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Abstract

Many economic and scientific problems involve the analysis of high-dimensional functional time
series, where the number of functional variables p diverges as the number of serially dependent ob-
servations n increases. In this paper, we present a novel functional factor model for high-dimensional
functional time series that maintains and makes use of the functional and dynamic structure to achieve
great dimension reduction and find the latent factor structure. To estimate the number of functional
factors and the factor loadings, we propose a fully functional estimation procedure based on an eige-
nanalysis for a nonnegative definite matrix. Our proposal involves a weight matrix to improve the
estimation efficiency and tackle the issue of heterogeneity, the rationality of which is illustrated by
formulating the estimation from a novel regression perspective. Asymptotic properties of the proposed
method are studied when p diverges at some polynomial rate as n increases. To provide a parsimonious
model and enhance interpretability for near-zero factor loadings, we impose sparsity assumptions on the
factor loading space and then develop a regularized estimation procedure with theoretical guarantees
when p grows exponentially fast relative to n. Finally, we demonstrate that our proposed estimators
significantly outperform the competing methods through both simulations and applications to a U.K.
temperature dataset and a Japanese mortality dataset.
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1 Introduction

Functional time series, which refers to a sequential collection of curves observed over time exhibiting serial
dependence, has recently received a great deal of attention. Despite progress being made in this field,
existing literature has focused on the estimation based on a single or fixed number of functional time
series, see, e.g., Bosq (2000); Hormann and Kokoszka (2010); Bathia et al. (2010); Panaretos and Tavakoli
(2013); Hormann et al. (2015); Aue et al. (2015); Li et al. (2020); Chen, Guo and Qiao (2022) and among
many others.

With the rapid development in technology, datasets containing a large collection of functional time
series are becoming increasingly available in various applications. Examples include cumulative intraday
return trajectories (Horvath et al., 2014) and functional volatility processes (Miiller et al., 2011) for
hundreds of stocks, annual temperature curves collected at a number of stations, daily energy consumption
curves for thousands of households, age-specific mortality rates in different prefectures (Gao et al., 2019),
to list a few. Such data, which are referred to as high-dimensional functional time series, take the form of
Yi() = {Yu(),....Yp()}" (t=1,...,n) defined on a compact interval I, where the number of random
functions p is comparable to, or even larger than the number of serially dependent observations n. Under
such scenario, not only p is large, but each Y3;(-) is a functional object with serial dependence across
observations, posing extra challenges. When jointly modelling the entire curve dynamics, it is of great
interest and importance to explore the latent common component from a dimension-reduction viewpoint,
while preserving the functional and time series structure. This motivates us to develop a functional factor
model based on Y1(-),...,Y,(-).

In this paper, we deal with the factor modelling for high-dimensional functional time series, in which
each functional datum Y(-) arises as the sum of two unobservable components, one common Z(-) and
one idiosyncratic €;(-). The co-movement of p functional time series is assumed to be driven by a small
number of functional factors and their inherited dynamic structures in Z(-). Specifically, our proposed

factor model admits the representation:
Yt() = Zt() + Et(') = A'Xt() + Et(')? t= ]-7 sy, (]-)

where X;(+) = {Xu1(+),..., X (-)}T is a set of latent functional factor time series with (unknown) number
of functional factors r» < p, A = (A;j)px, is the factor loading matrix and the idiosyncratic component
g¢(+) is a sequence of white noise process.

For multivariate scalar time series {Y;}, the factor model (1) degenerates to the classical dynamic factor
model Y; = AX;+ &, where two different types of model assumptions are considered in econometrics and
statistics literature. One type of models assumes that each common factor has non-trivial contribution to
{Y} while the idiosyncratic noise {e;} is allowed to have weak cross-correlations and serial correlations.
An incomplete list of the relevant references includes Chamberlain and Rothschild (1983); Forni et al.
(2000); Bai and Ng (2002); Stock and Watson (2012); Fan et al. (2013, 2019). However, the rigorous
definition of the common and idiosyncratic components in those factor models can only be established
asymptotically when the dimension of Y; tends to infinity. Another type of models assumes that the
common factors accommodate all dynamics of {Y;}, thus making the idiosyncratic component white

noise with no serial correlations but allowing substantial contemporary cross-correlation among it; see



Pena and Box (1987); Pan and Yao (2008); Lam et al. (2011); Lam and Yao (2012) and extensions to
matrix-valued time series (Wang et al., 2019; Chen et al., 2020) and tensor-valued time series (Chen, Yang
and Zhang, 2022). For functional time series, the factor modelling remains less touched in the literature.
Hays et al. (2012) and Kokoszka et al. (2015) considered functional dynamic factor models for univariate
functional time series. Gao et al. (2019) adopted factor modelling techniques to predict high-dimensional
functional time series by fitting a factor model to estimated scores obtained via eigenanalysis of the long-
run covariance function. Compared to our model setup (1), an unpublished manuscript of Tavakoli et al.
(2021) provides another formulation of the factor model to tackle a rather different situation with scalar
factors and functional factor loadings. Their methodology follows the framework in Bai and Ng (2002)
and substantially differs from our estimation procedure. See further discussion in Section 7.

Our paper is along the line of Lam and Yao (2012) in the model development. The adopted white
noise assumption is not the most ideal for the purpose to extract those asymptotically identifiable factors,
however, since the white noise exhibits no serial correlations, the decomposition in (1) is unique, thus
largely simplifying the tasks of model identification and inference. Moreover, unlike Bai and Ng (2002),
we do not place any assumption on the covariance structure of the idiosyncratic noise. We propose to
estimate both the number of functional factors and the factor loadings in terms of an eigenanalysis for a
nonnegative definite matrix, which is the double integral and sum of weighted quadratic forms in auto-
covariance functions of observed curves from different time lags. In practical applications, it is common
that many estimated factor loadings are close to zero especially when p is large in relation to n, This
inspires us to add certain sparsity constraints on the factor loading space defined in terms of the factor
loading matrix A. Since functional sparsity patterns in autocovariance functions of Y(-) inherits from
the imposed sparsity structures in A, we first propose Hilbert—Schmidt-norm based functional threshold-
ing of entries of the sample auotocovariance functions, the consistencies of which are guaranteed under
log p/n — 0. Furthermore, to recover sparse factor loading space and produce a parsimonious model with
interpretable factors, we perform sparse principal component analysis (Vu and Lei, 2013) rather than
standard eigenanalysis for our formed nonnegative definite matrix.

This paper makes useful contributions at multiple fronts. On the method side, our proposal has four
main advantages. First, it involves a weight matrix to improve the estimation efficiency and tackle the
issue of heterogeneity. We illustrate the rationality of its presence by formulating the estimation procedure
based on a novel regression viewpoint. Our empirical results also demonstrate the uniform superiority
of our method compared to the unweighted competitors. Furthermore, our strategy of incorporating the
weight matrix is general and can be applied broadly to a range of dimension reduction problems, e.g., Lam
et al. (2011) and Wang et al. (2019). Second, our estimation relies on the sample autocovariance functions
of Y¢(-). This not only gets rid of the impact from the noise &;(-), but also makes the good use of the
serial correlation information, which is the most relevant in the time series modelling. Third, the double
integral takes advantage of the functional nature of the data by gathering the autocovariance information
as much as possible at each (u,v) € U? and then integrating over &2. Our fully functional procedure avoids
the information loss incurred by the dimension reduction step in Gao et al. (2019). Fourth, aided by the
enforced sparsity, we enhance the model interpretability and enlarge the dimension of the feature space
that our model can handle. Our regularized estimation procedure adopts techniques of novel functional

thresholding and sparse principal component analysis, each of which leads to the estimation consistency



and sparsity recovery at its own step.

On the theory side, we investigate convergence properties of relevant estimated terms under high-
dimensional scaling, where p grows polynomially fast relative to n. With additional sparsity constraints
and tail assumptions, we further provide convergence analysis of the regularized estimation in an ultra-
high-dimensional regime, where p diverges at an exponential rate as n increases. In our theoretical analysis,
we generalize a well-known inequality between matrix norms to the functional domain (see Lemma 5 of
Appendix C) which, as our byproduct, can be useful to handle other high-dimensional functional data
problems. Empirically, we demonstrate through an extensive set of simulations that our estimators
substantially outperform the competitors. Moreover, we integrate our factor modelling framework into
the challenging task of predicting high-dimensional functional time series and use a real data example to
illustrate the superiority of our strategy over existing prediction methods.

The paper is set out as follows. In Section 2, we develop a fully functional procedure with weight
matrix to estimate the proposed factor model and explain it from a novel regression perspective. The
theoretical properties of the proposed estimators are investigated in Section 3. Under further sparsity
assumptions, we develop the regularized estimation procedure and present the associated convergence
analysis in Section 4. The finite-sample performance of our methods is illustrated through extensive
simulation studies and two real data examples in Sections 5 and 6, respectively. Section 7 concludes the
paper by discussing the relationship to relevant work as well as three extensions. We relegate all technical
proofs to the appendix.

\L/2

min

(B™B), |B| = A{2(B"B) and denote

its matrix £, norm and Frobenius norm by |B[1 = maxi<i<p 27—, |Bij| and [Blr = (37_; 27, ij)lﬂ,

Notation. For any matrix B = (B;;)pxq, we let |B|min =

respectively. Let Lo(U) denote the Hilbert space of squared integrable functions defined on ¢ and ®
denotes the Kronecker product. For f € Lo(U), we define its fo-norm by |f|| = {{ f(u)?du}'/2. For a
Hilbert space H < Ly(U) and a matrix of bivariate functions K = (K-, -))pxq, we define the functional
versions of the matrix £, norm and the Frobenius norm by |K|s,s = maxi<i<p 21— [ Kijls and [K|sF =
(i1 21 | Ki;|%)"/?, respectively, where, for each K;; € H® H, we denote its Hilbert-Schmidt norm
by | Kijls = {§§Kij(u,v)? dudv}!/2. For two positive sequences {a,} and {b,}, we write a, < b, or
a, = O(by) or b, 2 a, if there exist a positive constant ¢ such that a, /b, < c. We write a,, = b, if and

only if a,, < b, and b, < a, hold simultaneously.

2 Methodology

2.1 Model setup and estimation procedure

We assume that the p-vector of functional time series Yi(-),...,Y,(:) satisfies the functional factor
model in (1), where each Y(-) is decomposed as the sum of two parts: a common dynamic part driven
by a r-vector of latent factor process X;(-) and an idiosyncratic part of white noise process /() =
{et1(+), ... ep(+)}T satisfying E{e;(u)} = 0 and Cov{eyi(u),ei(v)} = 0 for any uw,v € U and k # 0.
Our formulation ensures that both functional and linear dynamic structure of Yy(-) are inherited from
common factors X;(-), while all white noise elements are absorbed into &:(-). Note that {X:(-)}}_; and
{e:()}}=; are unobservable. We further assume that the rank of the factor loading matrix A is r. If
this full rank condition is violated, model (1) can be expressed in terms of a lower-dimensional functional

factor. When r is much smaller than p, we achieve an effective dimension reduction.



Similar to Lam and Yao (2012), there is an identifiable issue among X;(-) and A, since model (1)
remains unchanged if {A, X;(-)} is replaced by {AT,T"'X,(:)} for any invertible matrix T' € R"™". We
may then assume that the columns of A are orthonormal, that is ATA = I, (the r x r identity matrix).
With this constraint, X;(-) and A still can not be determined uniquely, but the linear space spanned by
the columns of A (denoted by C(A)) can. Hence we will focus on the estimation of the factor loading
space C(A).

We next develop a fully functional procedure to estimate C(A) and the number of factors r. Under

the assumption that {X;(-)} is weakly stationary, we define the lag-k (k = 0) autocovariance functions:

20 (1, v) = Cov{ Yo (u), Yi(v)}, =8 (u,0) = Cov{Xspp(u), Xe(v)}, o)
»(k

D (u,v) = Cov{Xpyp(u), &:(v)}-

We further assume that the future white noise components are uncorrelated with the common factors up
to the present. It then follows from (1) and (2) that

k k k
=0 (u,0) = AZE (u, 0) AT + ADH (u,0), wveld, k> 1. (3)

Given a prescribed and fixed integer ko = 1, we define a nonnegative definite matrix

ffz“f w, )W (0) 5 (u, 0)" dud,

where the p x p weight matrix W (v) is nonnegative definite for any v € &. Here W(v) is introduced to
improve the estimation efficiency. In Section 2.2, we will suggest specific forms of W (v) and illustrate the

rationality from a regression perspective. Replacing W (v) by its sample version {7\\7(1)), we define
J f E(k (u, )W (v) = g;)( ,0)" dudwv. (4)

Let v1 = --- = v, = 0 be eigenvalues of M and ~; be a unit eigenvector of M corresponding to v; for each
j. We claim that, under mild Conditions 1 and 3 imposed in Section 3, rank(M) = r (i.e., v > 0 = V41 =

- = 1) holds with overwhelming probability as justified in our proof in Appendix B.1. As a result, the
factor loading space C(A) can be recovered by C(K) = span{~yy,...,7,} with K = (v¢,...,7,) e RP*". To
see this, let A bea p X (p—r) orthogonal complement of matrix A such that ATA = 0and ATA = I,
It then follows from (3) and (4) that MA = 0, which implies that the columns of A are eigenvectors
of M corresponding to (p — r) zero eigenvalues and hence C(A) is spanned by the eigenvectors of M

corresponding to r nonzero eigenvalues.

Remark 2.1. (i) We take the double integral and the sum in the definition of M in (4) to accumulate
the information of autocovariance functions as much as possible from each (u,v) € U? and from different
time lags, whereas fixing at certain (u,v) or time lag may lead to spurious estimation results.

(ii) The definition in (4) ensures that M is nonnegative definite and there is no cancellation of infor-
mation accumulated from lags 1 to kg. Hence the estimation is insensitive to the choice of k. In practice

we tend to select a small value, 1 < kg < 5, as the strongest autocorrelations usually appear at small lags.



To estimate C(A), we need to carry out an eigenanalysis of the natural estimator for 1\\//[,

o B, e a®)
M = Z:l fu fu 2, (o)W ()E (u,v)" dudo, (5)
where »
S, (1,0) = - i : ; {Yiix(w) = Y (@) H{Yi(v) - Y(0)}', wvel, (6)

is the estimator for Eg(j;) (u,v) and Y(-) = n=1 37, Y(-). Performing eigen-decomposition of M leads

to estimated eigenvalues 74 > --- > ), and the corresponding estimated eigenvectors 4, ... ,’?p. Let
K = (1,..-,4,). Then C(K) = span{3,, . ..,5,} forms the estimate of C(A).

We have developed the estimation of model (1) assuming that the number of factors r is known or can
be identified correctly. In practice, r is unknown and there is vast literature on the topic of determining
it, see Bai and Ng (2002); Onatski (2010); Lam and Yao (2012); Ahn and Horenstein (2013); Fan et al.
(2022) and Han et al. (2022), to quote a few. Here we take the commonly adopted ratio-based estimator
for r as: .

7 = argmin @, (7)
1<j<erp Vi

where ¢, € (0, 1) is a prespecified constant. In empirical studies, we take ¢, = 0.75 to avoid the fluctuations
due to the ratios of extreme small values.

2.2  Weight matrix

Under the nonnegative-definiteness constraint, we suggest the following weight matrix:
W) = Q{Q"={)(v,1)Q} 'Q", vell, (8)

where Q € RP*? ig a full-rank matrix and ¢ is larger than r but much smaller than p. The entries of
Q are independently sampled from some random distribution with zero mean and unit variance, e.g.,
Uniform[—+/3,+/3] and N(0,1), which is used here to facilitate technical analysis. Our experiments
indicate that the results are not sensitive to the choices of ¢ and the sampling distribution. Then we can

obtain the sample version of W (v) by
~ ) _
W) = Q{Q'S,, (v, v)Q} Q™. (9)

From a regression perspective, we next provide an intuitive explanation why the weight matrix takes
the suggested form in (8). Despite the unobservable common factors X;(-), we can simply view (1) fixing
at w € U as a multiple linear regression with multivariate responses Y;(u) and the coefficient matrix A
to be estimated. To construct the covariate vector from observed data in a regression setup, we assume
that there exists some orthogonal matrix ® € R7*" with ®"® = I, such that )v(t() = ®X,y(-) can be

represented by the linear combination of past observed curves with the addition of some random noise:

Xi() = QY () + Ew(), k=1,..., ko,



where €(-) is the white noise process, independent of Y;_1(-),..., Yk, (-). Then model (1) can be
rewritten as

Y,() =BXy(") + () =BQ Y, (") +ew(s), t=k+1,...,n, (10)

where ey () = €() + B&y(-) and B = A®™ is a p x ¢ matrix satisfying rank(B) = r and C(B) = C(A).
Now we can treat (10) fixing at u € U as a linear regression model with observed covariate vectors
{Q"Y;_x(u)} ., and unknown low-rank coefficient matrix B. Based on (10) and the population moment

equation Cov{ey(u), Q"Y—k(v)} = 0 for u,v € U, we can solve B by

B = Cov{ Yy(u), Q"Y,4(v) }Cov{ QY (). Q'Y ()} . (11)

To simplify our subsequent derivation, we assume E{X;(-)} = 0 and Cov{eu(u)} = I, for all ¢, k and

u € U. Replacing the covariance terms in (11) by their sample versions, we obtain the estimator for B by

B-{ ¥ viw¥rwal Y @Yewyiwae) 12

t=k+1 t=k+1

Denote the j-th row vector of B by b e R? with invertible covariance matrix Cov( ;) € R4, Our
target is to identify the rank of B and to recover the space spanned by the columns of B which can be
carried out in terms of an eigenanalysis for nonnegatlve definite matrix B{Cov( i)} IBT = BB” with
B = B{COV( ;)1 71/2. The presence of Cov( ]) accounts for the heterogeneous variance-covariance effect

and leads to the scaled low-rank coefficient matrix B with its j-th row vector b satisfying Cov(b ) =1,
rank(B) = rank(B) and C(B) = C(B). It follows from (12) that

Cov(b { Z QY r(v )YtT_k(U)Q}il{ i QTYt—k(U)YtT—k(U)Q}

t=k+1 t=k+1

. » (13)
{ Y QYY)
t=k+1
Combining (12) and (13) yields that
B{Cov(b;)} 'B” = 2 (1, 2)Q{Q"E}, (v,v)Q} ' Q7L (u,0)". (14)

We integrate the right side of (14) over (u,v) € U? and sum it over time lags k = 1,.. ., ko, thus obtaining
(5) with the choice of \/7\\/'(11) in (9).
An alternative choice of the weight matrix is Wy (v) = I, for v € U, where the homogeneous weights are

assigned. As a consequence, we need to perform an eigenanalysis on the estimated nonnegative-definite

ko
= [ [ E w0 e dude, (15)
k=1U U

matrix:



which can be further simplified by integrating along the diagonal path u =v e U :
T PN PN
M, = > L 3, (w,u)S,, (u,u)" du. (16)
k=1

Remark 2.2. It is noteworthy that, without the double or single integral, the unweighted estimators
M, and M, in (15) and (16) coincide with the proposed method for multivariate scalar time series in
Lam and Yao (2012). Compared with the weighted estimator K\/I, the performance of ﬁl is expected
to deteriorate especially for the heterogeneous case as illustrated in our simulations. Moreover, due to
the loss of autocovariance information for u # v incurred by the single integral, we expect that 1/\\/11

outperforms 1\//\12. We will compare the sample performance of 1/\\/1, 1\//\11 and 1\//\12 in Section 5.

3 Theoretical properties

In this section, we study asymptotic properties of the proposed method under a high-dimensional regime,
where p and n tend to infinity together and r is fixed. Before presenting the theoretical results, we impose

some regularity conditions.

Condition 1. (i) The latent functional factor process {X;(-)} is weakly stationary with E(| X;]|*) = O(1)
for j = 1,...,r; (ii) There exists at least one k € {1,. .., ko} such that the rank of {{ »") (u, U)E;g;) (u,v)" dudv

is r.

Condition 2. (i) The idiosyncratic component {e;(-)} is a white noise sequence with max; E(|e:;]?) =
O(1); (ii) inf,ey Amm{zé? (v, v)} is bounded away from zero.

Conditions 1 and 2 contain some standard finite moment assumptions in functional data analysis
literature. Condition 1(ii) can be viewed as functional generalization of Condition 2 in Wang et al. (2019)
for matrix-valued time series, which ensures that the latent factor process X; has exactly » components.
Condition 2(ii) is imposed for technical convenience. It precludes the case when Y(v) is non-random
at some point v € U. However, replacing Y,(-) with a contaminated process Y¢(-) + d;, where d;’s are
independent with zero mean and diagonal covariance matrix with small diagonal components and are
independent of Y;(-)’s for all k£, Condition 2(ii) is then satisfied while the autocovariance structure in
E(ylz) remains the same in the sense of Cov{ Y, x(u) + 014k, Ye(v) + 0t} = Cov{Y 1k (u), Yi(v)} for k > 1
and u,v e U.

Condition 3. There exists some constant ¢ € [0, 1] such that |A|? = p' = = |A|?

min*

Condition 4. (i) For k = 1,... ko, |2 5.0 = o(p1=9/2); (i) Cov{X,(u),ersr(v)} = 0 for any k > 0
and (u,v) € U2

The parameter ¢ in Condition 3 can be viewed as the strength of factors with smaller values yielding
stronger factors. It measures the relative growth rate of the amount of information contained in Z(-) as
the dimension p increases, compared to that in &;(-), see (1). When § = 0, Condition 3 corresponds to
the pervasiveness assumption in Fan et al. (2013), which means that all factors are strong. When § > 0,
the factors are termed as weak factors. We refer to Lam and Yao (2012) for more detailed discussion

on the factor strength. Condition 4(i) requires that the correlation between X, x(-) and :(+) is not too



strong, while Condition 4(ii) assumes that the future idiosyncratic components are uncorrelated with the

common factors up to the present.

. s (k) k
Condition 5. Let X, (u, {Zyy i (u U)}po and Eéy)(u v) {Zyy i (u U)}pxp for u,v € U. Then
(i) For k =1,..., ko, max; j IE{HEZ(/’; i~ Ey’;)ij s} = O( n~12); (ii) Eé%) (u,v) is Lipschitz-continuous over
(u,v) € U?; (111) max;,; E{ sup (u,0)ell? |Eyy)”(u v) — ES; i (w,v )|} =0{n~ 12(logn) 1/2}

There are several sufficient conditions that have been commonly imposed in functional time series
literature when p is fixed and can lead to the result in Condition 5() which further implies the standard
root-n rate for entrywise sample autocovariance functions, i.e., HZyy i Eg;)” |ls = Op(n~"2). The key
requirement to establish the consistency is to control the temporal dependence in {Y3;(-)} for j =1,...,p
Examples include strong mixing conditions (Bosq, 2000; Chen, Guo and Qiao, 2022), cumulant mixing
conditions (Panaretos and Tavakoli, 2013) and L%-m-approximability (Hérmann and Kokoszka, 2010;
Hormann et al., 2015). With the additional tail assumption and Lipschitz-continuity in Condition 5(ii), it
is not difficult to apply the partition technique that reduces the problem from supremum over U2 to the
maximum over a grid of pairs, and hence the uniform convergence rate of n~/?(logn)"/? in Condition 5(iii)
can be achieved. See the same uniform rate with detailed proof under an i.i.d. setting in Qiao et al. (2020).

Now we are ready to present theorems about the rates of convergence for estimators of the factor
loading space C(K) = C(A) and the eigenvalues {I/j}?:l. To measure the accuracy in estimating C(K),
we use the metric of the distance between C(K) and C(K). For two orthogonal matrices K; and Kj of

dimensions p X 1 and p X r9, respectively, we define

1

1/2
- — ¢ KKTKKT} .
{ max(ry,72) H(KK KoK)

D(C(K1)7C(K2)) =
This distance ranges between 0 and 1. It equals 0 if and only if C(K;) = C(K3), and 1 if and only if K;
and Ko are orthogonal. See also Pan and Yao (2008) and Chang et al. (2015).

Theorem 1. Let Conditions 1-5 hold and p®n=? — 0. Suppose that r is known. Then as p,n — 0, it
holds that
D(C(K),C(K)) = Op(p'n~"/?).

Remark 3.1. Theorem 1 implies that, as the factors become stronger with smaller §, we obtain more
efficient estimator for the factor loading space. When the dimension p is fixed, the y/n rate is attained.
When all factors are strong (i.e., & = 0), 4/n rate still retains, since the signal is as strong as the noise
and hence enlarging p will not affect the estimation efficiency, circumventing the phenomenon of “curse of
dimensionality”. For weak factors (i.e., § > 0), the noise increases faster than the signal, and the increase

in p will result in a slower convergence rate.

Theorem 2. Let the conditions of Theorem 1 hold. Then as p,n — 0, the following assertions hold:
(i) |0; — vj| = Op(P*~n=Y2) forj =1,...,r, and 0j = Op(p*n™") forj =r+1,....p;
(1t) Uj1 /0y =1 forj=1,...,r =1, and D41 /0 = O,(p*n~1).

Remark 3.2. We observe from part (i) of Theorem 2 that estimators for nonzero eigenvalues converge

at a slower rate than those for zero eigenvalues. Part (ii) of Theorem 2 implies that the eigen-ratio



Vj1+1/0; will drop steeply at j = r, thus providing partial theoretical support for the proposed ratio-based
estimator 7 in (7). When all factors are strong (i.e., d = 0), D11/0, = Op(n~1), suggesting that # may not
suffer from the increase in p. In fact, these results are consistent with those established in Lam and Yao
(2012). In a similar fashion, we can obtain improved rates as p increases under additional assumptions.
Although we do not theoretically pursue such “blessing of dimensionality” property here, our simulation

results lend empirical support for this phenomenon.

To facilitate the consistency analysis of the ratio-based estimator 7 for r and to avoid the case of
“0/0”, we define a modified ratio-based estimator
. . Diy1+ 0
= arg min 2" (17)
I<jsp V5 + I
where 9, provides a lower bound correction to 7; for j > r and satisfies the conditions in Theorem 3

below.

Theorem 3. Let the conditions of Theorem 1 hold, 9,p~2** — 0 and ¥,n%p 272 — o. Then as

p,n — o0, it holds that P(t =r) — 1.

Remark 3.3. (i) Theorem 3 shows that the modified 7 in (17) is a consistent estimator of r. In practice,
provided that ¥, is usually hard to be specified, we still use (7) to estimate r, leading to good performance
in our empirical studies.

(ii) With the aid of Theorem 3, our estimation of C(K) is asymptotically adaptive to r. To this end,
let K = (q,...,9;) and C(K) = span{d,,...,9;} be the estimator of C(K) with r estimated by 7. Then
it holds that for any constant C' > 0 that

P(p~°n'/*D(C(K),C(K)) > C)
< P(pn'?D(C(K),C(K)) > C|# = r)P(7 = 1) + P(7 # r)
< P(pn'?D(C(K),C(K)) > C|# = 7) + o(1),

which together with Theorem 1 yield D(C(K),C(K)) = O, (p’n="/?).

4 Sparse factor model

Despite the phenomenon of “curse of dimensionality” being avoided when all factors are strong, our
method does not guarantee a parsimonious and interpretable model in the presence of weak factors. In
real applications, it is quite common that many estimated factor loadings are close to zero especially when
p is large, see the gene expression study in Carvalho et al. (2008) and the sea surface air pressure records
example in Lam and Yao (2012). Such phenomenon motivates us to propose a sparse factor model by
imposing sparsity assumptions on the factor loading space C(A) of (1). In this section, we target to develop
the regularized estimation under sparsity constraints, which not only leads to the enhanced intepretability
in practice, but also theoretically enlarges the dimension of the feature space that our proposed sparse
factor model can handle compared with the nonsparse factor model with weak factors.

We consider two complementary notions of subspace sparsity defined in terms of the factor loading

matrix A: row sparsity and column sparsity, which are consistent with the definitions in Vu and Lei
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(2013). Intuitively, the row sparsity entails that only a small subset of components in Y(-) are driven by
the common factors X¢(-), thus making the row sparse factor loading space generated by a small number
of variables, independent of the choice of the basis. The column sparsity, on the other hand, corresponds
to the case that each common factor Xy;(-) has impact on only a small fraction of components of Y()
and hence the column sparse factor loading space has orthonormal basis consisting of sparse vectors. We
begin by introducing parameter spaces of “approximately column sparse” and “approximately row sparse”
factor loading matrices respectively defined in Conditions 6 and 6’ below. Let a; be the i-th row vector
of A = (Aij)pxr-

Condition 6 (Column sparsity). The matrix A is from the class

V(T,cl(p),L):{A maXZ|AZ]|T (»),  max |AZ-]-|<L}, re0,1).

1<y<r 1<i<p, 1<y <r

Condition 6’ (Row sparsity). The matrix A is from the class

p

V¥(r,c1(p), L) = {A : Z |la;|” < ei(p), max |4 < L}, T€[0,1).

. I<i<p,1<j<r
=1

The parameters ¢1 (p) and 7 together control the column or row sparsity in the factor loading matrix A.
In the special case of 7 = 0, V(0,¢1(p), L) and V*(0, ¢1(p), L) correspond to the truly sparse situations, in
which A has at most ¢;(p) nonzero entries on each column under Condition 6 or ¢;(p) nonzero row vectors

under Condition 6’. By Holder’s inequality, it is easy to check that V*(r,ci(p),L) < V(7, ¢ rc1(p), L),

where ¢, = 1 for 7 = 0 and =72 for 1 € (0,1). Provided that r is fixed, our subsequent analysis will

focus on the class of column sparse factor loading matrices, V(7, ¢1(p), L).

(k)

Our estimation procedure in Section 2 is developed based on the estimation of 3;,/’s. When p grows

ok
faster than n'/2, it is known that the sample autocovariance functions E?(Jy)’s are no longer consistent
estimators. Nevertheless, under the sparse factor model setup, the decomposition of ESZ) in (3) suggests

(k)

that our enforced column sparsity in A is inherited by the functional sparsity structure in 3, thus

)

enabling us to possibly construct the threhsolding-based estimator for 2( to ensure the consistency.

Before introducing the estimator, we slightly modify Condition 4 to accommodate the sparse setting and

(k)

present a lemma that reveals the functional sparsity pattern in 3,/ .
Condition 4'. (i)Fork =1,..., ko, let 2552 (u,v) {Em i (
ca(p); (i) Cov{Xi(u),e41x(v)} = 0 for any k = 0 and u,v € Y.

k
)}pxp for u,v € U and max pIa Hzia),leg“ <

Condition 4'(i) requires relatively weak correlations between X5 (-) and &(-). As long as ca(p) =
o(p(1=9)/2) Condition 4(i) follows directly from Condition 4’(i). Moreover, Condition 4’(i) relies on the
Hilbert—Schmidt norm to encourage the functional sparsity in E(x]?, i.e., each common factor X 1)(-) is
only correlated with a few components of &;(-). With imposed sparsity constraints in Conditions 4’ and

6, it can be inferred from (3) that Eg?j) is functional sparse as justified in Lemma 1 below.

Lemma 1. Under Conditions 1, 2, 4’ and 6, it holds that, for k =1,..., ko,

(k)
fggngHE V5 <cp) and max HE imiils S c1(p) + ea(p).
Jj=

11



Lemma 1 shows that the functional sparsity patterns in columns/rows of 2?(,];) are determined by

parameters c;(p) and ca(p) with smaller values yielding functional sparser Eg;). To obtain a functional
sparse estimator for Eélz,), we apply the hard functional thresholding rule, which combines functional
versions of hard thresholding and shrinkage based on the Hilbert-Schmidt norm of functions, on entries
of the sample autocovariance function f];’;) Then the functional thresholding estimator is constructed as

(k)

%k(zyy )(uvv) = [i(k)

SIS ls = m}]| . wee, (18)

pXxp

where I(-) is the indicator function and 7, > 0 is the thresholding parameter. Under mild regularity

conditions, it follows from Lemma 4 in Appendix C that

ok k log p
[0 = Syls = Op (My«/ . ) (19)

where M, is the functional stability measure (Guo and Qiao, 2023) defined in (A.1) in Appendix A.

The rate under the functional version of ¢, norm in (19) plays a crucial role in our theoretical analysis

under an ultra-high-dimensional regime and, in particular, suggests us to set the thresholding level as
o (k ok

e = M, (n"'logp)"/2. Replacing Zg(Jy) in (5) with ﬁk(E;y)), we obtain the corresponding estimator for

M :

ko . . ~
M = Z fj%k (23(/’;))(“, U)W(U)%k(E;Z))(u,v)T dudw. (20)
k=1

To recover the column sparsity structure in C(A), we perform sparse principal component analysis
(PCA) (Vu and Lei, 2013) on M rather than the standard eigenanalysis for M in Section 2.1. For matrices
A; and Ay with the same dimension, let (A1, Ay) := trace(ATAz). We define K € RPX" as a solution to

the following constraint optimization problem:

P
K = argmax (M,KK") subject to K"K =1,, max Z K| < Cf, (21)
K:(Kjl)pXT‘ lélgrjzl

where C > 0 is a regularization parameter. Alternatively, to estimate the row sparse factor loading space,
we can substitute the second constraint in (21) by >¥_; [ki|™ < C, where k; denotes the i-th row vector
of K and 6’T > 0 is a regularization parameter. It is worth noting that, without the sparsity constraint
n (21), the optimization problem degenerates to the ordinary PCA. Despite being challenging to solve
(21) due to the non-convex constraint, some efficient and computationally tractable algorithms have been
developed, see, e.g., under the truly sparse case (7 = 0), the combinatorial approaches (Moghaddam et al.,
2006; d’Aspremont et al., 2008; Mackey, 2009), the semi-definite relaxation (d’Aspremont et al., 2007)
and its variants, and the random-projection-based method (Gataric et al., 2020). We refer to Zou and
Xue (2018) for an extensive review on recent developments for sparse PCA.

We now present the asymptotic analysis of C (I~() in the following theorem.

Theorem 4. Let Conditions 1, 2, 4', 6 and 7-8 in Appendiz A hold and /\/lzlogpn_1 — 0. Then as

12



p,n — 00, it holds that:

I/,j)(C(K),C(R)) Op [cl Y{ci(p) + ca(p }Ml T(lnglP) ] .
Remark 4.1. (i) The convergence rate of D(C(K),C (R)) is governed by both dimensionality parameters
{n,p,c1(p), c2(p)} and internal parameters (M,,v,, 7). It is easy to see that the rate is better when v, is
large and {c1(p), c2(p), My, T} are small.
(ii) Under the truly sparse case (7 = 0) with ¢i(p) 2 ca(p), and |A;;| = v for (7, j) such that A;; # 0,
it follows from the framework in Section 3 that ci(p)y? = p' =9 under Condition 3, which together with
Theorem 4 imply that

1, D(C(K),C(K)) = Op{p* Py~ M, (log p)/>n1/2}. (22)

By comparison, Theorem 1 and (B.3) in Appendix B lead to the rate v, D (C(K),C(K)) = 0p (p2_5n_1/2),
which is slower than that in (22) for larger values of v or 0 (i.e., smaller values of ¢;(p) provided that
~v = 1). Hence, when the magnitudes of nonzero entries in A become larger or the factors are weaker
in the sense of Condition 3 (i.e., A is sparser in the sense of Condition 6), our regularized estimation
benefits more from the imposed sparsity and enjoys faster convergence rate than the ordinary method in

Section 2.

5 Simulation studies

5.1 Setup

We illustrate the finite-sample performance of our proposed methods through extensive simulations. Sec-
tions 5.2 and 5.3 consider scenarios where the factor loading matrix A is ordinary and sparse, respectively.

In each simulated scenario, we generate p-vector of functional time series by
Yi() = ioAXi () +&(r), t=1,...,n, (23)

where the parameter xo > 0 controls the strength of common factors X;(-) = #oX;(+) and the entries of
A € RP*" are sampled from Uniform[—+/3p~%2,1/3p~%2] with ¢ € [0,1]. Hence Condition 3 is satisfied,
in which 6 = 0 (or 0 > 0) corresponds to the case of strong (or weak) factors. To mimic the infinite-

dimensionality of functional data, we generate each scaled latent factor by Xy(-) = 250 Enii(+) for

Il =1,...,r over U = [0,1], where {¢;(-)}?Y; is a 50-dimensional Fourier basis function and the basis
coefficients §;; = (14, --.,&ri)" are generated from a vector autoregressive model, &,; = VE&;_1y; + €
with V = (p'l*l/‘ﬂ)lgu/g and the innovation €; = (€14, - -, €i)" consisting of independent N(0,i~2)

components. We set p = 0.45 and ¢ = 0.75. For the idiosyncratic component &.(-), we consider the

following three scenarios.

SCENARIO 1. For each j = 1,...,p, we generate £;(-) = 2321 2*(”1)Zﬁ¢i(~), where Zgji’s are

independent standard normal.

SCENARIO 2. We generate &,(-) = He(+), where H = 5~ 'diag(hy, ..., hy), h;’s are sampled uniformly

from {1,...,10} and each &(-) is generated in the same way as e4;(-) in Scenario 1.
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SCENARIO 3. We fix kg = 1 and generate e4;(-) = K1€40(-) +&¢(-), where k1 > 0, g40(-) = Z?Zl Zyii(+)
and each Z;; is sampled independently from N(0,1).

In Scenario 1, each &4(-) is white noise with the identical covariance function across j, while Scenario 2
corresponds to the heterogeneous case with different covariance functions. Scenario 3 consists of (r + 1)
actual common factors, among which the additional factor e4(-) is independent of other factors in X¢(-),
and its signal strength is determined by the parameter ;. The underlying factor loading matrix is (A, 1,),

where 1, denotes the p-vector of ones. For simplicity, we still denote the factor loading matrix by A.
5.2 Ordinary case

We compare our proposed method based on M with two competing methods based on 1/\\/11 and 1/\712. Since
our experimental results suggest that 7+ and C (IA{) are insensitive to the choice of ¢ and the maximum
lag ko, we set ¢ = 12 and kg = 4 in our simulations. In each setting, we generate n = 100 serially
dependent observations of p = 50,100,200 functional variables based on r = 4 functional factors. We
ran each simulation 100 times. The sample performance of three approaches is examined in terms of
their abilities of correctly identifying the number of factors and the estimation accuracy in recovering
the factor loading space, respectively measured by the relative frequency estimate for P(# = r) and
D(C (K),C (ﬁ)) using the correct r. For each of three comparison methods, Figures 1 and 3 plot average
relative frequencies 7 = r as the factor strength increases when the factors are strong (i.e., 6 = 0) and
weak with 6 = 0.5, respectively. Figures 2 and 4 plot the corresponding average estimation errors for
C(K). Several conclusions can be drawn from Figures 1-4. First, our proposed method based on M
provides highly significant improvements in accuracies for the identification of r and the recovery of C(K)
over the competing methods in all scenarios we consider. The improvement of our method involving the
weight matrix is larger for the heterogeneous case and even more substantial for the case when the factors
are weak. Between two competitors, the method based on ﬁl outperforms that based on 1\712, providing
empirical evidence for Remark 2.2. Second, the estimation for r and C(K) performs better as the strength
of factors increases (i.e., kg or k1 increases or § decreases), which is in line with our theoretical results
in Section 3. In Figure 1, our method makes the sharpest progress as the factors become stronger, while
the two comparison methods require much higher strength of factors to compete. Third, when the factors
are strong, we observe the phenomenon of “blessing of dimensionality” in Figures 1 and 2 in the sense
that the estimation improves as p increases from 50 to 200. The improvement is due to the increase of the
information from added components on the factors. Under Scenario 3 with an extra factor independent
of the others, the information and noise on the factors increase simultaneously as p grows, and hence
the estimation does not necessarily improve. Fourth, under the weak factor setting, many entries of A
are quite close to zero. As p enlarges, the enhanced information on the factors is accompanied with the
increase of noise. While Figure 3 reveals that increasing p does not necessarily lead to the improved
estimation for r, we observe in Figure 4 that the estimation for C(K) gets worse for larger values of p,

complying with the result in Theorem 1.
5.3 Sparse case

In this section, we conduct some simulations to evaluate the performance of the functional-thresholding-
and-sparse-PCA-based approach (TSPCA) developed in Section 4 to estimate the sparse factor model.

Two kinds of subspace sparsity constraints are imposed on A. Specifically, for the row sparsity, we

14



o 2 o
- - - - - o~ == - = Vas P
4 - /v -
«© | 7’ © _| ’ © | '
o 4 (=] 7’ o
’ ! ' ’
S < ! & o | U & o | -
£ ° n £ ° ~ = [
=} - =} 1 =}
Qo Qo Qo 1
e I ! SR ’ e I~
a ° ' a ° ! a °
r
o~ 7 o~ ! o~
s, s 17 S
_ N4
2 | 2 | 2 |
< T T T T T < T T T T T < T T T T T
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Signal strength kg Signal strength kg Signal strength kg
- p =50 - p =100 o p = 200
= 7 = - = 7 ——
s - 4 ’
« | « | - « | ==
o o - o
e 4
§ < | S < | ’ S < | "
g S g S ’ g S v
o o 7 o ]
o Qo ] Qo v
e I e I e I 1
a © a ° n! a ° [N
- 1
= = I =Y
\r
1
o | o |- o |
< T T T T T < T T T T T < T T T T T
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Signal strength kg Signal strength kg Signal strength kg
- p=50 - p =100 - p =200
S = | PR — 7 -
1
© © ©
= 2 2 |
S o | § o | S o |
2 o 2 o 2 S
(=3 (=3 (=3
Qo (=N Qo
o = | o = | o = |
a ° a ° a °
o~ o~ o~
s 7 s 7 s 7
2 | 2 | 2 |
< T T T T T < T T T T T < T T T T T
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
Signal strength K Signal strength K Signal strength K

Figure 1: Scenario 1 (top row), Scenario 2 (middle row) and Scenario 3 (bottom row) for p = 50, 100
and 200 when the factors are strong: Plots of average relative frequency estimates for P(7 = r) against ko
or k1 for three methods based on M (black solid), M; (red dashed) and My (cyan dash dotted).

randomly select 80% rows of A to be zero vectors, while for the column sparsity, we randomly set 80%
elements within each column of A as zeros. We focus on Scenario 1 with k9 = 1 and generate nonzero
entries of A from Uniform[—+/3,/3].

Implementing TSPCA requires choosing the thresholding parameter 7 in (18) and the columnwise
number of nonzero elements Cp in (21). To select the optimal 7 for each k = 1,..., kg, we implement a
G-fold cross-validation approach (Cai and Liu, 2011). To be specific, we first sequentially divide the set
{1,...,n} into G blockwise groups Dj, ..., Dg of approximately equal size. We then treat the g-th group
as a validation set, compute the sample lag-k autocovariance functions f)g;)’(g)(u, v) and f]g;)’(ig) (u,v)

for u, v € U based on the validation set and the remaining G — 1 groups, respectively, and repeat the above
(k),(—9) g(k),(g) 2
vy ) Ty ”SF

We adopt a similar cross-validation method to select the optimal CA’O. Given the g-th group as a validation

procedure G times. We finally select 7j,, by minimizing Ry (1) = G~! 2521 H’ﬁlk (f]

set, we obtain the solution K9 to the constrained optimization problem in (21) with 7 = 0 based on
the remaining G — 1 groups. To solve this problem, we apply sparse PCA (Moghaddam et al., 2006;
Mackey, 2009) to M(_g), which is formed by (20) using 75, (f)g;)’(_g)) for k =1,...,ky. We also obtain
K by carrying out an eigenanalysis for M) based on the validation set. The above procedure is

repeated G times and Cj is selected by minimizing D(Cp) = G~ Zle D(C(IN{(*Q)),C(IA{(Q))). Although
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Figure 2: Scenario 1 (top row), Scenario 2 (middle row) and Scenario 3 (bottom row) for p = 50, 100,
200 when the factors are strong: Plots of average D(C(K),C(K)) against ko or k1 for three methods based

on M (black solid), M, (red dashed) and M, (cyan dash dotted).

the time break created by each leave-out validation set possibly jeopardize the autocovariance structure
on the remaining G — 1 groups via kg mis-utilized lagged terms, its effect on the estimation of Egz)(_g Vg
is negligible especially when n is sufficiently large. Hence our proposed cross-validation approach does

not place a practical constraint.

Table 1: The mean and standard error (in parentheses) of the distance between the estimated and
true sparse factor loading spaces over 100 simulation runs. All entries have been multiplied by 10? for
formatting reasons.

Sparsity P PCA TSPCA Sparsity D PCA TSPCA
100 3.86(0.53) 1.71(0.31) 100 4.27(0.83)  3.55(1.09)
Row 200 3.79(0.56) 1.74(0.26) Column 200 4.25(0.65) 3.69(0.59)
400 3.73(0.66) 1.76(0.29) 400 4.03(0.74)  3.17(0.88)

We compare TSPCA with the ordinary PCA-based approach by performing an eigenanlysis on M.
The estimation quality is measured in terms of the distance between the estimated and true sparse factor
loading spaces using the correct r. We report the numerical summaries in Table 1 for p = 100, 200, 400. It is
obvious to see that TSPCA uniformly improves the PCA-based estimation, demonstrating the advantage

of our regularized estimation procedure to fit sparse factor models. The improvement for the row sparsity
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Figure 3: Scenario 1 (top row) and Scenario 2 (bottom row) for p = 50, 100 and 200 with correct r when
the factors are weak: Plots of relative frequency estimates for P(f = r) against kg for three methods based
on M (black solid), M (red dashed) and My (cyan dash dotted).
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Figure 4: Scenario 1 (top row) and Scenario 2 (bottom row) for p = 50, 100 and 200 with correct r when
the factors are weak: Plots of average D(C(K),C(K)) against ko for three methods based on M (black
solid), My (red dashed) and My (cyan dash dotted).

case is more significant than that for the column sparsity case. Compared with the functional sparsity
patterns in Lemma 1 under the column sparsity constraint, it follows from the decomposition of Eg(j;) in
(3) that the row sparsity in A can lead to functional sparser 21(/];)’8. In this sense, TSPCA benefits more

from the row sparsity structure, thus resulting in enhanced improvement.
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6 Real data analysis

6.1 U.K. temperature data

Our first dataset, which is available at https://www.metoffice.gov.uk/research/climate/maps-and
-data/historic-station-data, consists of monthly average temperature collected at p = 22 measuring
stations in the U.K. from 1959 to 2020 (n = 62). Let Yjj(ug) (t =1,...,n,5 =1,...,p,k =1,...,12)
denotes the average temperature during month uxy = k € U = [1,12] of year 1958 + t at the j-th
measuring station. The observed temperature curves are smoothed based on 10-dimensional Fourier basis
to capture the periodic structures over the annual cycle. The smoothed curve series exhibits very small
autocorrelations beyond k£ = 2, so we use kg = 2 in computing M. The ratio-based estimator suggests
7 = 1, though we illustrate further results using 7 = 3.

Figure 5 displays spatial heatmaps of estimated factor loading matrix and the rotated matrix using
the varimax procedure to maximize the sum of the variances of the squared loadings. Some interesting
patterns can be observed from those heatmaps. Compared with the original results in Figure 5, the
varimax rotation brings the factor loading matrix closer to a “simple structure”, where (i) each component
in Y(:) has a high loading on one specific factor but near-zero loadings on other factors and (ii) each
factor has high impact on a few components of Y(-) with high loadings on this factor while the remaining
variables have near-zero loadings on this factor. The varimax rotation leads to larger color variations in
heatmaps for better interpretation. For example, it is apparent that the first factor via varimax rotation
influences the dynamics in the southeast, while the original factor has uniform impact in all locations.
Hence we focus on the interpretation of remaining factors after varimax rotation. Specifically, the second
factor mainly impacts the dynamics of the northern region. The third factor can roughly be viewed as

the main driving force for the dynamics in the middle north.
6.2 Japanese mortality data

Our second dataset contains age-specific and gender-specific mortality rates for p = 47 Japanese prefec-
tures from 1975 to 2017 (n = 43). This dataset was also analyzed in Gao et al. (2019). Due to those
sparse observations at old ages, we focus on data for ages below 96. We apply a log transformation to
mortality rates and denote by Yi;(ux) (t =1,...,n,j =1,...,p,k = 1,...,96) the log mortality rate of
people aged uy = k—1 € U = [0,95] living in the j-th prefecture during the year 1974+ ¢. We then perform
smoothing for observed curves and replace the missing values via smoothing splines. The estimation of
model (1) is done by choosing ky = 2 and we use 7 = 2 in subsequent analysis. To enhance interpretability
for identified factors under a high-dimensional p > n regime, we also implement TSPCA to estimate the
sparse factor loading matrix.

Figure 6 and Figure D.1 in Appendix D show spatial heatmaps of varimax-rotated loading matrix
and sparse loading matrices with different sparsity levels for Japanese females and males, respectively.
For TSPCA, we implement the cross-validation method to select the optimal 7j;’s and set the columnwise
sparsity in estimated loading matrix to 27/47 or 32/47 for better visualization of the results. A more
systematic method to determine the sparsity level, e.g., via a significance testing, needs to be developed.
Compared with the original results, both varimax rotation and TSPCA lead to enhanced interpretability in
the sense of recovering the factor loading matrix with “simple structure”. Among two competitors, TSPCA

tends to reduce some near-zero loadings to exactly zero, thus providing a parsimonious model with more
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Figure 5: Spatial heatmaps based on estimated factor loading matriz (top row) and varimaz-rotated loading
matriz (bottom row) of 22 U.K. locations.

interpretable results than varimax rotation. In particular, we can observe clear regional patterns from
those heatmaps for TSPCA, where each of two factors influences the dynamics of some complementary
regions of Japan in all settings. Take the results under the sparsity 27/47 in Figure 6 as an example,
the first factor serves as the main driving force in regions of Hokkaido, Kanto, Chubu and Kansal, while
Tohoku and Shikoku are heavily loaded regions on the second factor.

To further illustrate the developed methodology, we set upon the task of predicting high-dimensional

functional time series Y¢(-). Specifically, we incorporate the functional factor model framework into the
h-step-ahead prediction (denoted as FFM) consisting of three steps below.

1. Apply our proposed method to estimate model (1) based on past observations {Y;(-)}_;, thus
obtaining the estimated factor loading matrix A and number of functional factors 7.

2. Compute 7 estimated factors by X;(-) = ATY,(-). For each k € {1,..., 7}, predict X(Hh)k(‘) based
on past fitted values for the k-th common factor, {)?tk()}le

3.

The h-step head predict for Yy, ,(-) is SA(THZ(-) = A)A(THL(-).

The second step is on the prediction of univariate functional time series. For each common factor, we
obtain the h-step-ahead prediction based on the best fitted functional ARMA model (Klepsch et al.,
2017) according to the BIC criterion. We then develop a sparse version of FFM (denoted as SFFM) by
performing TSPCA in the first step to estimate sparse A. For comparison, we implement an alternative

factor model based prediction method of Tavakoli et al. (2021) (denoted as TNH) by firstly estimating
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Figure 6: Spatial heatmaps based on varimaz-rotated loadings (left column) and sparse loadings with 27
zeros (middle column) and 32 zeros (right column) of 47 prefectures on two factors for Japanese females.

their factor model (see (24) in Section 7), then making use of the corresponding best fitted ARMA models
to predict the scalar factor time series X, and the functional idiosyncratic component &(-), and finally
predicting Y,(:) based on (24). We also adopt the method of Gao et al. (2019) (denoted as GSY) to
predict p component series of Y(-) jointly, as well as the univariate prediction method of Aue et al.
(2015) (denoted as ANH) to predict each Yi;(-) separately.

To evaluate the predictive accuracy, we use the expanding window approach. The data is divided
into a training set and a test set consisting of the first ny and the last ny observations, respectively. For
any integer h > 0, we implement each fitting method on the training set, obtain h-step-ahead prediction
on the test data based on the fitted model, increase the training size by one and repeat this procedure
ng —h+ 1 times to compute the h-step-ahead mean absolute prediction error (MAPE) and mean squared
prediction error (MSPE) by MAPE(h) = {p x (no —h+1) x 96} ! 1 Dty th P |ﬁj (ur) — Y (up)|
and MSPE(h) = {p x (ng —h + 1) x 96} ! e D th P {ﬁ](uk) — Ytj(uk)}2, respectively. The
resulting MAPE and MSPE values are summarized in Table 2. Tt is obvious that FFM, SFFM and TNH
significantly outperform GSY and ANH in all settings. Among the three winners, our proposed FFM
provides the highest predictive accuracies for all cases, and, at the same time, SFFM is slightly inferior
possibly due to the bias introduced by the enforced sparsity. It is worth mentioning that our additional
experiments show that the predictive performance of FFM and SFFM can be further improved as 7
increases beyond 2, whereas the best predictive performance of TNH is already attained with only one

scalar factor as presented in Table 2.
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Table 2: MAPEs and MSPEs of FFM, SFFM and three competing methods for Japanese male and female
mortality rates. All entries have been multiplied by 10 for formatting reasons.

MAPE MSPE

h | FFM SFFM TNH GSY ANH | FFM SFFM TNH GSY ANH

Male 1| 1.33 1.36 1.33 1.75 1.42 0.48 0.49 0.49 084 0.59
2 | 1.37 1.43 1.37  1.88 1.47 0.51 0.52 0.52 092 0.63

3| 1.43 1.49 1.44 1.87  1.53 0.54 0.55 0.55 086 0.67

h | FFM SFFM TNH GSY ANH | FFM SFFM TNH GSY ANH

Female 1| 1.40 1.44 1.41 1.77  1.52 0.61 0.64 0.68 087 0.82
2| 145 1.51 1.45 1.84 1.56 0.66 0.69 0.68 094 0.99

3] 1.50 1.56 1.50 1.77  1.66 0.71 0.74 0.74  0.89 1.14

7 Discussion
It is noteworthy that Tavakoli et al. (2021) develops an alternative functional factor model in the form of

~

Yi()=AOX +&(), t=1,...,n, (24)

where X; = (Xy1,..., Xs#)T is a set of latent factor time series and A(-) = {gﬂ(-)}pr is the unknown
functional factor loading matrix. Both (1) and (24) generate useful factor models for high-dimensional
functional time series Y¢(-), but are designed to tackle rather different situations. Note one crucial question
in functional time series modelling is how to characterize the functional and time series structures. Our
factor model (1) with static factor loadings assumes that both structures are inherited from r common
functional time series factors X;(-) with reduced dimension from p x o to r x oo before subsequent
analysis. By comparison, factor model (24) treats 7 common factors in X, as F-dimensional vector time
series, which reduces the dimension from p x o to a much lower value 7, while the infinite-dimensional
functional structure is maintained in the functional factor loading matrix A(-).

We next discuss a possible way to apply our method to estimate model (24). Given an orthonormal
basis {¢;(-)};21, we expand the functional objects in (24) by Y;(-) = D377 &idi(-), flﬂ(-) =27 ajidi(-),

&5 (-) = 23721 €jii(+) and hence (24) can be rewritten as

F
Eji = Z a;ii Xg + €ji, 1=1,...,0. (25)

=1
To simplify notation, we assume the same truncated dimension M across j and stack the basis coefficients
{&iiti<j<pi<i<i, {amt1<j<pi<i<r and {egi}1<j<pi<i<r &ijis ajii and g for j = 1,...,pandi=1,..., M
to pM-dimensional vectors &,, a; and €, respectively. As a result, (25) can be equivalently represented as

the following factor model for pM-dimensional vector time series &;,...,§,:
& = AX, +&, (26)

where the factor loading matrix A = (aj,...,a7) € RPM*" and the noise vector € € RPM is decomposed
as the sum of €; and €, formed by truncation errors. Then we can integrate our suggested weight matrix
into the estimation of 7 and C(A) for the factor model (26). Hence the space spanned by columns of A(-)

can be recovered accordingly.
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We finally identify three important directions for future research. The first direction considers the
extension of (1) to other forms of functional factor models. One possible extension admits the following
representation

Yi(u) = A(w)Xi(u) + &i(u), wel,

which treats both the latent factor time series {X;(-)};_; and the factor loading matrix A(-) = {A;;(-)}pxr
as functional objects in the sense of the concurrent functional model (Ramsay and Silverman, 2005). On
the other hand, inspired from the functional linear regression with functional response, we can consider

another more generalized functional factor model in the form of
Yi(u) = j A (u,v)X(v)dv + e4(u), uel,
U

where A(-,-) = {Aj(-,-)}pxr is the operator-valued factor loading matrix with p x r entries of bivariate
functions. It is interesting to develop estimation procedures to fit the above two models. However,
compared to the fittings for models (1) and (24), this would pose more complicated challenges that
require further investigation.

Second, our estimation procedure is developed by assuming that the idiosyncratic component is a white
noise sequence. It is also interesting to estimate the factor model (1) following the framework in Bai and
Ng (2002) and Fan et al. (2013), where the idiosyncratic noise is allowed to exhibit serial correlations. Note
the covariance function 2;%) (u,v) or its integral over U? can not be used directly in the decomposition since
they are not nonnegative definite. Under the orthogonality of A and the uncorrelatedness between X;(-)
and &;(+), we can slightly modify our scheme and consider decomposing the nonnegative definite matrix
S Su Eéoy) (u, v)Eé%) (u,v)" dudv as the sum of the leading term A{f, ¥, > (u, v) =9 (u, v)" dudv}AT
and the remaining three terms of smaller orders. By imposing suitable eigenvalue conditions in a similar
spirit to those in Fan et al. (2013), the common factors are asymptotically identifiable and hence the factor
loading space can be recovered by carrying out an eigenanalysis for {,, {,, flg(f;) (u, v)f]g;) (u,v)" dudv.

Third, our estimation procedure is naturally adaptable to fit the factor model for high-dimensional
scalar time series (Lam and Yao, 2012). We also believe that, with more efforts, such procedure can be
extended to deal with the factor modelling for high-dimensional matrix-valued time series (Wang et al.,
2019) or even tensor-valued time series (Chen, Yang and Zhang, 2022). Despite the integration step being
no longer needed, we can still incorporate the suggested weight matrix to account for the heterogeneous
effect and improve the estimation efficiency.

These topics are beyond the scope of the current paper and will be pursued elsewhere.

Appendix

This appendix contains additional regularity conditions in Appendix A, all technical proofs in Appendix B,
auxiliary lemmas and their proofs in Appendix C and additional empirical results in Appendix D.

A Additional regularity conditions

To study theoretical properties in an ultra-high-dimensional regime, we need to rely on non-asymptotic

error bounds on fl(ylz)yij’s and will use the functional stability measure of {Y(:)}+ez (Guo and Qiao, 2023).

Before presenting regularity conditions, we first solidify some notation. We denote the p-fold Cartesian
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product of H by HP = H x --- x H. For w = (w1,...,wy)", 8 = (91,-..,9p)" € HP, we define (w,g) =

Z§:1 wjg;. For an integral operator K : HP — HP induced from the kernel function K = (Ki;)pxp,

K(w)(u) = (D50, w5 () Y B, ()
j=1 j=1

for w € HP. To simplify notation, we use K to denote both the kernel function and the operator. We then
define Hilbert space valued sub-Gaussian random variable, which corresponds to an infinite-dimensional

analog of the sub-Gaussian random vector in RP.

Definition 1. Let W (-) be a random variable in H and Xy : H — H be the covariance operator of

W (). Then W (-) is a sub-Gaussian process if there exists a constant a > 0 such that for all w € H,
Eexp{(w, W — E(W))}] < exp{2~"a%w, S (1))}.

Condition 7. (i) {Y:(-)}tez is a sequence of multivariate functional linear processes with sub-Gaussian
errors, ie., Yi(-) = 3,2 Bi(e;) for any ¢ € Z, where B; = (B ji)pxp with each By j, € H® H,

et = (et1,...,€tp)" € HP and the components in {&};c7 are independent mean-zero sub-Gaussian processes

satisfying Definition 1; (ii) The coefficient functions satisfy Y2, [ Biijls,c = O(1); (iii) The covariance

functions of {Etj(u)}§:1 satisfy max; §,, Cov{es;(u),e(u)}du = O(1).
Condition 8. For {Y¢(-)}sez, its spectral density function f, g = (27)~' >, , Z?S]Z)e_ike with the frequency
0 € [—m, 7] exists, and its functional stability measure defined in (A.1) is finite,

My =2m-  esssup Sw By o(w)) < 0, (A1)

O[] wek? (w, B4 (w))

where Hf = {w € H : (w, 22(,,%) (w))y € (0,00)}.

The multivariate functional linear process in Condition 7(i) generalizes the multivariate (or functional)
linear process to the functional (or multivariate) setting. Under this setting, the functional stability
measure M, in (A.1) can be expressed based on f, 4 and 2;%), both of which have explicit expressions
(Fang et al., 2022). See other discussions about M, in Guo and Qiao (2023). Under Conditions 7 and 8,
the rate in (19) can be implied from Lemma 4 in Appendix C. In general, we can relax Conditions 7(ii)
and (iii) by allowing both Y2 || B;]

p diverges, then the rate in (19) will depend on these two terms.

5,00 and max; §,, Cov{eyj(u), eqj(u)}du to grow at very slow rates as

B Proofs of main theoretical results

In addition to the notation defined in the main paper, we summarize here more notation to be used
throughout the appendix. For a matrix B = (Bjj)pxg, We denote its matrix ¢; norm by |B|; =
maxi<j<q >y |Bij|- For a matrix of bivariate functions K = (K;;(:,"))pxq with each K;; € H® H,

we define the functional version of the matrix ¢;-norm by |K|s1 = maxi<j<q 2 iy | Kijls-

B.1 Proof of Theorem 1

Recall that
= (k) =~ ok
M = Z J‘J‘ Eyy (’I,L, U)W(U)zyy (U, ’U)T dudv,
k=1
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ffﬁ](k u, V)W (0)2 ?(j;)( ,v)" dudwv,

where W Q{QTZJyy ,’U)Q}_lQT. Noting that \/7\\/'(11) is scale-invariant with respect to Q, we
assume here that the entries of Q = (Q4j)pxq are independent N (0, p~ 1) instead of N(0,1) to ensure that
the entries of QTig;) (v,v)Q are Op(1) instead of O, (p?). Provided that the maximum lag ko is fixed,
without loss of generality we only need to consider the case kg = 1. We organize our proof in the following
four steps.

Step 1. We will show that QTEL(;) (v,v)Q is positive definite with high probability uniformly over U,

i.e., there exists some positive constant C' > 0 such that, with probability tending to one,
inf Amin{ Q7S (1, 0)Q} > €. (B.1)
Observe that
Q'S (0,1)Q = Q'S0 (v,1)Q + Q" {ig(;) (v,0) - =W} Q.
Then we have
ey el -adersfe el <[Qr{E)) w0 -sHwatael . B2

where \;(B) is the k-th largest eigenvalue of a symmetric matrix B. By the Hanson-Wright inequality
and the union bound of probability, we obtain that there exists some constant ¢ > 0 such that for any
matrix B € RP*P and ¢ > 0,

IP’{ |Q"BQ _‘]f(Q BQ)HF > tqp_l} < 2¢% exp{—cmin(t?,1)}.
F

(0)

It follows from the concentration inequality above with B = X, (v,v) — 23(/2,) (v,v), the independence
~(0
between Q and Zéy) (v,v), the Lipschitz-continuity of Eé%) (v,v) and the uniform convergence rate in

Condition 5 that

(0) . (0)
sup | Q" {2, (0.0) = EH .0} Q| < Op{ap™ log(gn)} 2 sup |8, (v,0) — Z() (0, v) e |
veld vel

= Op{qlog(gn)n™"?}.

Combining the above result with (B.2) and the fact that
inf A, {Q"S() (v,0)Q} > nf A{Q"SY (v,0)Q} > ¢ > 0

under Condition 2 implies that (B.1) holds with high probability.
Step 2. The bounds of r largest eigenvalues of M (i.e., v1 = -+ > 1,) satisfy



with probability tending to one.
First, note that

< M| < f 125 (u, 0) Y| W (0) | dudv. (B.4)

Applying the fact |Q| =1+ op(1) and (B.1) from Step 1, we have that
= . &(0) -1
81615 W (v)]| < HQ||2[11)2£ )\min{QTZyy (v, U)Q}] <1+ o0p(1). (B.5)

It follows from Conditions 3-4, the decomposition (3) and Lemma 3 that

(100 duar

N

JJ (HAE%) (u,v)ATH + HAzg}Q (u, v)”)2 dudv

2" [[ 1200w 0))” dudo + A [[ 150 0, 0)dude}

= O{p%% +p'° Jf ||2§615>(u, v)H2 dudv}, (B.6)

N

where, by Condition 4,

Plsr

{ 1n<l?<xr Z Hzxe 7 ”S} {Hzags) H?Spo} = 0(17176)-

[ 120 ) ? dudo < 241

Combining (B.4)—(B.7) yields that v, < p?>~2{1 + 0,(1)}.
We next give a lower bound on v,. By Conditions 1, 3, Lemma 3 of Wang and Xi (1997) and (B.1)
from Step 1, we first obtain that

L=\ {Jf »0) (u,v) JATW (v JAZD (y, 0)T dudv}

> { j j 20 (u, 0)20 ()" dudv} inf A {ATW(0)A|
u,vel

H(ATQQTA) - inf A, ({Q7S,) (v.0)Q) )

b p1_5{1 +op(1)}

It follows from (B.5), (B.7), Lemma 3 and Condition 3 that

e W 20 (u, 0) W (0) (1) (u, 0) A" dudv

1/2 .
<{ [ 1m0 ol duo [ 150 0P dudo} sup I FAL = o561
VE
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By Weyl’s inequality, the decomposition (3) and Condition 3, v, can be bounded from below by

vy = /\r{ ﬂ =0 (u, ) W)Y (u,0)" dudv}
>\ (ATA) - JJ{EM u,v) A" + WU (4, v }W {Em u, v) AT + 2 (u, v ) dudv]
> AR - A ” D) (4, v) ATW (1 )Azg)(u,u)Tdudu}
+ 2||A 2, A jj S (u, V)W () S0 (u, v) AT dudv}
> Al - (I = 202) 2 p* {1 + 0p (1)}

Hence we obtain that v, = p?>~2% with high probability.
Step 3. We will show that
[M — M| = 0, (p*~*n="/2). (B.8)

Observe that

¢y e -~
X, (u, v)W(v)Eyy (u,v)" — 22(42) (u, v)W(v)Eély) (u,v)"
()
={Eyy (u,v) — E (u,v }W {2 , V) — Z%)(u,v)}T

+ {f] : (u,v) — 2 (u,v }W (1)(u v)"
+ 320 (u, U)W(v){zyy (u,v) — B (u,0)} .
By Q| =1+ 0p(1), Condition 5 and Markov’s inequality, we have that

ff H A(l 23(/11/) (u,v)} QHZdUdU < i i Hﬁz(iy)u yy ij HQH2 (p2n71).

i=1j=1

Furthermore, (B.6) and (B.7) imply that

Jf HEZ%) (u, U)QH2 dudv < Jf HEZ%) (u, v)H2 dudv | Q[? = p*~2{1 + 0,(1)}.

It follows from the above decomposition, two upper bound results, Cauchy—Schwartz inequality and
SUD ey )\maX({QTEyy( v)Q} 1) = Op(1) from Step 1 that (B.8) holds.

Step 4. Combining (B.3) and (B.8) from Steps 2 and 3 with Lemma 3 and the proof of Theorem 1
in Lam et al. (2011), we have that there exists K and an orthogonal matrix U such that K = KU and

|K - K| = Op(p’n"/?).
It then follows from the orthogonality of K that
D2 <C(K),C(f<)> - r_ltr<I - KKTf{f{T) — LK (I - KK")K)
- r—l{tr(KT(I ~ KKMK) — tr(K™(I - KKT)K }

- r‘ltr<KT(KKT KKK ) < HKT (KK" — KK")
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where the last term is further bounded by
| -K"(K - K)(K-K)"K+ (K-K)"(K-K)| <2[K-K[* = 0,(p*n"").

The result in Theorem 1 follows immediately, which completes the proof.
B.2 Proof of Theorem 2

Denote (vj,7;) and (2;,7;) by the eigenpairs of M and 1/\\/17 respectively. For simplicity we assume

'y]Tﬁj = 0 here. First note that for j =1,2,...,7,

V\V/hel"e L = (’A)’j: ’Yj)T(IVI — IT/I)’AYJ', I =(7; - »yj)Tl\\//[(fyj — ;). Is = (3, — ,yj)TM,yj’ I, = 7}(1(\/[ _
M)3;. Is =i M(F; - v;)-
Since |3, — ;| < [R~ K| = Op(pn~"/2), |M~ M| = Oy (p*~*n~"/2) and | M| = O, (p*~*), we have
that
Ll + 1Rl = 0p(n™),  |Is|+ 1| + I5| = Op(p*n'/2),

which means that |; — v;| = Op(p*~9n~Y/2) under pPn=1/2 = o(1).

To prove the result for j =r + 1,...,p, we introduce

ko
Wi (k) P
M= Z ff 2, (u,0)W(0)ZF) (u,v)" dudo.
=1
For each j =7+ 1,...,p, consider the following decomposition
vy =4;MA; = I + I7 + Is,

where Iy = 3T(M — M — M" + M);, Ir = 237 (M — M)(3; —7,), Is = (3, = v,)"M(3; — ;). Note
that, under Condition 5,

ko
TRV IRV g o (k) _
Ig] < [M-M-M"+M| £ ) |5, —ZW|5 = 0p(p*n").
k=1

By the similar arguments to prove Theorem 1, we can show that Hl\_/[—l\\//[H = O, (p*~°n~1/2) and 15—l =
O, (p’n~1?), which together imply that |I7| + |Is| = Op(p?n~"). Combining the above results yields that
0; = Op(p?n~1) for j =7 +1,...,p, which completes the proof of the first part.
We next turn to prove the second part. It follows from v; = p?>~2 for j = 1,...,r in (B.3) and
p’n~1/2 = o(1) that
75 — v

= Op(P? O~ 12p?2) = 0, (PP V%) = 0,(1), j=1,...,7
J
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As aresult, for j=1,...,r —1,

ﬁj+1 Vit I+v; +1(VJ+1 Vj-‘rl) Vi1 1+ Op(l)

vj vi 1+ (05— y) vi T+op(l)
Ury1 1 Ur+1 26-2 2 1 2, 1
— = — = Op(p pn = Oy (p“°n
Uy ve 1+ v N0y — 1) ol ) ol )

We complete the proof of the second part.
B.3 Proof of Lemma 1

Denote by A = (A;j)pxr. By the decomposition (3) and the fact (z +y)” < 27 + y” for z,y > 0 and
€ [0,1), we have that

T

S| S At ] £ s,

1<m,m/<r S
r
S Z HAlmExIZ)mm Ajm/ S + Z HA"mE:BIZ)mJHS
1I<mm/<r m=1

= > |AmAjn

1I<mm/<r

DI KA b
m=1
where, under Conditions 1 and 2, it holds that

= [[ Bty ) X (0} e
<B{IX sl 2} (X ?) = O(1), (B.9)

max [0 [5 <E{ X @aryml? } max E(H%H ) =0().

1<]<
For each j, summing over i and applying (B.9) under Condition 6 with fixed L and r, we obtain that

gfi{pz szyst S8 2 Z {|A’mA]m " Hzm mm! HS}

1<m,m/<ri=1

i, 3 5 {1115}

2
<cl<p>{r cmax Ay TS5 G e max 900515} < ep).

1<m m/<r 1<m<r

By the similar arguments above and Condition 4/,

1123532||2yw||s < jmx ). Z{\AzmAJml =8 | }+1n<13<>302 Z{|Am| DI

1<mm/<r j=1 m=1j=1
<alp)r’ max A" 1) G+ ca(p)r Joax | Al
1<mm/<r 1<m<r

< cai(p) + e2(p).

28



Hence we complete the proof of this lemma.
B.4 Proof of Theorem 3

By Theorem 2, | — v;| = Op(By) for j = 1,...,r and || = Op(B,) for j = 7+ 1,...,p, where
B, = p>n~Y2 and B, = p*n~!. Under the event €2, = {v; = p?~20 5 =1,...,r}, it follows from (B.3)
that P(€2,,) — 1. We next verify the following three conditions (i), (ii) and (iii).

. _ I - O 2,—1
(i). When 9,p=2+20 — 0, V;/rfl = ;2;:127; — 0.

.. p2—Op—1/2
(11).6—’;x71022 = pdn~12 5 0.

Opvr _ In 2-26 —2—-20
(iii). B—gA(pi_l)Q = 9,n2p — 0.

Under (i), (ii) and (iii), we apply Proposition 1 of Han et al. (2022) and obtain P(# = r|Q,,) — 1 with 7
defined in (17). Noting that P(# # r) < P(# # r|Q,) +P(QS) — 0, we complete the proof of this theorem.

B.5 Proof of Theorem 4

We organize our proof in the following three steps.
Step 1. With the choice of ;, = M, (logp/n)*/?, we will show that

~ (k 1 5T
TS} = =0, = Op{cmpw;”(w) 2 }

n

1T S} = =0 5. = O [{cl<p) + cz@)}Mi_T(bg}?)lﬂ |

n

By the definition of functional matrix ¢; norm | - [|s,; and the triangle inequality,

N0
T80} = 28 s < 1Tl =0} = 205, + 1 Td)} = T s,

For the first term, it follows from Lemma 1 that

|70 {5} = =5, = max Z IS0 IsI{ISW s < e}

1<j<p
(B.11)

< nk - max Z szyJ] ‘S ~ 77 ( )

]_<]<p

For the second term, observe that

H’];lk{zyy} nk{z }HS 1= max szy,z]I{H yz]HS = 77/6} yz]I{HEyy,z] |5 = nk}HS

s = 77k}

p
< max Z S0 = W TS s = me, 58

s < TIk}

‘SI{HEyy,z] |S Z k> szva

+ 11232{ Z szym
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=11+ I, + Is.

— (k
Denote Z = 123}2(;; ||Eyy i~ y”HS We first bound I;. By Lemma 1,

- Imax I{szy,UHS =Z Mk, ”Eyy 17 ”S = nk}

I) < max szyﬂj yy,inS 1<j<p =

1<1,5<p

< Z- max I{|\zwus/nk}<an Te1(p)-

1<]<p

We next bound Is. By the triangle inequality and Lemma 1,
P ®
< 125%p 2 yy ij Eyy,@]HSI{HEyy ijlls = 1, szy,wus <k}

+ max Z szyﬂjHS‘[{HEyy ij |s < Uk}

1<]<

s JL%Z IS0 = Sl sT{IE s Is = mis IS ls < mi} + 1k ~"ea ()

=1 + 77k_ Cl(p)'

|ls = t}. By the triangle inequality

We take certain ¢ € (0,1). Let N(¢) = max > ;[ sk iy
i<j<p yy i~ Dy

and Lemma 1,

Iy < max Z |80 — =W I{IEE) s = e, 120 lls < 0}

1<]<p
(k) (k)
+ 1@?51, Z szy i~ Syyij |SI{HEyy,ZJHS s O < 2y, 5lls < M
(k) o se(®)
< Z 1111]&2{17 I{szy 7,] Eyy ’L] ” 2 (1 - H)Uk} + Z : 1121;2(271221 I{|‘2yy7z]HS > ‘977k}

<Z-N{(1 =0} + Z(0nk) "ci(p).
The above bounds imply that

Iy £ Z- N{(1 = 0)m} +np "ea(p) + Z(0m) " er(p)-
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We finally bound I3. By the triangle inequality and Lemma 1,

)

(k)
yyij Eyy,inSI{szy,iJ s <7k HEyy,inS = 77k}

max HE
1<] <p

< Nk, szy z_jHS = nk’}

+ max 2 IS8 I{IEW,

1<J<p

< Z - max ZI{HE ywHS > i} +7]k [max ZI{HE yz]”S > 0k

1<j<p
< Zng e (p) +yTea(p)-
Combining the bounds for I, Is and I3 yields that

[T 480} - T A=W 5.1 SZn;er(p) +my e (p)
+ Z(0m) Ter(p) + Z - N{(1 — )i }.

(B.12)

By Lemma 4 and the choice of 1 = c3 M, (log p/n)"? = o(1) for sufficiently large c3,

]P’(N{(l — O} > 0) = ( max szy ij Eyy ijls = (1= 9)%)

I<i,j<p

<cp exp{—02(1 — 9)2c§ log p} — 0.

Hence N { (1— TIk} = 0p(1). Applying Lemma 4 again, we obtain that Z = Op(n;), which together with
(B.11) and (B.12) implies that

-k logp\ 5"
7o 800 = 28, = Op {artpiagy(2E2) *

n

By the similar procedure, the second result of (B.10) can be derived and the proof is omitted.
Step 2. We will show that

|1\”41\V4|:op[c1 Herp) + ealp)} il (152) ] (B.13)

n

Note that
IV - ] =0, (\ [[ 1785 ) = 2 00| W@ [T 43w 0) — BB 0] duae|
] 1S w ) - =8 w0 W S o dudv\).
By Lemma 5 and (B.5), (B.10), we obtain that

)H [Ton (S} ) — 548 (u v)] ) [T S0} (1, 0) — =) (u,v)]" dudo]

A)
St

}—2

Mk yy HSoo{l"'Op 1)}

(
vy
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n

Op {Cl {01 + C2(p)}M§(1_T) (logp>17} |

1 [mié’;’}w, 0~ zgy ( v>]vAv<v>zg;> (1) o]

1/2
— =05 | 15l

n

1/2
<[I7. 801 -2 w S s | {1+ 0p(1)}-

For the second term above, it follows that

=5 HE

s < alp),

yyﬂ] < fEfLX Z ”Eyy,w |5H yy,w
where 7 € (0,1) and ||Z‘
we can show that |X ()
derivation in Section B.3 under Conditions 1, 2, 6 with fixed r and L that

yy ij |s is uniformly bounded under Condition 7. Following the similar procedure,

|50 < c1(p) + ca(p). For the truly sparse case with 7 = 0, it follows from the

k) k)
maxZIIEyWHs wae Y S Al s + max 3 S Al 11

1<j<p 1<J<p1<'rn m/<7”Z 1 m=1i=1
< r?Lei(p) + rei(p) = e (p).

Similarly, under Condition 4’, we can show that

max HEyy iils < r2Ley (p) + rLea(p) = c1(p) + ca(p).

1<7,<p

The above results together with (B.10) from Step 1 implies (B.13).
Step 3. Denote € = D(C(K),C(R)). By the fact that ¢ = (2r) }|KK™ — IA{IA{TH% and Corollary 4.1
in Vu and Lei (2013), we obtain that

2rpé® < [(M — M, KK™ — KK")|

~ — KK'"-KK"
<M—M ~ o~ >"V2Téa

< )
IKKT™ — KK"|p

which further implies that

vpé < (2r) 712
here A — _KKT-KKT 4 H&H -1
where A = RET KK, an r=1
Note that A is a matrix with rank at most 2r and the associated singular values 61 = 69 = -+ >

69, = 0. Then by the von-Neumann’s trace inequality, we obtain that

2r
Up€ < (2r)_1/2||ﬁ - 1\\//IH Z i
=1

2r
< (2r) V3 M - M|, | 27 Z 67 = [M-M||Alr = |M - M]|.
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By (B.13) from Step 2, we complete the proof of Theorem 4.

C Auxiliary lemmas

In this section, we present some auxiliary lemmas that are used in the proofs of theoretical results in

Sections 3 and 4. The first lemma is a direct corollary of Hahn-Banach theorem.

Lemma 2. For a function f : D — B, where D € RP is compact set and B is Banach space with norm
|1l then || §p f(z)dz| < §p | f(2)]da-

The second lemma specifies the order of =W (u,v).

Lemma 3. Suppose that Condition 1 holds, then for k = 1,... ko, § 1= (u,v)|2 dudv = O(1) and
| 552 (u,v) dudv] = O(1).

Proof of Lemma 3. By Cauchy-Schwartz inequality, Condition 1 and Fubini Theorem,
[ 902 dudo < f JE{X )X ()"} [
2
_ Z Z f f [E{X (1 01 (1) X1 (v)}]? dudo

1=1j5=1

<{ZE(HX(t+k)iH }{Z (117 } o).

On the other hand, by Lemma 2, we have that

Uf (u,v) dudv ff H (u,v) ‘dudv) < Vol(Z/{Z) JJ HE&@(U,’U)‘FdUd’U = 0(1),

where Vol(-) represents the volume. O

The third lemma provides the non-asymptotic error bound on E;y)” (u,v).

Lemma 4. Suppose that Conditions 7 and 8 hold. Then there exists some positive constants c1 and co
such that for k =1,..., kg and t > 0,

P <11<1112ju§p szy i yy ij HS > M t> c1p exp{ — conmin(t,t )}

If n = p?logp with p > \/502_1/2, then

log p
n

max HE(k

(k)
I<ij<p | YY1 EyyﬂjHS < pMy

holds with probability greater than 1 — clp2_02p2.

Proof of Lemma 4. This lemma follows directly from Guo and Qiao (2023); Fang et al. (2022) and the

1/2

choice of t = p(logp/n)*/# < 1, and hence the proof is omitted here. O
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The lemma below generalizes the following inequality between matrix norms
|E[? < |E|x|E[1 for any EeRPX? (C.1)
to the functional domain and is used in the proof of Theorem 4.

Lemma 5. For S(u,v) = {S;j(u,v)}pxp and T(u,v) = {T;;j(u,v)}pxp with each S;j and T;; € HQ H, it

holds that U 12
| [[ 80T (0,0) dude] < (181.el8ls) (Tl Ths)

Proof of Lemma 5. Notice that

P p
Su,vTu,deude = max jj Sik(u, v) T (u, v) dudv
|| st orpu, ) dud 1| IEHURLAR
p P
< max S; T, C.2
e 33 3} I5ulslTals (c2)
P P
<{ max kZ ITyls H kaZ ISils } = I1Sls.11Tls.q

By the similar arguments, we obtain that

H JfS(u, v)T(u,v)" dudquOO < |S|ls,c0lT]s,1- (C.3)

Lemma 5 follows immediately from (C.2), (C.3) and (C.1) with the choice of E = {{S(u,v)T(u,v)" dudv.
O

D Additional empirical results

Figure D.1 provides spatial heatmaps of varimax-rotated loading matrix and sparse loading matrices with
different sparsity levels for Japanese males.
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