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Abstract

Many economic and scientific problems involve the analysis of high-dimensional functional time
series, where the number of functional variables p diverges as the number of serially dependent ob-
servations n increases. In this paper, we present a novel functional factor model for high-dimensional
functional time series that maintains and makes use of the functional and dynamic structure to achieve
great dimension reduction and find the latent factor structure. To estimate the number of functional
factors and the factor loadings, we propose a fully functional estimation procedure based on an eige-
nanalysis for a nonnegative definite matrix. Our proposal involves a weight matrix to improve the
estimation efficiency and tackle the issue of heterogeneity, the rationality of which is illustrated by
formulating the estimation from a novel regression perspective. Asymptotic properties of the proposed
method are studied when p diverges at some polynomial rate as n increases. To provide a parsimonious
model and enhance interpretability for near-zero factor loadings, we impose sparsity assumptions on the
factor loading space and then develop a regularized estimation procedure with theoretical guarantees
when p grows exponentially fast relative to n. Finally, we demonstrate that our proposed estimators
significantly outperform the competing methods through both simulations and applications to a U.K.
temperature dataset and a Japanese mortality dataset.
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1 Introduction

Functional time series, which refers to a sequential collection of curves observed over time exhibiting serial

dependence, has recently received a great deal of attention. Despite progress being made in this field,

existing literature has focused on the estimation based on a single or fixed number of functional time

series, see, e.g., Bosq (2000); Hörmann and Kokoszka (2010); Bathia et al. (2010); Panaretos and Tavakoli

(2013); Hörmann et al. (2015); Aue et al. (2015); Li et al. (2020); Chen, Guo and Qiao (2022) and among

many others.

With the rapid development in technology, datasets containing a large collection of functional time

series are becoming increasingly available in various applications. Examples include cumulative intraday

return trajectories (Horváth et al., 2014) and functional volatility processes (Müller et al., 2011) for

hundreds of stocks, annual temperature curves collected at a number of stations, daily energy consumption

curves for thousands of households, age-specific mortality rates in different prefectures (Gao et al., 2019),

to list a few. Such data, which are referred to as high-dimensional functional time series, take the form of

Ytp¨q “ tYt1p¨q, . . . , Ytpp¨quT (t “ 1, . . . , n) defined on a compact interval U , where the number of random

functions p is comparable to, or even larger than the number of serially dependent observations n. Under

such scenario, not only p is large, but each Ytjp¨q is a functional object with serial dependence across

observations, posing extra challenges. When jointly modelling the entire curve dynamics, it is of great

interest and importance to explore the latent common component from a dimension-reduction viewpoint,

while preserving the functional and time series structure. This motivates us to develop a functional factor

model based on Y1p¨q, . . . ,Ynp¨q.

In this paper, we deal with the factor modelling for high-dimensional functional time series, in which

each functional datum Ytp¨q arises as the sum of two unobservable components, one common Ztp¨q and

one idiosyncratic εtp¨q. The co-movement of p functional time series is assumed to be driven by a small

number of functional factors and their inherited dynamic structures in Ztp¨q. Specifically, our proposed

factor model admits the representation:

Ytp¨q “ Ztp¨q ` εtp¨q “ AXtp¨q ` εtp¨q, t “ 1, . . . , n, (1)

where Xtp¨q “ tXt1p¨q, . . . , Xtrp¨quT is a set of latent functional factor time series with (unknown) number

of functional factors r ă p, A “ pAijqpˆr is the factor loading matrix and the idiosyncratic component

εtp¨q is a sequence of white noise process.

For multivariate scalar time series tYtu, the factor model (1) degenerates to the classical dynamic factor

model Yt “ AXt`εt, where two different types of model assumptions are considered in econometrics and

statistics literature. One type of models assumes that each common factor has non-trivial contribution to

tYtu while the idiosyncratic noise tεtu is allowed to have weak cross-correlations and serial correlations.

An incomplete list of the relevant references includes Chamberlain and Rothschild (1983); Forni et al.

(2000); Bai and Ng (2002); Stock and Watson (2012); Fan et al. (2013, 2019). However, the rigorous

definition of the common and idiosyncratic components in those factor models can only be established

asymptotically when the dimension of Yt tends to infinity. Another type of models assumes that the

common factors accommodate all dynamics of tYtu, thus making the idiosyncratic component white

noise with no serial correlations but allowing substantial contemporary cross-correlation among it; see
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Pena and Box (1987); Pan and Yao (2008); Lam et al. (2011); Lam and Yao (2012) and extensions to

matrix-valued time series (Wang et al., 2019; Chen et al., 2020) and tensor-valued time series (Chen, Yang

and Zhang, 2022). For functional time series, the factor modelling remains less touched in the literature.

Hays et al. (2012) and Kokoszka et al. (2015) considered functional dynamic factor models for univariate

functional time series. Gao et al. (2019) adopted factor modelling techniques to predict high-dimensional

functional time series by fitting a factor model to estimated scores obtained via eigenanalysis of the long-

run covariance function. Compared to our model setup (1), an unpublished manuscript of Tavakoli et al.

(2021) provides another formulation of the factor model to tackle a rather different situation with scalar

factors and functional factor loadings. Their methodology follows the framework in Bai and Ng (2002)

and substantially differs from our estimation procedure. See further discussion in Section 7.

Our paper is along the line of Lam and Yao (2012) in the model development. The adopted white

noise assumption is not the most ideal for the purpose to extract those asymptotically identifiable factors,

however, since the white noise exhibits no serial correlations, the decomposition in (1) is unique, thus

largely simplifying the tasks of model identification and inference. Moreover, unlike Bai and Ng (2002),

we do not place any assumption on the covariance structure of the idiosyncratic noise. We propose to

estimate both the number of functional factors and the factor loadings in terms of an eigenanalysis for a

nonnegative definite matrix, which is the double integral and sum of weighted quadratic forms in auto-

covariance functions of observed curves from different time lags. In practical applications, it is common

that many estimated factor loadings are close to zero especially when p is large in relation to n, This

inspires us to add certain sparsity constraints on the factor loading space defined in terms of the factor

loading matrix A. Since functional sparsity patterns in autocovariance functions of Ytp¨q inherits from

the imposed sparsity structures in A, we first propose Hilbert–Schmidt-norm based functional threshold-

ing of entries of the sample auotocovariance functions, the consistencies of which are guaranteed under

log p{n Ñ 0. Furthermore, to recover sparse factor loading space and produce a parsimonious model with

interpretable factors, we perform sparse principal component analysis (Vu and Lei, 2013) rather than

standard eigenanalysis for our formed nonnegative definite matrix.

This paper makes useful contributions at multiple fronts. On the method side, our proposal has four

main advantages. First, it involves a weight matrix to improve the estimation efficiency and tackle the

issue of heterogeneity. We illustrate the rationality of its presence by formulating the estimation procedure

based on a novel regression viewpoint. Our empirical results also demonstrate the uniform superiority

of our method compared to the unweighted competitors. Furthermore, our strategy of incorporating the

weight matrix is general and can be applied broadly to a range of dimension reduction problems, e.g., Lam

et al. (2011) and Wang et al. (2019). Second, our estimation relies on the sample autocovariance functions

of Ytp¨q. This not only gets rid of the impact from the noise εtp¨q, but also makes the good use of the

serial correlation information, which is the most relevant in the time series modelling. Third, the double

integral takes advantage of the functional nature of the data by gathering the autocovariance information

as much as possible at each pu, vq P U2 and then integrating over U2. Our fully functional procedure avoids

the information loss incurred by the dimension reduction step in Gao et al. (2019). Fourth, aided by the

enforced sparsity, we enhance the model interpretability and enlarge the dimension of the feature space

that our model can handle. Our regularized estimation procedure adopts techniques of novel functional

thresholding and sparse principal component analysis, each of which leads to the estimation consistency
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and sparsity recovery at its own step.

On the theory side, we investigate convergence properties of relevant estimated terms under high-

dimensional scaling, where p grows polynomially fast relative to n. With additional sparsity constraints

and tail assumptions, we further provide convergence analysis of the regularized estimation in an ultra-

high-dimensional regime, where p diverges at an exponential rate as n increases. In our theoretical analysis,

we generalize a well-known inequality between matrix norms to the functional domain (see Lemma 5 of

Appendix C) which, as our byproduct, can be useful to handle other high-dimensional functional data

problems. Empirically, we demonstrate through an extensive set of simulations that our estimators

substantially outperform the competitors. Moreover, we integrate our factor modelling framework into

the challenging task of predicting high-dimensional functional time series and use a real data example to

illustrate the superiority of our strategy over existing prediction methods.

The paper is set out as follows. In Section 2, we develop a fully functional procedure with weight

matrix to estimate the proposed factor model and explain it from a novel regression perspective. The

theoretical properties of the proposed estimators are investigated in Section 3. Under further sparsity

assumptions, we develop the regularized estimation procedure and present the associated convergence

analysis in Section 4. The finite-sample performance of our methods is illustrated through extensive

simulation studies and two real data examples in Sections 5 and 6, respectively. Section 7 concludes the

paper by discussing the relationship to relevant work as well as three extensions. We relegate all technical

proofs to the appendix.

Notation. For any matrix B “ pBijqpˆq, we let }B}min “ λ
1{2
minpBTBq, }B} “ λ

1{2
maxpBTBq and denote

its matrix ℓ8 norm and Frobenius norm by }B}1 “ max1ďiďp
řq

j“1 |Bij | and }B}F “ p
řp

i“1

řq
j“1B

2
ijq

1{2,

respectively. Let L2pUq denote the Hilbert space of squared integrable functions defined on U and b

denotes the Kronecker product. For f P L2pUq, we define its ℓ2-norm by }f} “ t
ş

fpuq2duu1{2. For a

Hilbert space H Ď L2pUq and a matrix of bivariate functions K “
`

Kijp¨, ¨q
˘

pˆq
, we define the functional

versions of the matrix ℓ8 norm and the Frobenius norm by }K}S,8 “ max1ďiďp
řq

j“1 }Kij}S and }K}S,F “

p
řp

i“1

řq
j“1 }Kij}

2
Sq1{2, respectively, where, for each Kij P H b H, we denote its Hilbert–Schmidt norm

by }Kij}S “ t
ş ş

Kijpu, vq2 dudvu1{2. For two positive sequences tanu and tbnu, we write an À bn or

an “ Opbnq or bn Á an if there exist a positive constant c such that an{bn ď c. We write an — bn if and

only if an À bn and bn À an hold simultaneously.

2 Methodology

2.1 Model setup and estimation procedure

We assume that the p-vector of functional time series Y1p¨q, . . . ,Ynp¨q satisfies the functional factor

model in (1), where each Ytp¨q is decomposed as the sum of two parts: a common dynamic part driven

by a r-vector of latent factor process Xtp¨q and an idiosyncratic part of white noise process εtp¨q “

tεt1p¨q, . . . , εtpp¨quT satisfying Etεtpuqu “ 0 and Covtεt`kpuq, εtpvqu “ 0 for any u, v P U and k ‰ 0.

Our formulation ensures that both functional and linear dynamic structure of Ytp¨q are inherited from

common factors Xtp¨q, while all white noise elements are absorbed into εtp¨q. Note that tXtp¨qunt“1 and

tεtp¨qunt“1 are unobservable. We further assume that the rank of the factor loading matrix A is r. If

this full rank condition is violated, model (1) can be expressed in terms of a lower-dimensional functional

factor. When r is much smaller than p, we achieve an effective dimension reduction.
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Similar to Lam and Yao (2012), there is an identifiable issue among Xtp¨q and A, since model (1)

remains unchanged if tA,Xtp¨qu is replaced by tAΓ,Γ´1Xtp¨qu for any invertible matrix Γ P Rrˆr. We

may then assume that the columns of A are orthonormal, that is ATA “ Ir (the r ˆ r identity matrix).

With this constraint, Xtp¨q and A still can not be determined uniquely, but the linear space spanned by

the columns of A (denoted by CpAq) can. Hence we will focus on the estimation of the factor loading

space CpAq.

We next develop a fully functional procedure to estimate CpAq and the number of factors r. Under

the assumption that tXtp¨qu is weakly stationary, we define the lag-k (k ě 0) autocovariance functions:

Σpkq
yy pu, vq “ CovtYt`kpuq,Ytpvqu, Σpkq

xx pu, vq “ CovtXt`kpuq,Xtpvqu,

Σpkq
xε pu, vq “ CovtXt`kpuq, εtpvqu.

(2)

We further assume that the future white noise components are uncorrelated with the common factors up

to the present. It then follows from (1) and (2) that

Σpkq
yy pu, vq “ AΣpkq

xx pu, vqAT ` AΣpkq
xε pu, vq, u, v P U , k ě 1. (3)

Given a prescribed and fixed integer k0 ě 1, we define a nonnegative definite matrix

M “

k0
ÿ

k“1

ż

U

ż

U
Σpkq

yy pu, vqWpvqΣpkq
yy pu, vqT dudv,

where the p ˆ p weight matrix Wpvq is nonnegative definite for any v P U . Here Wpvq is introduced to

improve the estimation efficiency. In Section 2.2, we will suggest specific forms of Wpvq and illustrate the

rationality from a regression perspective. Replacing Wpvq by its sample version xWpvq, we define

|M “

k0
ÿ

k“1

ż

U

ż

U
Σpkq

yy pu, vqxWpvqΣpkq
yy pu, vqT dudv. (4)

Let ν1 ě ¨ ¨ ¨ ě νp ě 0 be eigenvalues of |M and γj be a unit eigenvector of |M corresponding to νj for each

j. We claim that, under mild Conditions 1 and 3 imposed in Section 3, rankp|Mq “ r (i.e., νr ą 0 “ νr`1 “

¨ ¨ ¨ “ νp) holds with overwhelming probability as justified in our proof in Appendix B.1. As a result, the

factor loading space CpAq can be recovered by CpKq “ spantγ1, . . . ,γru with K “ pγ1, . . . ,γrq P Rpˆr. To

see this, let qA be a pˆ pp´ rq orthogonal complement of matrix A such that qATA “ 0 and qAT
qA “ Ip´r.

It then follows from (3) and (4) that |MqA “ 0, which implies that the columns of qA are eigenvectors

of |M corresponding to pp ´ rq zero eigenvalues and hence CpAq is spanned by the eigenvectors of |M

corresponding to r nonzero eigenvalues.

Remark 2.1. (i) We take the double integral and the sum in the definition of |M in (4) to accumulate

the information of autocovariance functions as much as possible from each pu, vq P U2 and from different

time lags, whereas fixing at certain pu, vq or time lag may lead to spurious estimation results.

(ii) The definition in (4) ensures that |M is nonnegative definite and there is no cancellation of infor-

mation accumulated from lags 1 to k0. Hence the estimation is insensitive to the choice of k0. In practice

we tend to select a small value, 1 ď k0 ď 5, as the strongest autocorrelations usually appear at small lags.
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To estimate CpAq, we need to carry out an eigenanalysis of the natural estimator for |M,

xM “

k0
ÿ

k“1

ż

U

ż

U
pΣ

pkq

yy pu, vqxWpvqpΣ
pkq

yy pu, vqT dudv, (5)

where

pΣ
pkq

yy pu, vq “
1

n ´ k

n´k
ÿ

t“1

␣

Yt`kpuq ´ Ȳpuq
(␣

Ytpvq ´ Ȳpvq
(T

, u, v P U , (6)

is the estimator for Σ
pkq
yy pu, vq and sYp¨q “ n´1

řn
t“1Ytp¨q. Performing eigen-decomposition of xM leads

to estimated eigenvalues ν̂1 ě ¨ ¨ ¨ ě ν̂p and the corresponding estimated eigenvectors pγ1, . . . , pγp. Let

pK “ pγ̂1, . . . , γ̂rq. Then Cp pKq “ spantpγ1, . . . , pγru forms the estimate of CpAq.

We have developed the estimation of model (1) assuming that the number of factors r is known or can

be identified correctly. In practice, r is unknown and there is vast literature on the topic of determining

it, see Bai and Ng (2002); Onatski (2010); Lam and Yao (2012); Ahn and Horenstein (2013); Fan et al.

(2022) and Han et al. (2022), to quote a few. Here we take the commonly adopted ratio-based estimator

for r as:

r̂ “ argmin
1ďjďcrp

ν̂j`1

ν̂j
, (7)

where cr P p0, 1q is a prespecified constant. In empirical studies, we take cr “ 0.75 to avoid the fluctuations

due to the ratios of extreme small values.

2.2 Weight matrix

Under the nonnegative-definiteness constraint, we suggest the following weight matrix:

Wpvq “ Q
␣

QTΣp0q
yy pv, vqQ

(´1
QT, v P U , (8)

where Q P Rpˆq is a full-rank matrix and q is larger than r but much smaller than p. The entries of

Q are independently sampled from some random distribution with zero mean and unit variance, e.g.,

Uniformr´
?
3,

?
3s and Np0, 1q, which is used here to facilitate technical analysis. Our experiments

indicate that the results are not sensitive to the choices of q and the sampling distribution. Then we can

obtain the sample version of Wpvq by

xWpvq “ Q
␣

QT
pΣ

p0q

yy pv, vqQ
(´1

QT. (9)

From a regression perspective, we next provide an intuitive explanation why the weight matrix takes

the suggested form in (8). Despite the unobservable common factors Xtp¨q, we can simply view (1) fixing

at u P U as a multiple linear regression with multivariate responses Ytpuq and the coefficient matrix A

to be estimated. To construct the covariate vector from observed data in a regression setup, we assume

that there exists some orthogonal matrix Φ P Rqˆr with ΦTΦ “ Ir such that qXtp¨q “ ΦXtp¨q can be

represented by the linear combination of past observed curves with the addition of some random noise:

qXtp¨q “ QTYt´kp¨q ` qεtkp¨q, k “ 1, . . . , k0,
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where qεtkp¨q is the white noise process, independent of Yt´1p¨q, . . . ,Yt´k0p¨q. Then model (1) can be

rewritten as

Ytp¨q “ BqXtp¨q ` εtp¨q “ BQTYt´kp¨q ` etkp¨q, t “ k ` 1, . . . , n, (10)

where etkp¨q “ εtp¨q ` Bqεtkp¨q and B “ AΦT is a p ˆ q matrix satisfying rankpBq “ r and CpBq “ CpAq.

Now we can treat (10) fixing at u P U as a linear regression model with observed covariate vectors

tQTYt´kpuqunt“k`1 and unknown low-rank coefficient matrixB. Based on (10) and the population moment

equation Covtetkpuq,QTYt´kpvqu “ 0 for u, v P U , we can solve B by

B “ Cov
!

Ytpuq,QTYt´kpvq

)

Cov
!

QTYt´kpuq,QTYt´kpvq

)´1
. (11)

To simplify our subsequent derivation, we assume EtXtp¨qu “ 0 and Covtetkpuqu “ Ip for all t, k and

u P U . Replacing the covariance terms in (11) by their sample versions, we obtain the estimator for B by

pB “

!

n
ÿ

t“k`1

YtpuqYT
t´kpvqQ

)!

n
ÿ

t“k`1

QTYt´kpuqYT
t´kpvqQ

)´1
. (12)

Denote the j-th row vector of pB by pbj P Rq with invertible covariance matrix Covppbjq P Rqˆq. Our

target is to identify the rank of pB and to recover the space spanned by the columns of pB, which can be

carried out in terms of an eigenanalysis for nonnegative-definite matrix pBtCovppbjqu´1
pBT “ rBrBT with

rB “ pBtCovppbjqu´1{2. The presence of Covppbjq accounts for the heterogeneous variance-covariance effect

and leads to the scaled low-rank coefficient matrix rB with its j-th row vector rbj satisfying Covprbjq “ Iq,

rankprBq “ rankppBq and CprBq “ CppBq. It follows from (12) that

Covppbjq “

!

n
ÿ

t“k`1

QTYt´kpvqYT
t´kpuqQ

)´1! n
ÿ

t“k`1

QTYt´kpvqYT
t´kpvqQ

)

¨

!

n
ÿ

t“k`1

QTYt´kpuqYT
t´kpvqQ

)´1
.

(13)

Combining (12) and (13) yields that

pB
␣

Covppbjq
(´1

pBT “ pΣ
pkq

yy pu, vqQtQT
pΣ

p0q

yy pv, vqQu´1QT
pΣ

pkq

yy pu, vqT. (14)

We integrate the right side of (14) over pu, vq P U2 and sum it over time lags k “ 1, . . . , k0, thus obtaining

(5) with the choice of xWpvq in (9).

An alternative choice of the weight matrix isW1pvq “ Ip for v P U , where the homogeneous weights are

assigned. As a consequence, we need to perform an eigenanalysis on the estimated nonnegative-definite

matrix:

xM1 “

k0
ÿ

k“1

ż

U

ż

U
pΣ

pkq

yy pu, vqpΣ
pkq

yy pu, vqT dudv, (15)
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which can be further simplified by integrating along the diagonal path u “ v P U :

xM2 “

k0
ÿ

k“1

ż

U
pΣ

pkq

yy pu, uqpΣ
pkq

yy pu, uqT du. (16)

Remark 2.2. It is noteworthy that, without the double or single integral, the unweighted estimators

xM1 and xM2 in (15) and (16) coincide with the proposed method for multivariate scalar time series in

Lam and Yao (2012). Compared with the weighted estimator xM, the performance of xM1 is expected

to deteriorate especially for the heterogeneous case as illustrated in our simulations. Moreover, due to

the loss of autocovariance information for u ‰ v incurred by the single integral, we expect that xM1

outperforms xM2. We will compare the sample performance of xM, xM1 and xM2 in Section 5.

3 Theoretical properties

In this section, we study asymptotic properties of the proposed method under a high-dimensional regime,

where p and n tend to infinity together and r is fixed. Before presenting the theoretical results, we impose

some regularity conditions.

Condition 1. (i) The latent functional factor process tXtp¨qu is weakly stationary with Ep}Xtj}
4q “ Op1q

for j “ 1, . . . , r; (ii) There exists at least one k P t1, . . . , k0u such that the rank of
ť

Σ
pkq
xx pu, vqΣ

pkq
xx pu, vqT dudv

is r.

Condition 2. (i) The idiosyncratic component tεtp¨qu is a white noise sequence with maxj Ep}εtj}
2q “

Op1q; (ii) infvPU λmin

␣

Σ
p0q
εε pv, vq

(

is bounded away from zero.

Conditions 1 and 2 contain some standard finite moment assumptions in functional data analysis

literature. Condition 1(ii) can be viewed as functional generalization of Condition 2 in Wang et al. (2019)

for matrix-valued time series, which ensures that the latent factor process Xt has exactly r components.

Condition 2(ii) is imposed for technical convenience. It precludes the case when Ytpvq is non-random

at some point v P U . However, replacing Ytp¨q with a contaminated process Ytp¨q ` δt, where δt’s are

independent with zero mean and diagonal covariance matrix with small diagonal components and are

independent of Yt`kp¨q’s for all k, Condition 2(ii) is then satisfied while the autocovariance structure in

Σ
pkq
yy remains the same in the sense of CovtYt`kpuq ` δt`k,Ytpvq ` δtu “ CovtYt`kpuq,Ytpvqu for k ě 1

and u, v P U .

Condition 3. There exists some constant δ P r0, 1s such that }A}2 — p1´δ — }A}2min.

Condition 4. (i) For k “ 1, . . . , k0, }Σ
pkq
xε }S,8 “ oppp1´δq{2q; (ii) CovtXtpuq, εt`kpvqu “ 0 for any k ě 0

and pu, vq P U2.

The parameter δ in Condition 3 can be viewed as the strength of factors with smaller values yielding

stronger factors. It measures the relative growth rate of the amount of information contained in Ztp¨q as

the dimension p increases, compared to that in εtp¨q, see (1). When δ “ 0, Condition 3 corresponds to

the pervasiveness assumption in Fan et al. (2013), which means that all factors are strong. When δ ą 0,

the factors are termed as weak factors. We refer to Lam and Yao (2012) for more detailed discussion

on the factor strength. Condition 4(i) requires that the correlation between Xt`kp¨q and εtp¨q is not too
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strong, while Condition 4(ii) assumes that the future idiosyncratic components are uncorrelated with the

common factors up to the present.

Condition 5. Let pΣ
pkq

yy pu, vq “
␣

pΣ
pkq

yy,ijpu, vq
(

pˆp
and Σ

pkq
yy pu, vq “

␣

Σ
pkq

yy,ijpu, vq
(

pˆp
for u, v P U . Then

(i) For k “ 1, . . . , k0, maxi,j E
␣

}pΣ
pkq

yy,ij ´ Σ
pkq

yy,ij}S
(

“ Opn´1{2q; (ii) Σ
p0q
yy pu, vq is Lipschitz-continuous over

pu, vq P U2; (iii) maxi,j E
␣

suppu,vqPU2

ˇ

ˇpΣ
p0q

yy,ijpu, vq ´ Σ
p0q

yy,ijpu, vq
ˇ

ˇ

(

“ O
␣

n´1{2plog nq1{2
(

.

There are several sufficient conditions that have been commonly imposed in functional time series

literature when p is fixed and can lead to the result in Condition 5(i), which further implies the standard

root-n rate for entrywise sample autocovariance functions, i.e., }pΣ
pkq

yy,ij ´ Σ
pkq

yy,ij}S “ Oppn´1{2q. The key

requirement to establish the consistency is to control the temporal dependence in tYtjp¨qu for j “ 1, . . . , p.

Examples include strong mixing conditions (Bosq, 2000; Chen, Guo and Qiao, 2022), cumulant mixing

conditions (Panaretos and Tavakoli, 2013) and Lq-m-approximability (Hörmann and Kokoszka, 2010;

Hörmann et al., 2015). With the additional tail assumption and Lipschitz-continuity in Condition 5(ii), it

is not difficult to apply the partition technique that reduces the problem from supremum over U2 to the

maximum over a grid of pairs, and hence the uniform convergence rate of n´1{2plog nq1{2 in Condition 5(iii)

can be achieved. See the same uniform rate with detailed proof under an i.i.d. setting in Qiao et al. (2020).

Now we are ready to present theorems about the rates of convergence for estimators of the factor

loading space CpKq “ CpAq and the eigenvalues tνju
p
j“1. To measure the accuracy in estimating CpKq,

we use the metric of the distance between CpKq and Cp pKq. For two orthogonal matrices K1 and K2 of

dimensions p ˆ r1 and p ˆ r2, respectively, we define

D
`

CpK1q, CpK2q
˘

“

!

1 ´
1

maxpr1, r2q
trpK1K

T
1K2K

T
2 q

)1{2
.

This distance ranges between 0 and 1. It equals 0 if and only if CpK1q “ CpK2q, and 1 if and only if K1

and K2 are orthogonal. See also Pan and Yao (2008) and Chang et al. (2015).

Theorem 1. Let Conditions 1–5 hold and pδn´1{2 Ñ 0. Suppose that r is known. Then as p, n Ñ 8, it

holds that

D
`

CpKq, Cp pKq
˘

“ Opppδn´1{2q.

Remark 3.1. Theorem 1 implies that, as the factors become stronger with smaller δ, we obtain more

efficient estimator for the factor loading space. When the dimension p is fixed, the
?
n rate is attained.

When all factors are strong (i.e., δ “ 0),
?
n rate still retains, since the signal is as strong as the noise

and hence enlarging p will not affect the estimation efficiency, circumventing the phenomenon of “curse of

dimensionality”. For weak factors (i.e., δ ą 0), the noise increases faster than the signal, and the increase

in p will result in a slower convergence rate.

Theorem 2. Let the conditions of Theorem 1 hold. Then as p, n Ñ 8, the following assertions hold:

(i) |ν̂j ´ νj | “ Oppp2´δn´1{2q for j “ 1, . . . , r, and ν̂j “ Oppp2n´1q for j “ r ` 1, . . . , p;

(ii) ν̂j`1{ν̂j — 1 for j “ 1, . . . , r ´ 1, and ν̂r`1{ν̂r “ Oppp2δn´1q.

Remark 3.2. We observe from part (i) of Theorem 2 that estimators for nonzero eigenvalues converge

at a slower rate than those for zero eigenvalues. Part (ii) of Theorem 2 implies that the eigen-ratio
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ν̂j`1{ν̂j will drop steeply at j “ r, thus providing partial theoretical support for the proposed ratio-based

estimator r̂ in (7). When all factors are strong (i.e., δ “ 0), ν̂r`1{ν̂r “ OP pn´1q, suggesting that r̂ may not

suffer from the increase in p. In fact, these results are consistent with those established in Lam and Yao

(2012). In a similar fashion, we can obtain improved rates as p increases under additional assumptions.

Although we do not theoretically pursue such “blessing of dimensionality” property here, our simulation

results lend empirical support for this phenomenon.

To facilitate the consistency analysis of the ratio-based estimator r̂ for r and to avoid the case of

“0/0”, we define a modified ratio-based estimator

r̂ “ arg min
1ďjďp

ν̂j`1 ` ϑn

ν̂j ` ϑn
, (17)

where ϑn provides a lower bound correction to ν̂j for j ą r and satisfies the conditions in Theorem 3

below.

Theorem 3. Let the conditions of Theorem 1 hold, ϑnp
´2`2δ Ñ 0 and ϑnn

2p´2´2δ Ñ 8. Then as

p, n Ñ 8, it holds that Ppr̂ “ rq Ñ 1.

Remark 3.3. (i) Theorem 3 shows that the modified r̂ in (17) is a consistent estimator of r. In practice,

provided that ϑn is usually hard to be specified, we still use (7) to estimate r, leading to good performance

in our empirical studies.

(ii) With the aid of Theorem 3, our estimation of CpKq is asymptotically adaptive to r. To this end,

let qK “ pγ̂1, . . . , γ̂ r̂q and Cp qKq “ spantpγ1, . . . , pγ r̂u be the estimator of CpKq with r estimated by r̂. Then

it holds that for any constant C ą 0 that

P
`

p´δn1{2D
`

CpKq, Cp qKq
˘

ą C
˘

ď P
`

p´δn1{2D
`

CpKq, Cp qKq
˘

ą C|r̂ “ r
˘

Ppr̂ “ rq ` Ppr̂ ‰ rq

ď P
`

p´δn1{2D
`

CpKq, Cp pKq
˘

ą C|r̂ “ r
˘

` op1q,

which together with Theorem 1 yield D
`

CpKq, Cp qKq
˘

“ Opppδn´1{2q.

4 Sparse factor model

Despite the phenomenon of “curse of dimensionality” being avoided when all factors are strong, our

method does not guarantee a parsimonious and interpretable model in the presence of weak factors. In

real applications, it is quite common that many estimated factor loadings are close to zero especially when

p is large, see the gene expression study in Carvalho et al. (2008) and the sea surface air pressure records

example in Lam and Yao (2012). Such phenomenon motivates us to propose a sparse factor model by

imposing sparsity assumptions on the factor loading space CpAq of (1). In this section, we target to develop

the regularized estimation under sparsity constraints, which not only leads to the enhanced intepretability

in practice, but also theoretically enlarges the dimension of the feature space that our proposed sparse

factor model can handle compared with the nonsparse factor model with weak factors.

We consider two complementary notions of subspace sparsity defined in terms of the factor loading

matrix A: row sparsity and column sparsity, which are consistent with the definitions in Vu and Lei

10



(2013). Intuitively, the row sparsity entails that only a small subset of components in Ytp¨q are driven by

the common factors Xtp¨q, thus making the row sparse factor loading space generated by a small number

of variables, independent of the choice of the basis. The column sparsity, on the other hand, corresponds

to the case that each common factor Xtjp¨q has impact on only a small fraction of components of Ytp¨q

and hence the column sparse factor loading space has orthonormal basis consisting of sparse vectors. We

begin by introducing parameter spaces of “approximately column sparse” and “approximately row sparse”

factor loading matrices respectively defined in Conditions 6 and 61 below. Let ai be the i-th row vector

of A “ pAijqpˆr.

Condition 6 (Column sparsity). The matrix A is from the class

Vpτ, c1ppq, Lq “

!

A : max
1ďjďr

p
ÿ

i“1

|Aij |
τ ď c1ppq, max

1ďiďp,1ďjďr
|Aij | ď L

)

, τ P r0, 1q.

Condition 61 (Row sparsity). The matrix A is from the class

V˚pτ, c1ppq, Lq “

!

A :

p
ÿ

i“1

}ai}
τ ď c1ppq, max

1ďiďp,1ďjďr
|Aij | ď L

)

, τ P r0, 1q.

The parameters c1ppq and τ together control the column or row sparsity in the factor loading matrixA.

In the special case of τ “ 0, Vp0, c1ppq, Lq and V˚p0, c1ppq, Lq correspond to the truly sparse situations, in

which A has at most c1ppq nonzero entries on each column under Condition 6 or c1ppq nonzero row vectors

under Condition 61. By Hölder’s inequality, it is easy to check that V˚pτ, c1ppq, Lq Ď Vpτ, cr,τc1ppq, Lq,

where cr,τ “ 1 for τ “ 0 and r1´τ{2 for τ P p0, 1q. Provided that r is fixed, our subsequent analysis will

focus on the class of column sparse factor loading matrices, Vpτ, c1ppq, Lq.

Our estimation procedure in Section 2 is developed based on the estimation of Σ
pkq
yy ’s. When p grows

faster than n1{2, it is known that the sample autocovariance functions pΣ
pkq

yy ’s are no longer consistent

estimators. Nevertheless, under the sparse factor model setup, the decomposition of Σ
pkq
yy in (3) suggests

that our enforced column sparsity in A is inherited by the functional sparsity structure in Σ
pkq
yy , thus

enabling us to possibly construct the threhsolding-based estimator for Σ
pkq
yy to ensure the consistency.

Before introducing the estimator, we slightly modify Condition 4 to accommodate the sparse setting and

present a lemma that reveals the functional sparsity pattern in Σ
pkq
yy .

Condition 41. (i) For k “ 1, . . . , k0, letΣ
pkq
xε pu, vq “

␣

Σ
pkq

xε,ijpu, vq
(

pˆp
for u, v P U and max

1ďlďr

řp
j“1 }Σ

pkq

xε,lj}
τ
S ď

c2ppq; (ii) CovtXtpuq, εt`kpvqu “ 0 for any k ě 0 and u, v P U .

Condition 41(i) requires relatively weak correlations between Xt`kp¨q and εtp¨q. As long as c2ppq “

oppp1´δq{2q, Condition 4(i) follows directly from Condition 41(i). Moreover, Condition 41(i) relies on the

Hilbert–Schmidt norm to encourage the functional sparsity in Σ
pkq
xε , i.e., each common factor Xpt`kqlp¨q is

only correlated with a few components of εtp¨q. With imposed sparsity constraints in Conditions 41 and

6, it can be inferred from (3) that Σ
pkq
yy is functional sparse as justified in Lemma 1 below.

Lemma 1. Under Conditions 1, 2, 41 and 6, it holds that, for k “ 1, . . . , k0,

max
1ďjďp

p
ÿ

i“1

}Σ
pkq

yy,ij}
τ
S À c1ppq and max

1ďiďp

p
ÿ

j“1

}Σ
pkq

yy,ij}
τ
S À c1ppq ` c2ppq.

11



Lemma 1 shows that the functional sparsity patterns in columns/rows of Σ
pkq
yy are determined by

parameters c1ppq and c2ppq with smaller values yielding functional sparser Σ
pkq
yy . To obtain a functional

sparse estimator for Σ
pkq
yy , we apply the hard functional thresholding rule, which combines functional

versions of hard thresholding and shrinkage based on the Hilbert-Schmidt norm of functions, on entries

of the sample autocovariance function pΣ
pkq

yy . Then the functional thresholding estimator is constructed as

TηkppΣ
pkq

yy qpu, vq “

”

pΣ
pkq

yy,ijpu, vqI
␣

}pΣ
pkq

yy,ij

›

›

S ě ηk
(

ı

pˆp
, u, v P U , (18)

where Ip¨q is the indicator function and ηk ě 0 is the thresholding parameter. Under mild regularity

conditions, it follows from Lemma 4 in Appendix C that

max
1ďi,jďp

}pΣ
pkq

yy,ij ´ Σ
pkq

yy,ij}S “ Op

˜

My

c

log p

n

¸

, (19)

where My is the functional stability measure (Guo and Qiao, 2023) defined in (A.1) in Appendix A.

The rate under the functional version of ℓ8 norm in (19) plays a crucial role in our theoretical analysis

under an ultra-high-dimensional regime and, in particular, suggests us to set the thresholding level as

ηk — Mypn´1 log pq1{2. Replacing pΣ
pkq

yy in (5) with TηkppΣ
pkq

yy q, we obtain the corresponding estimator for

M :

ĂM “

k0
ÿ

k“1

ż ż

TηkppΣ
pkq

yy qpu, vqxWpvqTηkppΣ
pkq

yy qpu, vqT dudv. (20)

To recover the column sparsity structure in CpAq, we perform sparse principal component analysis

(PCA) (Vu and Lei, 2013) on ĂM rather than the standard eigenanalysis for xM in Section 2.1. For matrices

A1 and A2 with the same dimension, let xA1,A2y :“ tracepAT
1A2q. We define rK P Rpˆr as a solution to

the following constraint optimization problem:

rK “ argmax
K“pKjlqpˆr

xĂM,KKTy subject to KTK “ Ir, max
1ďlďr

p
ÿ

j“1

|Kjl|
τ ď Cτ , (21)

where Cτ ą 0 is a regularization parameter. Alternatively, to estimate the row sparse factor loading space,

we can substitute the second constraint in (21) by
řp

i“1 }ki}
τ ď rCτ , where ki denotes the i-th row vector

of K and rCτ ą 0 is a regularization parameter. It is worth noting that, without the sparsity constraint

in (21), the optimization problem degenerates to the ordinary PCA. Despite being challenging to solve

(21) due to the non-convex constraint, some efficient and computationally tractable algorithms have been

developed, see, e.g., under the truly sparse case (τ “ 0), the combinatorial approaches (Moghaddam et al.,

2006; d’Aspremont et al., 2008; Mackey, 2009), the semi-definite relaxation (d’Aspremont et al., 2007)

and its variants, and the random-projection-based method (Gataric et al., 2020). We refer to Zou and

Xue (2018) for an extensive review on recent developments for sparse PCA.

We now present the asymptotic analysis of Cp rKq in the following theorem.

Theorem 4. Let Conditions 1, 2, 41, 6 and 7–8 in Appendix A hold and M2
y log pn

´1 Ñ 0. Then as

12



p, n Ñ 8, it holds that:

νrD
´

CpKq, Cp rKq

¯

“ Op

„

c1ppq
␣

c1ppq ` c2ppq
(

M1´τ
y

´ log p

n

¯
1´τ
2

ȷ

.

Remark 4.1. (i) The convergence rate of D
`

CpKq, Cp rKq
˘

is governed by both dimensionality parameters

tn, p, c1ppq, c2ppqu and internal parameters (My, νr, τ). It is easy to see that the rate is better when νr is

large and tc1ppq, c2ppq,My, τu are small.

(ii) Under the truly sparse case (τ “ 0) with c1ppq Á c2ppq, and |Aij | — γ for pi, jq such that Aij ‰ 0,

it follows from the framework in Section 3 that c1ppqγ2 — p1´δ under Condition 3, which together with

Theorem 4 imply that

νrD
`

CpKq, Cp rKq
˘

“ Op

␣

p2´2δγ´4Myplog pq1{2n´1{2
(

. (22)

By comparison, Theorem 1 and (B.3) in Appendix B lead to the rate νrD
`

CpKq, Cp rKq
˘

“ Op

`

p2´δn´1{2
˘

,

which is slower than that in (22) for larger values of γ or δ (i.e., smaller values of c1ppq provided that

γ — 1). Hence, when the magnitudes of nonzero entries in A become larger or the factors are weaker

in the sense of Condition 3 (i.e., A is sparser in the sense of Condition 6), our regularized estimation

benefits more from the imposed sparsity and enjoys faster convergence rate than the ordinary method in

Section 2.

5 Simulation studies

5.1 Setup

We illustrate the finite-sample performance of our proposed methods through extensive simulations. Sec-

tions 5.2 and 5.3 consider scenarios where the factor loading matrix A is ordinary and sparse, respectively.

In each simulated scenario, we generate p-vector of functional time series by

Ytp¨q “ κ0AsXtp¨q ` εtp¨q, t “ 1, . . . , n, (23)

where the parameter κ0 ą 0 controls the strength of common factors Xtp¨q “ κ0 sXtp¨q and the entries of

A P Rpˆr are sampled from Uniformr´
?
3p´δ{2,

?
3p´δ{2s with δ P r0, 1s. Hence Condition 3 is satisfied,

in which δ “ 0 (or δ ą 0) corresponds to the case of strong (or weak) factors. To mimic the infinite-

dimensionality of functional data, we generate each scaled latent factor by sXtlp¨q “
ř50

i“1 ξtliϕip¨q for

l “ 1, . . . , r over U “ r0, 1s, where tϕip¨qu50i“1 is a 50-dimensional Fourier basis function and the basis

coefficients ξti “ pξt1i, . . . , ξtriq
T are generated from a vector autoregressive model, ξti “ Vξpt´1qi ` ϵi

with V “ pρ|l´l1|`1q1ďl,l1ďr and the innovation ϵti “ pϵt1i, . . . , ϵtriq
T consisting of independent Np0, i´2ιq

components. We set ρ “ 0.45 and ι “ 0.75. For the idiosyncratic component εtp¨q, we consider the

following three scenarios.

Scenario 1. For each j “ 1, . . . , p, we generate εtjp¨q “
ř20

i“1 2
´pi`1q

rZtjiϕip¨q, where rZtji’s are

independent standard normal.

Scenario 2. We generate εtp¨q “ Hsεtp¨q, whereH “ 5´1diagph1, . . . , hpq, hj ’s are sampled uniformly

from t1, . . . , 10u and each ε̄tjp¨q is generated in the same way as εtjp¨q in Scenario 1.
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Scenario 3. We fix κ0 “ 1 and generate εtjp¨q “ κ1εt0p¨q`ε̄tjp¨q, where κ1 ą 0, εt0p¨q “
ř4

i“1
sZtiϕip¨q

and each sZti is sampled independently from Np0, 1q.

In Scenario 1, each εtjp¨q is white noise with the identical covariance function across j, while Scenario 2

corresponds to the heterogeneous case with different covariance functions. Scenario 3 consists of pr ` 1q

actual common factors, among which the additional factor εt0p¨q is independent of other factors in Xtp¨q,

and its signal strength is determined by the parameter κ1. The underlying factor loading matrix is pA,1pq,

where 1p denotes the p-vector of ones. For simplicity, we still denote the factor loading matrix by A.

5.2 Ordinary case

We compare our proposed method based on xM with two competing methods based on xM1 and xM2. Since

our experimental results suggest that r̂ and Cp pKq are insensitive to the choice of q and the maximum

lag k0, we set q “ 12 and k0 “ 4 in our simulations. In each setting, we generate n “ 100 serially

dependent observations of p “ 50, 100, 200 functional variables based on r “ 4 functional factors. We

ran each simulation 100 times. The sample performance of three approaches is examined in terms of

their abilities of correctly identifying the number of factors and the estimation accuracy in recovering

the factor loading space, respectively measured by the relative frequency estimate for Ppr̂ “ rq and

D
`

CpKq, Cp pKq
˘

using the correct r. For each of three comparison methods, Figures 1 and 3 plot average

relative frequencies r̂ “ r as the factor strength increases when the factors are strong (i.e., δ “ 0) and

weak with δ “ 0.5, respectively. Figures 2 and 4 plot the corresponding average estimation errors for

CpKq. Several conclusions can be drawn from Figures 1–4. First, our proposed method based on xM

provides highly significant improvements in accuracies for the identification of r and the recovery of CpKq

over the competing methods in all scenarios we consider. The improvement of our method involving the

weight matrix is larger for the heterogeneous case and even more substantial for the case when the factors

are weak. Between two competitors, the method based on xM1 outperforms that based on xM2, providing

empirical evidence for Remark 2.2. Second, the estimation for r and CpKq performs better as the strength

of factors increases (i.e., κ0 or κ1 increases or δ decreases), which is in line with our theoretical results

in Section 3. In Figure 1, our method makes the sharpest progress as the factors become stronger, while

the two comparison methods require much higher strength of factors to compete. Third, when the factors

are strong, we observe the phenomenon of “blessing of dimensionality” in Figures 1 and 2 in the sense

that the estimation improves as p increases from 50 to 200. The improvement is due to the increase of the

information from added components on the factors. Under Scenario 3 with an extra factor independent

of the others, the information and noise on the factors increase simultaneously as p grows, and hence

the estimation does not necessarily improve. Fourth, under the weak factor setting, many entries of A

are quite close to zero. As p enlarges, the enhanced information on the factors is accompanied with the

increase of noise. While Figure 3 reveals that increasing p does not necessarily lead to the improved

estimation for r, we observe in Figure 4 that the estimation for CpKq gets worse for larger values of p,

complying with the result in Theorem 1.

5.3 Sparse case

In this section, we conduct some simulations to evaluate the performance of the functional-thresholding-

and-sparse-PCA-based approach (TSPCA) developed in Section 4 to estimate the sparse factor model.

Two kinds of subspace sparsity constraints are imposed on A. Specifically, for the row sparsity, we
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Figure 1: Scenario 1 (top row), Scenario 2 (middle row) and Scenario 3 (bottom row) for p “ 50, 100
and 200 when the factors are strong: Plots of average relative frequency estimates for Ppr̂ “ rq against κ0
or κ1 for three methods based on xM (black solid), xM1 (red dashed) and xM2 (cyan dash dotted).

randomly select 80% rows of A to be zero vectors, while for the column sparsity, we randomly set 80%

elements within each column of A as zeros. We focus on Scenario 1 with κ0 “ 1 and generate nonzero

entries of A from Uniformr´
?
3,

?
3s.

Implementing TSPCA requires choosing the thresholding parameter ηk in (18) and the columnwise

number of nonzero elements C0 in (21). To select the optimal η̂k for each k “ 1, . . . , k0, we implement a

G-fold cross-validation approach (Cai and Liu, 2011). To be specific, we first sequentially divide the set

t1, . . . , nu into G blockwise groups D1, . . . ,DG of approximately equal size. We then treat the g-th group

as a validation set, compute the sample lag-k autocovariance functions pΣ
pkq,pgq

yy pu, vq and pΣ
pkq,p´gq

yy pu, vq

for u, v P U based on the validation set and the remaining G´1 groups, respectively, and repeat the above

procedure G times. We finally select pηk by minimizing Rkpηkq “ G´1
řG

g“1

›

›Tηk
`

pΣ
pkq,p´gq

yy

˘

´ pΣ
pkq,pgq

yy

›

›

2

S,F.

We adopt a similar cross-validation method to select the optimal pC0. Given the g-th group as a validation

set, we obtain the solution rKp´gq to the constrained optimization problem in (21) with τ “ 0 based on

the remaining G ´ 1 groups. To solve this problem, we apply sparse PCA (Moghaddam et al., 2006;

Mackey, 2009) to ĂMp´gq, which is formed by (20) using T
pηk

`

pΣ
pkq,p´gq

yy

˘

for k “ 1, . . . , k0. We also obtain

pKpgq by carrying out an eigenanalysis for xMpgq based on the validation set. The above procedure is

repeated G times and pC0 is selected by minimizing DpC0q “ G´1
řG

g“1D
`

Cp rKp´gqq, Cp pKpgqq
˘

. Although
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Figure 2: Scenario 1 (top row), Scenario 2 (middle row) and Scenario 3 (bottom row) for p “ 50, 100,
200 when the factors are strong: Plots of average D

`

CpKq, Cp pKq
˘

against κ0 or κ1 for three methods based

on xM (black solid), xM1 (red dashed) and xM2 (cyan dash dotted).

the time break created by each leave-out validation set possibly jeopardize the autocovariance structure

on the remaining G ´ 1 groups via k0 mis-utilized lagged terms, its effect on the estimation of Σ
pkqp´gq
yy ’s

is negligible especially when n is sufficiently large. Hence our proposed cross-validation approach does

not place a practical constraint.

Table 1: The mean and standard error (in parentheses) of the distance between the estimated and
true sparse factor loading spaces over 100 simulation runs. All entries have been multiplied by 102 for
formatting reasons.

Sparsity p PCA TSPCA Sparsity p PCA TSPCA
100 3.86p0.53q 1.71p0.31q 100 4.27p0.83q 3.55p1.09q

Row 200 3.79p0.56q 1.74p0.26q Column 200 4.25p0.65q 3.69p0.59q

400 3.73p0.66q 1.76p0.29q 400 4.03p0.74q 3.17p0.88q

We compare TSPCA with the ordinary PCA-based approach by performing an eigenanlysis on xM.

The estimation quality is measured in terms of the distance between the estimated and true sparse factor

loading spaces using the correct r.We report the numerical summaries in Table 1 for p “ 100, 200, 400. It is

obvious to see that TSPCA uniformly improves the PCA-based estimation, demonstrating the advantage

of our regularized estimation procedure to fit sparse factor models. The improvement for the row sparsity
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Figure 3: Scenario 1 (top row) and Scenario 2 (bottom row) for p “ 50, 100 and 200 with correct r when
the factors are weak: Plots of relative frequency estimates for Ppr̂ “ rq against κ0 for three methods based

on xM (black solid), xM1 (red dashed) and xM2 (cyan dash dotted).
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Figure 4: Scenario 1 (top row) and Scenario 2 (bottom row) for p “ 50, 100 and 200 with correct r when

the factors are weak: Plots of average D
`

CpKq, Cp pKq
˘

against κ0 for three methods based on xM (black

solid), xM1 (red dashed) and xM2 (cyan dash dotted).

case is more significant than that for the column sparsity case. Compared with the functional sparsity

patterns in Lemma 1 under the column sparsity constraint, it follows from the decomposition of Σ
pkq
yy in

(3) that the row sparsity in A can lead to functional sparser Σ
pkq
yy ’s. In this sense, TSPCA benefits more

from the row sparsity structure, thus resulting in enhanced improvement.
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6 Real data analysis

6.1 U.K. temperature data

Our first dataset, which is available at https://www.metoffice.gov.uk/research/climate/maps-and

-data/historic-station-data, consists of monthly average temperature collected at p “ 22 measuring

stations in the U.K. from 1959 to 2020 (n “ 62). Let Ytjpukq (t “ 1, . . . , n, j “ 1, . . . , p, k “ 1, . . . , 12)

denotes the average temperature during month uk “ k P U “ r1, 12s of year 1958 ` t at the j-th

measuring station. The observed temperature curves are smoothed based on 10-dimensional Fourier basis

to capture the periodic structures over the annual cycle. The smoothed curve series exhibits very small

autocorrelations beyond k “ 2, so we use k0 “ 2 in computing xM. The ratio-based estimator suggests

r̂ “ 1, though we illustrate further results using r̂ “ 3.

Figure 5 displays spatial heatmaps of estimated factor loading matrix and the rotated matrix using

the varimax procedure to maximize the sum of the variances of the squared loadings. Some interesting

patterns can be observed from those heatmaps. Compared with the original results in Figure 5, the

varimax rotation brings the factor loading matrix closer to a “simple structure”, where (i) each component

in Ytp¨q has a high loading on one specific factor but near-zero loadings on other factors and (ii) each

factor has high impact on a few components of Ytp¨q with high loadings on this factor while the remaining

variables have near-zero loadings on this factor. The varimax rotation leads to larger color variations in

heatmaps for better interpretation. For example, it is apparent that the first factor via varimax rotation

influences the dynamics in the southeast, while the original factor has uniform impact in all locations.

Hence we focus on the interpretation of remaining factors after varimax rotation. Specifically, the second

factor mainly impacts the dynamics of the northern region. The third factor can roughly be viewed as

the main driving force for the dynamics in the middle north.

6.2 Japanese mortality data

Our second dataset contains age-specific and gender-specific mortality rates for p “ 47 Japanese prefec-

tures from 1975 to 2017 (n “ 43). This dataset was also analyzed in Gao et al. (2019). Due to those

sparse observations at old ages, we focus on data for ages below 96. We apply a log transformation to

mortality rates and denote by Ytjpukq (t “ 1, . . . , n, j “ 1, . . . , p, k “ 1, . . . , 96) the log mortality rate of

people aged uk “ k´1 P U “ r0, 95s living in the j-th prefecture during the year 1974`t. We then perform

smoothing for observed curves and replace the missing values via smoothing splines. The estimation of

model (1) is done by choosing k0 “ 2 and we use r̂ “ 2 in subsequent analysis. To enhance interpretability

for identified factors under a high-dimensional p ą n regime, we also implement TSPCA to estimate the

sparse factor loading matrix.

Figure 6 and Figure D.1 in Appendix D show spatial heatmaps of varimax-rotated loading matrix

and sparse loading matrices with different sparsity levels for Japanese females and males, respectively.

For TSPCA, we implement the cross-validation method to select the optimal η̂k’s and set the columnwise

sparsity in estimated loading matrix to 27/47 or 32/47 for better visualization of the results. A more

systematic method to determine the sparsity level, e.g., via a significance testing, needs to be developed.

Compared with the original results, both varimax rotation and TSPCA lead to enhanced interpretability in

the sense of recovering the factor loading matrix with “simple structure”. Among two competitors, TSPCA

tends to reduce some near-zero loadings to exactly zero, thus providing a parsimonious model with more
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Figure 5: Spatial heatmaps based on estimated factor loading matrix (top row) and varimax-rotated loading
matrix (bottom row) of 22 U.K. locations.

interpretable results than varimax rotation. In particular, we can observe clear regional patterns from

those heatmaps for TSPCA, where each of two factors influences the dynamics of some complementary

regions of Japan in all settings. Take the results under the sparsity 27/47 in Figure 6 as an example,

the first factor serves as the main driving force in regions of Hokkaido, Kanto, Chubu and Kansal, while

Tohoku and Shikoku are heavily loaded regions on the second factor.

To further illustrate the developed methodology, we set upon the task of predicting high-dimensional

functional time series Ytp¨q. Specifically, we incorporate the functional factor model framework into the

h-step-ahead prediction (denoted as FFM) consisting of three steps below.

1. Apply our proposed method to estimate model (1) based on past observations tYtp¨quTt“1, thus

obtaining the estimated factor loading matrix pA and number of functional factors r̂.

2. Compute r̂ estimated factors by pXtp¨q “ pATYtp¨q. For each k P t1, . . . , r̂u, predict pXpt`hqkp¨q based

on past fitted values for the k-th common factor, t pXtkp¨quTt“1.

3. The h-step head predict for YT`hp¨q is pYT`hp¨q “ pApXT`hp¨q.

The second step is on the prediction of univariate functional time series. For each common factor, we

obtain the h-step-ahead prediction based on the best fitted functional ARMA model (Klepsch et al.,

2017) according to the BIC criterion. We then develop a sparse version of FFM (denoted as SFFM) by

performing TSPCA in the first step to estimate sparse pA. For comparison, we implement an alternative

factor model based prediction method of Tavakoli et al. (2021) (denoted as TNH) by firstly estimating
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Figure 6: Spatial heatmaps based on varimax-rotated loadings (left column) and sparse loadings with 27
zeros (middle column) and 32 zeros (right column) of 47 prefectures on two factors for Japanese females.

their factor model (see (24) in Section 7), then making use of the corresponding best fitted ARMA models

to predict the scalar factor time series rXt and the functional idiosyncratic component rεtp¨q, and finally

predicting Ytp¨q based on (24). We also adopt the method of Gao et al. (2019) (denoted as GSY) to

predict p component series of Ytp¨q jointly, as well as the univariate prediction method of Aue et al.

(2015) (denoted as ANH) to predict each Ytjp¨q separately.

To evaluate the predictive accuracy, we use the expanding window approach. The data is divided

into a training set and a test set consisting of the first n1 and the last n2 observations, respectively. For

any integer h ą 0, we implement each fitting method on the training set, obtain h-step-ahead prediction

on the test data based on the fitted model, increase the training size by one and repeat this procedure

n2 ´h` 1 times to compute the h-step-ahead mean absolute prediction error (MAPE) and mean squared

prediction error (MSPE) by MAPEphq “ tpˆ pn2 ´h` 1q ˆ 96u´1
řp

j“1

řn
t“n1`h

ř96
k“1

ˇ

ˇpYtjpukq ´Ytjpukq
ˇ

ˇ

and MSPEphq “ tp ˆ pn2 ´ h ` 1q ˆ 96u´1
řp

j“1

řn
t“n1`h

ř96
k“1

␣

pYtjpukq ´ Ytjpukq
(2
, respectively. The

resulting MAPE and MSPE values are summarized in Table 2. It is obvious that FFM, SFFM and TNH

significantly outperform GSY and ANH in all settings. Among the three winners, our proposed FFM

provides the highest predictive accuracies for all cases, and, at the same time, SFFM is slightly inferior

possibly due to the bias introduced by the enforced sparsity. It is worth mentioning that our additional

experiments show that the predictive performance of FFM and SFFM can be further improved as r̂

increases beyond 2, whereas the best predictive performance of TNH is already attained with only one

scalar factor as presented in Table 2.
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Table 2: MAPEs and MSPEs of FFM, SFFM and three competing methods for Japanese male and female
mortality rates. All entries have been multiplied by 10 for formatting reasons.

MAPE MSPE

Male

h FFM SFFM TNH GSY ANH FFM SFFM TNH GSY ANH
1 1.33 1.36 1.33 1.75 1.42 0.48 0.49 0.49 0.84 0.59
2 1.37 1.43 1.37 1.88 1.47 0.51 0.52 0.52 0.92 0.63
3 1.43 1.49 1.44 1.87 1.53 0.54 0.55 0.55 0.86 0.67

Female

h FFM SFFM TNH GSY ANH FFM SFFM TNH GSY ANH
1 1.40 1.44 1.41 1.77 1.52 0.61 0.64 0.68 0.87 0.82
2 1.45 1.51 1.45 1.84 1.56 0.66 0.69 0.68 0.94 0.99
3 1.50 1.56 1.50 1.77 1.66 0.71 0.74 0.74 0.89 1.14

7 Discussion

It is noteworthy that Tavakoli et al. (2021) develops an alternative functional factor model in the form of

Ytp¨q “ rAp¨qrXt ` rεtp¨q, t “ 1, . . . , n, (24)

where rXt “ p rXt1, . . . , rXtr̃qT is a set of latent factor time series and rAp¨q “ t rAjlp¨qupˆr̃ is the unknown

functional factor loading matrix. Both (1) and (24) generate useful factor models for high-dimensional

functional time seriesYtp¨q, but are designed to tackle rather different situations. Note one crucial question

in functional time series modelling is how to characterize the functional and time series structures. Our

factor model (1) with static factor loadings assumes that both structures are inherited from r common

functional time series factors Xtp¨q with reduced dimension from p ˆ 8 to r ˆ 8 before subsequent

analysis. By comparison, factor model (24) treats r̃ common factors in rXt as r̃-dimensional vector time

series, which reduces the dimension from p ˆ 8 to a much lower value r̃, while the infinite-dimensional

functional structure is maintained in the functional factor loading matrix rAp¨q.

We next discuss a possible way to apply our method to estimate model (24). Given an orthonormal

basis tϕip¨qu8
i“1, we expand the functional objects in (24) by Ytjp¨q “

ř8
i“1 ξtjiϕip¨q, rAjlp¨q “

ř8
i“1 ajliϕip¨q,

rεtjp¨q “
ř8

i“1 ϵtjiϕip¨q and hence (24) can be rewritten as

ξtji “

r̃
ÿ

l“1

ajli rXtl ` ϵtji, i “ 1, . . . ,8. (25)

To simplify notation, we assume the same truncated dimension M across j and stack the basis coefficients

tξtjlu1ďjďp,1ďlďL, tajklu1ďjďp,1ďlďL and tϵtjlu1ďjďp,1ďlďL ξtji, ajli and ϵtji for j “ 1, . . . , p and i “ 1, . . . ,M

to pM -dimensional vectors ξt,al and ϵt, respectively. As a result, (25) can be equivalently represented as

the following factor model for pM -dimensional vector time series ξ1, . . . , ξn:

ξt “ ΛrXt ` rϵt, (26)

where the factor loading matrix Λ “ pa1, . . . ,ar̃q P RpMˆr̃ and the noise vector rϵt P RpM is decomposed

as the sum of ϵt and ϵ1
t formed by truncation errors. Then we can integrate our suggested weight matrix

into the estimation of r̃ and CpΛq for the factor model (26). Hence the space spanned by columns of rAp¨q

can be recovered accordingly.
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We finally identify three important directions for future research. The first direction considers the

extension of (1) to other forms of functional factor models. One possible extension admits the following

representation

Ytpuq “ ApuqXtpuq ` εtpuq, u P U ,

which treats both the latent factor time series tXtp¨qunt“1 and the factor loading matrix Ap¨q “ tAjlp¨qupˆr

as functional objects in the sense of the concurrent functional model (Ramsay and Silverman, 2005). On

the other hand, inspired from the functional linear regression with functional response, we can consider

another more generalized functional factor model in the form of

Ytpuq “

ż

U
Apu, vqXtpvqdv ` εtpuq, u P U ,

where Ap¨, ¨q “ tAjlp¨, ¨qupˆr is the operator-valued factor loading matrix with p ˆ r entries of bivariate

functions. It is interesting to develop estimation procedures to fit the above two models. However,

compared to the fittings for models (1) and (24), this would pose more complicated challenges that

require further investigation.

Second, our estimation procedure is developed by assuming that the idiosyncratic component is a white

noise sequence. It is also interesting to estimate the factor model (1) following the framework in Bai and

Ng (2002) and Fan et al. (2013), where the idiosyncratic noise is allowed to exhibit serial correlations. Note

the covariance functionΣ
p0q
yy pu, vq or its integral over U2 can not be used directly in the decomposition since

they are not nonnegative definite. Under the orthogonality of A and the uncorrelatedness between Xtp¨q

and εtp¨q, we can slightly modify our scheme and consider decomposing the nonnegative definite matrix
ş

U
ş

U Σ
p0q
yy pu, vqΣ

p0q
yy pu, vqT dudv as the sum of the leading term A

␣ ş

U
ş

U Σ
p0q
xx pu, vqΣ

p0q
xx pu, vqT dudv

(

AT

and the remaining three terms of smaller orders. By imposing suitable eigenvalue conditions in a similar

spirit to those in Fan et al. (2013), the common factors are asymptotically identifiable and hence the factor

loading space can be recovered by carrying out an eigenanalysis for
ş

U
ş

U
pΣ

p0q

yy pu, vqpΣ
p0q

yy pu, vqT dudv.

Third, our estimation procedure is naturally adaptable to fit the factor model for high-dimensional

scalar time series (Lam and Yao, 2012). We also believe that, with more efforts, such procedure can be

extended to deal with the factor modelling for high-dimensional matrix-valued time series (Wang et al.,

2019) or even tensor-valued time series (Chen, Yang and Zhang, 2022). Despite the integration step being

no longer needed, we can still incorporate the suggested weight matrix to account for the heterogeneous

effect and improve the estimation efficiency.

These topics are beyond the scope of the current paper and will be pursued elsewhere.

Appendix

This appendix contains additional regularity conditions in Appendix A, all technical proofs in Appendix B,

auxiliary lemmas and their proofs in Appendix C and additional empirical results in Appendix D.

A Additional regularity conditions

To study theoretical properties in an ultra-high-dimensional regime, we need to rely on non-asymptotic

error bounds on pΣ
pkq

yy,ij ’s and will use the functional stability measure of tYtp¨qutPZ (Guo and Qiao, 2023).

Before presenting regularity conditions, we first solidify some notation. We denote the p-fold Cartesian
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product of H by Hp “ H ˆ ¨ ¨ ¨ ˆ H. For w “ pw1, . . . , wgqT,g “ pg1, . . . , gpqT P Hp, we define xw,gy “
řp

j“1wjgj . For an integral operator K : Hp Ñ Hp induced from the kernel function K “ pKijqpˆp,

Kpwqpuq “

´

p
ÿ

j“1

xK1jpu, ¨q, wjp¨qy, . . . ,

p
ÿ

j“1

xKpjpu, ¨q, wjp¨qy

¯T

for w P Hp. To simplify notation, we use K to denote both the kernel function and the operator. We then

define Hilbert space valued sub-Gaussian random variable, which corresponds to an infinite-dimensional

analog of the sub-Gaussian random vector in Rp.

Definition 1. Let W p¨q be a random variable in H and ΣW : H Ñ H be the covariance operator of

W p¨q. Then W p¨q is a sub-Gaussian process if there exists a constant α ą 0 such that for all w P H,

Erexptxw,W ´ EpW qyus ď expt2´1α2xw,ΣW pwqyu.

Condition 7. (i) tYtp¨qutPZ is a sequence of multivariate functional linear processes with sub-Gaussian

errors, i.e., Ytp¨q “
ř8

l“0Blpεt´lq for any t P Z, where Bl “ pBl,jkqpˆp with each Bl,jk P H b H,

εt “ pεt1, . . . , εtpqT P Hp and the components in tεtutPZ are independent mean-zero sub-Gaussian processes

satisfying Definition 1; (ii) The coefficient functions satisfy
ř8

l“0 }Bl,ij}S,8 “ Op1q; (iii) The covariance

functions of tεtjpuqu
p
j“1 satisfy maxj

ş

U Covtεtjpuq, εtjpuqudu “ Op1q.

Condition 8. For tYtp¨qutPZ, its spectral density function fy,θ “ p2πq´1
ř

kPZΣ
pkq
yy e´ikθ with the frequency

θ P r´π, πs exists, and its functional stability measure defined in (A.1) is finite,

My “ 2π ¨ esssup
θPr´π,πs,wPHp

0

xw, fy,θpwqy

xw,Σ
p0q
yy pwqy

ă 8, (A.1)

where Hp
0 “

␣

w P H : xw,Σ
p0q
yy pwqy P p0,8q

(

.

The multivariate functional linear process in Condition 7(i) generalizes the multivariate (or functional)

linear process to the functional (or multivariate) setting. Under this setting, the functional stability

measure My in (A.1) can be expressed based on fy,θ and Σ
p0q
yy , both of which have explicit expressions

(Fang et al., 2022). See other discussions about My in Guo and Qiao (2023). Under Conditions 7 and 8,

the rate in (19) can be implied from Lemma 4 in Appendix C. In general, we can relax Conditions 7(ii)

and (iii) by allowing both
ř8

l“0 }Bl,ij}S,8 and maxj
ş

U Covtεtjpuq, εtjpuqudu to grow at very slow rates as

p diverges, then the rate in (19) will depend on these two terms.

B Proofs of main theoretical results

In addition to the notation defined in the main paper, we summarize here more notation to be used

throughout the appendix. For a matrix B “ pBijqpˆq, we denote its matrix ℓ1 norm by }B}1 “

max1ďjďq
řp

i“1 |Bij |. For a matrix of bivariate functions K “ pKijp¨, ¨qqpˆq with each Kij P H b H,

we define the functional version of the matrix ℓ1-norm by }K}S,1 “ max1ďjďq
řp

i“1 }Kij}S .

B.1 Proof of Theorem 1

Recall that

xM “

k0
ÿ

k“1

ĳ

pΣ
pkq

yy pu, vqxWpvqpΣ
pkq

yy pu, vqT dudv,
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|M “

k0
ÿ

k“1

ĳ

Σpkq
yy pu, vqxWpvqΣpkq

yy pu, vqT dudv,

where xWpvq “ Q
␣

QT
pΣ

p0q

yy pv, vqQ
(´1

QT. Noting that xWpvq is scale-invariant with respect to Q, we

assume here that the entries of Q “ pQijqpˆq are independent Np0, p´1q instead of Np0, 1q to ensure that

the entries of QT
pΣ

p0q

yy pv, vqQ are Opp1q instead of Oppp2q. Provided that the maximum lag k0 is fixed,

without loss of generality we only need to consider the case k0 “ 1. We organize our proof in the following

four steps.

Step 1. We will show that QT
pΣ

p0q

yy pv, vqQ is positive definite with high probability uniformly over U ,
i.e., there exists some positive constant C ą 0 such that, with probability tending to one,

inf
vPU

λmin

␣

QT
pΣ

p0q

yy pv, vqQ
(

ą C. (B.1)

Observe that

QT
pΣ

p0q

yy pv, vqQ “ QTΣp0q
yy pv, vqQ ` QT

!

pΣ
p0q

yy pv, vq ´ Σp0q
yy pv, vq

)

Q.

Then we have

ˇ

ˇ

ˇ
λk

!

QT
pΣ

p0q

yy pv, vqQ
)

´ λk

!

QTΣp0q
yy pv, vqQ

)ˇ

ˇ

ˇ
ď

›

›

›
QT

!

pΣ
p0q

yy pv, vq ´ Σp0q
yy pv, vq

)

Q
›

›

›

F
, (B.2)

where λkpBq is the k-th largest eigenvalue of a symmetric matrix B. By the Hanson–Wright inequality

and the union bound of probability, we obtain that there exists some constant c ą 0 such that for any

matrix B P Rpˆp and t ą 0,

P

#

›

›QTBQ ´ EpQTBQq
›

›

F

}B}F
ě tqp´1

+

ď 2q2 expt´cminpt2, tqu.

It follows from the concentration inequality above with B “ pΣ
p0q

yy pv, vq ´ Σ
p0q
yy pv, vq, the independence

between Q and pΣ
p0q

yy pv, vq, the Lipschitz-continuity of Σ
p0q
yy pv, vq and the uniform convergence rate in

Condition 5 that

sup
vPU

›

›

›
QT

!

pΣ
p0q

yy pv, vq ´ Σp0q
yy pv, vq

)

Q
›

›

›

F
ď Op

!

qp´1tlogpqnqu1{2 sup
vPU

}pΣ
p0q

yy pv, vq ´ Σp0q
yy pv, vq}F

)

“ Op

␣

q logpqnqn´1{2
(

.

Combining the above result with (B.2) and the fact that

inf
vPU

λqtQTΣp0q
yy pv, vqQu ě inf

vPU
λqtQTΣp0q

εε pv, vqQu ą c ą 0

under Condition 2 implies that (B.1) holds with high probability.

Step 2. The bounds of r largest eigenvalues of |M (i.e., ν1 ě ¨ ¨ ¨ ě νr) satisfy

νj — p2´2δ, j “ 1, ¨ ¨ ¨ , r, (B.3)
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with probability tending to one.

First, note that

νr ď ν1 ď }|M} ď

ĳ

}Σp1q
yy pu, vq}2}xWpvq}dudv. (B.4)

Applying the fact }Q} — 1 ` oP p1q and (B.1) from Step 1, we have that

sup
vPU

}xWpvq} ď }Q}2
“

inf
vPU

λmintQT
pΣ

p0q

yy pv, vqQu
‰´1

À 1 ` opp1q. (B.5)

It follows from Conditions 3–4, the decomposition (3) and Lemma 3 that

ĳ

›

›Σp1q
yy pu, vq

›

›

2
dudv ď

ĳ

´

›

›AΣp1q
xx pu, vqAT

›

› `
›

›AΣp1q
xε pu, vq

›

›

¯2
dudv

ď 2
!

›

›A
›

›

4
ĳ

›

›Σp1q
xx pu, vq

›

›

2
dudv `

›

›A
›

›

2
ĳ

›

›Σp1q
xε pu, vq

›

›

2
dudv

)

“ O
!

p2´2δ ` p1´δ

ĳ

›

›Σp1q
xε pu, vq

›

›

2
dudv

)

, (B.6)

where, by Condition 4,

ĳ

›

›Σp1q
xε pu, vq

›

›

2
dudv ď

›

›Σp1q
xε

›

›

2

S,F

“ O
!

max
1ďiďr

p
ÿ

j“1

›

›Σ
p1q

xϵ,ij

›

›

2

S

)

ď O
!

›

›Σp1q
xε

›

›

2

S,8

)

“ opp1´δq.
(B.7)

Combining (B.4)–(B.7) yields that νr À p2´2δt1 ` opp1qu.

We next give a lower bound on νr. By Conditions 1, 3, Lemma 3 of Wang and Xi (1997) and (B.1)

from Step 1, we first obtain that

I1 “ λr

"
ĳ

Σp1q
xx pu, vqAT

xWpvqAΣp1q
xx pu, vqT dudv

*

ě λr

"
ĳ

Σp1q
xx pu, vqΣp1q

xx pu, vqT dudv

*

inf
u,vPU

λr

!

AT
xWpvqA

)

Á λrpATQQTAq ¨ inf
vPU

λq´r`1

´

␣

QT
pΣ

p0q

yy pv, vqQ
(´1

¯

Á p1´δt1 ` opp1qu.

It follows from (B.5), (B.7), Lemma 3 and Condition 3 that

I2 “

›

›

›

›

ĳ

Σp1q
xε pu, vqxWpvqΣp1q

xx pu, vqAT dudv

›

›

›

›

ď

"
ĳ

}Σp1q
xε pu, vqq}2 dudv

ĳ

}Σp1q
xx pu, vq}2 dudv

*1{2

sup
vPU

}xWpvq}}A} “ oppp1´δq.
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By Weyl’s inequality, the decomposition (3) and Condition 3, νr can be bounded from below by

νr “ λr

!

ĳ

Σp1q
yy pu, vqxWpvqΣp1q

yy pu, vqT dudv
)

ě λrpATAq ¨ λr

”

ĳ

␣

Σp1q
xx pu, vqAT ` Σp1q

xε pu, vq
(

xWpvq
␣

Σp1q
xx pu, vqAT ` Σp1q

xε pu, vq
(T

dudv
ı

ě }A}2min ¨ λr

!

ĳ

Σp1q
xx pu, vqAT

xWpvqAΣp1q
xx pu, vqT dudv

)

` 2}A}2min ¨ λr

!

ĳ

Σp1q
xε pu, vqxWpvqΣp1q

xx pu, vqAT dudv
)

ě }A}2min ¨ pI1 ´ 2I2q Á p2´2δt1 ` opp1qu.

Hence we obtain that νr — p2´2δ with high probability.

Step 3. We will show that

}xM ´ |M} “ Oppp2´δn´1{2q. (B.8)

Observe that
pΣ

p1q

yy pu, vqxWpvqpΣ
p1q

yy pu, vqT ´ Σp1q
yy pu, vqxWpvqΣp1q

yy pu, vqT

“
␣

pΣ
p1q

yy pu, vq ´ Σp1q
yy pu, vq

(

xWpvq
␣

pΣ
p1q

yy pu, vq ´ Σp1q
yy pu, vq

(T

`
␣

pΣ
p1q

yy pu, vq ´ Σp1q
yy pu, vq

(

xWpvqΣp1q
yy pu, vqT

` Σp1q
yy pu, vqxWpvq

␣

pΣ
p1q

yy pu, vq ´ Σp1q
yy pu, vq

(T
.

By }Q} — 1 ` opp1q, Condition 5 and Markov’s inequality, we have that

ĳ

›

›

›

!

pΣ
p1q

yy pu, vq ´ Σp1q
yy pu, vq

)

Q
›

›

›

2

dudv ď

p
ÿ

i“1

p
ÿ

j“1

›

›

›

pΣ
p1q

yy,ij ´ Σ
p1q

yy,ij

›

›

›

2

S
}Q}2 “ Oppp2n´1q.

Furthermore, (B.6) and (B.7) imply that

ĳ

›

›

›
Σp1q

yy pu, vqQ
›

›

›

2
dudv ď

ĳ

›

›

›
Σp1q

yy pu, vq

›

›

›

2
dudv }Q}2 “ p2´2δt1 ` opp1qu.

It follows from the above decomposition, two upper bound results, Cauchy–Schwartz inequality and

supvPU λmax

`

tQT
pΣ

p0q

yy pv, vqQu´1
˘

“ Opp1q from Step 1 that (B.8) holds.

Step 4. Combining (B.3) and (B.8) from Steps 2 and 3 with Lemma 3 and the proof of Theorem 1

in Lam et al. (2011), we have that there exists rK and an orthogonal matrix U such that pK “ rKU and

} rK ´ K} “ Opppδn´1{2q.

It then follows from the orthogonality of K that

D2
´

CpKq, Cp pKq

¯

“ r´1tr
´

I ´ KKT
pK pKT

¯

“ r´1trpKTpI ´ pK pKTqKq

“ r´1
!

trpKTpI ´ pK pKTqKq ´ trpKTpI ´ KKTqKq

)

“ r´1tr
´

KTpKKT ´ pK pKTqK
¯

ď

›

›

›
KTpKKT ´ rK rKTqK

›

›

›
,
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where the last term is further bounded by

} ´ KTpK ´ rKqpK ´ rKqTK ` pK ´ rKqTpK ´ rKq} ď 2} rK ´ K}2 “ Oppp2δn´1q.

The result in Theorem 1 follows immediately, which completes the proof.

B.2 Proof of Theorem 2

Denote pνj ,γjq and pν̂j , pγjq by the eigenpairs of |M and xM, respectively. For simplicity we assume

γT
j pγj ě 0 here. First note that for j “ 1, 2, . . . , r,

ν̂j ´ νj “ pγT

j
xMpγj ´ γT

j
|Mγj “ I1 ` I2 ` I3 ` I4 ` I5,

where I1 “ ppγj ´ γjq
TpxM ´ |Mqpγj , I2 “ ppγj ´ γjq

T
|Mppγj ´ γjq, I3 “ ppγj ´ γjq

T
|Mγj , I4 “ γT

j pxM ´

|Mqpγj , I5 “ γT
j
|Mppγj ´ γjq.

Since }pγj ´γj} ď } rK´K} “ Opppδn´1{2q, }xM´|M} “ Oppp2´δn´1{2q and }|M} “ Oppp2´2δq, we have

that

|I1| ` |I2| “ Oppp2n´1q, |I3| ` |I4| ` |I5| “ Oppp2´δn´1{2q,

which means that |ν̂j ´ νj | “ Oppp2´δn´1{2q under pδn´1{2 “ op1q.

To prove the result for j “ r ` 1, . . . , p, we introduce

ĎM “

k0
ÿ

k“1

ĳ

pΣ
pkq

yy pu, vqxWpvqΣpkq
yy pu, vqT dudv.

For each j “ r ` 1, . . . , p, consider the following decomposition

ν̂j “ pγT

j
xMpγj “ I6 ` I7 ` I8,

where I6 “ pγT

j pxM ´ ĎM ´ ĎMT ` |Mqpγj , I7 “ 2pγT

j pĎM ´ |Mqppγj ´ γjq, I8 “ ppγj ´ γjq
T
|Mppγj ´ γjq. Note

that, under Condition 5,

|I6| ď }xM ´ ĎM ´ ĎMT ` |M} À

k0
ÿ

k“1

}pΣ
pkq

yy ´ Σpkq
yy }2S “ Oppp2n´1q.

By the similar arguments to prove Theorem 1, we can show that }ĎM´|M} “ Oppp2´δn´1{2q and }pγj´γj} “

Opppδn´1{2q, which together imply that |I7| ` |I8| “ Oppp2n´1q. Combining the above results yields that

ν̂j “ Oppp2n´1q for j “ r ` 1, . . . , p, which completes the proof of the first part.

We next turn to prove the second part. It follows from νj — p2´2δ for j “ 1, . . . , r in (B.3) and

pδn´1{2 “ op1q that

|ν̂j ´ νj |

νj
“ Oppp2´δn´1{2p2δ´2q “ Opppδn´1{2q “ opp1q, j “ 1, . . . , r.
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As a result, for j “ 1, . . . , r ´ 1,

ν̂j`1

ν̂j
“

νj`1

νj

1 ` ν´1
j`1pν̂j`1 ´ νj`1q

1 ` ν´1
j pν̂j ´ νjq

“
νj`1

νj

1 ` opp1q

1 ` opp1q
— 1,

ν̂r`1

ν̂r
“

1

νr

ν̂r`1

1 ` ν´1
r pν̂r ´ νrq

“ Oppp2δ´2p2n´1q “ Oppp2δn´1q.

We complete the proof of the second part.

B.3 Proof of Lemma 1

Denote by A “ pAijqpˆr. By the decomposition (3) and the fact px ` yqτ ď xτ ` yτ for x, y ě 0 and

τ P r0, 1q, we have that

›

›Σ
pkq

yy,ij

›

›

τ

S ď

›

›

›

ÿ

1ďm,m1ďr

AimΣ
pkq

xx,mm1Ajm1

›

›

›

τ

S
`

›

›

›

r
ÿ

m“1

AimΣ
pkq

xϵ,mj

›

›

›

τ

S

ď
ÿ

1ďm,m1ďr

›

›AimΣ
pkq

xx,mm1Ajm1

›

›

τ

S `

r
ÿ

m“1

›

›AimΣ
pkq

xϵ,mj

›

›

τ

S

“
ÿ

1ďm,m1ďr

ˇ

ˇAimAjm1

ˇ

ˇ

τ ›
›Σ

pkq

xx,mm1

›

›

τ

S `

r
ÿ

m“1

ˇ

ˇAim

ˇ

ˇ

τ ›
›Σ

pkq

xϵ,mj

›

›

τ

S ,

where, under Conditions 1 and 2, it holds that

›

›Σ
pkq

xx,mm1

›

›

2

S “

ĳ

rEtXpt`kqmpuqXt,m1pvqus2 dudv

ďEt}Xpt`kqm}2uEp}Xtm1}2q “ Op1q,

max
1ďjďp

›

›Σ
pkq

xϵ,mj

›

›

2

S ďEt}Xpt`kqm}2u max
1ďjďp

Ep}ϵtj}
2q “ Op1q.

(B.9)

For each j, summing over i and applying (B.9) under Condition 6 with fixed L and r, we obtain that

max
1ďjďp

p
ÿ

i“1

›

›Σ
pkq

yy,ij

›

›

τ

S ď max
1ďjďp

ÿ

1ďm,m1ďr

p
ÿ

i“1

!

|AimAjm1 |τ }Σ
pkq

xx,mm1}
τ
S

)

` max
1ďjďp

r
ÿ

m“1

p
ÿ

i“1

!

|Aim|τ }Σ
pkq

xϵ,mj}
τ
S

)

ď c1ppq

!

r2 ¨ max
1ďjďp,

1ďm,m1ďr

|Ajm1 |τ }Σ
pkq

xx,mm1}
τ
S ` r ¨ max

1ďjďp,
1ďmďr

}Σ
pkq

xϵ,mj}
τ
S

)

À c1ppq.

By the similar arguments above and Condition 41,

max
1ďiďp

p
ÿ

j“1

›

›Σ
pkq

yy,ij

›

›

τ

S ď max
1ďiďp

ÿ

1ďm,m1ďr

p
ÿ

j“1

!

|AimAjm1 |τ }Σ
pkq

xx,mm1}
τ
S

)

` max
1ďiďp

r
ÿ

m“1

p
ÿ

j“1

!

|Aim|τ }Σ
pkq

xϵ,mj}
τ
S

)

ď c1ppqr2 ¨ max
1ďiďp,

1ďm,m1ďr

|Aim|τ }Σ
pkq

xx,mm1}
τ
S ` c2ppqr ¨ max

1ďiďp,
1ďmďr

|Aim|τ

À c1ppq ` c2ppq.
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Hence we complete the proof of this lemma.

B.4 Proof of Theorem 3

By Theorem 2, |ν̂j ´ νj | “ Oppβnq for j “ 1, . . . , r and |ν̂j | “ Oppβ̃nq for j “ r ` 1, . . . , p, where

βn “ p2´δn´1{2 and β̃n “ p2n´1. Under the event Ωn “ tνj — p2´2δ, j “ 1, . . . , ru, it follows from (B.3)

that PpΩnq Ñ 1. We next verify the following three conditions (i), (ii) and (iii).

(i). When ϑnp
´2`2δ Ñ 0, ϑn`β̃n

ν2r {ν1
—

ϑn`p2n´1

p2´2δ Ñ 0.

(ii). βn

νr
—

p2´δn´1{2

p2´2δ “ pδn´1{2 Ñ 0.

(iii). ϑnνr
β̃2
n

—
ϑnp2´2δ

pp2n´1q2
“ ϑnn

2p´2´2δ Ñ 8.

Under (i), (ii) and (iii), we apply Proposition 1 of Han et al. (2022) and obtain Ppr̂ “ r|Ωnq Ñ 1 with r̂

defined in (17). Noting that Ppr̂ ‰ rq ď Ppr̂ ‰ r|Ωnq `PpΩC
n q Ñ 0, we complete the proof of this theorem.

B.5 Proof of Theorem 4

We organize our proof in the following three steps.

Step 1. With the choice of ηk — Myplog p{nq1{2, we will show that

›

›TηktpΣ
pkq

yy u ´ Σpkq
yy

›

›

S,1 “ Op

"

c1ppqM1´τ
y

´ log p

n

¯
1´τ
2

*

,

›

›TηktpΣ
pkq

yy u ´ Σpkq
yy

›

›

S,8 “ Op

„

␣

c1ppq ` c2ppq
(

M1´τ
y

´ log p

n

¯
1´τ
2

ȷ

.

(B.10)

By the definition of functional matrix ℓ1 norm } ¨ }S,1 and the triangle inequality,

›

›TηktpΣ
pkq

yy u ´ Σpkq
yy

›

›

S,1 ď
›

›TηktΣpkq
yy u ´ Σpkq

yy

›

›

S,1 `
›

›TηktpΣ
pkq

yy u ´ TηktΣpkq
yy u

›

›

S,1.

For the first term, it follows from Lemma 1 that

›

›TηktΣpkq
yy u ´ Σpkq

yy

›

›

S,1 “ max
1ďjďp

p
ÿ

i“1

}Σ
pkq

yy,ij}SI
␣

}Σ
pkq

yy,ij}S ă ηk
(

ă η1´τ
k max

1ďjďp

p
ÿ

i“1

}Σ
pkq

yy,ij}
τ
S À η1´τ

k c1ppq.

(B.11)

For the second term, observe that

›

›TηktpΣ
pkq

yy u ´ TηktΣpkq
yy u

›

›

S,1 “ max
1ďjďp

p
ÿ

i“1

›

›pΣ
pkq

yy,ijIt}pΣ
pkq

yy,ij}S ě ηku ´ Σ
pkq

yy,ijIt}Σ
pkq

yy,ij}S ě ηku
›

›

S

ď max
1ďjďp

p
ÿ

i“1

›

›pΣ
pkq

yy,ij ´ Σ
pkq

yy,ij

›

›

SI
␣

}pΣ
pkq

yy,ij}S ě ηk, }Σ
pkq

yy,ij}S ě ηk
(

` max
1ďjďp

p
ÿ

i“1

›

›pΣ
pkq

yy,ij}SI
␣

}pΣ
pkq

yy,ij

›

›

S ě ηk, }Σ
pkq

yy,ij}S ă ηk
(

` max
1ďjďp

p
ÿ

i“1

›

›Σ
pkq

yy,ij

›

›

SI
␣

}pΣ
pkq

yy,ij}S ă ηk, }Σ
pkq

yy,ij}S ě ηk
(
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:“ I1 ` I2 ` I3.

Denote Z “ max
1ďi,jďp

›

›pΣ
pkq

yy,ij ´ Σ
pkq

yy,ij

›

›

S . We first bound I1. By Lemma 1,

I1 ď max
1ďi,jďp

›

›pΣ
pkq

yy,ij ´ Σ
pkq

yy,ij

›

›

S ¨ max
1ďjďp

p
ÿ

i“1

I
␣

}pΣ
pkq

yy,ij}S ě ηk, }Σ
pkq

yy,ij}S ě ηk
(

ď Z ¨ max
1ďjďp

p
ÿ

i“1

I
␣

}Σ
pkq

yy,ij

›

›

S ě ηku À Zη´τ
k c1ppq.

We next bound I2. By the triangle inequality and Lemma 1,

I2 ď max
1ďjďp

p
ÿ

i“1

›

›pΣ
pkq

yy,ij ´ Σ
pkq

yy,ij

›

›

SI
␣

}pΣ
pkq

yy,ij}S ě ηk, }Σ
pkq

yy,ij}S ă ηk
(

` max
1ďjďp

p
ÿ

i“1

›

›Σ
pkq

yy,ij

›

›

SI
␣

}Σ
pkq

yy,ij}S ă ηk
(

À max
1ďjďp

p
ÿ

i“1

›

›pΣ
pkq

yy,ij ´ Σ
pkq

yy,ij

›

›

SI
␣

}pΣ
pkq

yy,ij}S ě ηk, }Σ
pkq

yy,ij}S ă ηk
(

` η1´τ
k c1ppq

:“ I4 ` η1´τ
k c1ppq.

We take certain θ P p0, 1q. Let Nptq “ max
1ďjďp

řp
i“1 I

␣

}pΣ
pkq

yy,ij ´ Σ
pkq

yy,ij}S ě t
(

. By the triangle inequality

and Lemma 1,

I4 ď max
1ďjďp

p
ÿ

i“1

›

›pΣ
pkq

yy,ij ´ Σ
pkq

yy,ij

›

›

SI
␣

}pΣ
pkq

yy,ij}S ě ηk, }Σ
pkq

yy,ij}S ď θηk
(

` max
1ďjďp

p
ÿ

i“1

›

›pΣ
pkq

yy,ij ´ Σ
pkq

yy,ij

›

›

SI
␣

}pΣ
pkq

yy,ij}S ě ηk, θηk ă }Σ
pkq

yy,ij}S ă ηk
(

ď Z ¨ max
1ďjďp

p
ÿ

i“1

I
␣

}Σ̂
pkq

yy,ij ´ Σ
pkq

yy,ij}S ě p1 ´ θqηk
(

` Z ¨ max
1ďjďp

p
ÿ

i“1

I
␣

}Σ
pkq

yy,ij}S ą θηk
(

À Z ¨ N
␣

p1 ´ θqηk
(

` Zpθηkq´τ c1ppq.

The above bounds imply that

I2 À Z ¨ N
␣

p1 ´ θqηk
(

` η1´τ
k c1ppq ` Zpθηkq´τ c1ppq.
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We finally bound I3. By the triangle inequality and Lemma 1,

I3 ď max
1ďjďp

p
ÿ

i“1

›

›pΣ
pkq

yy,ij ´ Σ
pkq

yy,ij

›

›

SI
␣

}pΣ
pkq

yy,ij}S ă ηk, }Σ
pkq

yy,ij}S ě ηk
(

` max
1ďjďp

p
ÿ

i“1

›

›pΣ
pkq

yy,ij

›

›

SI
␣

}pΣ
pkq

yy,ij

›

›

S ă ηk, }Σ
pkq

yy,ij}S ě ηku

ď Z ¨ max
1ďjďp

p
ÿ

i“1

I
␣

}pΣ
pkq

yy,ij}S ě ηk
(

` ηk max
1ďjďp

p
ÿ

i“1

I
␣

}Σ
pkq

yy,ij}S ě ηk
(

À Zη´τ
k c1ppq ` η1´τ

k c1ppq.

Combining the bounds for I1, I2 and I3 yields that

›

›TηntpΣ
pkq

yy u ´ TηktΣpkq
yy u

›

›

S,1 ÀZη´τ
k c1ppq ` η1´τ

k c1ppq

` Zpθηkq´τ c1ppq ` Z ¨ N
␣

p1 ´ θqηk
(

.
(B.12)

By Lemma 4 and the choice of ηk “ c3Myplog p{nq1{2 “ op1q for sufficiently large c3,

P
´

N
␣

p1 ´ θqηk
(

ą 0
¯

“ P
´

max
1ďi,jďp

}pΣ
pkq

yy,ij ´ Σ
pkq

yy,ij}S ě p1 ´ θqηk

¯

ď c1p
2 expt´c2p1 ´ θq2c23 log pu Ñ 0.

Hence N
␣

p1 ´ θqηk
(

“ opp1q. Applying Lemma 4 again, we obtain that Z “ Oppηkq, which together with

(B.11) and (B.12) implies that

›

›TηntpΣ
pkq

yy u ´ Σpkq
yy

›

›

S,1 “ Op

"

c1ppqM1´τ
y

´ log p

n

¯
1´τ
2

*

.

By the similar procedure, the second result of (B.10) can be derived and the proof is omitted.

Step 2. We will show that

›

›ĂM ´ |M
›

› “ Op

„

c1ppq
␣

c1ppq ` c2ppq
(

M1´τ
y

´ log p

n

¯
1´τ
2

ȷ

. (B.13)

Note that

›

›ĂM ´ |M
›

› “Op

˜

›

›

›

ĳ

“

TηktpΣ
pkq

yy upu, vq ´ Σpkq
yy pu, vq

ı

xWpvq
“

TηktpΣ
pkq

yy upu, vq ´ Σpkq
yy pu, vq

ıT

dudv
›

›

›

`

›

›

›

ĳ

“

TηktpΣ
pkq

yy upu, vq ´ Σpkq
yy pu, vq

‰

xWpvqΣpkq
yy pu, vqT dudv

›

›

›

¸

.

By Lemma 5 and (B.5), (B.10), we obtain that

›

›

›

ĳ

“

TηktpΣ
pkq

yy upu, vq ´ Σpkq
yy pu, vq

‰

xWpvq
“

TηktpΣ
pkq

yy upu, vq ´ Σpkq
yy pu, vq

‰T
dudv

›

›

›

À
›

›TηktpΣ
pkq

yy u ´ Σpkq
yy

›

›

S,1
›

›TηktpΣ
pkq

yy u ´ Σpkq
yy

›

›

S,8
␣

1 ` opp1q
(
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“Op

„

c1ppq
␣

c1ppq ` c2ppq
(

M2p1´τq
y

´ log p

n

¯1´τ
ȷ

,

›

›

›

ĳ

“

TηktpΣ
pkq

yy upu, vq ´ Σpkq
yy pu, vq

‰

xWpvqΣpkq
yy pu, vqT dudv

›

›

›

À

”

}TηntpΣ
pkq

yy u ´ Σpkq
yy }S,1}TηntpΣ

pkq

yy u ´ Σpkq
yy }S,8

ı1{2”

}Σpkq
yy }S,1}Σpkq

yy }S,8

ı1{2
␣

1 ` opp1q
(

.

For the second term above, it follows that

}Σpkq
yy }S,1 “ max

1ďjďp

p
ÿ

i“1

}Σ
pkq

yy,ij}S ď max
1ďjďp

p
ÿ

i“1

}Σ
pkq

yy,ij}
τ
S}Σ

pkq

yy,ij}
1´τ
S À c1ppq,

where τ P p0, 1q and }Σ
pkq

yy,ij}S is uniformly bounded under Condition 7. Following the similar procedure,

we can show that }Σ
pkq
yy }S,8 À c1ppq ` c2ppq. For the truly sparse case with τ “ 0, it follows from the

derivation in Section B.3 under Conditions 1, 2, 6 with fixed r and L that

max
1ďjďp

p
ÿ

i“1

}Σ
pkq

yy,ij}S ď max
1ďjďp

ÿ

1ďm,m1ďr

p
ÿ

i“1

|AimAjm1 |}Σ
pkq

xx,mm1}S ` max
1ďjďp

r
ÿ

m“1

p
ÿ

i“1

|Aim|}Σ
pkq

xϵ,mj}S

À r2Lc1ppq ` rc1ppq — c1ppq.

Similarly, under Condition 41, we can show that

max
1ďiďp

p
ÿ

j“1

}Σ
pkq

yy,ij}S À r2Lc1ppq ` rLc2ppq — c1ppq ` c2ppq.

The above results together with (B.10) from Step 1 implies (B.13).

Step 3. Denote ϵ̂ “ D
`

CpKq, Cp pKq
˘

. By the fact that ϵ̂2 “ p2rq´1}KKT ´ pK pKT}2F and Corollary 4.1

in Vu and Lei (2013), we obtain that

2rνr ϵ̂
2 ď |xĂM ´ |M, pK pKT ´ KKTy|

ď

ˇ

ˇ

ˇ

ˇ

ˇ

A

ĂM ´ |M,
pK pKT ´ KKT

} pK pKT ´ KKT}F

E

ˇ

ˇ

ˇ

ˇ

ˇ

¨
?
2rϵ̂,

which further implies that

νr ϵ̂ ď p2rq´1{2
ˇ

ˇ

ˇ

@

ĂM ´ |M, p∆
D

ˇ

ˇ

ˇ
,

where p∆ “
pK pKT´KKT

} pK pKT´KKT}F
and } p∆}F “ 1.

Note that p∆ is a matrix with rank at most 2r and the associated singular values σ̂1 ě σ̂2 ě ¨ ¨ ¨ ě

σ̂2r ě 0. Then by the von-Neumann’s trace inequality, we obtain that

νr ϵ̂ ď p2rq´1{2
›

›ĂM ´ |M
›

›

2r
ÿ

i“1

σ̂i

ď p2rq´1{2
›

›ĂM ´ |M
›

›

g

f

f

e2r
2r
ÿ

i“1

σ̂2
i “

›

›ĂM ´ |M
›

›} p∆}F “
›

›ĂM ´ |M
›

›.
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By (B.13) from Step 2, we complete the proof of Theorem 4.

C Auxiliary lemmas

In this section, we present some auxiliary lemmas that are used in the proofs of theoretical results in

Sections 3 and 4. The first lemma is a direct corollary of Hahn-Banach theorem.

Lemma 2. For a function f : D Ñ B, where D P Rp is compact set and B is Banach space with norm

} ¨ }, then }
ş

D fpxqdx} ď
ş

D }fpxq}dx.

The second lemma specifies the order of Σ
pkq
xx pu, vq.

Lemma 3. Suppose that Condition 1 holds, then for k “ 1, . . . , k0,
ť

}Σ
pkq
xx pu, vq}2 dudv “ Op1q and

}
ť

Σ
pkq
xx pu, vq dudv} “ Op1q.

Proof of Lemma 3. By Cauchy-Schwartz inequality, Condition 1 and Fubini Theorem,

ĳ

}Σpkq
xx pu, vq}2 dudv ď

ĳ

}EtXt`kpuqXtpvqTu}2F dudv

“

r
ÿ

i“1

r
ÿ

j“1

ĳ

“

EtXpt`kqipuqXtjpvqu
‰2

dudv

ď

!

r
ÿ

i“1

E
`

}Xpt`kqi}
2
˘

)!

r
ÿ

j“1

E
`

}Xtj}
2
˘

)

“ Op1q.

On the other hand, by Lemma 2, we have that

›

›

›

›

ĳ

Σpkq
xx pu, vq dudv

›

›

›

›

2

ď

´

ĳ

›

›Σpkq
xx pu, vq

›

›dudv
¯2

ď VolpU2q

ĳ

›

›Σpkq
xx pu, vq

›

›

2
dudv “ Op1q,

where Volp¨q represents the volume.

The third lemma provides the non-asymptotic error bound on pΣ
pkq

yy,ijpu, vq.

Lemma 4. Suppose that Conditions 7 and 8 hold. Then there exists some positive constants c1 and c2

such that for k “ 1, . . . , k0 and t ą 0,

P
ˆ

max
1ďi,jďp

›

›pΣ
pkq

yy,ij ´ Σ
pkq

yy,ij

›

›

S ą Myt

˙

ď c1p
2 exp

␣

´ c2nminpt, t2q
(

,

If n ě ρ2 log p with ρ ą
?
2c

´1{2
2 , then

max
1ďi,jďp

›

›pΣ
pkq

yy,ij ´ Σ
pkq

yy,ij

›

›

S ď ρMy

c

log p

n

holds with probability greater than 1 ´ c1p
2´c2ρ2.

Proof of Lemma 4. This lemma follows directly from Guo and Qiao (2023); Fang et al. (2022) and the

choice of t “ ρplog p{nq1{2 ď 1, and hence the proof is omitted here.
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The lemma below generalizes the following inequality between matrix norms

}E}2 ď }E}8}E}1 for any E P Rpˆp (C.1)

to the functional domain and is used in the proof of Theorem 4.

Lemma 5. For Spu, vq “ tSijpu, vqupˆp and Tpu, vq “ tTijpu, vqupˆp with each Sij and Tij P H b H, it

holds that
›

›

›

ĳ

Spu, vqTTpu, vqdudv
›

›

›
ď

´

}S}S,8}S}S,1

¯1{2´

}T}S,8}T}S,1

¯1{2
.

Proof of Lemma 5. Notice that

›

›

›

ĳ

Spu, vqTpu, vqT dudv
›

›

›

1
“ max

1ďjďp

p
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ĳ p
ÿ

k“1

Sikpu, vqTjkpu, vq dudv

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
1ďjďp

p
ÿ

i“1

p
ÿ

k“1

}Sik}S}Tjk}S

ď

!

max
1ďjďp

p
ÿ

k“1

}Tjk}S

)!

max
1ďkďp

p
ÿ

i“1

}Sik}S

)

“ }S}S,1}T}S,8.

(C.2)

By the similar arguments, we obtain that

›

›

›

ĳ

Spu, vqTpu, vqT dudv
›

›

›

8
ď }S}S,8}T}S,1. (C.3)

Lemma 5 follows immediately from (C.2), (C.3) and (C.1) with the choice of E “
ť

Spu, vqTpu, vqT dudv.

D Additional empirical results

Figure D.1 provides spatial heatmaps of varimax-rotated loading matrix and sparse loading matrices with
different sparsity levels for Japanese males.

References

Ahn, S. C. and Horenstein, A. R. (2013). Eigenvalue ratio test for the number of factors, Econometrica 81: 1203–
1227.
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Hörmann, S., Kidzinski, L. and Hallin, M. (2015). Dynamic functional principal components, Journal of the Royal
Statistical Society: Series B 77: 319–348.
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