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Abstract

We discuss the advantages and disadvantages of a functional approach to clustering of

spatial-temporal data. This leads us to suggest an alternative methodology which allows

cluster memberships to vary over both temporal and spacial domains. One advantage of

our approach is that it can easily incorporate time-varying covariates. A fitting algorithm

is developed and we provide a simple simulation example to illustrate the performance of

our method.

1 Introduction

We would like to congratulate the authors on an interesting and stimulating paper on spatially

correlated clustering of functional data. Reading their work led us to consider the tradeoffs of

the functional paradigm in relation to other strategies. In this discussion we summarize the

functional clustering method and suggest an alternative approach to the problem.

The situation that is under consideration involves observed data, Yij = Y (sj , ti), which is

a realization of a spatial-temporal process where S = {s1, · · · , sn} is the collection of spatial

locations and T = {t1, . . . , tm} is the collection of time points. Clustering could be performed

directly on the n × m observations. Instead the authors have elected to model the data as

functional in the time dimension which takes the view that the Yij ’s are measurements of n

spatially interdependent curves {Yj(t), j = 1, . . . , n}. Under this paradigm the data consists

of n functional observations, each with a unique cluster membership; thus a cluster is defined

as a collection of locations with similar temporal patterns. The goal is to divide the spatial

domain into clusters by extracting information from the shapes of the underlying curves.
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Clustering of functional data has been previously explored in a number of articles. How-

ever, most previous approaches have assumed that cluster memberships for each function are

independent. The key contribution that the authors make is to incorporate a spatial correlation

structure among the cluster memberships, Zj = {Zjc : c ∈ C}, which are assumed to follow a

multinomial distribution, where C is an index set and Zjc = I(location sj is from cluster c).

In particular the authors propose the following Gibbs distribution to model Z = {Zj : j =

1, . . . , n} as coming from a Markov random field (MRF),

P (Zjc = 1|Z∂j) =
1

Nj(θ)
exp

θ∑
i∈∂j

Zij

 , (1)

where ∂j denotes the spatial neighbors of sj . This approach has the potential to improve the

clustering accuracy by exploiting the local dependency among the cluster memberships.

In Section 2 we discuss some possible limitations of the functional approach and consider

an alternative method where cluster membership can vary over both temporal and spatial

domains. Our method has the advantage of allowing time-varying covariates to be included

in the clustering process. Section 3 provides details on a fitting algorithm and some simple

simulation results to illustrate the approach. We conclude in Section 4 with a brief discussion.

2 Temporal covariates and a spatial-temporal MRF

2.1 Some Limitations of the Functional Approach

One limitation of model (1) is that it does not allow for a spatial covariate, xj , to be incor-

porated into the clustering approach. Conceptually, one could extend (1) to include xj using

the following model,

P
(
Zjc = 1|Z∂j , xj

)
=

1

Nj(θ1, θ2c)
exp

θ1∑
l∈∂j

Zlc + θ2cxj

 , (2)

where θ2c is a coefficient describing the effect of xj on cluster c. Using model (2), a value of θ2c

that is large relative to the other clusters suggests that increasing values of xj are associated

with a higher probability of the jth curve belonging to cluster c. Similarly, the ratio of θ1

and θ2c controls the relative contributions of the spatial neighborhood versus the covariate in

determining the cluster membership.
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A more significant limitation of both models (1) and (2) is that they are unable to quantify

the effects of time-varying covariates, or interventions on clustering. Time-varying covariates

can be of great interest in some important applications. For example, a financial company

may be interested in investigating whether a sequence of marketing strategies over time have

significant effects on improving the profits of local stores in an area. Alternatively, in the

context of the author’s data, the local government may wish to know whether a new initiative

over a given time period has effectively resulted in desirable temporal trends such as improved

service quality in a community. Time-varying covariates cannot enter the MRF model because

the cluster membership of location s remains fixed at all time points. Next we shall consider an

alternative formulation of the clustering problem which can be used to address this limitation.

2.2 An Alternative Clustering Method

In some applications it may be desirable to characterize the cluster membership by jointly

considering several spatial-temporal factors. For instance, in the context of the current paper

we may wish to form a single clustering based on the accessibility to financial, medical, and

educational services. Hence, we propose to extend the method in two directions, to model a

collection of factors {1, · · · ,K} and to allow the cluster memberships to vary in relation to

both sj and ti, instead of only sj as assumed in the functional approach.

In our formulation we wish to assign the cluster memberships according to a vector Yij =

{Yijk : k = 1, · · · ,K} which is observed at location sj and time ti. Let Z = {Zij : i =

1, . . . ,m; j = 1, . . . , n} denote the cluster memberships where Zij = {Zijc : c = 1, · · · , C}

is assumed to follow a multinomial distribution with Zijc = I(point (sj , ti) is from cluster c).

Then under this formulation, the conditional distribution of observations Yij given Zij is

Yij |(Zijc = 1) = µ0 + µc + εijc, (3)

where µ0 is the global effect, µc is the cluster effect with constraint
∑C

c=1µc = 0 and {εijc :

i = 1, · · · ,m; j = 1, · · · , n} are independent identically distributed (i.i.d.) multivariate normal

variables with mean zero and variance-covariance matrix Σc.

Let ∂ij denote the prescribed neighbors of point (sj , ti) in the spatial-temporal domain.

At the initial time point, t1, we have ∂1j = {(sl, t1) : l ∈ ∂j}, where ∂j is the previously
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prescribed neighbors of location sj in the spatial domain. At later time points, ti, we have

∂ij = {(sl, ti) : l ∈ ∂j}∪ {(sj , ti−1)}; hence the state of sj will be influenced by both its spatial

neighbors at time ti as well as its previous state at time ti−1. Generalizing the MRF approach

we model the cluster memberships using the following spatial-temporal Markov random field

(stMRF),

P
(
Zijc = 1|Z∂ij

)
=

1

Nij(θ1, θ2)
exp

θ1∑
l∈∂j

Zilc + θ2Z(i−1)jc

 , (4)

where Z0jc = 0 for all j and c. Compared to the MRF defined by (1), the stMRF allows the

cluster memberships to vary over both space and time but encourages Zij ’s that are adjacent

in the spatial-temporal domain to have similar values. The parameters θ1 and θ2 control the

level of spatial and temporal correlations, respectively. Large values of θ2 will generate more

stability over time with only minor changes in cluster membership while smaller values will

allow faster updating of cluster memberships.

A significant advantage of the proposed stMRF is that it can be easily extended to handle

time-varying covariates. For example, let xij denote a covariate of interest at location sj and

time ti, then model (4) can be extended to,

P
(
Zijc = 1|Z∂ij , xij

)
=

1

Nij(θ1, θ2, θ3c)
exp

θ1∑
l∈∂j

Zilc + θ2Z(i−1)jc + θ3cxij

 . (5)

Suppose that c∗ is the best state and xij > 0 is an intervention at (sj , ti). Then, in a similar

fashion to model (2), a value of θ3c∗ that is large relative to the other clusters suggests an

effective intervention with increasing values of xij associated with higher probabilities of sj

belonging to cluster c∗ at time ti. Over time, locations with positive xij will drift towards

cluster c∗ with the rate of change determined by the size of θ3c∗ . In applications where we

expect that it takes some time to observe the effect of an intervention, we may replace xij by

a lagged value such as x(i−1)j .

The clustering results based on the stMRF can be summarized and interpreted in different

ways. We may recover interesting temporal patterns by investigating the underlying dynamic

process Zj = {Zij : i = 1, . . . ,m} at location sj . We can also identify interesting spatial pat-

terns by investigating the process Zi = {Zij : j = 1, . . . , n} at time point ti. A 3-dimensional

graphical representation of the cluster membership could be particularly useful to reveal the
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overall spatial-temporal trend.

3 Implementation

In this section we suggest an algorithm for fitting our model and illustrate the approach on a

simple simulated data set.

3.1 Computational Algorithm

In contrast with the model considered by the authors which allows spatial dependence among

Yij |Zij , we have limited our development to the case which assumes conditional indepen-

dence of Yij |Zij . Denote by ΘY = (µ0,µ1, · · · ,µC ,Σ1, · · · ,ΣC) the collection of observation

distribution parameters and ΘZ = (θ1, θ2, θ31, · · · , θ3C) the collection of Gibbs distribution

parameters. Let z∗ be the current estimates of Z and y be the observed values of Y. Then

we propose the following algorithm which iteratively updates the estimates of ΘY , ΘZ and Z

for the spatial-temporal model defined by (3) and (5).

1. Obtain an initial estimate for Z using a standard clustering approach which assumes

independent Yij .

2. Obtain Θ̂Y by maximizing the conditional likelihood

f(y; ΘY |z∗) =
n∏

i=1

m∏
j=1

f(yij ; ΘY |z∗ij). (6)

3. Obtain Θ̂Z which maximizes the following log pseudo-likelihood:

logPL(z∗; ΘZ) =

n∑
i=1

m∑
j=1

logP (Zij = z∗ij |z∗∂ij , xij), (7)

where P (Zij = z∗ij |z∗∂ij , xij) is defined in (5).

4. Update the estimate of Z based on current Θ̂Z and Θ̂Y using the iterative conditional

modes (ICM) algorithm (Besag, 1986). Specifically, we obtain ẑij by maximizing

P
(
Zij = zij |y, z∗ \ {z∗ij}, xij

)
∝ f(yij |zij)P (Zij = z∗ij |z∗∂ij , xij) (8)

for each spatial-temporal point to complete one iteration of the ICM algorithm.
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5. Go to step 2 until convergence.

Each step in this algorithm can be implemented using standard methods. In particular,

the maximization of (6) in step 2 is simple because we can use the standard Gaussian MLE

estimates for µc and Σc, computed from the observations currently assigned to cluster c. In

step 3 the parameters in the pseudo-likelihood function (7) can be computed using a baseline-

category Logit model (see, for example, pp. 267 in Agresti, 2002). Finally, both right hand

terms in step 4. have closed form expressions so (8) can be quickly maximized.

3.2 Simulation Results

To illustrate our approach we simulated data from the stMRF model on a 50 by 50 spatial grid

at 10 time points with θ1 = θ2 = 1. We assumed three clusters; red, orange and white. The

Z’s were produced by first randomly generating cluster memberships at time point one, then

iteratively resampling Z1j at each location according to (5), conditional on the other cluster

memberships. We repeated this for a reasonable burn in period until Z reached an equilibrium.

The cluster memberships for the second and remaining time periods were then generated using

a similar approach except that the cluster assignment from the previous period was also used.

A time varying covariate, xij , was also included. To test out the covariate’s effect over time

we chose xij = 0 at time points 1 through 4 and then set xij = 1, over a subset of the spatial

locations, for the remaining time periods. We used θ3red = 1 and θ3orange = θ3white = 0 so the

covariate had the effect of increasing the probability of membership in the red cluster. Once

all the Zij ’s were computed one dimensional Yij ’s were generated according to model (3).

The resulting cluster memberships for time periods 1, 5 and 10 are shown in the top row

of Figure 1. The black squares in periods 5 and 10 illustrate the location where xij = 1 and

demonstrate the tendency for these regions to end up in the red cluster. The plots illustrate

a fairly high level of spatial correlation, especially in the later time periods. The stMRF

model also demonstrates a clear evolution of cluster assignments over time. We use a standard

package, “mritc” (Feng and Tierney, 2011) in R to fit a close approximation to our model.

The main differences are that the package assumes θ1 = θ2 and it does not allow for the

inclusion of extra covariates. The predicted clusters for periods 1, 5 and 10 using mritc are

6



10 20 30 40 50

10
20

30
40

50
t=1

x

y

10 20 30 40 50
10

20
30

40
50

t=5

x

y

10 20 30 40 50

10
20

30
40

50

t=10

x

y

10 20 30 40 50

10
20

30
40

50

t=1

x

y

10 20 30 40 50

10
20

30
40

50

t=5

x

y

10 20 30 40 50

10
20

30
40

50

t=10

x

y

Figure 1: Top Row: Simulated cluster assignments from the stMRF model at three of ten time

points. Bottom Row: Estimate cluster assignments from the mritc function at the same time

points.

shown in the bottom row of Figure 1. Despite the fact that the model we are fitting does not

incorporate the covariate information its effect clearly shows through and the method is still

able to accurately identify the true clusters with an error rate of only 0.131.

4 Summary

The functional clustering approach views the realization of a spatial-temporal process as n spa-

tially interdependent curves with cluster membership primarily characterized by the shapes of

the curves. We propose an alternative formulation which models the spatial-temporal process

7



using a spatial-temporal Markov random field model which allows the cluster memberships to

vary in both spatial and temporal dimensions.

What are the tradeoffs between the two methods? The functional approach implicitly

assumes that the process Yij varies smoothly over time and that the resulting curves can be

grouped into a small number of similar clusters. For data of this type one might expect the

functional approach to model the data more accurately than the stMRF method. Alternatively,

our approach potentially provides some added flexibility in situations where there may be many

different patterns of evolution in the temporal domain. The stMRF can potentially still model

such data using a small number of clusters because cluster membership is allowed to vary over

time. In addition the new approach makes it easier to examine the impact of time varying

covariates on cluster assignment. On any given problem there are likely to be benefits from

examining the data using both the functional and non-functional formulations.
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