

rΣ
A

ε “ prΣA
ε,ijqpˆp with rΣA

ε,ij “ pΘ
1{2
ij ˆ sλ

´

pΣε,ij{pΘ
1{2
ij

¯

, (11)
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which uses a single threshold level to functionally threshold standardized entries pΣε,ij{pΘ
1{2
ij

across all pi, jq, resulting in entry-dependent functional thresholds for pΣε,ij. Since rΣA
ε,jk re-

quires stronger assumptions (see Remark 2 above and the remark for Assumption 5 below),

we adopt the AFT estimator pΣA
ε,jk leading to comparable empirical performance (see Section F

of the Supplementary Material).

Finally, we obtain an Eigenanalysis of Doubly Integrated Gram covarIance and Thresh-

olding (DIGIT) estimator of Σy as

pΣ
D

y pu, vq “ pBpΣf pu, vqpBT
` pΣ

A

ε pu, vq, pu, vq P U2. (12)

2.2 FFM with functional loadings

The structure of FFM is not unique. We could also assume ytp¨q satisfies FFM (2) with

scalar factors and functional loadings Qp¨q “ tq1p¨q, . . . ,qpp¨quT with each qip¨q P Hr, where

r common scalar factors γt “ pγt1, . . . , γtrq
T are uncorrelated with the idiosyncratic errors in

εtp¨q and r is assumed to be fixed. Then we have the covariance decomposition

Σypu, vq “ QpuqΣγQpvq
T

` Σεpu, vq, pu, vq P U2. (13)

By Mercer’s theorem (Carmeli et al., 2006), which serves as the foundation of MFPCA (Happ

and Greven, 2018), there exists an orthonormal basis consisting of eigenfunctions tφip¨qu8
i“1

of Σy and the associated eigenvalues τ1 ě τ2 ě ¨ ¨ ¨ ě 0 such that

Σypu, vq “

8
ÿ

i“1

τiφipuqφipvq
T, pu, vq P U2. (14)

We now provide mathematical insights into why MFPCA can be applied for functional

factor analysis under model (2). To ensure the identifiability of the decomposition in (13),

we impose a normalization-type condition similar to Assumption 1.

Assumption 1'. Σγ “ Ir and p´1
ş

QpuqTQpuqdu “ diagpϑ1, . . . , ϑrq, where there exist some

constants ϑ ą ϑ ą 0 such that ϑ ą ϑ1 ą ϑ2 ą ¨ ¨ ¨ ą ϑr ą ϑ.
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Suppose Assumption 1' holds, and let rq1p¨q, . . . , rqrp¨q be the normalized columns of Qp¨q

such that }rqj} “ 1 for j P rrs. By Lemma A9 of the Supplementary Material, trqjp¨qujPrrs

are the orthonormal eigenfunctions of the kernel function Qp¨qQp¨qT with corresponding

eigenvalues tpϑju
r
j“1 and the rest 0. We then give the following proposition.

Proposition 2. Suppose that Assumption 1' and }Σε}L “ oppq hold. Then we have

(i) |τj ´ pϑj| ď }Σε}L for j P rrs and |τj| ď }Σε}L for j P rpszrrs;

(ii) }φj ´ rqj} “ Opp´1}Σε}Lq for j P rrs.

Proposition 2 implies that, if we can prove }Σε}L “ oppq, then we can distinguish the

principle eigenvalues tτjujPrrs from the remaining eigenvalues. Additionally, the first r eigen-

functions tφjp¨qujPrrs are approximately the same as the normalized columns of trqjp¨qujPrrs.

To establish this, we impose the same functional sparsity condition on Σε as measured

by sp in (7). Applying Lemma A7(iii) of the Supplementary Material, we have }Σε}L ď

}Σε}
1{2
S,1}Σε}

1{2
S,8 “ Opspq. Hence, when sp “ oppq, MFPCA is approximately equivalent to

functional factor analysis under model (2) for high-dimensional functional data.

We now present the estimation procedure assuming that r is known, and we will develop

a ratio-based approach to identify r in Section 2.3. Let τ̂1 ě τ̂2 ¨ ¨ ¨ ě 0 be the eigenvalues

of the sample covariance pΣ
S

y and tpφjp¨qu8
j“1 be their corresponding eigenfunctions. Then pΣ

S

y

has the spectral decomposition

pΣ
S

ypu, vq “

r
ÿ

j“1

τ̂j pφjpuqpφjpvq
T

` pRpu, vq,

where pRpu, vq “
ř8

j“r`1 τ̂j pφjpuqpφjpvqT is the functional principal orthogonal complement.

Applying AFT as introduced in Section 2.1 to pR yields the estimator pRA. Finally, we obtain

a Functional Principal Orthogonal complEment Thresholding (FPOET) estimator as

pΣ
F

y pu, vq “

r
ÿ

j“1

τ̂j pφjpuqpφjpvq
T

` pRA
pu, vq. (15)

It is noteworthy that, with Σy satisfying decompositions (5) and (13) under FFMs (1)

and (2), respectively, both DIGIT and FPOET methods embrace the fundamental concept of
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a “low-rank plus sparse” representation generalized to the functional setting. Consequently,

the common estimation steps involve applying PCA or MFPCA to estimate the factor load-

ings, and applying AFT to estimate sparse Σε. Essentially, these two methods are closely

related, allowing the proposed estimators to exhibit empirical robustness even in cases of

model misspecification (See details in Section 5). See also Section E.2 of the Supplementary

Material for a discussion about the relationship between two FFMs.

We next present an equivalent representation of FPOET estimator (15) from a least

squares perspective. We consider solving a constraint least squares minimization problem:

tpQp¨q, pΓu “ arg min
Qp¨q,Γ

ż

}Ypuq ´ QpuqΓT
}
2
Fdu “ arg min

Qp¨q,γ1,...,γn

n
ÿ

t“1

}yt ´ Qγt}
2, (16)

subject to the normalization constraint corresponding to Assumption 1', i.e.,

1

n

n
ÿ

t“1

γtγ
T

t “ Ir and
1

p

ż

Qpuq
TQpuqdu is diagonal,

where Yp¨q “ ty1p¨q, . . . ,ynp¨qu and ΓT
“ pγ1, . . . ,γnq. Given each Γ, setting the functional

derivative of the objective in (16) w.r.t. Qp¨q to zero, we obtain the constrained least

squares estimator rQp¨q “ n´1Yp¨qΓ. Plugging it into (16), the objective as a function of Γ

becomes
ş

}Ypuq ´n´1YpuqΓΓpuqT}2Fdu “
ş

tr
␣

pIn ´n´1ΓΓT
qYpuqTYpuq

(

du, the minimizer

of which is equivalent to the maximizer of tr
“

ΓT
␣ ş

YpuqTYpuqdu
(

Γ
‰

. This implies that

the columns of n´1{2
pΓ are the eigenvectors corresponding to the r largest eigenvalues of

ş

YpuqTYpuqdu P Rnˆn, and then pQp¨q “ n´1Yp¨qpΓ.

Let rεtp¨q “ ytp¨q ´ pQp¨qpγt and rΣεpu, vq “ n´1
řn

t“1 rεtpuqrεtpvqT. Applying our proposed

AFT in (10) to rΣε yields the estimator rΣ
A

ε . Analogous to the decomposition (13) under

Assumption 1', we propose the following substitution estimator

pΣ
L

y pu, vq “ pQpuqpQpvq
T

` rΣ
A

ε pu, vq. (17)

The following proposition reveals the equivalence between the FPOET estimator (15)

and the constrained least squares estimator (17).
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Proposition 3. Suppose the same regularization parameters are used when applying AFT

to pR and rΣε. Then we have pΣ
F

y “ pΣ
L

y and pRA “ rΣ
A

ε .

Remark 4. (i) While our FFM (2) shares the same form as the model studied in Tavakoli

et al. (2023), which focused on the estimation of scalar factors and functional loadings from

a least squares viewpoint, the main purpose of this paper lies in the estimation of large

covariance matrix function. Consequently, we also propose a least-squares-based estimator

of Σy, which turns out to be equivalent to our FPOET estimator by Proposition 3.

(ii) Using a similar procedure, we can also develop an alternative estimator for Σy under

FFM (1) from a least squares perspective. However, this estimator is distinct from the

DIGIT estimator (12) and leads to declined estimation efficiency. See detailed discussion in

Section E.1 of the Supplementary Material.

2.3 Determining the number of factors

We have developed the estimation procedures for FFMs (1) and (2), assuming the known

number of functional or scalar factors (i.e. r). In this section, we take the frequently-used

ratio-based approach (Lam and Yao, 2012; Wang et al., 2021) to determine the value of r.

Under model (1), we let λ̂1 ě ¨ ¨ ¨ ě λ̂p be the ordered eigenvalues of pΩ in (8), and propose

to estimate r by

r̂D
“ arg min

rPrcrps
λ̂r`1{λ̂r, (18)

where we typically take cr “ 0.75 to circumvent the fluctuations caused by extremely small

values. In practical implementation, we set λ̂i{p
2 to be 0 if its value is smaller than a pre-

specified small threshold ϵ0 (e.g., 0.01), and treat the ratio 0{0 as 1. Hence, λ̂i`1{λ̂i “

pλ̂i`1{p
2q{pλ̂i{p

2q “ 0{0 “ 1 if neither λ̂i`1{p
2 nor λ̂i{p

2 exceeds ϵ0 as p Ñ 8.

For model (2), we employ a similar eigenvalue-ratio estimator given by:

r̂F
“ arg min

rPrr0s
τ̂r`1{τ̂r, (19)
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where tτ̂iu
8
i“1 represents the ordered eigenvalues of the sample covariance pΣ

S

yp¨, ¨q. Similar to

the previous case, we set τ̂i{p as 0 if its value is smaller than ϵ0 and 0{0 “ 1.

2.4 Model selection criterion

A natural question that arises is which of the two candidate FFMs (1) and (2) is more

appropriate for modeling tytp¨qu. This section develops fully functional information criteria

based on observed data for model selection.

When r functional factors are estimated under FFM (1), motivated from the least squares

criterion (9), we define the mean squared residuals as

V D
prq “ ppnq

´1
n
ÿ

t“1

}yt ´ p´1
pBr

pBT

ryt}
2,

where pBr is the estimated factor loading matrix by DIGIT. Analogously, when r scalar

factors are estimated under FFM (2), it follows from the objective function in (16) that the

corresponding mean squared residuals is

V F
prq “ ppnq

´1
n
ÿ

t“1

}yt ´ n´1YpΓrpγt,r}
2,

where pΓ
T

r “ ppγ1,r, . . . , pγn,rq is formed by estimated factors using FPOET.

For any given r, we propose the following information criteria:

PCD
prq “ V D

prq ` rgpp, nq, ICD
prq “ log V D

prq ` rgpp, nq,

PCF
prq “ V F

prq ` rgpp, nq, ICF
prq “ log V F

prq ` rgpp, nq,

(20)

where gpp, nq is a penalty function of pp, nq. While there is much existing literature (c.f. Bai

and Ng, 2002; Fan et al., 2013) that has adopted this type of criterion for identifying the

number of factors in scalar factor models, we propose fully functional criteria for selecting the

more appropriate FFM. Following Bai and Ng (2002), we suggest three examples of penalty

functions, referred to as PC1, PC2, PC3 and IC1, IC2, IC3, respectively, in the penalized loss

functions (20),

piq gpp, nq “
p ` n

pn
log

ˆ

pn

p ` n

˙

, piiq gpp, nq “
p ` n

pn
logpp ^ nq, piiiq gpp, nq “

logpp ^ nq

p ^ n
.

14



For model selection, we define the differences in the corresponding information criteria be-

tween the two FFMs as ∆PCi “ PCD
i pr̂Dq ´ PCF

i pr̂Fq and ∆ICi “ ICD
i pr̂Dq ´ ICF

i pr̂Fq for

i “ 1, 2, 3. The negative (or positive) values of ∆PCi’s and ∆ICi’s indicate that FFM (1)

(or FFM (2)) is more suitable based on the observed data tytp¨qutPrns.

3 Theory

3.1 Assumptions

The assumptions for models (1) and (2) exhibit a close one-to-one correspondence. For

clarity, we will present them separately in a pairwise fashion.

Assumption 2. For model (1), tftp¨qutě1 and tεtp¨qutě1 are weakly stationary and Etεtipuqu “

Etεtipuqftjpvqu “ 0 for all i P rps, j P rrs and pu, vq P U2.

Assumption 2'. For model (2), tγtutě1 and tεtp¨qutě1 are weakly stationary and Etεtipuqu “

Etεtipuqγtju “ 0 for all i P rps, j P rrs and u P U .

Assumption 3. For model (1), there exists some constant C ą 0 such that, for all j P rrs,

t P rns, (i) }bj}max ă C, (ii) E}p´1{2εt}
4 ă C, (iii) }Σε}L ă C, (iv) maxiPrps }Σε,ii}N ă C.

Assumption 3'. For model (2), there exists some constant C 1 ą 0 such that, for all i P rps,

t, t1 P rns: (i) }qi} ă C 1, (ii) E}p´1{2
řp

i“1

ş

qipuqεtipuqdu}4 ă C 1 and Etp´1{2rxεt, εt1y ´

Exεt, εt1ysu4 ă C 1, (iii) }Σε}L ă C 1, (iv) maxiPrps }Σε,ii}N ă C 1.

Assumption 3(i) or 3'(i) requires the functional or scalar factors to be pervasive in the

sense they influence a large fraction of the functional outcomes. Such pervasiveness-type

assumption is commonly imposed in the literature (Bai, 2003; Fan et al., 2013). Assump-

tion 3(ii) involves a standard moment constraint. Assumption 3'(ii) is needed to estimate

scalar factors and functional loadings consistently. Assumption 3(iii) and 3'(iii) generalize

the standard conditions for scalar factor models (Fan et al., 2018; Wang et al., 2021) to the
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functional domain. Assumptions 3(iv) and 3'(iv) are for technical convenience. However we

can relax them by allowing maxi }Σε,ii}N to grow at some slow rate as p increases.

We use the functional stability measure (Guo and Qiao, 2023) to characterize the se-

rial dependence. For tytp¨qu, denote its autocovariance matrix functions by Σphq
y pu, vq “

Covtytpuq,yt`hpvqu for h P Z and pu, vq P U2 and its spectral density matrix function at fre-

quency θ P r´π, πs by fy,θpu, vq “ p2πq´1
ř

hPZΣ
phq
y pu, vq expp´ihθq. The functional stability

measure of tytp¨qu is defined as

My “ 2π ¨ ess sup
θPr´π,πs,ϕPHp

0

xϕ, fy,θpϕqy

xϕ,Σypϕqy
,

where Σypϕqp¨q “
ş

U Σyp¨, vqϕpvqdv and Hp
0 “ tϕ P Hp : xϕ,Σypϕqy P p0,8qu. When

y1p¨q, . . . ,ynp¨q are independent, My “ 1. See also Guo and Qiao (2023) for examples sat-

isfying My ă 8, such as functional moving average model and functional linear process.

Similarly, we can define Mε of tεtp¨qu. To derive relevant exponential-type tails used in

convergence analysis, we assume the sub-Gaussianities for functional (or scalar) factors and

idiosyncratic components. We relegate the definitions of sub-Gaussian (functional) process

and multivariate (functional) linear process to Section E.3 of the Supplementary Material.

Assumption 4. For model (1), (i) tftp¨qutPrns and tεtp¨qutPrns follow sub-Gaussian functional

linear processes; (ii) Mε ă 8 and M2
ε log p “ opnq.

Assumption 4'. For model (2), (i) tγtutPrns follows sub-Gaussian linear process and tεtp¨qutPrns

follows sub-Gaussian functional linear process; (ii)Mε ă 8 and M2
ε log p “ opnq.

Assumption 5. There exists some constant τ ą 0 such that mini,jPrps }Varpεtiεtjq}S ě τ.

Assumption 6. The pair pn, pq satisfies M2
ε log p “ opn{ log nq and n “ opp2q.

Assumption 5 is required when implementing AFT, however, it is weaker than the similar

assumption infpu,vqPU2 mini,jPrps Varrεtipuqεtjpvqs ě τ imposed in Fang et al. (2023). Assump-

tion 6 allows the high-dimensional case, where p grows exponentially as n increases.
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3.2 Convergence of estimated loadings and factors

While the main focus of this paper is to estimate Σy, the estimation of factors and

loadings remains a crucial aspect, encompassed by DIGIT and FPOET estimators, as well

as in many other applications. We first present various convergence rates of estimated factors

and loading matrix when implementing DIGIT. For the sake of simplicity, we denote

ϖn,p “ Mε

a

log p{n ` 1{
?
p.

Theorem 1. Suppose that Assumptions 1–4 hold. Then there exists an orthogonal matrix

U P Rrˆr such that (i) }pB ´ BUT}max “ Op pϖn,pq; (ii) n´1
řn

t“1 }pft ´ Uft}
2 “ OppM2

ε{n `

1{pq; (iii) maxtPrns }pft ´ Uf} “ Op

`

Mε

a

log n{n `
a

n1{2{p
˘

.

The orthogonal matrix U above is needed to ensure that bT
j
pbj ě 0 for each j P rrs.

Provided that pBUUT
pft “ pBpft, the estimation of the common components and Σy remain

unaffected by the choice of U. By Theorem 1, we can derive the following corollary, which

provides the uniform convergence rate of the estimated common component. Let b̆i and

p

bi

denote the i-th rows of B and pB, respectively.

Corollary 1. Under the assumptions of Theorem 1, we have maxiPrps,tPrns }

p

b
T

i
pft ´ b̆T

i ft} “

Oppϱq, where ϱ “ Mε

a

log n log p{n `
a

n1{2{p.

In the context of FPOET estimation of factors and loadings, we require an additional

asymptotically orthogonal matrix H such that pγt is a valid estimator of Hγt. Differing

from DIGIT, we follow Bai (2003) to construct H in a deterministic form. Let V P Rrˆr

denote the diagonal matrix of the first r largest eigenvalues of pΣ
S

y in a decreasing order.

Define H “ n´1V´1
pΓ

T

Γ
ş

QpuqTQpuqdu. By Lemma B35 of the Supplementary Material, H

is asymptotically orthogonal such that Ir “ HTH ` opp1q “ HHT ` opp1q.

Theorem 1'. Suppose that Assumptions 1'–4' hold. (i) n´1
řn

t“1 }pγt´Hγt}
2 “ Op

`

M2
ε{n`

1{p
˘

; (ii) maxtPrns }pγt´Hγt} “ Op

`

Mε{
?
n`

a

n1{2{p
˘

; (iii) maxiPrps }pqi´Hqi} “ Oppϖn,pq.
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Corollary 1'. Under the assumptions of Theorem 1', we have maxiPrps,tPrns }pqT
i pγt ´qT

i γt} “

Oppϱq, where ϱ is specified in Corollary 1.

The convergence rates presented in Theorem 1 and Corollary 1 for model (1) are, respec-

tively, consistent to those established in Bai (2003) and Fan et al. (2013) when Mε “ Op1q.

Additionally, the rates in Theorem 1' and Corollary 1' for model (2) align with those in

Theorem 1 and Corollary 1 . These uniform convergence rates are essential not only for

estimating the FFMs but also for many subsequent high-dimensional learning tasks.

Theorem 2. Under the assumptions of Theorems 1 and 1', we have (i) Ppr̂D “ rq Ñ 1, and

(ii) Ppr̂F “ rq Ñ 1 as n, p Ñ 8, where r̂D and r̂F are defined in (18) and (19), respectively.

Remark 5. With the aid of Theorem 2, our estimators explored in Sections 3.2 and 3.3 are

asymptotically adaptive to r. To see this, consider, e.g., model (2), and let pγt,r̂ and pqi,r̂p¨q be

constructed using r̂F estimated scalar factors and functional loadings. Then, for any constant

c̃ ą 0, P
`

ϱ´1maxiPrps,tPrns }pqT
i,r̂pγt,r̂ ´ qT

i γt} ą c̃
˘

ď P
`

ϱ´1maxiPrps,tPrns }pqT
i pγt ´ qT

i γt} ą c̃|r̂F “

r
˘

`Ppr̂F ‰ rq, which, combined with Corollary 1', implies that maxiPrps,tPrns }pqT
i,r̂pγt,r̂´qT

i γt} “

Oppϱq. Similar arguments can be applied to other estimated quantities in Sections 3.2 and

3.3. Therefore, we assume that r is known in our asymptotic results.

3.3 Convergence of estimated covariance matrix functions

Estimating the idiosyncratic covariance matrix function Σε is important in factor mod-

eling and subsequent learning tasks. With the help of functional sparsity as specified in (7),

we can obtain consistent estimators of Σε under functional matrix ℓ1 norm } ¨ }S,1 in the

high-dimensional scenario. The following rates of convergence based on estimated idiosyn-

cratic components are consistent with the rate based on direct observations of independent

functional data (Fang et al., 2023) when Mε “ Op1q and p log p Á n.

Theorem 3. Suppose that Assumptions 1–6 hold. Then, for a sufficiently large constant 9C

in (10), }pΣ
A

ε ´ Σε}S,1 “ Oppϖ1´q
n,p spq.
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Theorem 3'. Suppose that Assumptions 1'–4', 5, 6 hold. Then, for a sufficiently large

constant 9C in (10), }pRA ´ Σε}S,1 “ Oppϖ1´q
n,p spq.

When assessing the convergence criteria for our DIGIT and FPOET estimators, it is

crucial to note that functional matrix norms such as } ¨ }S,1 and } ¨ }L are not suitable choices.

This is because pΣy may not converge to Σy in these norms for high-dimensional functional

data, unless specific structural assumptions are directly imposed on Σy. This issue does

not arise from the poor performance of estimation methods but rather from the inherent

limitation of high-dimensional models. To address this, we present convergence rates in

functional elementwise ℓ8 norm } ¨ }S,max.

Theorem 4. Under the assumptions of Theorem 3, we have }pΣ
D

y ´ Σy}S,max “ Oppϖn,pq.

Theorem 4'. Under the assumptions of Theorem 3', we have }pΣ
F

y ´ Σy}S,max “ Oppϖn,pq.

Remark 6. (i) The convergence rates of DIGIT and FPOET estimators (we use pΣy to

denote both) comprise two terms. The first term OppMε

a

log p{nq arises from the rate of

pΣ
S

y , while the second term Oppp´1{2q primarily stems from the estimation of unobservable

factors. When Mε “ Op1q, our rate aligns with the result obtained in Fan et al. (2013).

(ii) Compared to pΣ
S

y , we observe that using a factor-guided approach results in the same

rate in } ¨ }S,max as long as p log p Á n. Nevertheless, our proposed estimators offer several

advantages. First, under a functional weighted quadratic norm introduced in Section 4.1,

which is closely related to functional risk management, pΣy converges to Σy in the high-

dimensional case (see Theorem 6), while pΣ
S

y does not achieve this convergence. Second, as

evidenced by empirical results in Sections 5 and 6, pΣy significantly outperforms pΣ
S

y in terms

of various functional matrix losses.

Finally, we explore convergence properties of the inverse covariance matrix function es-

timation. Denote the null space of Σy and its orthogonal complement by kerpΣyq “ tx P

Hp : Σypxq “ 0u and kerpΣyq
K

“ tx P Hp : xx,yy “ 0, @y P kerpΣyqu, respectively.

19



The inverse covariance matrix function Σ´1
y corresponds to the inverse of the restricted

covariance matrix function Σy

ˇ

ˇkerpΣyqK, which restricts the domain of Σy to kerpΣyqK.

The similar definition applies to the inverses of Σf and Σε. With the DIGIT estimator

pΣ
D

y p¨, ¨q “ pBpΣf p¨, ¨qpBT ` pΣ
A

ε p¨, ¨q, we apply Sherman–Morrison–Woodbury identity (Theorem

3.5.6 of Hsing and Eubank, 2015) to obtain its inverse
`

pΣ
D

y

˘´1
“
`

pΣ
A

ε

˘´1
´
`

pΣ
A

ε

˘´1
pB
␣

pΣ
´1

f `

pBT
`

pΣ
A

ε

˘´1
pB
(´1

pBT
`

pΣ
A

ε

˘´1
. The inverse FPOET estimator can be obtained similarly. Then,

within finite-dimensional Hilbert space, both the inverse DIGIT and FPOET estimators are

consistent in the operator norm, as presented in the following theorems.

Theorem 5. Suppose that the assumptions of Theorem 4 hold, ϖ1´q
n,p sp “ op1q, and both

λminpΣεq and λminpΣf q are bounded away from zero. Then, pΣ
D

y has a bounded inverse with

probability approaching 1, and
›

›ppΣ
D

y q´1 ´ Σ´1
y

›

›

L “ Oppϖ1´q
n,p spq.

Theorem 5'. Suppose that the assumptions of Theorem 4' hold, ϖ1´q
n,p sp “ op1q, and λminpΣεq

is bounded away from zero. Then, pΣ
F

y has a bounded inverse with probability approaching 1,

and
›

›ppΣ
F

y q´1 ´ Σ´1
y

›

›

L “ Oppϖ1´q
n,p spq.

Remark 7. (i) The condition that λminpΣεq and λminpΣf q are bounded away from zero can

also imply that λminpΣyq is bounded away from zero, which means that Σy has a finite number

of nonzero eigenvalues, denoted as dn ă 8, i.e., tytp¨qutPrns are finite-dimensional functional

objects (Bathia et al., 2010). While the inverse of the sample covariance matrix function

fails to exhibit convergence even though it operates within finite-dimensional Hilbert space,

our factor-guided methods can achieve such convergence. It should be noted that dn can be

made arbitrarily large relative to n, e.g., dn “ 2000, n “ 200. Hence, this finite-dimensional

assumption does not place a practical constraint on our method. See also applications of

inverse covariance matrix function estimation including functional risk management in Sec-

tion 4.1 and sparse precision matrix function estimation in Section 4.2.

(ii) Within infinite-dimensional Hilbert space, Σ´1
y becomes an unbounded operator, which is

discontinuous and cannot be estimated in a meaningful way. However, Σ´1
y is usually asso-

20



ciated with another function/operator, and the composite function/operator in kerpΣyqK can

reasonably be assumed to be bounded, such as regression function/operator and discriminant

direction function in Section 4.2. Specifically, consider the spectral decomposition (14), which

is truncated at dn ă 8, i.e., Σy,dnpu, vq “
řdn

i“1 τiφipuqφipvqT. Under certain smoothness

conditions, such as those on coefficient functions in multivariate functional linear regression

(Chiou et al., 2016), the impact of truncation errors through
ř8

i“dn`1 τ
´1
i φipuqφipvqT on as-

sociated functions/operators is expected to diminish, ensuring the boundedness of composite

functions/operators. Consequently, the primary focus shifts towards estimating the inverse

of Σy,dn , and our results in Theorems 5 and 5' become applicable.

Upon observation, a remarkable consistency is evident between DIGIT and FPOETmeth-

ods developed under different models in terms of imposed regularity assumptions and asso-

ciated convergence rates, despite the substantially different proof techniques employed.

4 Applications

4.1 Functional risk management

One main task of risk management in the stock market is to estimate the portfolio

variance, which can be extended to the functional setting to account for additional intraday

uncertainties. Consider a portfolio consisting of p stocks, where the i-th component of ytp¨q

represents the cumulative intraday return (CIDR) trajectory (Horváth et al., 2014) for the

i-th stock on the t-th trading day. Additionally, let wpuq “ tw1puq, . . . , wppuquT denote the

allocation vector of the functional portfolio at time u P U . For a given wp¨q, the true and

perceived variances (i.e. risks) of the functional portfolio are xw,Σypwqy and xw, pΣypwqy,

respectively. According to Proposition S.1 of the Supplementary Material, the estimation

error of the functional portfolio variance is bounded by

ˇ

ˇxw, pΣypwqy ´ xw,Σypwqy
ˇ

ˇ ď }pΣy ´ Σy}S,max

`

p
ÿ

i“1

}wi}
˘2
,
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in which Theorems 4 and 4' quantify the maximum approximation error }pΣy ´ Σy}S,max.

In addition to the absolute error between perceived and true risks, we are also interested

in quantifying the relative error. To this end, we introduce the functional version of weighted

quadratic norm (Fan et al., 2008), defined as }K}S,Σy “ p´1{2}Σ´1{2
y KΣ´1{2

y }S,F, where K P

Hp b Hp and the normalization factor p´1{2 serves the role of }Σy}S,Σy “ 1. To ensure the

validity of this functional norm, we assume that Σy has a bounded inverse, which does not

place a constraint in practice (see Remark 7(i)). With such functional norm, the relative

error can be measured by

p´1{2
}Σ´1{2

y
pΣyΣ

´1{2
y ´ Ĩp}S,F “ }pΣy ´ Σy}S,Σy , (21)

where Ĩp denotes the identity operator. Provided that }pΣ
S

y ´ Σy}S,Σy “ OppMε

a

p{nq, the

sample covariance estimator fails to converge in } ¨ }S,Σy under the high-dimensional setting

with p ą n. On the contrary, the following theorem reveals that our DIGIT estimator pΣ
D

y

converges to Σy as long as M4
εp “ opn2q and ϖ1´q

n,p sp “ op1q. The same result can also be

extended to the FPOET estimator.

Theorem 6. Under the assumptions of Theorem 5, we have }pΣ
D

y ´Σy}S,Σy “ Op

`

M2
εp

1{2n´1`

ϖ1´q
n,p sp

˘

.

By Proposition S.2 of the Supplementary Material, the relative error is bounded by

ˇ

ˇxw, pΣypwqy{xw,Σypwqy ´ 1
ˇ

ˇ ď }Σ´1{2
y

pΣyΣ
´1{2
y ´ Ĩp}L,

which, in conjunction with Theorem 6 and (21), controls the maximum relative error.

4.2 Estimation of precision matrix, regression, and discriminant

direction functions

The second application considers estimating functional graphical models (Qiao et al.,

2019), which aim to identify the conditional dependence structure among components in
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ytp¨q. For Gaussian data, this task is equivalent to estimating the sparse inverse covariance

(i.e., precision) matrix function, which is bounded for finite-dimensional functional objects.

Our inverse DIGIT or FPOET estimators combined with functional thresholding can thus

be utilized.

The third application explores multivariate functional linear regression (Chiou et al.,

2016), which involves a scalar response zt or a functional response

ztpvq “
@

yt,βp¨, vq
D

` etpvq, v P V ,

where βp¨, ¨q “ tβ1p¨, ¨q, . . . , βpp¨, ¨quT is operator-valued coefficient vector to be estimated.

We can impose certain smoothness condition such that βpu, vq “
ř8

i“1 τ̃iφipuqφipvqT is suf-

ficiently smooth relative to Σypu, vq “
ř8

i“1 τiφipuqφipvqT, ensuring the boundedness of the

regression operator βpu, vq “
ş

U Σ´1
y pu, u1qCovtytpu

1q, ztpvqudu1. Replacing relevant terms by

their (truncated) sample versions, we obtain pβpu, vq “ n´1
řn

t“1

ş

U
pΣ

´1

y,dnpu, u1qytpu
1qztpvqdu1.

This application highlights the need for estimators pΣ
´1

y,dn , as studied in Theorems 5 and 5'.

The fourth application delves into linear discriminant analysis for classifying multivariate

functional data (Xue et al., 2023) with class labels wt “ t1, 2u. Specifically, we assume that

ytp¨q|wt “ 1 and ytp¨q|wt “ 2 follow multivariate Gaussian distributions with mean functions

µ1p¨q and µ2p¨q, respectively, while sharing a common covariance matrix function Σy. Our

goal is to determine the linear classifier by estimating the discriminant direction function
ş

U Σ´1
y pu, vqtµ1pvq ´µ2pvqudv, which takes the same form as the regression function βpuq “

ş

U Σ´1
y pu, vqCovtytpvq, ztudv encountered in the third application with a scalar response zt.

By similar arguments as above, both applications call for the use of estimators pΣ
´1

y,dn .

4.3 Estimation of correlation matrix function

The fifth application involves estimating the correlation matrix function and its inverse,

which are essential in various graphical models for truly infinite-dimensional objects, see,

e.g., Solea and Li (2022) and Zapata et al. (2022). Our proposed covariance estimators can
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be employed to estimate the corresponding correlation matrix function and its inverse.

Specifically, let Dyp¨, ¨q “ diagtΣy,11p¨, ¨q, . . . ,Σy,ppp¨, ¨qu be the p ˆ p diagonal matrix

function. According to Baker (1973), there exists a correlation matrix function Cy with

}Cy}L ď 1 such that Σy “ D
1{2
y CyD

1{2
y . Under certain compactness and smoothness as-

sumptions, Cy has a bounded inverse, denoted by Θy, and its functional sparsity pattern

corresponds to the network (i.e., conditional dependence) structure among p components

in ytp¨q; see Solea and Li (2022). In general, the estimator pDy “ diagppΣy,11, . . . , pΣy,ppq

is non-invertible, so we can adopt the Tikhonov regularization to estimate Cy by pC
pκq
y “

ppDy ` κIpq´1{2
pΣyppDy ` κIpq´1{2 for some regularization parameter κ ą 0. The estimator of

Θy is then given by pΘ
pκq

y “ pD
1{2
y ppΣy `κIpq´1

pD
1{2
y . Consequently, we can plug into the DIGIT

or the FPOET estimator for estimating Cy and its inverse Θy.

5 Simulations

For the first data-generating process (denoted as DGP1), we generate observed data from

model (1), where the entries ofB P Rpˆr are sampled independently from Uniformr´0.75, 0.75s,

satisfying Assumption 3(i). To mimic the infinite-dimensionality of functional data, each

functional factor is generated by ftjp¨q “
ř50

i“1 ξtjiϕip¨q for j P rrs over U “ r0, 1s, where

tϕip¨qu50i“1 is a 50-dimensional Fourier basis and basis coefficients ξti “ pξt1i, . . . , ξtriq
T are gen-

erated from a vector autoregressive model, ξti “ Aξt´1,i`uti withA “ tAjk “ 0.4|j´k|`1urˆr,

and the innovations tutiutPrns being sampled independently from N p0r, i
´2Irq. For the sec-

ond data-generating process (denoted as DGP2), we generate observed data from model

(2), where r-vector of scalar factors γt is generated from a vector autoregressive model,

γt “ Aγt´1 ` ut with tututPrns being sampled independently from N p0r, Irq. The functional

loading matrix Qp¨q “ tQjkp¨qupˆr is generated by Qjkp¨q “
ř50

i“1 i
´1qijkϕip¨q, where each qijk

is sampled independently from the N p0, 0.32q, satisfying Assumption 3'(i).

The idiosyncratic components are generated by εtp¨q “
ř25

l“1 2
´l{2ψtlϕlp¨q, where each
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ψtl is independently sampled from N p0p,Cζq with Cζ “ DC0D. Here, we set D “

diagpD1, . . . , Dpq, where each Di is generated from Gammap3, 1q. The generation of C0

involves the following three steps: (i) we set the diagonal entries of C̆ to 1, and generate the

off-diagonal and symmetrical entries from Uniformr0, 0.5s; (ii) we employ hard thresholding

(Cai and Liu, 2011) on C̆ to obtain a sparse matrix C̆T , where the threshold level is found

as the smallest value such that maxiPrps

řp
j“1 IpC̆T

ij ‰ 0q ď p1´α for α P r0, 1s; (iii) we set

C0 “ C̆T ` δ̃Ip where δ̃ “ maxt´λminpC̆q, 0u ` 0.01 to guarantee the positive-definiteness

of C0. The parameter α controls the sparsity level with larger values yielding sparser struc-

tures in C0 as well as functional sparser patterns in Σεp¨, ¨q. This is implied from Proposi-

tion S.3(iii) of the Supplementary Material, whose parts (i) and (ii) respectively specify the

true covariance matrix functions of ytp¨q for DGP1 and DGP2.
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Figure 1: The boxplots of ∆PCi and ∆ICi (i P r3s) for DGP1 and DGP2 with p “ 100, n “

100, α “ 0.5, and r “ 3, 5, 7 over 1000 simulation runs.

We firstly assess the finite-sample performance of the proposed information criteria in

Section 2.4 under different combinations of p, n and α for DGP1 and DGP2. The results

demonstrate that we can achieve almost 100% model selection accuracy in most cases. For

instance, Figure 1 presents boxplots of ∆PCi and ∆ICi (i “ 1, 2, 3) for two DGPs under
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the setting p “ 100, n “ 100, α “ 0.5, and r “ 3, 5, 7. See also similar results for p “

200, n “ 50, α “ 0.5 in Figure S.1 of the Supplementary Material. We observe that, for

DGP1 (or DGP2), nearly all values of ∆PCi and ∆ICi are less than (or greater than) zero,

indicating that the observed data are more likely to be generated by the correct model (1)

(or model (2)). Furthermore, different penalty functions gpn, pq have similar impacts on the

information criteria when p and n are relatively large.

Table 1: The average relative frequency estimates for Ppr̂ “ rq over 1000 simulation runs.

r “ 3 r “ 5 r “ 7

α p n Ppr̂D “ rq Ppr̂F “ rq Ppr̂D “ rq Ppr̂F “ rq Ppr̂D “ rq Ppr̂F “ rq

0.25

100
100 0.854 0.828 0.762 0.715 0.618 0.597

200 0.862 0.853 0.806 0.803 0.733 0.733

200
100 0.922 0.868 0.832 0.792 0.739 0.667

200 0.924 0.905 0.896 0.853 0.816 0.746

0.50

100
100 0.958 0.973 0.931 0.932 0.896 0.890

200 0.960 0.974 0.952 0.950 0.936 0.943

200
100 0.991 0.987 0.977 0.972 0.956 0.957

200 0.991 0.993 0.984 0.985 0.979 0.971

0.75

100
100 0.990 0.998 0.986 0.991 0.979 0.976

200 0.996 0.994 0.986 0.992 0.984 0.994

200
100 0.997 1.000 0.998 1.000 0.995 0.999

200 0.999 1.000 1.000 1.000 0.997 1.000

Once the more appropriate FFM is selected based on observed data, our next step adopts

the ratio-based estimator (18) (or (19)) to determine the number of functional (or scalar)

factors. The performance of proposed estimators is then examined in terms of their abilities

to correctly identify the number of factors. Table 1 reports average relative frequencies r̂ “ r

under different combinations of r “ 3, 5, 7, n “ 100, 200, p “ 100, 200 and α “ 0.25, 0.5, 0.75

for both DGPs. Several conclusions can be drawn. First, for fixed p and n, larger values of

α lead to improved accuracies in identifying r as the strength of factors (i.e. signal-to-noise

26



ratio, see Proposition S.3(iii) of the Supplementary Material) increases. Second, we observe

the phenomenon of “blessing of dimensionality” in the sense that the estimation improves as

p increases, which is due to the increased information from added components on the factors.
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Figure 2: The average losses of pΣy in functional elementwise ℓ8 norm (left column), Frobenius

norm (middle column) and matrix ℓ1 norm (right column) for DGP1 over 1000 simulation runs.

We next compare our proposed AFT estimator in (10) with two related methods for

estimating the idiosyncratic covariance Σε, where the details can be found in Section F

of the Supplementary Material. Following Fan et al. (2013), the threshold level for AFT is

selected as λ “ 9Cp
a

log p{n`1{
?
pq with 9C “ 0.5. We also implemented the cross-validation

method to choose 9C. However, such method incurred heavy computational costs and only

gave a very slight improvement. We finally compare our DIGIT and FPOET estimators
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with two competing methods for estimating the covariance Σy. The first competitor is the

sample covariance estimator pΣ
S

y . For comparison, we also implement the method of Guo,

Qiao and Wang (2022) in conjunction with our AFT (denoted as GQW). This combined

method firstly employs autocovariance-based eigenanalysis to estimateB and then follows the

similar procedure as DIGIT to estimate ftp¨q and Σε. Although DIGIT and GQW estimators

(or FPOET estimator) are specifically developed to fit model (1) (or model (2)), we also

use them (or it) for estimating Σy under DGP2 (or DGP1) to evaluate the robustness of

each proposal under model misspecification. For both DGPs, we set α “ 0.5 and generate

n “ 60, 80, . . . , 200 observations of p “ 50, 100, 150, 200 functional variables. We adopt

the eigenvalue-ratio-based method to determine r. Figures 2 and 3 display the numerical

summaries of losses measured by functional versions of elementwise ℓ8 norm, Frobenius

norm, and matrix ℓ1 norm for DGP1 and DGP2, respectively.

A few trends are observable. First, for DGP1 (or DGP2) in Figure 2 (or Figure 3), the

DIGIT (or FPOET) estimator outperforms the three competitors under almost all functional

matrix losses and settings we consider. In high-dimensional large p scenarios, the factor-

guided estimators lead to more competitive performance, whereas the results of pΣ
S

y severely

deteriorate especially in terms of functional matrix ℓ1 loss. Second, although both DIGIT and

GQW estimators are developed to estimate model (1) and the idiosyncratic components are

generated from a white noise process, our proposed DIGIT estimator is prominently superior

to the GQW estimator for DGP1 under all scenarios, as seen in Figure 2. This demonstrates

the advantage of covariance-based DIGIT over autocovariance-based GQW when the factors

are pervasive (i.e. strong), however, DIGIT may not perform well in the presence of weak

factors. Third, the FPOET estimator exhibits enhanced robustness compared to DIGIT and

GQW estimators in the case of model misspecification. In particular, for DGP2, DIGIT

and GQW show substantial decline in performance measured by functional Frobenius and

matrix ℓ1 losses, while, for DGP1, FPOET still achieves reasonably good performance. This

suggests a preference for FPOET over DIGIT when the model form cannot be determined
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Figure 3: The average losses of pΣy in functional elementwise ℓ8 norm (left column), Frobenius

norm (middle column) and matrix ℓ1 norm (right column) for DGP2 over 1000 simulation runs.

confidently (i.e. information criteria between two FFMs are relatively close).

6 Real data analysis

6.1 Age-specific mortality data

Our first dataset, available at https://www.mortality.org/, contains age- and gender-

specific mortality rates for p “ 32 countries from 1960 to 2013 (n “ 54). Following Tang et al.

(2022) which also analyzed such dataset, we apply a log transformation to mortality rates and

let ytipukq (t P rns, i P rps, k P r101s) be the log mortality rate of people aged uk “ k´1 P U “
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r0, 100s living in the i-th country during the year 1959`t. The observed curves are smoothed

based on a 10-dimensional B-spline basis. Figure S.9 of the Supplementary Material displays

rainbow plots (Hyndman and Shang, 2010) of the smoothed log-mortality rates for females

in six randomly selected countries, which use different colors to represent the curves from

earlier years (in red) to more recent years (in purple). We observe a similar pattern for the

USA, the U.K., and Austria, with their curves being more dispersed, indicating a uniform

decline in mortality over time. However, this pattern differs significantly from those for

Russia, Ukraine, and Belarus, where the decreasing effect disappears, and the curves are

more concentrated. It is also worth mentioning that the U.K. and Austria are far from the

USA, but Austria is closer to Russia, Ukraine, and Belarus. This phenomenon inspires us to

employ multivariate functional time series methods, such as two FFMs, instead of spatial-

temporal models that typically rely on geographical distance as the similarity measure.
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Figure 4: Spatial heatmaps of factor loadings of some European countries for females.

For model selection, we calculate the information criteria with PCD
1 “ 0.168 ă PCF

1 “

0.177, and ICD
1 “ ´3.806 ă ICF

1 “ ´3.448. Therefore, we choose FFM (1) with age-specific

factors for estimation. The leading two eigenvalues of pΩ in (8) are much larger than the rest

with cumulative percentage exceeding 90%, so we choose r̂D “ 2 for illustration. Figures 4

and S.10 of the Supplementary Material present spatial heatmaps of factor loading of some

European countries for females and males, respectively. It is apparent that the first factor
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mainly influences the regions of Western and Northern Europe, such as Italy, the U.K., Spain,

and Sweden, while the former Soviet Union member countries such as Russia, Ukraine, Be-

larus, and Lithuania are heavily loaded regions on the second factor. Additionally, countries

like Poland and Hungary that have experienced ideological shifts have non-negligible load-

ings on both factors. For countries far from Europe, such as the USA, Australia, and Japan,

the first factor also serves as the main driving force.

Figures 5 and S.11 of the Supplementary Material provide the rainbow plots of the

estimated age-specific factors for females and males, respectively. We observe that, for the

first factor of female mortality rates, the curves of more recent years mostly lie below the

curves of earlier years. This suggests a consistent improvement in mortality rates across

all ages over the years. However, for the second factor, the curves of more recent years are

located below the curves of earlier years when u ď 30, and above them when u ą 30, implying

a downward trend under age 30 and an upward trend over age 30. Similar conclusions can

be drawn for male mortality rates. By applying our factor-guided approach for multivariate

functional time series, we achieve clustering results that are comparable to those obtained

by Tang et al. (2022).
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Figure 5: The estimated age-specific factors for females.
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6.2 Cumulative intraday return data

Our second dataset, collected from https://wrds-www.wharton.upenn.edu/, consists

of high-frequency observations of prices for a collection of S&P100 stocks from 251 trading

days in the year 2017. We removed 2 stocks with missing data so p “ 98 in our analysis. We

obtain five-minute resolution prices by using the last transaction price in each five-minute

interval after removing the outliers, and hence convert the trading period (9:30–16:00) to

minutes r0, 78s. We construct CIDR (Horváth et al., 2014) trajectories, in percentage, by

ytipukq “ 100rlogtPtipukqu ´ logtPtipu1qus, where Ptipukq pt P rns, i P rps, k P r78sq denotes

the price of the i-th stock at the k-th five-minute interval after the opening time on the t-th

trading day. We obtain smoothed CIDR curves by expanding the data using a 10-dimensional

B-spline basis. The CIDR curves, which always start from zero, not only have nearly the

same shape as the original price curves but also enhance the plausibility of the stationarity

assumption. We performed functional KPSS test (Horváth et al., 2014) for each stock, and

found no overwhelming evidence (under 1% significance level) against the stationarity.

For model selection, the information criteria PCD
1 “ 0.567 ą PCF

1 “ 0.558, and ICD
1 “

´0.619 ą ICF
1 “ ´0.640. These values suggest that FFM (2) is slightly more preferable and

imply that the latent factors may not exhibit any intraday varying patterns. We consider the

problem of functional risk management as discussed in Section 4.1. Our task is to obtain the

optimal functional portfolio allocation pwp¨q by minimizing the perceived risk of the functional

portfolio, specifically,

pw “ arg min
wPHp

@

w, pΣypwq
D

subject to wpuq
T1p “ 1 for any u P U ,

where 1p “ p1, . . . , 1qT P Rp. Following the derivations in Section E.4 of the Supplementary

Material, we obtain the solution:

pwpuq “

ż ż

pΣ
´1

y pu, vqdiagtH´1
pv, zq, ¨ ¨ ¨ , H´1

pv, zqu1pdvdz

with Hp¨, ¨q “ 1T

p
pΣ

´1

y p¨, ¨q1p, which allows us to obtain the actual risk. In practical imple-
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mentation, we treat components of ytp¨q as finite-dimensional functional objects and hence

can obtain bounded inverse pΣ
´1

y (and H´1) using the leading eigenpairs of pΣy (and H) such

that the corresponding cumulative percentage of selected eigenvalues exceeds 95%.

Table 2: Comparisons of the risks of functional portfolios obtained by using DIGIT, FPOET,

GQW, and sample estimators.

Estimator DIGIT FPOET GQW Sample

Month r̂ “ 1 r̂ “ 2 r̂ “ 3 r̂ “ 1 r̂ “ 2 r̂ “ 3 r̂ “ 1 r̂ “ 2 r̂ “ 3

July 0.052 0.060 0.058 0.057 0.060 0.057 0.083 0.062 0.052 0.099

August 0.044 0.045 0.048 0.045 0.044 0.049 0.050 0.089 0.085 0.092

September 0.092 0.051 0.065 0.093 0.053 0.058 0.108 0.056 0.060 0.097

October 0.077 0.045 0.042 0.079 0.044 0.041 0.082 0.067 0.051 0.086

November 0.078 0.060 0.043 0.079 0.063 0.045 0.063 0.073 0.076 0.090

December 0.075 0.075 0.043 0.077 0.079 0.042 0.083 0.079 0.095 0.091

Average 0.070 0.056 0.050 0.072 0.057 0.049 0.078 0.071 0.070 0.093

Following the procedure in Fan et al. (2013), on the 1st trading day of each month from

July to December, we estimate pΣy using DIGIT, FPOET, GQW and sample estimators

based on the historical data comprising CIDR curves of 98 stocks for the preceding 6 months

(n “ 126). We then determine the corresponding optimal portfolio allocation pwpukq for

k P r78s. At the end of the month after 21 trading days, we compare actual risks calculated by

78´2
ř

k,k1Pr78s
pwpukqTt21´1

ř21
t“1 ytpukqytpvk1qTupwpvk1q. Following Fan et al. (2013) and Wang

et al. (2021), we try r̂ “ 1, 2 and 3 to check the effect of r in out-of-sample performance. The

numerical results are summarized in Table 2. We observe that the minimum risk functional

portfolio created by DIGIT, FPOET, and GQW result in averaged risks over six months as

0.05, 0.049, and 0.07, respectively, while the sample covariance estimator gives 0.093. The

risk has been significantly reduced by around 46% using our factor-guided approach.
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Supplementary Material to “Factor-guided estimation of large

covariance matrix function with conditional functional sparsity”

Dong Li, Xinghao Qiao and Zihan Wang

This supplementary material contains technical proofs in Sections A–D, further deriva-

tions in Section E, additional simulation results in Section F and additional real data results

in Section G. Throughout, we denote the multiplications of matrix kernel functions as follows.

For K,G P Hp b Hp, we write M “ KG P Hp b Hp, where

Mpu, vq “

ż

U
Kpu,wqGpw, vqdw. (S.1)

A Proofs of theoretical results in Section 2

A.1 Technical lemmas and their proofs

We first introduce useful theorems to prove Proposition 1. In the following two lemmas,

tλjujPrps are the eigenvalues of Σ P Rpˆp in a descending order and tξjujPrps are the cor-

responding eigenvectors. Similarly, t rλjujPrps and trξjujPrps are the corresponding eigenvalues

and eigenvectors of rΣ P Rpˆp, respectively.

Lemma A1. (Weyl’s theorem; Weyl (1912)). |rλj ´ λj| ď }rΣ ´ Σ} for j P rps.

Lemma A2. (A useful variant of sinpθq theorem; Davis and Kahan (1970); Yu et al.

(2015)). If rξ
T

j ξj ě 0 for j P rps, then

}rξj ´ ξj} ď
}rΣ ´ Σ}{

?
2

min
`

|rλj´1 ´ λj|, |λj ´ rλj`1|
˘
.

The functional version of Weyl’s theorem has been studied in Lemmas 4.2 and 4.3 of

Bosq (2000). Let tτiu
8
i“1 be the eigenvalues of the kernel function Σp¨, ¨q in a descending

order and tφip¨qu8
i“1 are the corresponding eigenfunctions. Similary, trτiu

8
i“1 and trφip¨qu8

i“1

are the corresponding eigenvalues and eigenfunctions of rΣp¨, ¨q, respectively.

1



Lemma A3. (Lemma 4.2 in Bosq (2000)). |rτi ´ τi| ď }rΣ ´ Σ}L for all i.

Lemma A4. (Lemma 4.3 in Bosq (2000)). If xrφi,φiy ě 0, then

}rφi ´φi} ď
2
?
2}rΣ ´ Σ}L

min
`

|rτi´1 ´ τi|, |τi ´ rτi`1|
˘ .

The following lemmas introduce some functional norm inequalities, which are useful in

subsequent proofs.

Lemma A5. Suppose that K P Hp bHp is a Mercer’s kernel with the spectral decomposition

Kpu, vq “
ř8

i“1 λiϕipuqϕipvqT, where tλiu
8
i“1 are the eigenvalues of K in a descending order

and tϕip¨qu are the corresponding eigenfunctions. Then, we have

(i) tr
␣ş ş

Kpu, vqKpu, vqTdudv
(

“ trt
ş

KKTpu, uqduu “ }K}2S,F “
ř8

i“1 λ
2
i ;

(ii)
›

›

ş ş

Kpu, vqKpu, vqTdudv
›

› “
›

›

ş

KKTpu, uqdu
›

› “ }K}2L “ λ2
1.

Proof. (i) Note that
ş ş

Kpu, vqKpu, vqTdudv “
ş
ř8

i“1 λ
2
iϕipuqϕipuqTdu, and thus

tr
!

ż ż

Kpu, vqKpu, vq
Tdudv

)

“ tr
!

8
ÿ

i“1

λ2
i

ż

ϕipuq
Tϕipuqdu

)

“

8
ÿ

i“1

λ2
i .

The equality tr
␣ş ş

Kpu, vqKpu, vqTdudv
(

“ }K}2S,F can be verified by simple calculation.

The first equality can be obtained by Kpu, vqT “ KTpv, uq and the multiplication of kernel

functions defined in (S.1).

(ii) Similarly,

›

›

›

ż ż

Kpu, vqKpu, vq
Tdudv

›

›

›
“

›

›

›

ż 8
ÿ

i“1

λ2
iϕipuqϕipuq

Tdu
›

›

›
“ λmax

!

ż 8
ÿ

i“1

λ2
iϕipuqϕipuq

Tdu
)

“λmax

!

Λ2

ż

ΦpuqΦpuq
Tdu

)

“ λmax

!

Λ2

ż

Φpuq
TΦpuqdu

)

“λmaxpΛ2
q “ λ2

1 “ }K}
2
L,

where Λ “ diagpλ1, λ2, . . . q,Φp¨q “ tϕ1p¨q,ϕ2p¨q, . . . u, and the fact that the 8 ˆ 8 matrix
ş

ΦpuqTΦpuqdu shares the same nonzero eigenvalues with the p ˆ p matrix
ş

ΦpuqΦpuqTdu,

which can be obtained following the proof of Proposition 2 in Bathia et al. (2010).

2



Lemma A6. Suppose that K,G P Hp b Hp are Mercer’s kernels, then we have

(i)
›

›

ş ş

Kpu, vqGpu, vqTdudv
›

›

1
ď }K}S,1}G}S,8;

(ii)
›

›

ş ş

Kpu, vqGpu, vqTdudv
›

›

8
ď }K}S,8}G}S,1;

(iii)
›

›

ş ş

Kpu, vqGpu, vqTdudv
›

› ď p}K}S,8}K}S,1q
1{2

p}G}S,8}G}S,1q
1{2;

(iv)
›

›

ş ş

Kpu, vqGpu, vqTdudv
›

› ď
␣›

›

ş ş

Kpu, vqKpu, vqTdudv
›

›

(1{2 ␣›
›

ş ş

Gpu, vqGpu, vqTdudv
›

›

(1{2
.

Proof. (i) Note that
›

›

›

ż ż

Kpu, vqGpu, vq
Tdudv

›

›

›

1

“max
jPrps

p
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ż ż p
ÿ

k“1

Kikpu, vqGjkpu, vqdudv

ˇ

ˇ

ˇ

ˇ

ˇ

ďmax
jPrps

p
ÿ

i“1

p
ÿ

k“1

}Kik}S}Gjk}S

ď

´

max
kPrps

p
ÿ

i“1

}Kik}S

¯´

max
jPrps

p
ÿ

k“1

}Gjk}S

¯

“}K}S,1}G}S,8.

(S.2)

(ii) By similar arguments, we obtain that

›

›

›

ż ż

Kpu, vqGpu, vq
Tdudv

›

›

›

8
ď }K}S,8}G}S,1. (S.3)

(iii) The inequality follows immediately from (S.2), (S.3), the matrix norm inequality }A}2 ď

}A}8}A}1 for any p ˆ p matrix A and the choice of A “
ş ş

Kpu, vqGpu, vqTdudv.

(iv) An application of H:older’s inequality yields the result.

Lemma A7. Suppose that Σ “ tΣijp¨, ¨qupˆp with Σij P S and rΣ P Hp b Hp are Mercer’s

kernels. Then we have (i) }ΣrΣ}L ď }Σ}L ¨ }rΣ}L, (ii) }Σ}L ď }Σ}S,F, and (iii) }Σ}L ď

}Σ}
1{2
S,1}Σ}

1{2
S,8. Furthermore, if }Σij}S “ }Σji}S for all i, j P rps, then }Σ}L ď }Σ}S,1.
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Proof. (i) By Lemma B14 or Theorem 4.2.5 in Hsing and Eubank (2015), we have

}ΣrΣ}L “max
xPHp

@

x,ΣrΣpxq
D

}x}2
“ max

xPHp

A

rΣ
1{2

pxq,Σ
␣

rΣ
1{2

pxq
(

E

›

›

›

rΣ
1{2

pxq

›

›

›

2 ¨

@

x, rΣpxq
D

}x}2

ďmax
yPHp

@

y,Σpyq
D

}y}2
max
xPHp

@

x, rΣpxq
D

}x}2
“ }Σ}L ¨ }rΣ}L.

(ii) By Lemma A5, }Σ}L “ λ1 and }Σ}F “

b

ř

iě1 λ
2
i , where tλiu

8
i“1 are the eigenvalues of

Σ in a descending order. Apparently, }Σ}L ď }Σ}S,F holds.

(iii) By Lemmas A5(ii) and A6(iii), }Σ}2L “
›

›

ş ş

Σpu, vqΣpu, vqTdudv
›

› ď }Σ}S,1}Σ}S,8.

Furthermore, if }Σij}S “ }Σji}S for all i, j P rps, we have }Σ}S,1 “ }Σ}S,8, and thus

}Σ}L ď }Σ}S,1 holds.

Lemma A8. Suppose that K,G P Hp b Hp are Mercer’s kernels, then we have

(i) trt
ş

KGpu, uqduu “ trt
ş

GKpu, uqduu, i.e., }KG}N “ }GK}N ;

(ii) trt
ş

KGpu, uqduu ď }K}Ltrt
ş

Gpu, uqduu, i.e., }KG}N ď }K}L}G}N ;

(iii) }KG}S,F ď }K}L}G}S,F.

Proof. (i) Note that

tr
!

ż

KGpu, uqdu
)

“tr
!

ż ż

Kpu, vqGpv, uqdudv
)

“

ż ż

trtKpu, vqGpv, uqududv

“tr
!

ż ż

Gpv, uqKpv, uqdvdu
)

“ tr
!

ż

GKpv, vqdv
)

.

(ii) Suppose that Kpu, vq “
ř8

i“1 λiϕipuqϕipvqT and Gpu, vq “
ř8

j“1 ωjψjpuqψjpvqT where

tϕip¨qu and tψjp¨qu are both orthonormal basis functions. Then, we have

tr
!

ż

KGpu, uqdu
)

“tr
!

ż ż

Kpu, vqGpv, uqdudv
)

“

8
ÿ

i“1

8
ÿ

j“1

λiωj

ż

ϕipvq
Tψjpvqdv

ż

ψjpuq
Tϕipuqdu

“

8
ÿ

i“1

8
ÿ

j“1

λiωj

ˇ

ˇxϕi,ψjy
ˇ

ˇ

2
ď

8
ÿ

i“1

λiωi

ď

´

max
i

λi

¯

8
ÿ

j“1

ωj “ }K}L}G}N “ }K}Ltr
!

ż

Gpu, uqdu
)

,
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where the first inequality follows by using similar arguments to prove von Neumann’s trace

inequality (see Carlsson, 2021).

(iii) From Lemma A5(i) and the part (ii) above, we have

}KG}
2
S,F “tr

!

ż

KGGTKT
pu, uqdu

)

“ tr
!

ż

KTKGGT
pu, uqdu

)

ď}KKT
}Ltr

!

ż

GGT
pu, uqdu

)

“ }K}
2
L}G}

2
S,F,

which implies the desired result.

A.2 Proof of Proposition 1

(i) Note that tλju
p
j“1 are the non-vanishing eigenvalues of Ω “

ş ş

Σypu, vqΣypu, vqTdudv,

and tp2θju
r
j“1 are nonzero eigenvalues of ΩL, while the other p´r eigenvalues are zero. Then

applying Lemma A1 yields that, for each j P rrs,

|λj ´ p2θj| ď }Ω ´ ΩL} “ }ΩR},

and for r ` 1 ď j ď p, |λj| “ |λj ´ 0| ď }ΩR}.

(ii) By Lemma A2, for j P rrs and ξT

j
rbj ě 0,

}ξj ´ rbj} ď
}ΩR}{

?
2

minp|λj´1 ´ p2θj|, |p2θj ´ λj`1|q
.

Note that there exists a generic constant c ą 0 such that |λj´1 ´ p2θj| ą p2|θj´1 ´ θj| ´

|λj´1 ´ p2θj´1| ą cp2 since |λj´1 ´ p2θj´1| ď }ΩR} “ opp2q from part (i). If j ă r, a similar

argument implies that |p2θj ´ λj`1| ą cp2. If j “ r, |p2θr ´ λr`1| ą p2θr ´ |λr`1| ą cp2 since

|λr`1| ď }ΩR} “ opp2q by using part (i) again. Hence, minp|λj´1 ´ p2θj|, |p2θj ´ λj`1|q Á p2,

and if ξT

j
rbj ě 0, we have

}ξj ´ rbj} “ Opp´2
}ΩR}q, for j P rrs.

A.3 Proof of Proposition 2

To prove Proposition 2, we first present a technical lemma with its proof.

5



Lemma A9. Suppose that Assumption 1' holds. Then, tpϑjujPrrs are the non-vanishing

eigenvalues of Qp¨qQp¨qT P Hp b Hp with the corresponding eigenfunctions trqjp¨qujPrrs.

Proof. Let

p

qjp¨q for j P rrs be the columns of Qp¨q. By Assumption 1', we know that

x

p

qi,

p

qjy “ pϑiIpi “ jq, which implies that rqip¨q “ ppϑjq
´1{2

p

qjp¨q. Then, for j P rrs,

ż

tQpuqQpvq
T
urqjpvqdv “

r
ÿ

i“1

p

qipuqx

p

qi, rqjy “ pϑjrqjpuq,

which indicates that pϑj is the eigenvalue of Qp¨qQp¨qT with the corresponding eigenfunc-

tion rqjp¨q. Since xrqi, rqjy “ Ipi “ jq for i, j P rrs, we can expand trqjp¨qujPrrs into a set of

orthonormal basis functions in Hp, denoted as trqjp¨qu8
j“1. Considering that xrqj, rqky “ 0 for

any j ď r and k ě r ` 1, we obtain that
ş

tQpuqQpvqTurqkpvqdv “ 0 for k ě r ` 1. Thus, the

rest eigenvalues of Qp¨qQp¨qT are zero.

We are now ready to prove Proposition 2.

(i) Note that tτiu
8
i“1 are the eigenvalues of Σyp¨, ¨q, and tpϑju

r
j“1 are the r non-vanishing

eigenvalues of QQTp¨, ¨q by Lemma A9. Applying Lemma A3, we have, for j P rrs,

|τj ´ pϑj| ď }Σy ´ QQT
}L “ }Σε}L,

and, for j ą r ` 1, |τi| “ |τi ´ 0| ď }Σε}L.

(ii) By Lemma A7(iii), we have }Σε}L ď }Σε}
1{2
S,1}Σε}

1{2
S,8 “ Opspq “ oppq, which yields that

τj — pϑj — p for j P rrs. Under Assumption 1', ϑj are distinguishable and bounded away

from both zero and infinity, then minp|pϑj´1 ´ τj|, |τj ´ pϑj`1|q — p for j P rrs. It follows

from Lemma A4 that }φj ´ rqj} “ Opp´1}Σε}Lq for j P rrs.

A.4 Proof of Proposition 3

The sample covariance matrix of estimated idiosyncratic components by using the con-

strained least squares follows that

rΣεpu, vq “
1

n
tYpuq ´ pQpuqpΓ

T

utYpvq
T

´ pΓpQpvq
T
u “

1

n
YpuqYpvq

T
´ pQpuqpQpvq

T,

6



where we use the normalization condition n´1
pΓ

T
pΓ “ Ir and pQp¨q “ n´1Yp¨qpΓ. If we can

show that pQpuqpQpvqT “
řr

j“1 τ̂j pφjpuqpφjpvqT, then by the spectral decompositions of the

sample covariance estimator

pΣ
S

ypu, vq “
1

n
YpuqYpvq

T
“

r
ÿ

j“1

τ̂j pφjpuqpφjpvq
T

` pRpu, vq “ pQpuqpQpvq
T

` rΣεpu, vq,

we have pRp¨, ¨q “ rΣεp¨, ¨q. Thus, by applying the adaptive functional thresholding with the

same regularization parameters to the same residual covariance matrix functions, we have

pRAp¨, ¨q “ rΣ
A

ε p¨, ¨q, and then pΣ
F

y p¨, ¨q “ pΣ
L

y p¨, ¨q, which gives the desired result.

We next show that pQpuqpQpvqT “
řr

j“1 τ̂j pφjpuqpφjpvqT holds. To do this, we impose

another identifiability condition that can serve as an alternative (see also Remark 1) to

Assumption 1'.

Assumption S.1. p´1
ş

QpuqTQpuqdu “ Ir and Σγ is diagonal with distinct diagonal ele-

ments being bounded away from both 0 and 8 as p Ñ 8.

Note that Assumptions 1' and S.1 can be converted to each other by orthogonal transfor-

mation. Thus, for the minimization problem (16), we can use the following two equivalent

normalization constraints:

piq n´1
n
ÿ

t“1

γtγ
T

t “ Ir, and p´1

ż

Qpuq
TQpuqdu is diagonal,

piiq n´1
n
ÿ

t“1

γtγ
T

t is diagonal, and p´1

ż

Qpuq
TQpuqdu “ Ir.

(S.4)

Note that (S.4)(i) is used in Section 2.2 to obtain FPOET estimator. Following the similar

procedure, we obtain that

p

Qp¨q “
?
pppφ1p¨q, . . . , pφrp¨qq and

p

Γ “ p´1
ş

YpuqT

p

Qpuqdu is the

solution to (16) under (S.4)(ii). One can show that the two solutions under normalization

constraints (S.4)(i) and (ii) are equivalent and can be converted to each other through an

orthogonal matrix, i.e., there exists an r ˆ r orthogonal matrix H such that

p

Qp¨q “ pQp¨qH

and

p

Γ “ pΓH. Notice that

p

Qp¨q “
?
ptpφ1p¨q, . . . , pφrp¨qu and

p

Γ “ p´1
ş

YpuqT

p

Qpuqdu, then

7



we have

n´1

p

Γ
T

p

Γ “p´2n´1

ż

p

Qpuq
TYpuqdu

ż

Ypvq
T

p

Qpvqdv

“p´2

ż ż

p

Qpuq
T
tn´1YpuqYpvq

T
u

p

Qpvqdudv

“p´1

ż

tpφ1puq
T, . . . , pφrpuq

T
u
T

”

ż

pΣ
S

ypu, vqtpφ1pvq, . . . , pφrpvqudv
ı

du

“p´1

ż

tpφ1puq
T, . . . , pφrpuq

T
u
T
tτ̂1pφ1puq, . . . , τ̂rpφrpuqudu

“p´1diagpτ̂1, . . . , τ̂rq.

Since

p

Qp¨q

p

Γ
T

“ pQp¨qHHT
pΓ

T

“ pQp¨qpΓ
T

, it follows that

pQpuqpQpvq
T

“ n´1
pQpuqpΓ

T
pΓpQpvq

T
“ n´1

p

Qpuq

p

Γ
T

p

Γ

p

Qpvq
T

“

r
ÿ

j“1

τ̂j pφjpuqpφjpuq
T.

B Proofs of theoretical results in Section 3

B.1 Technical lemmas and their proofs

Lemma B10. For A P Rpˆq and K “ tKijp¨, ¨quqˆq P Hq b Hq, we have

(i) }AK}S,max ď }A}8}K}S,max, and }KAT}S,max ď }K}S,max}AT}1 “ }A}8}K}S,max;

(ii) }AK}S,F ď }A}F}K}S,F, and }KAT}S,F ď }K}S,F}AT}F “ }A}F}K}S,F;

(iii) }AK}S,8 ď }A}8}K}S,8, and }KAT}S,8 ď }K}S,8}AT}8 “ }A}1}K}S,8;

(iv) }AK}S,1 ď }A}1}K}S,1, and }KAT}S,1 ď }K}S,1}A
T}1 “ }A}8}K}S,1.

Proof. (i) It follows that

}AK}S,max “ max
iPrps,jPrqs

›

›

›

q
ÿ

k“1

AikKkj

›

›

›

S
ď max

iPrps,jPrqs

q
ÿ

k“1

|Aik|}Kkj}S

ď

´

max
iPrps

q
ÿ

k“1

|Aik|

¯

¨ }K}S,max “ }A}8}K}S,max.

Further,

}KAT
}S,max “}pKAT

q
T
}S,max “ }AKT

}S,max ď }A}8}KT
}S,max

“}A}8}K}S,max “ }AT
}1}K}S,max.

8



(ii) It follows that

}AK}
2
S,F “

p
ÿ

i“1

q
ÿ

j“1

›

›

›

q
ÿ

k“1

AikKkj

›

›

›

2

S
ď

p
ÿ

i“1

q
ÿ

j“1

´

q
ÿ

k“1

A2
ik

q
ÿ

k“1

}Kkj}
2
S

¯

“

p
ÿ

i“1

q
ÿ

j“1

´

q
ÿ

k“1

q
ÿ

l“1

A2
ik}Klj}

2
S

¯

“

˜

p
ÿ

i“1

q
ÿ

k“1

A2
ik

¸˜

q
ÿ

l“1

q
ÿ

j“1

}Klj}
2
S

¸

“}A}F}K}S,F,

where the inequality follows from the Cauchy–Schwartz inequality. Furthermore,

}KAT
}S,F “ }pKAT

q
T
}S,F “ }AKT

}S,F ď }A}F}K}S,F “ }K}S,F}AT
}F.

(iii) and (iv) It follows that

}AK}S,8 “max
iPrps

q
ÿ

k“1

q
ÿ

j“1

}AikKkj}S “ max
iPrps

q
ÿ

k“1

q
ÿ

j“1

|Aik|}Kkj}S

ďmax
iPrps

q
ÿ

k“1

q
ÿ

j“1

|Aik|max
k1Prqs

}Kk1j}S

“

´

max
iPrps

q
ÿ

k“1

|Aik|

¯´

max
k1Prqs

q
ÿ

j“1

}Kk1j}S

¯

“ }A}8}K}S,8.

Furthermore,

}KAT
}S,1 “ }AKT

}S,8 ď }A}8}KT
}S,8 “ }A}8}K}S,1.

The other two arguments can be proved similarly.

Lemma B11. For f ,g P Hr, and A P Rpˆr, we have

(i) }Af} ď }A} ¨ }f};

(ii) }K}S ď }f} ¨ }g} where Kp¨, ¨q P S is defined as Kpu, vq “ fpuqTgpvq.

Proof. (i) By the definition, it follows that

}Af} “

!

ż

ftpuq
TATAftpuqdu

)1{2

ď

!

ż

λmaxpATAqftpuq
Tftpuqdu

)1{2

“ }A} ¨ }f}.

9



(ii) By the Cauchy–Schwartz inequality,

}K}S “

”

ż ż

tfpuq
Tgpvqu

2dudv
ı1{2

“

”

ż ż

␣

r
ÿ

j“1

fjpuqgjpvq
(2
dudv

ı1{2

ď

!

ż ż r
ÿ

j“1

fjpuq
2

r
ÿ

j“1

gjpvq
2dudv

)1{2

“

!

ż

fpuq
Tfpuqdu

ż

gpvq
Tgpvqdv

)1{2

“}f} ¨ }g}.

Lemma B12. Under Assumptions 3(iv) and 4, we have that,

(i) for any i, j P rrs, }n´1
řn

t“1 ftiftj ´ Σf,ij}S “ Opp1{
?
nq, and }n´1

řn
t“1 ftf

T
t ´ Σf}S,max “

Opp1{
?
nq;

(ii) for any i, j P rps, }n´1
řn

t“1 εtiεtj´Σε,ij}S “ OppMε{
?
nq, and }n´1

řn
t“1 εtε

T
t ´Σε}S,max “

OppMε

a

log p{nq;

(iii) for any i, j P rps, }n´1
řn

t“1 ytiytj ´ Σy,ij}S “ OppMε{
?
nq, and }n´1

řn
t“1 yty

T
t ´

Σy}S,max “ OppMε

a

log p{nq.

Proof. For parts (i) and (ii), see Theorem 2, equations (12) and (14) in Guo and Qiao (2023)

for the corresponding proofs.

(iii) The autocovariance matrix functions of tytp¨qutPZ at lag h satisfyΣphq
y p¨, ¨q “ BΣ

phq

f p¨, ¨qBT`

Σphq
ε p¨, ¨q, and the corresponding spectral density matrix function at frequency θ P r´π, πs is

given by

fy,θ “
1

2π

ÿ

hPZ

Σphq
y expp´ihθq “

1

2π

ÿ

hPZ

BΣ
phq

f BT expp´ihθq `
1

2π

ÿ

hPZ

Σphq
ε expp´ihθq

“Bff,θB
T

` fε,θ.

10



By definition, the functional stability measure of tytp¨qutPZ is

My “2π ¨ ess sup
θPr´π,πs,ϕPHp

0

xϕ, fy,θpϕqy

xϕ,Σypϕqy

“2π ¨ ess sup
θPr´π,πs,ϕPHp

0

ş ş

ϕpuqTfy,θpu, vqϕpvqdudv
ş ş

ϕpuqTΣypu, vqϕpvqdudv

ď2π ¨ ess sup
θPr´π,πs,ϕPHp

0

ş ş

ϕpuqTBff,θpu, vqBTϕpvqdudv
ş ş

ϕpuqTBΣf pu, vqBTϕpvqdudv

` 2π ¨ ess sup
θPr´π,πs,ϕPHp

0

ş ş

ϕpuqTfε,θpu, vqϕpvqdudv
ş ş

ϕpuqTΣεpu, vqϕpvqdudv

ď2π ¨ ess sup
θPr´π,πs,ξPHr

0

xξ, ff,θpξqy

xξ,Σf pξqy
` 2π ¨ ess sup

θPr´π,πs,ϕPHp
0

xϕ, fε,θpϕqy

xϕ,Σεpϕqy

“Mf ` Mε — Mε.

The other conditions imposed by Guo and Qiao (2023) for tytp¨qutPZ can be easily verified.

Then the desired results can be obtained immediately by combining the above results.

We next introduce a lemma to give the perturbation rate in elementwise ℓ8 norm of the

eigenvectors if a matrix is perturbed. Suppose that A P Rpˆp is a symmetric matrix. Let

the perturbed matrix be rA “ A ` E, where E P Rpˆp is a symmetric perturbation matrix.

Suppose the spectral decomposition of A is given by A “
řr

i“1 λiviv
T
i `

ř

iąr λiviv
T
i , where

|λ1| ą |λ2| ą ¨ ¨ ¨ ą |λp|. Clearly, Ar “
řr

i“1 λiviv
T
i is the best rank-r approximation

of A. Analogously, the spectral decomposition of rA “
řr

i“1 λ̃irvirv
T
i `

ř

iąr λ̃irvirv
T
i . Write

V “ pv1, . . . ,vrq P Rpˆr and rV “ prv1, . . . , rvrq P Rpˆr.

Lemma B13. Suppose ι satisfies ι ą }E} and for any i P rrs, the interval pλi ´ ι, λi ` ιq does

not contain any eigenvalues of A other than λi. Then, there exists an orthogonal matrix

U P Rrˆr such that

}rVU ´ V}max “ O

ˆ

r5{2µ2}E}8

p|λr| ´ }A ´ Ar}8q
?
p

˙

,

where µ “ µpVq is the coherence of V defined as µpVq “ pp{rqmaxi
řr

j“1 V
2
ij.

Proof. The proof can be found in Fan, Wang and Zhong (2018) and thus is omitted here.
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Lemma B14. (Theorem 4.2.5 in Hsing and Eubank (2015)). If Kp¨, ¨q is a compact and

nonnegative definite kernel matrix function with associated eigenvalue/eigenfunction pairs

tpλj, ejp¨qu8
j“1, then

λk “ max
ePspante1,...,ek´1uK

xe,Kpeqy

}e}2
,

where Kpeqp¨q “
ş

Kp¨, uqepuqdu.

Lemma B15. Suppose that K,G P Hp b Hp are Mercer’s kernels, and λminpGq ą cn for a

sequence cn ą 0. If }K ´ G}L “ oppcnq, then λminpKq ą cn{2, and

}K´1
´ G´1

}L “ Oppc´2
n q}K ´ G}L.

Proof. Note that xx,Kpxqy “
ş ş

xpuqTKpu, vqxpvqdudv x P Hp. Then for any x P Hp such

that }x} “ 1, we have

ˇ

ˇ

ˇ

ˇ

ż ż

xpuq
T
rKpu, vq ´ Gpu, vqsxpvqdudv

ˇ

ˇ

ˇ

ˇ

ď }x}
2

¨ }K ´ G}L “ oppcnq

Thus, for n large enough, xx,Kpxqy ě xx,Gpxqy ´ cn{2 ą cn{2, since for any }x} “ 1,

xx,Gpxqy ě λminpGq ą cn using Lemma B14. Hence, for all k ě 1, the k-th eigenvalue of K

is larger than cn{2, which implies that λminpKq ą cn{2. In addition,

}K´1
´ G´1

}L “}K´1
pG ´ KqG´1

}L ď }K´1
}L}K ´ G}L}G´1

}L

“Oppc´2
n q}K ´ G}L,

where the last line comes from }K´1}L “ λmaxpK´1q “ rλminpKqs´1 “ Oppc´1
n q.

Lemma B16. Under Assumptions 3'(iv) and 4', we have that,

(i) for any i, j P rrs, |n´1
řn

t“1 γtiγtj ´ Σγ,ij| “ Opp1{
?
nq, and }n´1

řn
t“1 γtγ

T
t ´ Σγ}max “

Opp1{
?
nq;

(ii) for any i, j P rps, }n´1
řn

t“1 εtiεtj´Σε,ij}S “ OppMε{
?
nq, and }n´1

řn
t“1 εtε

T
t ´Σε}S,max “

OppMε

a

log p{nq;

(iii) for any i P rps, j P rrs, }n´1
řn

t“1 εtiγtj} “ OppMε{
?
nq, and maxiPrps,jPrrs }n´1

řn
t“1 εtiγtj} “

OppMε

a

log p{nq.

12



Proof. For parts (i) and (ii), see Theorem 2, equations (12) and (14) in Guo and Qiao (2023)

for the corresponding proofs.

(iii) See Remark 3 and equation (2.16) in Fang et al. (2022) for a proof.

Lemma B17. Under Assumptions 4 and 4', we have (i) maxtPrns }ft} “ Opp
?
log nq; (ii)

maxtPrns }γt} “ Opp
?
log nq.

Proof. Notice that ftp¨q in model (1) and γt in model (2) follow the sub-Gaussian functional

linear process and sub-Gaussian linear process (see Section E.3), respectively, with E}ft} “

Op1q and E}γt} “ Op1q. Applying Bonferroni’s method yields that for j P rrs and any given

η ą 0,

P

ˆ

max
tPrns

p}ftj}
2

´ E}ftj}
2
q ě η

˙

ďnmax
tPrns

P
`

}ftj}
2

´ E}ftj}
2

ě η
˘

ď2n expt´cminpη2, ηqu,

where c ą 0 is some constant and the second inequality follows from Lemma 5 in Fang et al.

(2022). Letting η “ log n gives that maxtPrns }ft}
2 “ Opplog nq ` OppE}ft}

2q, which implies

that maxtPrns }ft} “ Opp
?
log nq. The second argument can be proved similarly.

B.2 Proof of Theorem 1

The proof of part (i) of Theorem 1 mainly relies on Lemma B13. To prove Theorem 1,

we first present some technical lemmas with their proofs.

Lemma B18. Suppose that Assumption 1 holds. Then there exist some constants Cmax, C8 ą

0 such that (i) }Σf}S,max ď Cmax, (ii) maxp}Σf}S,8, }Σf}S,1, }Σf}S,Fq ď C8.

Proof. (i) In Assumption 1, we assume that

ż ż

Σf pu, vqΣf pu, vq
Tdudv “ diagpθ1, . . . , θrq,

i.e.,
ż ż r

ÿ

j“1

Σf,ijpu, vq
2dudv “ θi, for i P rrs.

13



Then we have

}Σf}
2
S,max “ max

iPrrs,jPrrs
}Σf,ij}

2
S “ max

iPrrs,jPrrs

ż ż

Σf,ijpu, vq
2dudv

ďmax
iPrrs

ż ż r
ÿ

j“1

Σf,ijpu, vq
2dudv “ max

iPrrs
θi “ θ1,

which implies that }Σf}S,max ď θ
1{2
1 ” Cmax.

(ii) Note that Σf pu, vq P Rrˆr, we have maxp}Σf}S,8, }Σf}S,1, }Σf}S,Fq ď r}Σf}S,max ď

rθ
1{2
1 ” C8.

Lemma B19. Suppose that Assumptions 1–3 hold. Then we have (i) }Σy}S,max À 1, (ii)

}Σy}S,8 À p, and (iii) }Σy}S,1 À p.

Proof. (i) By Lemma B10(i) and the fact }Σε}S,max ď }Σε}L, we have

}Σy}S,max “}BΣfB
T

` Σε}S,max ď }BΣfB
T
}S,max ` }Σε}S,max

ď}B}8}Σf}S,max}BT
}1 ` }Σε}S,max À r2C2Cmax ` Op1q — 1.

(ii) By Lemma B10(iii), we have

}Σy}S,8 “}BΣfB
T

` Σε}S,8 ď }BΣfB
T
}S,8 ` }Σε}S,8

ď}B}8}BT
}8}Σf}S,8 ` }Σε}S,8 ď rpC2C8 ` sp À p.

Part (iii) can be proved similarly.

Lemma B20. Supposing that Assumptions 1–3 hold, we have }ΩL} — p2 and }ΩR} À p.

Proof. For the first part of the lemma, notice that }ΩL} ď }ΩL}F ď
?
r}ΩL} where r is the

rank of ΩL, so }ΩL} — }ΩL}F, and

}ΩL}
2
F “

›

›

›

›

pB

ż ż

Σf pu, vqΣf pu, vq
TdudvBT

›

›

›

›

2

F

“p4tr pdiagtθ1, . . . , θrudiagtθ1, . . . , θru
T
q “ p4

r
ÿ

j“1

θ2i — p4,
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where the second equality follows from Assumption 1 that
ş ş

Σf pu, vqΣf pu, vqTdudv “

diagtθ1, . . . , θru and BTB “ pIr. Thus we have }ΩL} — p2. For the second part, we have

}ΩR} ď

›

›

›

›

ż ż

Σεpu, vqΣεpu, vq
Tdudv

›

›

›

›

`

›

›

›

›

ż ż

BΣf pu, vqBTΣεpu, vq
Tdudv

›

›

›

›

`

›

›

›

›

ż ż

Σεpu, vqBΣf pu, vq
TBTdudv

›

›

›

›

ď}Σε}
2
L ` 2}BΣfB

T
}L}Σε}L

“Oppq,

where the second inequality follows from Lemmas A5(ii) and A6(iv), and the last line follows

from Lemmas A7(i)(ii) and B18(ii).

Lemma B21. Under the assumptions of Theorem 1, we have }ΩR}8 À psp “ opp2q.

Proof. Notice that

}ΩR}8 ď

›

›

›

ż ż

Σεpu, vqΣεpu, vq
Tdudv

›

›

›

8

`

›

›

›

ż ż

BΣf pu, vqBTΣεpu, vq
Tdudv

›

›

›

8
`

›

›

›

ż ż

Σεpu, vqBΣf pu, vq
TBTdudv

›

›

›

8

ď}Σε}S,8}Σε}S,1 ` 2}BΣfB
T
}S,8}Σε}S,1

ď}Σε}S,8}Σε}S,1 ` 2}Σε}S,1}B}8}BT
}8}Σf}S,8

ďs2p ` 2rC2C8spp À s2p ` psp À psp “ opp2q,

where the second inequality follows from Lemma A6(ii), the third inequality follows from

Lemma B10(iii), and the fourth inequality follows from Lemma B18.

Lemma B22. Under the assumptions of Theorem 1, we have (i) }pΩ´Ω} “ OppMεp
2
a

1{nq “

oppp2q, and (ii) }pΩ ´ Ω}8 “ OppMεp
2
a

log p{nq “ oppp2q.
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Proof. (i) Note that

}pΩ ´ Ω} “

›

›

›

›

ż ż

pΣ
S

ypu, vqpΣ
S

ypu, vq
Tdudv ´

ż ż

Σypu, vqΣypu, vq
Tdudv

›

›

›

›

“

›

›

›

›

ż ż

!

pΣ
S

ypu, vq ´ Σypu, vq

)

pΣ
S

ypu, vq
T

` Σypu, vq

!

pΣ
S

ypu, vq
T

´ Σypu, vq
T

)

dudv
›

›

›

“

›

›

›

›

ż ż

!

pΣ
S

ypu, vq ´ Σypu, vq

)!

pΣ
S

ypu, vq
T

´ Σypu, vq
T

` Σypu, vq
T

)

` Σypu, vq

!

pΣ
S

ypu, vq
T

´ Σypu, vq
T

)

dudv
›

›

›

ď

›

›

›

›

ż ż

!

pΣ
S

ypu, vq ´ Σypu, vq

)!

pΣ
S

ypu, vq ´ Σypu, vq

)T

dudv

›

›

›

›

` 2

›

›

›

›

ż ż

!

pΣ
S

ypu, vq ´ Σypu, vq

)

Σypu, vq
Tdudv

›

›

›

›

ď}pΣ
S

y ´ Σy}
2
L ` 2}pΣ

S

y ´ Σy}L}Σy}L

ď}pΣ
S

y ´ Σy}
2
S,F ` 2}pΣ

S

y ´ Σy}S,F}Σy}S,F

“

p
ÿ

i“1

p
ÿ

j“1

}n´1
n
ÿ

t“1

ytiytj ´ Σy,ij}
2
S ` 2

˜

p
ÿ

i“1

p
ÿ

j“1

}n´1
n
ÿ

t“1

ytiytj ´ Σy,ij}
2
S

¸1{2

}Σy}S,F

“Op

´

Mεp
2
a

1{n
¯

“ oppp2q,

(S.5)

where the second inequality follows from Lemmas A5(ii) and A6(iv), the third inequality

follows from Lemma A7(ii), and the last line follows from Lemmas B12(iii), the fact that

}K}S,F ď p}K}S,max and Assumption 4(ii).

(ii) The argument can be proved in matrix ℓ8 norm following the similar procedure. Specif-

ically,

}pΩ ´ Ω}8 ď

›

›

›

›

ż ż

!

pΣ
S

ypu, vq ´ Σypu, vq

)!

pΣ
S

ypu, vq ´ Σypu, vq

)T

dudv

›

›

›

›

8

` 2

›

›

›

›

ż ż

!

pΣ
S

ypu, vq ´ Σypu, vq

)

Σypu, vq
Tdudv

›

›

›

›

8

ď}pΣ
S

y ´ Σy}S,8}pΣ
S

y ´ Σy}S,1 ` 2}pΣ
S

y ´ Σy}S,8}Σy}S,1

—p2}pΣ
S

y ´ Σy}S,max “ Op

´

Mεp
2

c

log p

n

¯

“ oppp2q,

where the first inequality can be obtained in a way similar to (S.5), the second inequality
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follows from Lemma A6(ii), and the last line follows from Lemma B12(iii) and Assump-

tion 4(ii).

Lemma B23. Let tλ̂ju
p
j“1 be the eigenvalues of pΩ in a descending order. Under the as-

sumptions of Theorem 1, it holds that λ̂r Á p2 with probability approaching 1. Furthermore,

λ̂i ´ λ̂j Á p2 for all 1 ď i ă j ď r with probability approaching 1.

Proof. By Proposition 1 and Lemma B20, the r-th largest eigenvalue λr of Ω satisfies

λr ě p2θr ´ |λr ´ p2θr| ě p2θr ´ }ΩR} Á p2.

Applying Lemma A1 yields that

|λ̂j ´ λj| ď }pΩ ´ Ω}, for j P rps.

From Lemma B22(i), we have }pΩ ´ Ω} “ oppp2q and hence λ̂r Á p2 with probability ap-

proaching 1. Furthermore, for all 1 ď i ă j ď r,

λ̂i ´ λ̂j ě pλi ´ λjq ´ |λ̂i ´ λi| ´ |λ̂j ´ λj| “ p2pθi ´ θjq ´ oppp2q Á p2

with probability approaching 1.

Lemma B24. Under the assumptions of Theorem 1, we have

}pB ´ BUT
}F “ OppMε

a

p{n ` 1{
?
pq.

Proof. By Proposition 1(ii) and Lemma B20, if ξT

j
rbj ě 0, then

}ξj ´ rbj} “ Oppp´2
}ΩR}q “ Oppp´1

q, for j P rrs. (S.6)

Applying Lemma A2 yields that, if pξ
T

j ξj ě 0, we have

}pξj ´ ξj} ď
}pΩ ´ Ω}{

?
2

min
´

ˇ

ˇλ̂j´1 ´ λj

ˇ

ˇ,
ˇ

ˇλj ´ λ̂j`1

ˇ

ˇ

¯ , (S.7)

where tλ̂ju
p
j“1 are the eigenvalues of pΩ in a descending order, and tpξju

p
j“1 are their corre-

sponding eigenvectors. Then, for j P rrs, we have |λ̂j´1 ´ λj| ě |λ̂j´1 ´ λ̂j| ´ |λj ´ λ̂j|,
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where the first term |λ̂j´1 ´ λ̂j| Á p2 with probability approaching 1 by Lemma B23, and

the second term |λj ´ λ̂j| “ oppp2q by Lemmas A1 and B22(i). Hence, |λ̂j´1 ´ λj| Á p2 with

probability approaching 1 for all j P rrs. We can also show the similar result for |λj ´ λ̂j`1|

if j P rr ´ 1s. If j “ r, |λr ´ λ̂r`1| ą λr ´ λ̂r`1 “ p2θr ´ λ̂r`1 Á p2 since λ̂r`1 “ oppp2q, which

can be implied by Proposition 1 and Lemma B20 that λr`1 “ opp2q, and Lemmas A1 and

B22(i) that |λ̂r`1 ´ λr`1| “ oppp2q. Thus,

min
`

|λ̂j´1 ´ λj|, |λj ´ λ̂j`1|
˘

Á p2.

Applying (S.7), Lemma B22(i) and the above argument, we have, if pξ
T

j ξj ě 0, then

}pξj ´ ξj} “ Op

´

Mε

a

1{n
¯

, for j P rrs.

Combing with (S.6) we have, if pξ
T

j
rbj ě 0, then

}pξj ´ rbj} “ Op

´

Mε

a

1{n ` 1{p
¯

, for j P rrs.

Since pbj “
?
ppξj and bj “

?
prbj, one can obtain that there exists an orthogonal matrix

U P Rrˆr such that

}pB ´ BUT
}F “ Op

´

Mε

a

p{n ` 1{
?
p
¯

,

where the matrix U is used to adjust the direction so that each bT
j
pbj ě 0 for j P rrs.

We are now ready to prove Theorem 1.

(i) Let E “ pΩ ´ Ω be the p ˆ p perturbation matrix. By Lemma B22, we have

}E}8 ď }pΩ ´ Ω}8 “ Op

´

Mεp
2

c

log p

n

¯

“ oppp2q.

Corresponding to Lemma B13, here A “ Ω, rA “ pΩ, and the r-th eigenvalue of A satisfies

λr — p2 by Proposition 1 and Lemma B20. Then, }A´Ar}8 ď }Ω´ΩL}8 “ }ΩR}8 “ psp “

opp2q from Lemma B21. Note that V “ pξ1, . . . , ξrq P Rpˆr, and denote ξj “ pξ1j, . . . , ξpjq
T.

The coherence of V is given by

µ “ µpVq “
p

r
max
iPrps

r
ÿ

j“1

ξ2ij ď
p

r
max
iPrps

r
ÿ

j“1

´

rb2ij ` }ξj ´ rbj}
2
¯

“ Op1q,
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since maxiPrps
rbij “ maxiPrps p

´1{2bij ď p´1{2}B}max “ Opp´1{2q and }ξj ´ rbj} “ Opp´1q if

ξT

j
rbj ě 0 by Proposition 1(ii) and Lemma B20. In addition, supposing that ι « }E} “ oppp2q

but ι ą }E}, we can show that for any j P rrs, the the interval pλj ´ι, λj `ιq does not contain

any eigenvalues of Ω other than λj for efficient large p. Thus by applying Lemma B13, we

have for j P rrs, if pξ
T

j ξj ě 0,

}pξj ´ ξj}max “ O

ˆ

r5{2µ2}E}8

p2
?
p

˙

“ Op

˜

Mε

d

log p

pn

¸

.

For j P rrs, if ξT

j
rbj ě 0, we have }ξj ´ rbj}max ď }ξj ´ rbj} “ Opp´1q, which implies that

}pξj ´ rbj}max “ OppMε

a

log p{pn` 1{pq. Since pB “
?
pppξ1, . . . ,

pξrq and B “
?
pprb1, . . . , rbrq,

one can obtain that there exists an orthogonal matrix U P Rrˆr (=the same as that in

Lemma B24) such that

}pB ´ BUT
}max “ Op

˜

Mε

c

log p

n
`

1
?
p

¸

“ opp1q,

where the matrix U is used to adjust the direction so that each bT
j
pbj ě 0 for j P rrs.

(ii) Note that pftp¨q “ p´1
pBTytp¨q “ p´1

pBTtBftp¨q ` εtp¨qufor t P rns and then

pftp¨q ´ Uftp¨q “ p´1
ppBTB ´ UBTBqftp¨q ` p´1

pBTεtp¨q. (S.8)

For the first term of (S.8), applying Lemmas B11 and B24 yields that

}p´1
ppBTB ´ UBTBqft} ď p´1

}pBT
´ UBT

} ¨ }B} ¨ }ft} “ Op

´

Mε

a

1{n ` 1{p
¯

,

since }pBT ´ UBT} ď }pB ´ BUT}F “ OppMε

a

p{n ` 1{
?
pq, }B} “ λ

1{2
maxpBTBq “

?
p and

}ft} “ Opp1q. For the second term of (S.8), denote

p

bi P Rr the i-th row of pB and

}p´1
pBTεt} “

›

›

›
p´1

p
ÿ

i“1

p

biεti

›

›

›
“ p´1

!

ż p
ÿ

i“1

εtipuq
2

p

bi

p

b
T

i du
)1{2

ďr1{2
}pB}maxp

´1
}εt} “ Opp1{

?
pq,

since }pB}max ď C ` opp1q and }εt} “ Oppp1{2q by Assumption 3(ii). The result follows

immediately that for t P rns,

}pft ´ Uft} “ Op

`

Mε{
?
n ` 1{

?
p
˘

,
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and thus n´1
řn

t“1 }pft ´ Uft}
2 “ OppM2

ε{n ` 1{pq.

(iii) The proof procedure is similar to part (ii). We only need to notice that maxtPrns }ft} “

Opp
?
log nq by Lemma B17 and maxtPrns }εt} “ Oppn1{4p1{2q by applying the Chebyshev’s

inequality and Bonferroni’s method combined with Assumption 3(ii).

B.3 Proof of Corollary 1

By Theorem 1(i)(iii), Lemma B17, and Assumption 3(i), we have

max
iPrps,tPrns

}

p

b
T

i
pft ´ b̆T

i ft} ďmax
iPrps

}

p

bi ´ Ub̆i} ¨ max
tPrns

}pft} ` max
iPrps

}b̆i} ¨ max
tPrns

}UT
pft ´ ft}

“Oppϖn,p ¨
a

log nq ` OppMε

a

log n{n ` n1{4
{p1{2

q

“Op

!

plog nq
1{2Mε

c

log p

n
`

n1{4

?
p

)

.

B.4 Proof of Theorem 3

To prove Theorem 3, we first present some technical lemmas with their proofs.

Lemma B25. Under the assumptions of Theorem 3, it holds that

(i) maxiPrps n
´1

řn
t“1 }pεti ´ εti}

2 “ Oppϖ2
n,pq;

(ii) maxi,jPrps }n´1
řn

t“1 pεtipεtj ´ n´1
řn

t“1 εtiεtj}S “ Oppϖn,pq;

(iii) }pΣε ´ Σε}S,max “ Oppϖn,pq.

Proof. (i) Notice that pεtip¨q ´εtip¨q “ tytip¨q ´ b̆T
i ftp¨qu ´ tytip¨q ´

p

b
T

i
pftp¨qu “ p

p

bi ´Ub̆iq
T
pftp¨q ´

b̆T
i pUT

pft ´ ftqp¨q, where b̆i and

p

bi are the i-th rows of B and pB, respectively. Applying the

inequality pa ` bq2 ď 2a2 ` 2b2 and the Cauchy–Schwartz inequality yields that

max
iPrps

1

n

n
ÿ

t“1

}pεti ´ εti}
2

ď2max
iPrps

}

p

bi ´ Ub̆i}
2 1

n

n
ÿ

t“1

}pft}
2

` 2max
iPrps

}b̆i}
2 1

n

n
ÿ

t“1

}UT
pft ´ ft}

2

“Oppϖ2
n,pq ` OppM2

ε{n ` 1{pq “ Oppϖ2
n,pq.

(ii) Notice that maxiPrps E}εti}
2 “ maxiPrps E

ş

εtipuq2du “ maxiPrps

ş

Σε,iipu, uqdu “ Op1q from

Assumption 3(iv), thus we have maxiPrps n
´1

řn
t“1 }εti}

2 “ Opp1q. By the Cauchy–Schwartz
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inequality,

max
i,jPrps

›

›

›

1

n

n
ÿ

t“1

pεtipεtj ´
1

n

n
ÿ

t“1

εtiεtj

›

›

›

S
“ max

i,jPrps

›

›

›

1

n

n
ÿ

t“1

ppεti ´ εtiqpεtj ` εtippεtj ´ εtjq
›

›

›

S

ďmax
iPrps

1

n

n
ÿ

t“1

}pεti ´ εti}
2

` 2
´

max
iPrps

1

n

n
ÿ

t“1

}εti}
2
¯1{2´

max
jPrps

1

n

n
ÿ

t“1

}pεtj ´ εtj}
2
¯1{2

“Oppϖ2
n,pq ` Oppϖn,pq “ Oppϖn,pq.

(iii) The result is immediately implied by part (ii) above and Lemma B12(ii).

Lemma B26. Under the assumptions of Theorem 3, there exist some constants Θ1,Θ2 ą 0

such that with probability approaching 1,

Θ1 ď min
iPrps,jPrps

}pΘ
1{2
ij }S ď max

iPrps,jPrps
}pΘ

1{2
ij }S ď Θ2.

Proof. We first prove the upper bound. By the definition of pΘij, we have

pΘijpu, vq “
1

n

n
ÿ

t“1

!

pεtipuqpεtjpvq ´
1

n

n
ÿ

s“1

pεsipuqpεsjpvq

)2

ď
2

n

n
ÿ

t“1

!

pεtipuqpεtjpvq ´ Σε,ijpu, vq

)2

` 2 max
iPrps,jPrps

!

Σε,ijpu, vq ´
1

n

n
ÿ

s“1

pεsipuqpεsjpvq

)2

,

which implies that

}pΘ
1{2
ij }

2
S “

ż ż

pΘijpu, vqdudv ď
2

n

ż ż n
ÿ

t“1

tpεtipuqpεtjpvq ´ Σε,ijpu, vqu
2 dudv ` 2}pΣε ´ Σε}

2
S,max

“
2

n

ż ż n
ÿ

t“1

!

pεtipuqpεtjpvq ´ Σε,ijpu, vq

)2

dudv ` opp1q,
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where the last line follows from Lemma B25. Moreover

n
ÿ

t“1

!

pεtipuqpεtjpvq ´ Σε,ijpu, vq

)2

“

n
ÿ

t“1

”

␣

pεtipuq ´ εtipuq
(

pεtjpvq ` εtipuq
␣

pεtjpvq ´ εtjpvq
(

` εtipuqεtjpvq ´ Σε,ijpu, vq

ı2

ď4
n
ÿ

t“1

␣

pεtipuq ´ εtipuq
(2
pεtjpvq

2
` 4

n
ÿ

t“1

εtipuq
2
␣

pεtjpvq ´ εtjpvq
(2

` 2
n
ÿ

t“1

␣

εtipuqεtjpvq ´ Σε,ijpu, vq
(2

ď4 max
iPrps,tPrns

␣

pεtipuq ´ εtipuq
(2

max
jPrps

”

n
ÿ

t“1

2
␣

pεtjpvq ´ εtjpvq
(2

` 3εtjpvq
2
ı

` 2
n
ÿ

t“1

␣

εtipuqεtjpvq ´ Σε,ijpu, vq
(2
.

Here, we bound each term above as follows: (a) by Corollary 1, we have maxiPrps,tPrns }pεti ´

εti}
2 “ Op

␣

plog nq1{2Mε

a

log p{n ` n1{4{
?
p
(

“ opp1q under Assumption 6; (b) by Lemma

B25(i), maxjPrps n
´1

řn
t“1 }pεtj ´εtj}

2 “ Oppϖ2
n,pq “ opp1q; (c) by Lemma B12(ii) and Assump-

tion 3(iv), maxjPrps n
´1

řn
t“1 }εtj}

2 ď opp1q `maxjPrps

ş

Σε,jjpu, uqdu “ Opp1q. Combing these

results yields that

}pΘ
1{2
ij }

2
S ď

2

n

ż ż n
ÿ

t“1

␣

εtipuqεtjpvq ´ Σε,ijpu, vq
(2
dudv ` opp1q.

Similar arguments as those in the proof of Lemma Cai and Liu (2011) results in

max
iPrps,jPrps

›

›

›

1

n

n
ÿ

t“1

pεtiεtj ´ Σε,ijq
2

´ Varpεtiεtjq
›

›

›

S
“ opp1q.

Combining with Assumption 5 implies that maxiPrps,jPrps }n´1
řn

t“1pεtiεtj´Σε,ijq
2}S is bounded

away from both zero and infinity with probability approaching 1. Therefore, maxi,jPrps }pΘ
1{2
ij }S

is bounded away from infinity with probability approaching 1.
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We next prove the lower bound. Notice that

1

n

n
ÿ

t“1

!

εtipuqεtjpvq ´ Σε,ijpu, vq

)2

ď4
n
ÿ

t“1

!

εtipuqεtjpvq ´ pεtipuqpεtjpvq

)2

` 4
n
ÿ

t“1

!

pεtipuqpεtjpvq ´
1

n

n
ÿ

s“1

pεsipuqpεsjpvq

)2

` 2
n
ÿ

t“1

! 1

n

n
ÿ

s“1

pεsipuqpεsjpvq ´ Σε,ijpu, vq

)2

,

which implies that

1

n

ż ż n
ÿ

t“1

!

εtipuqεtjpvq ´ Σε,ijpu, vq

)2

dudv ď
4

n

ż ż n
ÿ

t“1

rεtipuqεtjpvq ´ pεtipuqpεtjpvqs
2dudv

` 4}pΘ
1{2
ij }

2
S ` opp1q,

where the LHS is bounded away from both zero and infinity uniformly in i, j. Then,

n
ÿ

t“1

!

εtipuqεtjpvq ´ pεtipuqpεtjpvq

)2

ď2
n
ÿ

t“1

εtipuq
2
␣

εtjpvq ´ pεtjpvq
(2

` 2
n
ÿ

t“1

pεjtpvq
2
␣

εtipvq ´ pεtipuq
(2

ď4 max
iPrps,tPrns

␣

pεtipuq ´ εtipuq
(2

max
jPrps

n
ÿ

t“1

”

␣

rpεjtpvq ´ εtjpvq
(2

` εjtpvq
2
ı

.

As demonstrated in the proof of the upper bound above, we have

1

n

ż ż n
ÿ

t“1

␣

εtipuqεtjpvq ´ pεtipuqpεtjpvq
(2
dudv “ opp1q.

Hence, miniPrps,jPrps }pΘ
1{2
ij }S is bounded away from zero with probability approaching 1.

We are now ready to prove Theorem 3. By Lemmas B25(iii) and B26, we have }pΣε ´

Σε}S,max “ Oppϖn,pq and maxijPrps }Θij}S “ Opp1q. Consequently, for any ϵ ą 0, there exist

some positive constants N,Θ1 and Θ2 such that each of events

Υ1 “

"

max
iPrps,jPrps

›

›

›

pΣε,ij ´ Σε,ij

›

›

›

S
ă Nϖn,p

*

, Υ2 “

!

Θ1 ď
›

›pΘ
1{2
ij

›

›

S ď Θ2, all i, j P rps

)

hold with probability at least 1´ϵ. The thresholding in (10) is equivalent to pΣA
ε,ij “ sij

`

pΣε,ij

˘

,

where sijp¨q ” sλij
p¨q with λij “ 9Cωn,p}pΘ

1{2
ij }S and ωn,p “

a

log p{n ` 1{
?
p which is smaller
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than ϖn,p. For 9C ą 2NΘ´1
1 pϖn,p{ωn,pq, under the event Υ1 X Υ2, we obtain that

}pΣ
A

ε ´ Σε}S,1 “max
iPrps

p
ÿ

j“1

}pΣA
ε,ij ´ Σε,ij}S “ max

iPrps

p
ÿ

j“1

}sijppΣε,ijq ´ Σε,ij}S

ďmax
iPrps

p
ÿ

j“1

}sijppΣε,ijq ´ pΣε,ij}SI
`

}pΣε,ij}S ą 9Cωn,p}pΘ
1{2
ij }S

˘

` max
iPrps

p
ÿ

j“1

}pΣε,ij ´ Σε,ij}SI
`

}pΣε,ij}S ą 9Cωn,p}pΘ
1{2
ij }S

˘

` max
iPrps

p
ÿ

j“1

}Σε,ij}SI
`

}pΣε,ij}S ď 9Cωn,p}pΘ
1{2
ij }S

˘

ďmax
iPrps

p
ÿ

j“1

λijI
`

}pΣε,ij}S ą 9Cωn,pΘ1

˘

` max
iPrps

p
ÿ

j“1

Nϖn,pI
`

}pΣε,ij}S ą 9Cωn,pΘ1

˘

` max
iPrps

p
ÿ

j“1

}Σε,ij}SI
`

}pΣε,ij}S ď 9Cωn,pΘ2

˘

ďp 9CΘ2 ` Nqϖn,p max
iPrps

p
ÿ

j“1

I
`

}Σε,ij}S ą Nϖn,p

˘

` max
iPrps

p
ÿ

j“1

}Σε,ij}SI
`

}Σε,ij}S ď p 9CΘ2 ` Nqϖn,p

˘

ďp 9CΘ2 ` Nqϖn,p max
iPrps

p
ÿ

j“1

}Σε,ij}
q
S

N qϖq
n,p

I
`

}Σε,ij}S ą Nϖn,p

˘

` max
iPrps

p
ÿ

j“1

}Σε,ij}S
p 9CΘ2 ` Nq1´qϖ1´q

n,p

}Σε,ij}
1´q
S

I
`

}Σε,ij}S ď p 9CΘ2 ` Nqϖn,p

˘

ďp 9CΘ2 ` Nq
␣

N´q
` p 9CΘ2 ` Nq

´q
(

ϖ1´q
n,p max

iPrps

p
ÿ

j“1

}Σε,ij}
q
S

—ϖ1´q
n,p sp,

where the third inequality follows from 9CΘ1ωn,p ą 2Nϖn,p, and the last line follows from

the fact that sp “ maxiPrps

řp
j“1 }σi}

p1´qq{2
N }σj}

p1´qq{2
N }Σε,ij}

q
S — maxiPrps

řp
j“1 }Σε,ij}

q
S since

maxiPrps }σi}N “ maxiPrps

ş

Σεpu, uqdu “ Op1q by Assumption 3(iv). Therefore, with prob-

ability at least 1 ´ 2ϵ, }pΣ
A

ε ´ Σε}S,1 À ϖ1´q
n,p sp. Considering that ϵ ą 0 can be arbitrarily

small, we have the desired result

}pΣ
A

ε ´ Σε}L ď }pΣ
A

ε ´ Σε}S,1 “ Oppϖ1´q
n,p spq.
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B.5 Proof of Theorem 4

To prove Theorem 4, we first present a technical lemma with its proof.

Lemma B27. Suppose that the assumptions of Theorem 4 hold. For the sample covariance

of pft, i.e., pΣf pu, vq “ n´1
řn

t“1
pftpuqpftpvqT, we have

}pΣf ´ UΣfU
T
}S,max “ OppMε{

?
n ` 1{

?
pq.

Proof. Consider pftpuqpftpvqT ´ UftpuqftpvqTUT “
␣

pftpuq ´ Uftpuq
(

pftpvqT ` Uftpuq
␣

pftpvq ´

Uftpvqs
(T

. Then

›

›

›

1

n

n
ÿ

t“1

ppftpf
T

t ´ Uftf
T

t U
T
q

›

›

›

S,max
ď

›

›

›

1

n

n
ÿ

t“1

ppft ´ Uftqpf
T

t

›

›

›

S,max
`

›

›

›

1

n

n
ÿ

t“1

Uftppft ´ Uftq
T

›

›

›

S,max

ď

´ 1

n

n
ÿ

t“1

}pft ´ Uft}
2
¯1{2

˜

1

n

n
ÿ

t“1

}pft}
2

¸1{2

`

´ 1

n

n
ÿ

t“1

}pft ´ Uft}
2
¯1{2

˜

1

n

n
ÿ

t“1

}Uft}
2

¸1{2

“Oppϖn,pq,

where the second inequality follows from the Cauchy–Schwartz inequality, and the last line

follows from n´1
řn

t“1 }pft´Uft}
2 “ OppM2

ε{n`1{pq by Theorem 1(ii), and n´1
řn

t“1 }Uft}
2 “

Opp1q since }U} “ 1 and E}ft}
2 “ Op1q. Together with Lemma B12(i), the desired result

follows immediately.

We are now ready to prove Theorem 4. Consider that

BΣfB
T

´ pBpΣf
pBT

“ BUTUΣfU
TUBT

´ pBpΣf
pBT

“BUT
pUΣfU

T
´ pΣf qUBT

` pBUT
´ pBqpΣfUBT

` pBpΣf pUBT
´ pBT

q.
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Then we have

}BΣfB
T

´ pBpΣf
pBT

}S,max

ď}BUT
}8}UΣfU

T
´ pΣf}S,max}UBT

}1

` 2}BUT
´ pB}8p}UΣfU

T
}S,max ` }UΣfU

T
´ pΣf}S,maxq}BUT

}8

ďr3C2
}UΣfU

T
´ pΣf}S,max ` 2r5{2CprCmax ` }UΣfU

T
´ pΣf}S,maxq}BUT

´ pB}max

“OppMε{
?
n ` 1{

?
pq ` Oppϖn,pq “ Oppϖn,pq,

(S.9)

where the first inequality follows from Lemma B10(i), the second inequality follows from

}BUT}8 ď r}BUT}max ď r}B}max}U}8 ď r3{2C provided that }U}8 ď
?
r}U} “

?
r,

}BUT ´ pB}8 ď r}BUT ´ pB}max and }UΣfU
T}S,max ď Cmax}U}28 ď rCmax in Lemma B18(i),

and the last line follows from Lemma B27 and }BUT ´ pB}max “ Oppϖn,pq in Theorem 1(i).

Then note that

}pΣ
A

ε ´ Σε}S,max ď}pΣ
A

ε ´ pΣε}S,max ` }pΣε ´ Σε}S,max

ď max
i,jPrps

p}pΘ
1{2
ij }Sλq ` Oppϖn,pq “ Oppϖn,pq,

where the last line follows from Lemma B25(iii), the choice of λ “ 9Cp
a

log p{n `
a

1{pq À

ϖn,p, and the fact maxi,jPrps }pΘ
1{2
ij }S “ Opp1q by Lemma B26. By combining (5), (12) and

(S.9), we obtain the desired result.

B.6 Proof of Theorem 5

For the sake of brevity, in this section, we suppose that the orthogonal matrix U in

Theorem 1 and Lemmas B24–B27 is an identity matrix, which means, when we perform

eigen-decomposition on pΩ, we can always select the correct direction of pξj to ensure pξ
T

j
rbj ě 0.

The proofs of Theorems 4 and 3 verify that the choice of U does not affect the theoretical

results. To prove Theorem 5, we first present some technical lemmas with their proofs.

Lemma B28. Under the assumptions of Theorem 5, then, pΣ
A

ε has a bounded inverse with

probability approaching 1, and }ppΣ
A

ε q´1 ´ Σ´1
ε }L “ Oppϖ1´q

n,p spq.
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Proof. Provided that ϖ1´q
n,p sp “ op1q and λminpΣεq ą c1 for some constant c1 ą 0, we combine

Lemma B15 and Theorem 3 to yield that λminppΣ
A

ε q ą c1{2 with probability approaching 1,

and thus pΣ
A

ε has a bounded inverse with probability approaching 1 together with the desired

result }ppΣ
A

ε q´1 ´ Σ´1
ε }L “ Oppϖ1´q

n,p spq.

Lemma B29. Under the assumptions of Theorem 5,

}pBT
ppΣ

A

ε q
´1

pB ´ BTΣ´1
ε B}L “ Opppϖ1´q

n,p spq “ opppq.

Proof. Consider

}pBT
ppΣ

A

ε q
´1

pB ´ BTΣ´1
ε B}L ď2}ppB ´ Bq

T
ppΣ

A

ε q
´1

pB}L ` }BT
tppΣ

A

ε q
´1

´ Σ´1
ε uB}L

ď2}pB ´ B}tλminppΣ
A

ε qu
´1

}B} ` }B}
2
}ppΣ

A

ε q
´1

´ Σ´1
ε }L

“Opppϖn,pq ` Opppϖ1´q
n,p spq “ Opppϖ1´q

n,p spq “ opppq,

where the last line follows from Lemmas B24 and B28.

Lemma B30. Under the assumptions of Theorem 5, then, with probability approaching 1,

(i) λminpΣ´1
f ` BTΣ´1

ε Bq Á p;

(ii) λminppΣ
´1

f ` pBTppΣ
A

ε q´1
pBq Á p.

Proof. (i) Note that

λminpΣ´1
f ` BTΣ´1

ε Bq ě λminpBTΣ´1
ε Bq ě λminpΣ´1

ε qλminpBTBq Á p,

where the first inequality follows from the fact Σf is a Mercer kernel.

(ii) Since λminpΣf q ą c2 and }pΣf ´Σf}L “ Oppϖn,pq “ opp1q, by using Lemma B15, we have

}pΣ
´1

f ´ Σ´1
f }L “ Oppϖn,pq. Thus, by Lemma B29,

›

›

›

␣

pΣ
´1

f ` pBT
ppΣ

A

ε q
´1

pB
(

´
␣

Σ´1
f ` BTΣ´1

ε B
(

›

›

›

L
“ opppq.

Combing with Lemma A3, we obtain that λminppΣ
´1

f ` pBTppΣ
A

ε q´1
pBq Á p.
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We are now ready to prove Theorem 5. Using the functional version of Sherman–

Morrison–Woodbury identity, we have }ppΣ
D

y q´1 ´ Σ´1
y }L ď

ř4
k“1 Lk, where

L1 “

›

›

›
ppΣ

A

ε q
´1

´ Σ´1
ε

›

›

›

L
,

L2 “

›

›

›

␣

ppΣ
A

ε q
´1

pB ´ Σ´1
ε B

(␣

pΣ
´1

f ` pBT
ppΣ

A

ε q
´1

pB
(´1

pBT
ppΣ

A

ε q
´1
›

›

›

L
,

L3 “

›

›

›
Σ´1

ε B
␣

pΣ
´1

f ` pBT
ppΣ

A

ε q
´1

pB
(´1␣

pBT
ppΣ

A

ε q
´1

´ BTΣ´1
ε

(

›

›

›

L
,

L4 “

›

›

›
Σ´1

ε B
”

␣

pΣ
´1

f ` pBT
ppΣ

A

ε q
´1

pB
(´1

´
␣

Σ´1
f ` BTΣ´1

ε B
(´1

ı

BTΣ´1
ε

›

›

›

L
.

Clearly, L1 “ Oppϖ1´q
n,p spq by Lemma B28. Then, note that }ppΣ

A

ε q´1
pB´Σ´1

ε B}L ď }ppΣ
A

ε q´1´

Σ´1
ε }L}pB}`}Σ´1

ε }L}pB´B} “ Opp
?
pϖ1´q

n,p spq. From Lemma B30, we obtain that L2 — L3 “

Oppϖ1´q
n,p spq. Lastly, since λminpΣ´1

f ` BTΣ´1
ε Bq Á p and }tpΣ

´1

f ` pBTppΣ
A

ε q´1
pBu ´ tΣ´1

f `

BTΣ´1
ε Bu}L “ Opppϖ1´q

n,p spq “ opppq, we apply Lemma B15 to obtain that

›

›

›
tpΣ

´1

f ` pBT
ppΣ

A

ε q
´1

pBu
´1

´ tΣ´1
f ` BTΣ´1

ε Bu
´1
›

›

›

L
“ Oppp´2

qOpppϖ1´q
n,p spq “ Oppp´1ϖ1´q

n,p spq,

which implies that L4 “ Oppϖ1´q
n,p spq. Combining the above results, pΣ

D

y has a bounded

inverse with probability approaching one, and

›

›

›
ppΣ

D

y q
´1

´ Σ´1
y

›

›

›

L
“ Oppϖ1´q

n,p spq.

B.7 Proof of Theorem 1'

To prove Theorem 1', we first present some technical lemmas with their proofs.

Lemma B31. Under Assumption 4', it holds that

max
tPrns

n
ÿ

t1“1

|Exεt1 , εty|

p
“ OpMεq, and max

t1,tPrns

|Exεt1 , εty|

p
“ OpMεq.

Proof. From Assumption 4', the functional stability measure of tεtp¨qutPZ is bounded (Mε ă

8), and we would like to associate it with the equation of interest in this lemma. Since
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tεtp¨qutPZ is stationary, we have, uniformly in n,

max
tPrns

n
ÿ

t1“1

|Exεt1 , εty|

p
ďmax

tPrns

1

p

p
ÿ

i“1

n
ÿ

t1“1

|Exεt1i, εtiy| ď max
tPrns

max
iPrps

n
ÿ

t1“1

|Exεt1i, εtiy|

ďmax
iPrps

8
ÿ

t1“´8

ˇ

ˇ

ˇ

ˇ

E
ż

ε1ipuqεt1ipuqdu

ˇ

ˇ

ˇ

ˇ

ďmax
iPrps

8
ÿ

t1“´8

"

E
ż

ε1ipuqεt1ipuqdu ¨

ż

ε1ipvqεt1ipvqdv

*1{2

ďmax
iPrps

8
ÿ

t1“´8

E
ż ż

ε1ipuqεt1ipvqdudv

“max
iPrps

ÿ

hPZ

ż ż

ϕipuq
TΣphq

ε pu, vqϕipvqdudv

“2π ¨ max
iPrps

xϕi, fε,θ“0pϕiqy ď 2πωε
0 ¨ max

iPrps

xϕi, fε,θ“0pϕiqy

xϕi,Σεpϕiqy

ď2πωε
0 ¨ ess sup

θPr´π,πs,ϕPHp
0,ε

xϕ, fε,θpϕqy

xϕ,Σεpϕqy
“ ωε

0Mε “ OpMεq,

where ϕip¨q “ p0, . . . , 1, . . . qT with its i-th element being 1 and the rest being 0, Hp
0,ε “ tϕ P

Hp : xϕ,Σεpϕqy P p0,8qu, fε,θ is the spectral density matrix function of tεtp¨qutPZ defined in

Section 3.1, and ωε
0 “ maxjPrps

ş

Σε,jjpu, uqdu. Furthermore, we also obtain that

max
t1,tPrns

|Exεt1 , εty|

p
ď max

tPrns

n
ÿ

t1“1

|Exεt1 , εty|

p
“ OpMεq.

Recall the definition of the asymptotically orthogonal matrix H introduced in Section

3.2. Applying the equation (C.2) in Fan et al. (2013) or (A.1) in Bai (2003), we have

pγt ´ Hγt “

´V

p

¯´1! 1

n

n
ÿ

t1“1

pγt1

Exεt1 , εty

p
`

1

n

n
ÿ

t1“1

pγt1ζt1t `
1

n

n
ÿ

t1“1

pγt1ηt1t `
1

n
pγt1ξt1t

)

, (S.10)

where

ζt1t “
1

p
xεt1 , εty ´

1

p
Exεt1 , εty,

ηt1t “
1

p
γT

t1

p
ÿ

i“1

ż

qipuqεtipuqdu,

ξt1t “
1

p
γT

t

p
ÿ

i“1

ż

qipuqεt1ipuqdu.
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Lemma B32. Under the assumptions of Theorem 1', it holds that

(i) maxtPrns }pnpq´1
řn

t1“1 pγt1Exεt1 , εty} “ OppMε{
?
nq;

(ii) maxtPrns }n´1
řn

t1“1 pγt1ζt1t} “ Opp
a

n1{2{pq;

(iii) maxtPrns }n´1
řn

t1“1 pγt1ηt1t} “ Opp
a

n1{2{pq;

(iv) maxtPrns }n´1
řn

t1“1 pγt1ξt1t} “ Opp
a

n1{2{pq.

Proof. (i) By the Cauchy–Schwartz inequality and the fact that n´1
řn

t“1 }pγt}
2 “ Opp1q,

max
tPrns

›

›

›

1

np

n
ÿ

t1“1

pγt1Exεt1 , εty
›

›

›
ďmax

tPrns

«

1

n

n
ÿ

t1“1

}pγt1}
2 1

n

n
ÿ

t1“1

!Exεt1 , εty

p

)2

ff1{2

ďOpp1qmax
tPrns

«

1

n

n
ÿ

t1“1

!Exεt1 , εty

p

)2

ff1{2

ďOpp1q max
t1,tPrns

ˇ

ˇ

ˇ

ˇ

Exεt1 , εty

p

ˇ

ˇ

ˇ

ˇ

1{2

max
tPrns

#

1

n

n
ÿ

t1“1

ˇ

ˇ

ˇ

Exεt1 , εty

p

ˇ

ˇ

ˇ

+1{2

“OppMε{
?
nq,

where the last equality follows from Lemma B31.

(ii) By the Cauchy–Schwartz inequality and the fact that n´1
řn

t“1 }pγt}
2 “ Opp1q,

max
tPrns

›

›

›

1

n

n
ÿ

t1“1

pγt1ζt1t

›

›

›
ďmax

tPrns

1

n

´

n
ÿ

t1“1

}pγt1}
2

n
ÿ

t1“1

ζ2t1t

¯1{2

“ Opp1q

´

max
tPrns

1

n

n
ÿ

t1“1

ζ2t1t

¯1{2

“Opp1q

#

max
tPrns

1

n

n
ÿ

t1“1

´1

p
xεt1 , εty ´

1

p
Exεt1 , εty

¯2

+1{2

“ Oppn1{4
{
?
pq,

where the last equality follows from Assumption 3'(ii) that Epn´1
řn

t1“1 ζ
2
t1tq

2 ď maxt1,tPrns Eζ4t1t “

Op1{p2q, and then using Chebyshev’s inequality and Bonferroni’s method that leads to

maxtPrns n
´1

řn
t1“1 ζ

2
t1t “ Opp

?
n{pq.

(iii) By the Cauchy–Schwartz inequality and the fact that }n´1
řn

t1“1 pγt1γT

t1} “ Opp1q,

max
tPrns

›

›

›

›

›

1

n

n
ÿ

t1“1

pγt1ηt1t

›

›

›

›

›

ď

›

›

›

›

›

1

n

n
ÿ

t1“1

pγt1γT

t1

›

›

›

›

›

max
tPrns

›

›

›

›

›

1

p

p
ÿ

i“1

ż

qipuqεtipuqdu

›

›

›

›

›

“ Oppn1{4
{
?
pq,

where the last equality follows from Assumption 3'(ii) that E}p´1{2
řp

i“1

ş

qipuqεtipuqdu}4 “

Op1q, and then using Chebyshev’s inequality and Bonferroni’s method that leads to
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maxtPrns }p´1
řp

i“1

ş

qipuqεtipuqdu} “ Oppn1{4{
?
pq.

(iv) Similar to (iii), we can show that }pnpq´1
řn

t1“1

řp
i“1

ş

qipuqεt1ipuqdupγt1} “ Opp1{
?
pq.

Additionally, maxtPrns }γt} “ Oppn1{4q, implied by E}γt}
4 “ Op1q and the use of Bonferroni’s

method. The desired result follows immediately that

max
tPrns

›

›

›

1

n

n
ÿ

t1“1

pγt1ξt1t

›

›

›
ď max

tPrns
}γt}

›

›

›

1

np

n
ÿ

t1“1

p
ÿ

i“1

ż

qipuqεt1ipuqdupγt1

›

›

›
“ Oppn1{4

{
?
pq.

Lemma B33. Denote pγt “ ppγt1, . . . , pγtrq
T. Under the assumptions of Theorem 1', it holds

that, for i P rrs,

(i) n´1
řn

t“1rpnpq´1
řn

t1“1 pγt1iExεt1 , εtys2 “ OppM2
ε{nq;

(ii) n´1
řn

t“1pn
´1

řn
t1“1 pγt1iζt1tq

2 “ Opp1{pq;

(iii) n´1
řn

t“1pn
´1

řn
t1“1 pγt1iηt1tq

2 “ Opp1{pq;

(iv) n´1
řn

t“1pn
´1

řn
t1“1 pγt1iξt1tq

2 “ Opp1{pq.

Proof. (i) By the Cauchy–Schwartz inequality and the fact that
řn

t1“1 pγ
2
t1i “ n,

1

n

n
ÿ

t“1

˜

1

n

n
ÿ

t1“1

pγt1i
Exεt1 , εty

p

¸2

ď
1

n

n
ÿ

t“1

1

n

´

n
ÿ

t1“1

pγ2
t1i

¯ 1

n

n
ÿ

t1“1

ˆ

Exεt1 , εty

p

˙2

“
1

n

n
ÿ

t“1

1

n

n
ÿ

t1“1

ˆ

Exεt1 , εty

p

˙2

ď max
tPrns

1

n

n
ÿ

t1“1

ˆ

Exεt1 , εty

p

˙2

ď max
t1,tPrns

ˇ

ˇ

ˇ

ˇ

Exεt1 , εty

p

ˇ

ˇ

ˇ

ˇ

max
tPrns

1

n

n
ÿ

t1“1

ˇ

ˇ

ˇ

ˇ

Exεt1 , εty

p

ˇ

ˇ

ˇ

ˇ

“ OpM2
ε{nq,

where the last equality follows from Lemma B31.

(ii) By the Cauchy–Schwartz inequality and the fact that
řn

t1“1 pγ
2
t1i “ n,

1

n

n
ÿ

t“1

´ 1

n

n
ÿ

t1“1

pγt1iζt1t

¯2

“
1

n3

ÿ

t1,lPrns

!

pγt1ipγti

´

n
ÿ

t“1

ζt1tζlt

¯)

ď
1

n3

!

ÿ

t1,lPrns

pγ2
t1ipγ

2
ti

ÿ

t1,lPrns

´

n
ÿ

t“1

ζt1tζlt

¯2)1{2

ď
1

n3

n
ÿ

t1“1

pγ2
t1i

!

ÿ

t1,lPrns

´

n
ÿ

t“1

ζt1tζlt

¯2)1{2

“
1

n2

!

ÿ

t1,lPrns

´

n
ÿ

t“1

ζt1tζlt

¯2
(1{2

.
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Notice that E
␣
ř

t1,lPrns
p
řn

t“1 ζt1tζltq
2
(

“ n2Ep
řn

t“1 ζt1tζltq
2 ď n4maxt1,t E|ζt1t|

4, and by As-

sumption 3'(ii) we have maxt1,t E|ζt1t|
4 “ Op1{p2q, which yields the desired result by using

Chebyshev’s inequality.

(iii) By the Cauchy–Schwartz inequality, and the facts that
řn

t1“1 pγ
2
t1i “ n and n´1

řn
t1“1 }γt1}

2 “

Opp1q,

1

n

n
ÿ

t“1

´ 1

n

n
ÿ

t1“1

pγt1iηt1t

¯2

ď

›

›

›

1

n

n
ÿ

t1“1

pγt1iγ
T

t1

›

›

›

2 1

n

n
ÿ

t“1

›

›

›

1

p

p
ÿ

j“1

ż

qjpuqεtjpuqdu
›

›

›

2

ď

´ 1

n

n
ÿ

t1“1

pγ2
t1i

1

n

n
ÿ

t1“1

}γt1}
2
¯ 1

np2

n
ÿ

t“1

›

›

›

p
ÿ

j“1

ż

qjpuqεtjpuqdu
›

›

›

2

“Opp1q ¨
1

np2

n
ÿ

t“1

›

›

›

p
ÿ

j“1

ż

qjpuqεtjpuqdu
›

›

›

2

.

Notice that we have E}
řp

j“1

ş

qjpuqεtjpuqdu}2 “ Oppq by Assumption 3'(ii), which implies

that n´1Er
řn

t“1 }
řp

j“1

ş

qjpuqεtjpuqdu}2s “ Oppq and yields the result.

(iv) By the Cauchy–Schwartz inequality, and the facts that
řn

t1“1 pγ
2
t1i “ n and n´1

řn
t1“1 }γt1}

2 “

Opp1q,

1

n

n
ÿ

t“1

´ 1

n

n
ÿ

t1“1

pγt1iξt1t

¯2

ď

´ 1

n

n
ÿ

t“1

}γt}
2
¯
›

›

›

1

np

n
ÿ

t1“1

pγt1i

p
ÿ

j“1

ż

qjpuqεt1jpuqdu
›

›

›

2

ďOpp1q ¨

´ 1

n

n
ÿ

t1“1

pγ2
t1i

¯ 1

np2

n
ÿ

t1“1

›

›

›

p
ÿ

j“1

ż

qjpuqεt1jpuqdu
›

›

›

2

“ Opp1{pq,

where the result in the last equality has been obtained in part (iii).

Lemma B34. Let tτ̂ju
r
j“1 be the first r largest eigenvalues of pΣ

S

yp¨, ¨q in a descending order.

Under the assumptions of Theorem 1', it holds that τ̂r Á p with probability approaching 1.

Proof. By Proposition 2, we obtain that

τr ě }pϑr}
2

´ |τr ´ pϑr| Á p ´ sp — p.

To show τ̂r Á p with probability approaching 1, it suffices to show that |τ̂r ´ τr| “ opppq. By
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applying Lemma A3 again, we only need to show }pΣ
S

y ´ Σy}S,F “ opppq. Note that

}pΣ
S

y ´ Σy}S,F “

›

›

›

1

n

n
ÿ

t“1

pQγt ` εtqpQγt ` εtq
T

´ QQT
´ Σε

›

›

›

S,F

ď

›

›

›
Q
` 1

n

n
ÿ

t“1

γtγ
T

t ´ Ir
˘

QT

›

›

›

S,F
`

›

›

›

1

n

n
ÿ

t“1

εtε
T

t ´ Σε

›

›

›

S,F

`

›

›

›
Q
`

n´1
n
ÿ

t“1

γtε
T

t

˘

›

›

›

S,F
`

›

›

›

` 1

n

n
ÿ

t“1

εtγ
T

t

˘

QT

›

›

›

S,F

ď

›

›

›
n´1

n
ÿ

t“1

γtγ
T

t ´ Ir

›

›

›

F
¨
›

›QQT
›

›

S,F `

´

p
ÿ

i“1

p
ÿ

j“1

›

›n´1
n
ÿ

t“1

εtiεtj ´ Σε,ij

›

›

2

S

¯1{2

` 2
´

p
ÿ

i“1

r
ÿ

j“1

›

›n´1
n
ÿ

t“1

εtiγtj
›

›

2
¯1{2

¨
?
pmax

iPrps
}qi}

“Oppp{
?
nq ` OpppMε

a

1{nq ` OpppMε

a

1{nq “ opppq,

where the second inequality follows from Lemma B10(ii), the fact }K}S,F ď p}K}S,max any

Kp¨, ¨q P Hp b Hp, and the Cauchy–Schwartz inequality. The last line of the above equation

follows from Lemma B16, M2
ε “ opnq, and the fact

}QQT
}S,F “

”

p
ÿ

i“1

p
ÿ

j“1

ż

␣

qipuq
Tqjpvq

(2
dudv

ı1{2

ď pmax
iPrps

}qi}
2

— p.

Therefore, we have obtained that τ̂r Á p with probability approaching 1.

Lemma B35. Under the assumptions of Theorem 1', it holds that

(i) }H} “ Opp1q;

(ii) HHT “ Ir ` OppMε{
?
n ` 1{

?
pq;

(iii) HTH “ Ir ` OppMε{
?
n ` 1{

?
pq.

Proof. (i) By Lemma B34, }V´1} “ τ̂´1
r “ Oppp´1q. Also, }pΓ} “ λ

1{2
maxppΓ

T
pΓq “ λ

1{2
maxpnIrq “

?
n from the normalization (S.4), and }Γ} “ λ

1{2
maxpΓTΓq “ λ

1{2
maxp

řn
t“1 γtγ

T
t q “ Opp

?
nq

by Lemma B16(i). In addition, }
ş

QpuqTQpuqdu} “ Oppq. By the definition of H, i.e.,

H “ n´1V´1
pΓ

T

Γ
ş

QpuqTQpuqdu, we have }H} “ Opp1q, which is also satisfied for }H}F

since H P Rrˆr.
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(ii) Notice that

}HHT
´ Ir}F ď

›

›

›
HHT

´
1

n

n
ÿ

t“1

Hγtγ
T

t H
T

›

›

›

F
`

›

›

›

1

n

n
ÿ

t“1

Hγtγ
T

t H
T

´ Ir

›

›

›

F
. (S.11)

In (S.11), the first term can be bound by }HHT ´ n´1
řn

t“1Hγtγ
T
t H

T}F ď }H}2F}Ir ´

n´1
řn

t“1 γtγ
T
t }F “ Opp1{

?
nq by Lemma B16(i). The second term can be bounded by

›

›

›

1

n

n
ÿ

t“1

Hγtγ
T

t H
T

´ Ir

›

›

›

F
“

›

›

›

1

n

n
ÿ

t“1

Hγtγ
T

t H
T

´
1

n

n
ÿ

t“1

pγtpγ
T

t

›

›

›

F

ď

›

›

›

1

n

n
ÿ

t“1

pHγt ´ pγtqγ
T

t H
T

›

›

›

F
`

›

›

›

1

n

n
ÿ

t“1

pγtppγ
T

t ´ γT

t H
T
q

›

›

›

F

ď

´ 1

n

n
ÿ

t“1

}Hγt ´ pγt}
2 1

n

n
ÿ

t“1

}Hγt}
2
¯1{2

`

´ 1

n

n
ÿ

t“1

}Hγt ´ pγt}
2 1

n

n
ÿ

t“1

}pγt}
2
¯1{2

“OppMε{
?
n ` 1{

?
pq,

where the third line follows from Cauchy–Schwartz inequality, and the last line follows from

Theorem 1'(i) and the fact n´1
řn

t“1 }pγt}
2 “ Opp1q.

(iii) From part (ii), we have HHT “ Ir ` OppMε{
?
n ` 1{

?
pq and }H} “ Opp1q. Therefore

HHTH “ H ` OppMε{
?
n ` 1{

?
pq.

Also, }H´1} ď }H} ` opp1q}H´1}, which implies that }H´1} “ Opp1q. Multiplying the LHS

of the above by H´1 yields that HTH “ Ir ` OppMε{
?
n ` 1{

?
pq.

We are now ready to prove Theorem 1'.

(i) By Lemma B34, the diagonal elements of V{p “ diagpτ̂1{p, . . . , τ̂r{pq are bounded away

from 0. By the inequality pa` b` c` dq2 ď 4pa2 ` b2 ` c2 ` d2q, equation (S.10) and Lemma

B33, we have

max
iPrrs

1

n

n
ÿ

t“1

ppγt ´ Hγtq
2
i Àmax

iPrrs

1

n

n
ÿ

t“1

´ 1

n

n
ÿ

t1“1

pγt1i
Exεt1 , εty

p

¯2

` max
iPrrs

1

n

n
ÿ

t“1

´ 1

n

n
ÿ

t1“1

pγt1iζt1t

¯2

` max
iPrrs

1

n

n
ÿ

t“1

´ 1

n

n
ÿ

t1“1

pγt1iηt1t

¯2

` max
iPrrs

1

n

n
ÿ

t“1

´ 1

n

n
ÿ

t1“1

pγt1iξt1t

¯2

“Op

`

M2
ε{n ` 1{p

˘

.
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The desired result immediately follows that

1

n

n
ÿ

t“1

}pγt ´ Hγt}
2

ď rmax
iPrrs

1

n

n
ÿ

t“1

ppγt ´ Hγtq
2
i “ Op

`

M2
ε{n ` 1{p

˘

.

(ii) Note }pV{pq´1} “ Op1q. Applying the inequality pa ` b ` c ` dq2 ď 4pa2 ` b2 ` c2 ` d2q,

equation (S.10) and Lemma B32, we have

max
tPrns

}pγt ´ Hγt} Àmax
tPrns

›

›

›

1

np

n
ÿ

t1“1

pγt1Exεt1 , εty
›

›

›
` max

tPrns

›

›

›

1

n

n
ÿ

t1“1

pγt1ζt1t

›

›

›

` max
tPrns

›

›

›

1

n

n
ÿ

t1“1

pγt1ηt1t

›

›

›
` max

tPrns

›

›

›

1

n

n
ÿ

t1“1

pγt1ξt1t

›

›

›

“Op

´

Mε{
?
n `

b

n1{2{p
¯

.

(iii) Using the facts that pqip¨q “ n´1
řn

t“1 ytip¨qpγt and ytip¨q “ qip¨qTγt ` εtip¨q, we have, for

i P rps

pqip¨q ´ Hqip¨q “
1

n

n
ÿ

t“1

ytip¨qpγt ´
1

n

n
ÿ

t“1

Hγt

␣

ytip¨q ´ qip¨q
Tγt ` εtip¨q

(

´ Hqip¨q

“
1

n

n
ÿ

t“1

Hγtεtipuq `
1

n

n
ÿ

t“1

ytip¨qppγt ´ Hγtq ` H
´ 1

n

n
ÿ

t“1

γtγ
T

t ´ Ir

¯

qip¨q.

(S.12)

The first term in (S.12) can be bounded by

max
iPrps

›

›

›

1

n

n
ÿ

t“1

Hγtεti

›

›

›
ď }H}max

iPrps

!

r
ÿ

j“1

›

›

›

1

n

n
ÿ

t“1

γtjεti

›

›

›

2)1{2

“ Op

˜

Mε

c

log p

n

¸

,

where the inequality follows from Lemma B11(i), and the last equality follows from Lemmas

B16(iii) and B35(i). For the second term, since Σy,ii “ qT
i Σγ,iiqi `Σε,ii with }qi} “ Op1q and

}Σε}S,max ď }Σε}L “ Op1q, we have }Σy,ii}S “ E}yti}
2 “ Op1q, and thus n´1

řn
t“1 }yti}

2 “

Opp1q by Chebyshev’s inequality. Using the Cauchy–Schwartz inequality in the second term

of (S.12), we obtain that

max
iPrps

›

›

›

1

n

n
ÿ

t“1

ytippγt´Hγtq

›

›

›
ď max

iPrps

´ 1

n

n
ÿ

t“1

}yti}
2
¯1{2´ 1

n

n
ÿ

t“1

}pγt´Hγt}
2
¯1{2

“ Op

ˆ

Mε
?
n

`
1

?
p

˙

.

In addition, }H} “ Opp1q from Lemma B35(i), }n´1
řn

t“1 γtγ
T
t ´ Ir} “ Opp1{

?
nq from

Lemma B16(i) and maxiPrps }qi} “ Op1q from Assumption 3'(i) yield that the third term is

of order Opp1{
?
nq. Combining the above results, we obtain that

max
iPrps

}pqi ´ Hqi} “ Op

˜

Mε

c

log p

n
`

1
?
p

¸

“ Oppϖn,pq.
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B.8 Proof of Corollary 1'

By Theorem 1'(ii)(iii), Lemmas B35(ii) and B17, we have

max
iPrps,tPrns

}pqT

i pγt ´ qT

i γt} ďmax
iPrps

}pqi ´ Hqi} ¨ max
tPrns

}pγt ´ Hγt}

` max
iPrps

}Hqi} ¨ max
tPrns

}pγt ´ Hγt}

` max
iPrps

}pqi ´ Hqi} ¨ max
tPrns

}Hγt}

` max
iPrps

}qi} ¨ max
tPrns

}γt} ¨ }HTH ´ Ir}

“Op

!

ϖn,p ¨ pMε{n
1{2

` n1{4
{p1{2

q

)

` Op

`

Mε{n
1{2

` n1{4
{p1{2

˘

` Op

`

ϖn,p ¨
a

log n
˘

` Op

!

a

log n ¨ pMε{n
1{2

` p1{2
q

)

“Op

!

plog nq
1{2Mε

c

log p

n
`

n1{4

?
p

)

.

B.9 Proof of Theorem 3'

To prove Theorem 3', we first present a technical lemma with its proof.

Lemma B36. Under the assumptions of Theorem 3', it holds that

(i) maxiPrps n
´1

řn
t“1 }pεti ´ εti}

2 “ Oppϖ2
n,pq;

(ii) maxi,jPrps }n´1
řn

t“1 pεtipεtj ´ n´1
řn

t“1 εtiεtj}S “ Oppϖn,pq;

(iii) }rΣε ´ Σε}S,max “ Oppϖn,pq.

Proof. (i) Note that εtip¨q´pεtip¨q “
␣

ytip¨q´qip¨qTγt

(

´
␣

ytip¨q´pqip¨qT
pγt

(

“ pqip¨qT
pγt´qip¨qTγt,

which can be decomposed as pqip¨qT
pγt ´ qip¨qTγt “

␣

pqip¨qT ´ qip¨qTH
(

pγt ` qip¨qTHTppγt ´

Hγtq ` qip¨qTpHTH ´ Irqγt. Applying the inequality pa ` b ` cq2 ď 3a2 ` 3b2 ` 3c2 and the
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Cauchy–Schwartz inequality yields that

max
iPrps

1

n

n
ÿ

t“1

}pεti ´ εti}
2

ď3max
iPrps

}pqi ´ Hqi}
2 1

n

n
ÿ

t“1

}pγt}
2

` 3max
iPrps

}qi}
2
}H}

2 1

n

n
ÿ

t“1

}pγt ´ Hγt}
2

` 3max
iPrps

}qi}
2
}HTH ´ Ir}

2
n
ÿ

t“1

}γt}
2

“Oppϖ2
n,pq ` OppM2

ε{n ` 1{pq “ Oppϖ2
n,pq.

(ii) Notice that maxiPrps E}εti}
2 “ maxiPrps E

ş

εtipuq2du “ maxiPrps

ş

Σε,iipu, uqdu “ Op1q from

Assumption 3'(iv), thus we have maxiPrps n
´1

řn
t“1 }εti}

2 “ Opp1q. By the Cauchy–Schwartz

inequality, we have

max
i,jPrps

›

›

›

1

n

n
ÿ

t“1

pεtipεtj ´
1

n

n
ÿ

t“1

εtiεtj

›

›

›

S
“ max

i,jPrps

›

›

›

1

n

n
ÿ

t“1

ppεti ´ εtiqpεtj ` εtippεtj ´ εtjq
›

›

›

S

ďmax
iPrps

1

n

n
ÿ

t“1

}pεti ´ εti}
2

` 2
´

max
iPrps

1

n

n
ÿ

t“1

}εti}
2
¯1{2´

max
jPrps

1

n

n
ÿ

t“1

}pεtj ´ εtj}
2
¯1{2

“Oppϖ2
n,pq ` Oppϖn,pq “ Oppϖn,pq.

(iii) By part (ii) and Lemma B16(ii), the result follows immediately.

We are now ready to prove Theorem 3'. By Corollary 1' and Lemma B36(i), we can

follow nearly the same procedure as in the proof of Theorem 3 to show the similar argument

that there exist some constants C1, C2 ą 0 such that with probability approaching 1,

C1 ď min
iPrps,jPrps

}rΘ
1{2
ij }S ď max

iPrps,jPrps
}rΘ

1{2
ij }S ď C2.

Together with Lemmas B36(iii), we can show that for any ϵ ą 0, there exist some positive

constant N such that each of events

rΥ1 “

"

max
iPrps,jPrps

›

›

›

rΣε,ij ´ Σε,ij

›

›

›

S
ă Nϖn,p

*

, rΥ2 “

!

C1 ď
›

›rΘ
1{2
ij

›

›

S ď C2, all i, j P rps

)

hold with probability at least 1 ´ ϵ. Then for 9C ą 2NC´1
1 pϖn,p{ωn,pq and under the event

rΥ1 X rΥ2, we obtain that }rΣ
A

ε ´ Σε}S,1 À ϖ1´q
n,p sp by using the same way as the proof of
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Theorem 3. By Proposition 3, we know that pRA “ rΣ
A

ε . Therefore, with probability at least

1 ´ 2ϵ, }pRA ´ Σε}S,1 À ϖ1´q
n,p sp. Considering that ϵ ą 0 can be arbitrarily small, we have

}pRA ´ Σε}L ď }pRA ´ Σε}S,1 “ Oppϖ1´q
n,p spq.

B.10 Proof of Theorem 4'

Under Assumption 1', we have Σypu, vq “ QpuqQpvqT ` Σεpu, vq. By the Cauchy–

Schwartz inequality and Lemma B11, we have

}pQpQT
´ QQT

}S,max “ max
i,jPrps

}pqT

i pqj ´ qT

i qj}S

ď max
i,jPrps

t}ppqi ´ Hqiq
T
pqj}S ` }qT

i H
T
ppqj ´ Hqjq}S ` }qT

i pHTH ´ Irqqj}Su

ďmax
iPrps

}pqi ´ Hqi}
2

` 2}H}max
iPrps

}qj}}pqi ´ Hqi}

` }HTH ´ Ir}max
iPrps

}qi}
2

“Oppϖ2
n,pq ` Oppϖn,pq ` OppMε{

?
n ` 1{

?
pq “ Oppϖn,pq,

where the last line follows from Theorem 1'(iii) and Lemma B35. Then by Lemma B36, we

have }rΣε ´ Σε}S,max “ maxi,jPrps }rΣε,ij ´ Σε,ij}S “ Oppϖn,pq, and hence

}rΣ
A

ε ´ Σε}S,max ď}rΣ
A

ε ´ rΣε}S,max ` }rΣε ´ Σε}S,max

ď max
i,jPrps

p}rΘ
1{2
ij }Sλq ` Oppϖn,pq “ Oppϖn,pq,

where rΘijpu, vq ” n´1
řn

t“1

␣

pεtipuqpεtjpvq ´ rΣε,ijpu, vq
(2
, the last line follows from Lemma

B36(iii), the choice of λ “ 9Cp
a

log p{n `
a

1{pq À ϖn,p, and the fact maxi,jPrps }rΘ
1{2
ij }S “

Opp1q that can be proved following a similar argument compared to the proof of Lemma

B26. The desired result follows immediately.

B.11 Proof of Theorem 5'

By Proposition 3, we can rewrite the FPOET estimator as pΣ
F

y pu, vq “ pQpuqpQpvqT `

pRApu, vq, pu, vq P U2. By Sherman–Morrison–Woodbury identity (Theorem 4.2.5 in Hsing
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and Eubank (2015)) to obtain the inverse FPOET ppΣ
F

y q´1 “ ppRAq´1 ´ ppRAq´1
pQtIr `

pQTppRAq´1
pQu´1

pQTppRAq´1. Note that under Assumption 1', Σγ “ Ir and pΣγ “ Ir. To

prove Theorem 5', we first present some technical lemmas with their proofs.

Lemma B37. Under the assumptions of Theorem 5', then, pRA has a bounded inverse with

probability approaching 1, and }ppRAq´1 ´ Σ´1
ε }L “ Oppϖ1´q

n,p spq.

Proof. Provided that ϖ1´q
n,p sp “ op1q and λminpΣεq ą c1 for some constant c1 ą 0, we combine

Lemma B15 and Theorem 3' to yield that λminppRAq ą c1{2 with probability approaching 1,

and thus pRA has a bounded inverse with probability approaching 1 together with the desired

result }ppRAq´1 ´ Σ´1
ε }L “ Oppϖ1´q

n,p spq.

Lemma B38. Under the assumptions of Theorem 5',

}pQT
ppRA

q
´1

pQ ´ HQTΣ´1
ε QHT

}L “ Opppϖ1´q
n,p spq “ opppq.

Proof. In model (2), Qp¨q can be viewed as a bounded linear operator from Rr to Hp, and

thus we can also regard it as a kernel matrix function satisfying Qpu, vq ” Qpuq, @u, v P U .

From this perspective, }Q}2S,F “
řp

i“1 }qi}
2 “

ş

QpuqTQpuqdu “ ppϑ1 ` ¨ ¨ ¨ ` ϑrq — p under

Assumption 1'. By Theorem 1'(iii), }pQ ´ QHT}S,F “
␣
řp

i“1 }pqi ´ Hqi}
2
(1{2

“ Opp
?
pϖn,pq.

Hence,

}pQT
ppRA

q
´1

pQ ´ HQTΣ´1
ε QHT

}L ď2}ppQ ´ QHT
q
T
ppRA

q
´1

pQ}L

` }HQT
tppRA

q
´1

´ Σ´1
ε uQHT

}L

ď2}pQ ´ QHT
}S,FtλminppRA

qu
´1

}Q}S,F

` }Q}
2
S,F}H}

2
}ppRA

q
´1

´ Σ´1
ε }L

“Opppϖn,pq ` Opppϖ1´q
n,p spq “ Opppϖ1´q

n,p spq “ opppq,

where the second inequality follows from Lemma A7(i)(ii), and the last line follows from

Lemmas B35 and B37.
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Lemma B39. Under the assumptions of Theorem 5', then, with probability approaching 1,

(i) λmintIr ` HQTΣ´1
ε QHTu Á p;

(ii) λmintIr ` pQTppRAq´1
pQu Á p;

(iii) λminpIr ` QTΣ´1
ε Qq Á p;

(iv) λmintpHHTq´1 ` QTΣ´1
ε Qu Á p.

Proof. (i) By Lemma B35, with probability approaching 1, λminpHHTq is bounded away

from 0. Hence,

λmintIr ` HQTΣ´1
ε QHT

u ěλmintHQTΣ´1
ε QHT

u

ěλminpΣ´1
ε qλminpQQT

qλminpHTHq Á p,

where λminpQQTq “ pϑr by Assumption 1'.

(ii) The result follows from part (i) and Lemmas B15 and B38.

(iii) The result follows from a similar argument to that for part (i).

(iv) The result follows from part (iii) and Lemmas B15 and B35.

We are now ready to prove Theorem 5'. Using the functional version of Sherman—

Morrison—Woodbury identity, we have }ppΣ
F

y q´1 ´ Σ´1
y }L ď

ř6
k“1 Lk, where

L1 “

›

›

›
ppRA

q
´1

´ Σ´1
ε

›

›

›

L
,

L2 “

›

›

›
tppRA

q
´1

´ Σ´1
ε upQtIr ` pQT

ppRA
q

´1
pQu

´1
pQT

ppRA
q

´1
›

›

›

L
,

L3 “

›

›

›
tppRA

q
´1

´ Σ´1
ε upQtIr ` pQT

ppRA
q

´1
pQu

´1
pQTΣ´1

ε

›

›

›

L
,

L4 “

›

›

›
Σ´1

ε ppQ ´ QHT
qtIr ` pQT

ppRA
q

´1
pQu

´1
pQTΣ´1

ε

›

›

›

L
,

L5 “

›

›

›
Σ´1

ε ppQ ´ QHT
qtIr ` pQT

ppRA
q

´1
pQu

´1HQTΣ´1
ε

›

›

›

L
,

L6 “

›

›

›
Σ´1

ε QHT

”

tIr ` pQT
ppRA

q
´1

pQu
´1

´ pIr ` HQTΣ´1
ε QHT

q
´1
ı

HQTΣ´1
ε

›

›

›

L
.

Combining with Lemmas B37 and B39, the desired result follows from a similar argument

to the proof of Theorem 5.
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B.12 Proof of Theorem 2

(i) By Proposition 1 and Lemma B20, |λj ´ p2θj| ď }ΩR} — p for j P rrs which implies

that λj — p2 for j P rrs, and |λj| À p for r ` 1 ď j ď p. Applying Lemma A1 and Lemma

B22, we have |λ̂j ´ λj| ď }pΩ ´ Ω} “ OppMεp
2
a

log p{nq “ oppp2q, which indicates that

λ̂j — p2 with probability approaching 1 for j P rrs, and λ̂j “ oppp2q for r ` 1 ď j ď p

which implies that λ̂j`1{λ̂j “ pλ̂j`1{p
2q{pλ̂j{p

2q Ñp 0{0 “ 1 for r ` 1 ď j ď p. Furthermore,

λr`1 “ Oppq and λ̂r`1 “ OppMεp
2
a

log p{n ` pq. The desired result follows immediately

since λ̂j`1{λ̂j — 1 with probability approaching 1 if j ‰ r, and λ̂r`1{λ̂r “ opp1q.

(ii) By Proposition 2, |τj ´ pϑj| ď }Σε}L “ Op1q for j P rrs, which implies that τj — p for

j P rrs, and |τj| “ Op1q for j ě r ` 1. Using Lemma A3 and the proof of Lemma B34, we

have |τ̂j ´ τj| ď }pΣ
S

y ´Σy}S,F “ OppMεp
a

log p{nq “ opppq, which indicates that τ̂j — p with

probability approaching 1 for j P rrs, and τ̂j “ opppq for j ě r`1. Furthermore, τr`1 “ Op1q

and τ̂r`1 “ OppMεp
a

log p{n ` 1q. The desired result follows immediately since τ̂j`1{τ̂j — 1

with probability approaching 1 if j ‰ r, and τ̂r`1{τ̂r “ opp1q.

C Proofs of theoretical results in Section 4

For the sake of brevity and readability, in this section, we suppose that the orthogonal

matrix U in Theorem 1 and Lemmas B24–B27 is an identity matrix, which means that,

when we perform eigen-decomposition on pΩ, we can always select the correct direction of pξj

to ensure pξ
T

j
rbj ě 0. The proofs in Section 3 verify that the choice of U does not affect the

theoretical results.

C.1 Propositions S.1–S.2 and their proofs

The following two propositions are used in Section 4.1 to quantify the maximum absolute

and relative approximation errors of the functional portfolio variance.

41



Proposition S.1. Let Σ “ tΣijp¨, ¨qupˆp, and pΣ “ tpΣijp¨, ¨qupˆp with each Σij, pΣij P S. For

any fixed wp¨q P Hp, we have

ˇ

ˇ

ˇ
xw, pΣpwqy ´ xw,Σpwqy

ˇ

ˇ

ˇ
ď }pΣ ´ Σ}S,max

´

ÿ

iPrps

}wi}

¯2

.

Proof. Consider that

xw,Σpwqy “

ż ż

ÿ

iPrps

ÿ

jPrps

wipuqwjpvqΣijpu, vqdudv

ď
ÿ

iPrps

ÿ

jPrps

"
ż ż

Σijpu, vq
2dudv

*1{2"ż ż

wipuq
2wjpvq

2dudv

*1{2

ď max
iPrps,jPrps

}Σij}S ¨
ÿ

iPrps

ÿ

jPrps

"
ż

wipuq
2du

*1{2 "ż

wjpvq
2dv

*1{2

“}Σ}S,max ¨
ÿ

iPrps

ÿ

jPrps

}wi}}wj} “ }Σ}S,max

´

ÿ

iPrps

}wi}

¯2

.

Thus,
ˇ

ˇ

ˇ
xw, pΣpwqy ´ xw,Σpwqy

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
xw, ppΣ ´ Σqwqy

ˇ

ˇ

ˇ
ď }pΣ ´ Σ}S,maxp

řp
i“1 }wi}q2.

Proposition S.2. Suppose Σ “ tΣijp¨, ¨qupˆp has a bounded inverse. For any fixed wp¨q P Hp,

we have
ˇ

ˇ

ˇ

ˇ

ˇ

xw, pΣpwqy

xw,Σpwqy
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď }Σ´1{2
pΣΣ´1{2

´ Ip}L.

Proof. For any given w P Hp, we denote x “ Σ1{2w and w “ Σ´1{2x, provided that Σ has

a bounded inverse. Consider that

xw,Σpwqy “

ż ż

wpuq
TΣpu, vqwpvqdudv “

ż ż

wpuq
T

"
ż

Σ1{2
pu,wqΣ1{2

pw, vqdw

*

wpvqdudv

“

ż
"
ż

wpuq
TΣ1{2

pu,wqdu

*"
ż

Σ1{2
pw, vqwpvqdv

*

dw “

ż

xpwq
Txpwqdw “ }x}

2

The relative error can be bounded by
ˇ

ˇ

ˇ

ˇ

ˇ

xw, pΣpwqy

xw,Σpwqy
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

xw, pΣpwqy ´ xw,Σpwqy

xw,Σpwqy

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
xx,Σ´1{2

ppΣ ´ ΣqΣ´1{2
pxqy

ˇ

ˇ

ˇ

}x}2

ď}Σ´1{2
pΣΣ´1{2

´ Ip}L,

where the last line follows from Lemma B14.
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C.2 Proof of Theorem 6

Since there exist constants c1 and c2 ą 0 such that λminpΣεq ą c1, λminpΣf q ą c2, we

can obtain that all the eigenvalues of Σy are bounded away from zero, and thus for any

K P Hp b Hp, }K}2S,Σy
“ Opp´1q}K}2S,F by Lemma A8(iii).

To prove Theorem 6, we first present some technical lemmas with their proofs.

Lemma C40. Under the assumptions of Theorem 6, we have }BTΣ´1
y B}L “ Op1q.

Proof. By Theorem 3.5.6 of Hsing and Eubank (2015), we obtain that

Σ´1
y “ Σ´1

ε ´ Σ´1
ε BpΣ´1

f ` BTΣ´1
ε Bq

´1BTΣ´1
ε .

Then it follows that

BTΣ´1
y B “BTΣ´1

ε B ´ BTΣ´1
ε BpΣ´1

f ` BTΣ´1
ε Bq

´1BTΣ´1
ε B

“BTΣ´1
ε BpΣ´1

f ` BTΣ´1
ε Bq

´1Σ´1
f

“Σ´1
f ´ Σ´1

f pΣ´1
f ` BTΣ´1

ε Bq
´1Σ´1

f ,

(S.13)

which also implies that Σ´1
f ľ Σ´1

f pΣ´1
f ` BTΣ´1

ε Bq´1Σ´1
f since BTΣ´1

y B ľ 0. Here, for

two Mercer’s kernels K,G P Hr b Hr, we denote K ľ G as the eigenvalues of K ´ G are

nonnegative, i.e., K ´ G is still a Mercer’s kernel. Similar to the monotonicity of matrix

spectral norm, it can be shown that the operator norm is monotone, i.e., K ľ G implies

}K}L ě }G}L. Thus, from (S.13) we have

}BTΣ´1
y B}L ď }Σ´1

f }L ` }Σ´1
f pΣ´1

f ` BTΣ´1
ε Bq

´1Σ´1
f }L ď 2}Σ´1

f }L ď 2c´1
2 “ Op1q,

where the second inequality follows from the monotonicity of the operator norm.

Lemma C41. Under the assumptions of Theorem 6, it follows that

(i) }pΣ
A

ε ´ Σε}
2
S,Σy

“ Oppϖ2´2q
n,p s2pq;

(ii) }ppB ´ BqpΣf ppB ´ BqT}2S,Σy
“ Oppϖ4

n,ppq;

(iii) }BpΣf ppB ´ BqT}2S,Σy
“ Oppϖ2

n,pq;

(iv) }BppΣf ´ Σf qBT}2S,Σy
“ Oppϖ2

n,p{pq.
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Proof. (i) Since all the eigenvalues of Σy are bounded away from zero, and by Theorem 3,

}pΣ
A

ε ´ Σε}
2
S,Σy

— p´1
}pΣ

A

ε ´ Σε}
2
S,F — }pΣ

A

ε ´ Σε}
2
L “ Oppϖ2´2q

n,p s2pq.

(ii) By applying Lemmas A8(iii) and B24, we have

}ppB´BqpΣf ppB´Bq
T
}
2
S,Σy

ď p´1
}pB´B}

4
F}pΣf}

2
L}Σ´1

y }
2
L “ OppM4

εp{n2
` 1{p3q “ Oppϖ4

n,ppq.

(iii) Consider

}BpΣf ppB ´ Bq
T
}
2
S,Σy

“p´1tr

"
ż

”

pΣf ppB ´ Bq
TΣ´1

y ppB ´ BqpΣfB
TΣ´1

y B
ı

pu, uqdu

*

ďp´1
}BTΣ´1

y B}L}Σ´1
y }L}pΣf}

2
L}pB ´ B}

2
F

“OppM2
ε{n ` 1{p2q “ Oppϖ2

n,pq,

where the last line follows from Lemmas A8(ii), C40 and B24.

(iv) A similar argument shows that

}BppΣf ´ Σf qBT
}
2
S,Σy

“p´1tr

"
ż

”

ppΣf ´ Σf qBTΣ´1
y BppΣf ´ Σf qBTΣ´1

y B
ı

pu, uqdu

*

ďp´1
}BTΣ´1

y B}
2
L}pΣf ´ Σf}L}pΣf ´ Σf}N

“OppM2
ε{np ` 1{p2q “ Oppϖ2

n,p{pq,

where the last line follows from Lemmas B27(ii), C40 and B24.

We are now ready to prove Theorem 6. By Lemma C41,

}pΣ
D

y ´ Σy}
2
S,Σy

ď2}pΣ
A

ε ´ Σε}
2
S,Σy

` 2}ppB ´ BqpΣf ppB ´ Bq
T
}
2
S,Σy

` 4}BpΣf ppB ´ Bq
T
}
2
S,Σy

` 2}BppΣf ´ Σf qBT
}
2
S,Σy

“Op

ˆ

M4
εp

n2
` ϖ2´2q

n,p s2p

˙

,

which then implies that

}pΣ
D

y ´ Σy}S,Σy “ Op

ˆ

M2
ε

?
p

n
` ϖ1´q

n,p sp

˙

.
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D Proposition S.3 and its proof

The following proposition supporting Section 5 gives the true covariance matrix functions

for two DGPs and the functional sparsity condition.

Proposition S.3. (i) For ytp¨q generated from model (1),

Σypu, vq “ B
␣

50
ÿ

i“1

i´2ϕipuqϕipvqpIr ´ A2
q

´1
(

BT
`

25
ÿ

l“1

2´lϕlpuqϕlpvqCζ .

(ii) For ytp¨q generated from model (2),

Σypu, vq “ QpuqpIr ´ A2
q

´1Qpvq
T

`

25
ÿ

l“1

2´lϕlpuqϕlpvqCζ .

(iii) The functional sparsity condition on Σε as specified in (7) satisfies sp À p1´α for

α P r0, 1s and q “ 0.

Proof. (i) Note that Etftp¨qu “ 0 and

Σf pu, vq “ CovtΞtϕpuq,Ξtϕpvqu “

50
ÿ

i“1

ϕipuqϕipvqVarpξtiq,

provided that Covpξti, ξti1q “ 0rˆr for any i ‰ i1. Let Ci “ Varpξtiq and Cu “ i´2Ir be the

covariance matrix of the innovation uti. For weakly stationary VAR(1), it holds that

Ci “Cu ` ACuA
T

` A2CupAT
q
2

` ¨ ¨ ¨ “

8
ÿ

s“0

AsCupAT
q
s

“i´2
8
ÿ

s“0

pAAT
q
s

“ i´2
8
ÿ

s“0

A2s
“ i´2

pIr ´ A2
q

´1.

Similarly, Σεpu, vq “
ř25

l“1 2
´lϕlpuqϕlpvqVarpψtlq “

ř25
l“1 2

´lϕlpuqϕlpvqCζ . Hence we have

Σypu, vq “ BΣf pu, vqBT
` Σεpu, vq “ B

!

50
ÿ

i“1

ϕipuqϕipvqCi

)

BT
`

25
ÿ

l“1

2´lϕlpuqϕlpvqCζ .

(ii) The desired result follows immediately from the proof of part (i).

(iii) To see the functional sparsity condition on Σε, notice that

σipuq “ Σε,iipu, uq “

25
ÿ

l“1

2´lϕlpuq
2D2

i p1 ` δq and }σi}N “

ż

σipuqdu “ cD2
i ,
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where c “ p1 ´ 2´25qp1 ` δq is a constant. Then, for q “ 0 in (7), we have

sp “max
iPrps

p
ÿ

j“1

}σi}
p1´qq{2
N }σj}

p1´qq{2
N }Σε,ij}

q
S “ max

iPrps

p
ÿ

j“1

cDiDjIt}Σε,ij}S ‰ 0u

ď
`

cmax
iPrps

D2
i

˘

max
iPrps

p
ÿ

j“1

IpC0,ij ‰ 0q À max
iPrps

p
ÿ

j“1

IpC̆T
ij ‰ 0q À p1´α.

E Further derivations and definitions

This section contains further derivations and definitions supporting the main context of

the paper.

E.1 Estimating FFM (1) from a least squares perspective

Similar to Section 2.2, we develop a least squares method to fit model (1) with functional

factors. LetYp¨q “ ty1p¨q, . . . ,ynp¨qu P Rpˆn, and FpuqT “ tf1p¨q, . . . , fnp¨qu P Rrˆn. Consider

solving the least-squares minimization problem

arg min
B,Fp¨q

ż

}Ypuq ´ BFpuq
T
}
2
Fdu “ arg min

B,Fp¨q

n
ÿ

t“1

}yt ´ Bft}
2, (S.14)

subject to the normalization p´1BTB “ Ir. Following the similar procedure in Section 2.2,

we obtain that, for each given B, the constrained least squares estimator rFp¨q “ p´1BTYp¨q.

Plugging this into (S.14), objective function becomes
ş

trrpIp ´ p´1BBTqYpuqYpuqTsdu,

whose minimizer is equivalent to the maximizer of trtBTr
ş

YpuqYpuqTdusBu. Apparently,

pB{
?
p are the eigenvectors corresponding to the r largest eigenvalues of the p ˆ p matrix

ş

YpuqYpuqTdu “ n
ş

pΣ
S

ypu, uqdu.

For the DIGIT method, the loading matrix B is estimated by the eigenanalysis of
ş ş

pΣ
S

ypu, vqpΣ
S

ypu, vqTdudv, while the above shows that minimizing the least squares crite-

rion (S.14) is equivalent to performing eigenanalysis of
ş

pΣ
S

ypu, uqdu. By comparison, the

DIGIT method contains more covariance information by taking into account not only the
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diagonal entries pΣ
S

ypu, uq but also the off-diagonal entries pΣ
S

ypu, vq for u ‰ v. Although such

increased information may not alter the convergence rate of the proposed estimator, it will

reduce the variance to improve the estimation efficiency.

E.2 Relationship between two FFMs

We rewrite model (1) as ytp¨q “ Bftp¨q ` εtp¨q “ χtp¨q ` εtp¨q, and model (2) as ytp¨q “

Qp¨qγt ` εtp¨q “ κtp¨q ` εtp¨q, where χtp¨q and κtp¨q are the common components of the two

FFMs. The covariance matrix function of χtp¨q is

Σχpu, vq “ BΣf pu, vqBT
“ B

!

8
ÿ

i“1

ωiϕipuqϕipvq
T

)

BT
“

8
ÿ

i“1

pωiψipuqψipvq
T,

where, by Mercer’s theorem, Σf pu, vq “
ř8

i“1 ωiϕipuqϕipvqT and ψip¨q “ Bϕip¨q{
?
p. Sup-

pose that Assumption S.1 is satisfied with Σγ “ diagp

p

ϑ1, . . . ,

p

ϑrq. The covariance matrix

function of κtp¨q is

Σκpu, vq “ QpuqΣγQpvq
T

“

r
ÿ

j“1

p

ϑj

p

qjpuq

p

qjpvq
T

“

r
ÿ

j“1

p

p

ϑjνjpuqνjpvq
T,

where t

p

qjp¨qurj“1 is the set of columns of Qp¨q such that t}

p

qj}urj“1 is in a descending order,

and νp¨q “

p

qjp¨q{
?
p. Note that

ż

ψipuq
Tψjpuqdu “

ż

ϕipuq
Tp´1BTBϕjpuqdu “

ż

ϕipuq
Tϕjpuqdu “ Ipi “ jq, and

ż

νipuq
Tνjpuqdu “ p´1

ż

p

qipuq
T

p

qjpuqdu “ Ipi “ jq from Assumption S.1.

Consequently, tψip¨qu8
i“1 are the eigenfunctions of Σχ with nonnegative eigenvalues tpωiu

8
i“1,

and tνjp¨qurj“1, which can be extended to a set of orthonormal basis functions, are the

eigenfunctions of Σκ with nonnegative eigenvalues tp

p

ϑju
8
j“1 satisfying

p

ϑj “ 0 when j ą r.

In this point of view, FFM (1) can be converted to FFM (2) if and only if ωi “ 0 when

i ą r. On the contrary, model (2) can be regarded as a special case of model (1) if and

only if the solutions of tϕjp¨qurj“1 to the functional equations Bϕjp¨q “

p

qjp¨q for j P rrs exist

given B and t

p

qjp¨qurj“1. Since the rank of the space spanned by columns of matrix B is r,
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the equivalent condition for the existence of the solutions follows that the rank of the space

spanned by t

p

qjp¨qurj“1 is r.

E.3 Sub-Gaussian (functional) linear process

We first define sub-Gaussian functional process.

Definition S.1. Let xtp¨q be a mean zero random variable in H and Σ0 : H Ñ H be a

covariance operator. Then xtp¨q is a sub-Gaussian process if there exists a constant α ě 0

such that for all x P H, Epexpxx, xtyq ď exptα2xx,Σ0pxqy{2u.

To develop finite-sample theory for relevant estimators in Section 3, we focus on multi-

variate functional linear process with sub-Gaussian errors, namely sub-Gaussian functional

linear process. Specifically, we assume ztp¨q “ tzt1p¨q, . . . , ztpp¨quT P Hp admits the represen-

tation

ztp¨q “

8
ÿ

l“0

Alpxt´lq, t P Z, (S.15)

where Al “ pAl,ijqpˆp with each Al,ij P S and xtp¨q “ txt1p¨q, . . . , xtpp¨quT P Hp, whose

components are independent sub-Gaussian processes satisfying Definition S.1, and the coef-

ficient functions satisfy
ř8

l“0 }Al}S,8 “ Op1q. In Section 3, we assume that ftp¨q in model

(1) and εtp¨q follow sub-Gaussian functional linear processes, and γt in model (2) follows

sub-Gaussian linear process, which can be correspondingly defined from the non-functional

versions of (S.15) and Definition S.1.

E.4 Optimal functional portfolio allocation

In this section, we derive the optimal functional portfolio allocation pwp¨q that is required

in Section 6.2. Specifically, we aim to solve the following constrained minimization problem:

pw “ arg min
wPHp

@

w, pΣypwq
D

subject to wpuq
T1p “ 1 for any u P U ,
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where 1p “ p1, . . . , 1qT P Rp. To solve this, we apply the method of Lagrange multipliers by

defining the Lagrangian function as

Lpw, λq “

ż ż

wpuq
T
pΣypu, vqwpvqdudv ´

ż

λpuqtwpuq
T1p ´ 1udu,

where λp¨q P H. Setting the functional derivative of Lpw, λq with respect to wp¨q to zero,

i.e.,
ş

pΣyp¨, vqwpvqdv ´ λp¨q1p “ 0, we obtain that

pwpuq “

ż

pΣ
´1

y pu, vqλpvq1pdv, u P U .

Let Hp¨, ¨q “ 1T

p
pΣ

´1

y p¨, ¨q1p. With the constraint 1T

p pwpuq “ 1 for any u P U , we have

1T

p pwpuq “

ż

λpvq1T

p
pΣ

´1

y pu, vq1pdv “

ż

λpvqHpu, vqdv “ 1,

which indicates that λpuq “
ş

H´1pu, vqdv for any u P U . Combining the above results yield

the desired solution

pwpuq “

ż ż

pΣ
´1

y pu, vqdiagtH´1
pv, zq, ¨ ¨ ¨ , H´1

pv, zqu1pdvdz.

F Additional simulation results

This section provides additional results supporting Section 5. Figure S.1 presents boxplots

of ∆PCi and ∆ICi (i P r3s) for two DGPs under the setting p “ 200, n “ 50, α “ 0.5, and

r “ 3, 5, 7.
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Figure S.1: The boxplots of ∆PCi and ∆ICi (i P r3s) for DGP1 and DGP2 with p “ 200, n “

50, α “ 0.5, and r “ 3, 5, 7 over 1000 simulation runs.

We compare our AFT estimator in (10) with two related methods for estimating the id-

iosyncratic covariance Σε, specifically, the sample covariance estimator defined as pΣ
S

ε pu, vq “

n´1
řn

t“1 pεtpuqpεtpvqT, and Fang et al. (2023)’s AFT estimator in (11). Figures S.2 and S.3

plot average losses of pΣε measured by functional matrix ℓ1 norm and operator norm for DGP1

and DGP2, respectively, under the settings n “ p “ 60, 80, . . . , 200 and α “ 0.25, 0.5, 0.75.

We observe several evident patterns. First, the estimation accuracy measured by both func-

tional matrix norms substantially improves when using the AFT estimators compared to pΣ
S

ε .

Second, despite our AFT proposal requiring weaker assumptions compared to Fang et al.

(2023)’s method, both AFT estimators exhibit very similar empirical performance. Third,

for α “ 0.25 and 0.5, the performance of the sample and AFT estimators deteriorates as

p increases. However, when α “ 0.75, both losses of two AFT estimators decrease as p in-

creases. This phenomenon can be attributed to the fact that tplog p{nq1{2`p´1{2up1´α “ op1q

as n, p Ñ 8 if α ą 0.5, which is implied by Theorems 3 and 3' under the setting n “ p, q “
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0,Mε “ Op1q. These simulation results nicely validate Theorems 3 and 3'.
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Figure S.2: The average losses of pΣε in functional matrix ℓ1 norm (top row) and operator

norm (bottom row) for DGP1 over 1000 simulation runs with n “ p “ 60, 80, . . . , 200 and

α “ 0.25, 0.5, 0.75.
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Figure S.3: The average losses of pΣε in functional matrix ℓ1 norm (top row) and operator

norm (bottom row) for DGP2 over 1000 simulation runs with n “ p “ 60, 80, . . . , 200 and

α “ 0.25, 0.5, 0.75.

We also give results for 9C “ 1 in Figures S.4 and S.5 to illustrate the robustness of our

threshold choice.
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Figure S.4: The average losses of pΣε in functional matrix ℓ1 norm (top row) and operator norm

(bottom row) for DGP1 with 9C “ 1 over 1000 simulation runs with n “ p “ 60, 80, . . . , 200 and

α “ 0.25, 0.5, 0.75.
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Figure S.5: The average losses of pΣε in functional matrix ℓ1 norm (top row) and operator norm

(bottom row) for DGP2 with 9C “ 1 over 1000 simulation runs with n “ p “ 60, 80, . . . , 200 and

α “ 0.25, 0.5, 0.75.

Figures S.6 and S.7 plot average losses of pΣy measured by functional versions of element-

wise ℓ8 norm, Frobenius norm and matrix ℓ1 norm for DGP1 and DGP2, respectively, when

9C “ 1.
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Figure S.6: The average losses of pΣy in functional versions of elementwise ℓ8 norm (left column),

Frobenius norm (middle column) and matrix ℓ1 norm (right column) for DGP1 with 9C “ 1 over

1000 simulation runs.
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Figure S.7: The average losses of pΣy in functional versions of elementwise ℓ8 norm (left column),

Frobenius norm (middle column) and matrix ℓ1 norm (right column) for DGP2 with 9C “ 1 over

1000 simulation runs.

G Additional real data results

This section presents additional results supporting Section 6. Table S.1 gives a list of

inclusive countries with corresponding ISO Alpha-3 codes. Figure S.8 provides the rainbow

plots of observed and smoothed age-specific log-mortality rates for females in GBR. Fig-

ure S.9 displays smoothed log-mortality rates for females in six randomly selected countries.

Figure S.10 presents spatial heatmaps of factor loading of some European countries for males.
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Figure S.11 provides the rainbow plots of the estimated age-specific factors for males.

Table S.1: List of inclusive countries with corresponding ISO Alpha-3 codes.

Country Code Country Code Country Code Country Code

Australia AUS Estonia EST Lithuania LTU Russia RUS

Austria AUT Finland FIN Latvia LVA Slovakia SVK

Belgium BEL France FRA Luxembourg LUX Spain ESP

Belarus BLR Hungary HUN Norway NOR Sweden SWE

Bulgaria BGR Iceland ISL Portugal PRT Switzerland CHE

Canada CAN Ireland IRE Poland POL Great Britain GBR

Denmark DNK Italy ITA Netherlands NLD United States USA

Czech Republic CZE Japan JPN New Zealand NZL Ukraine UKR
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Smoothed female mortality rates of GBR

Figure S.8: The observed and smoothed age-specific log-mortality rates for females in GBR from

1960 to 2013.
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Figure S.9: The smoothed age-specific log-mortality rates for females in six randomly selected

countries from 1960 to 2013.
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Figure S.10: Spatial heatmaps of factor loadings of some European countries for males.
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Figure S.11: The estimated age-specific factors for males.
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