Imperfect Information and Aggregate Supply

N. Gregory Mankiw (Harvard University)
Ricardo Reis (Columbia University)
9th of October, 2009, Washington DC.

1. Foundations

General equilibrium base:

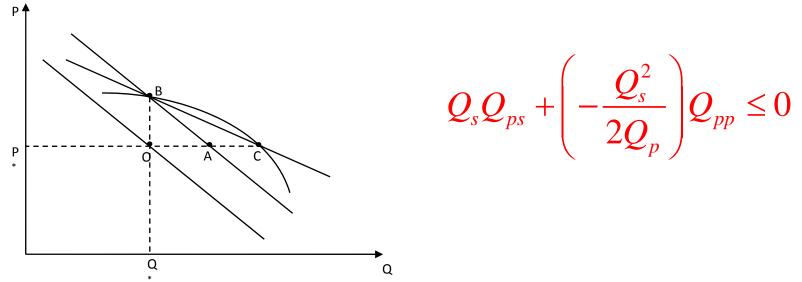
Representative consumer, continuum of firms, differentiated varieties of labor and goods, Dixit-Stiglitz and monopolistic competition, consumers have full information, individual firms do not.

Equilibrium conditions:

$$p_{it} = \hat{E}_{it} \left[p_t + \mu + \alpha (y_t - a_{it}) \right],$$

$$n_t = p_t + y_t,$$

$$p_t = \int_0^1 p_{it} di.$$
red-form parameter: $\alpha = \psi + 1 = 0.12$ 0.4


Key reduced-form parameter: $\alpha = \frac{\psi + 1}{\psi + \gamma} \in (0.12, 0.4)$

Full information:

$$y_t^F = a_t - \mu / \alpha, \quad p_t^F = n_t - a_t + \mu / \alpha.$$

What to plan and menu costs

What to plan? Choose plans for prices or output, ex ante to maximize expected profits *X(.)*. Reis (2006) prices if:

Menu costs. If everyone has full information, will a marginal firm facing information costs k wish to get information? Akerlof Yellen (1985), Mankiw (1985) Numerically: k \geq 0.63%

Real rigidities, strategic complementarities

Real rigidities: If everyone doesn't have information on shocks, will marginal firm want to pay information cost k? Ball and Romer (1990) $-0.5X_{pp}(.)\alpha^2 n_t^2 \le k$

Strategic complementarities: If pricing decision strategic complements, better-informed firms keep their prices in line with less-informed firms. Cooper and John (1988) note that firm's best response function

$$p_{it} = \hat{E}_{it} \left[(1 - \alpha) p_t + \alpha n_t - \alpha a_{it} \right]$$

Key condition $\alpha < 1$.

Same parameter, but different concepts!

2. Two paradigms in imperfect information

Delayed information model

• Only a share λ of firms have up-to-date information, others have 1-period old information

Partial information model

 Each firm observes only a private noisy signal with relative precision T of current shocks

In both need to solve one equation:

$$p_t = \int_{1}^{0} \hat{E}_{it} \left[\alpha n_t + (1 - \alpha) p_t \right] di$$

Delayed: $p_t = \lambda [\alpha n_t + (1 - \alpha) p_t] + (1 - \lambda) E_{t-1} [\alpha n_t + (1 - \alpha) p_t]$

Partial:
$$p_t = \alpha \sum_{j=1}^{\infty} (1-\alpha)^{j-1} \underbrace{\overline{E}_t \overline{E}_t \dots \overline{E}_t}_{j \text{ times}} (n_t), \text{ with } \overline{E}_t (.) = \int \hat{E}_{it} (.) di$$

Common predictions: delayed information

Key tool: innovations (Wold) representation

 $p_{t} - E_{t-1}(p_{t}) = \lambda \left\{ \alpha \left[n_{t} - E_{t-1}(n_{t}) \right] + (1 - \alpha) \left[p_{t} - E_{t-1}(p_{t}) \right] \right\} + \alpha E_{t-1}(n_{t} - p_{t})$

Solution:

$$p_{t} = \left[\frac{\alpha\lambda}{1-(1-\alpha)\lambda}\right] (n_{t}-n_{t-1}) + n_{t-1},$$
$$y_{t} = \left[1-\frac{\alpha\lambda}{1-(1-\alpha)\lambda}\right] (n_{t}-n_{t-1}).$$

Prediction:

Aggregate supply is non-vertical and it is flatter if higher information or real rigidities.

Common predictions: partial information

Key tool: signal-extraction formula

$$\hat{E}_{it}(n_t) = E_t \left(n_t | x_{it} = n_t + \varepsilon_{it} \right) = E_{t-1}(n_t) + \left(\frac{\tau}{1+\tau} \right) \left[x_{it} - E_{t-1}(n_t) \right]$$

Solution:

$$p_{t} = \left(\frac{\alpha\tau}{1+\alpha\tau}\right) \left(n_{t} - n_{t-1}\right) + n_{t-1}$$
$$y_{t} = \left(1 - \frac{\alpha\tau}{1+\alpha\tau}\right) \left(n_{t} - n_{t-1}\right)$$

Prediction:

Aggregate supply is non-vertical and it is flatter if higher information or real rigidities.

Common predictions: persistence

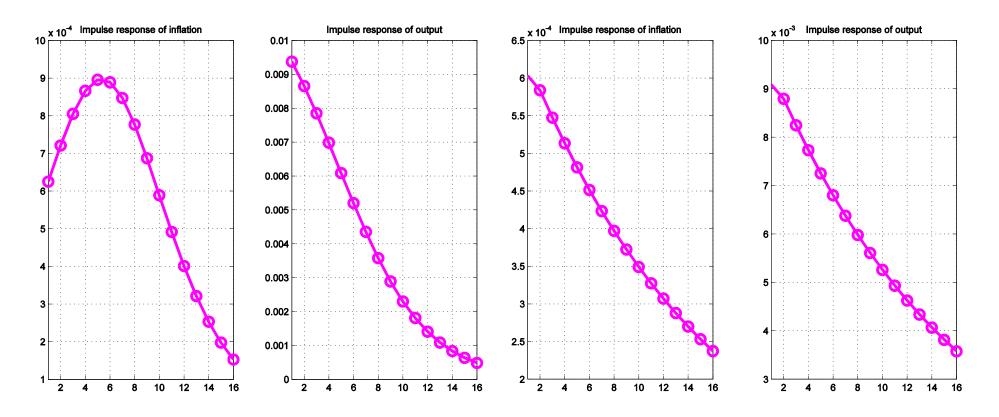
Sticky information (Mankiw, Reis, 2002)

- Every period, randomly-drawn fraction λ receives new information
- Tool: method of undetermined coefficients

Imperfect common knowledge (Woodford, 2002)

- Every period, each firm receives a new private signal of precision τ
- Tool: Kalman filter

Prediction:


Persistent effects of aggregate-demand shocks

Common predictions: persistence

Models are not observationally equivalent

sticky information

imperfect common knowledge

Common predictions: two sources of shocks

Aggregate shocks to nominal demand and idiosyncratic shocks to productivity. Two approaches

- 1) Mankiw-Reis (2006)
- Only one source of information, one λ and τ
- Micro-founded: optimal for single signal on $n_t a_{it}$.

2) Mackowiack Wiederholt (2008), Carroll Slacaleck (2007).

- Two signals, so have λ^n , λ^a , τ^n , τ^a .
- For slope of aggregate supply, it is λ^n , τ^n that matters.
- Interesting: can have λ^a >λⁿ, τ^a >τⁿ matching frequent price changes and Klenow-Willis (2007) findings.

3. Novel insights: disagreement and surveys

In delayed information, there is endogenous disagreement

- Different groups have different information and this evolves endogenously as shocks hit economy.
- With partial information, exogenous so uninteresting.

Use surveys of inflation expectations to test predictions

- Impulse responses of disagreement to shocks.
- Carroll (2003), Mankiw Reis Wolfers (2004), Branch (2007), Coibion Gorodnichenko (2008), Curtin, (2009)
- Micro data supports sticky information.

Hope that will discipline imperfect-information models.

Novel insights: transparency

Partial information, endogenous weight on multiple signals

- In addition to private signal, there is a public signal that has an upper limit on its precision.
- With delayed information, exogenous so uninteresting.

Effects of public noise

- New shock common to all (Lorenzoni, 2008a, b)
- Better signal makes firms rely less on private signals, and strategic complementarity causes externality.
- Morris and Shin (2002), Svensson (2006), Roca (2006), Amador Weill (2008) Angeletos Pavan (2007)

Hope that can be measurable, so testable and policy-useful

4. Micro-foundations: inattentiveness

Inattentiveness model (Reis, 2006) for delayed information

$$V_{i}(n_{t}) = \max_{d} E_{t} \left\{ \sum_{s=0}^{d-1} \beta^{t} \max_{p_{i,t+s}} \left[X_{i}(p_{i,t+s},.) \right] - \beta^{d} k + \beta^{d} V_{i}(n_{t+d}) \right\}$$

Solution:

- Numerically, it is unconventional, but easy.
- Closed-form: linear-quadratic, log-isoelastic, exp-normal.
- Bifurcation theory for general theorems.

Predictions:

- Increases with k, falls with variance of shocks
- Second-order costs lead to first-order inattentiveness
- Exponential distribution can be justified (strict conditions)

Micro-foundations: rational inattention

Rational inattention model (Sims, 2003), partial information

$$\max_{f(n_t ||x_{it})} \left[\max_{p_{it}} X(p_{it}, n_t) \right] \quad \text{s.t.:} \ H(n_t) - H(n_t || x_{it}) \le k.$$

Solution:

- Constrain set of distributions—normal maps k to T.
- Closed-form: linear-quadratic.
- Numerically: open challenge.

Way forward:

• Merge finite capacity (multiple signals) with intertemporal choice (intertemporal substitution)

5. The research frontier

- a) Merging incomplete information with sticky prices
- Sticky information and Calvo: Bonomo Carvalho (2004, 2008), Dupor Kitamura Tsuruga (2008)
- Imperfect common knowledge and Calvo: Nimark (2008), Angeletos La'O (2009).
- Sticky information and Ss: Knotek (2006), Gorodnichenko (2008)
- Endogenize both incomplete information and sticky prices: Woodford (2009).

The research frontier

b) Optimal policy

- Sticky information: Ball Mankiw Reis (2005) Reis (2009)
- Inattentiveness: Branch et al (2008)
- Partial information: Adam (2007, 2009), Lorenzoni (2008), Angeletos Pavan (2007, 2009)

c) Other choices beyond prices

- Workers and wages: Koenig (2004)
- Consumption: Reis (2007), Luo (2008), Tutino (2009)
- Physical investment: Angeleots Pavan (2007)
- Portfolio choice: Abel, Eberly, Panageas (2007, 2008)
- Exchange rates: Bachetta van Wincoop (2006, 2009), Crucini, Shintani Tsuruga (2008)

The research frontier

d) Strategic interactions in information adjustment

- Carvalho (2007) and Carvalho Schwartzman (2008) using sticky information.
- Hellwig Veldkamp (2008) on inattentiveness.
- Missing on partial information or rational inattention.

e) Medium-scale DSGEs and computational methods

- Sticky information: Mankiw Reis (2006, 2007) and Reis (2009a, 2009b), Meyer-Gohde (2009).
- Rational Inattention: Mackowiack and Widerholt (2009).
- Missing both inattentiveness and partial information.