The role of automatic stabilizers in the U.S. business cycle

Alisdair McKay¹ Ricardo Reis²

¹Boston University

²Columbia University

November 2012

Fiscal automatic stabilizers

- They are rules in law that make fiscal revenues and outlays relative to total output change with business cycle.
- Popular:
 - \rightarrow Friedman(1948), Solow(2004), Auerbach(2002), Blinder(2006).
 - \rightarrow IMF (2009) recommends them for *every* country.
- Measured intensively:
 - $\rightarrow\,$ Macro level: structural deficits in time series,
 - \rightarrow Micro level: Pechman measures in micro-simulations.
- Big: CBO estimates in 2012, will be \$343bn, 35% of deficit.

Are the automatic stabilizers effective?

McKay & Reis (BU & Columbia)

- Disposable income channel e.g. income tax.
- Marginal incentives channel e.g. progressive income tax.
- Redistribution channel e.g. UI benefit.
- Social insurance channel e.g. SNAP benefits.

The stabilizers in the data

Automatic stabilizers in the US budget, average 1988-2007

Revenues		Outlays	
Progressive income taxes		Transfers	
Personal Income Taxes	10.98%	Unemployment benefits	0.33%
		Safety net programs	1.02%
Proportional taxes		Supplemental nutrition assistance	0.24%
Corporate Income Taxes	2.57%	Family assistance programs	0.24%
Property Taxes	2.79%	Security income to the disabled	0.36%
Sales and excise taxes	3.85%	Others	0.19%
Budget deficits		Budget deficits	
Public deficit	1.87%	Government purchases	15.60%
		Net interest income	2.76%
Out of the model		Out of the model	
Payroll taxes	6.26%	Retirement-related transfers	7.13%
Customs taxes	0.24%	Health benefits (non-retirement)	1.56%
Licenses, fines, fees	1.69%	Others (esp. rest of the world)	1.85%
Sum	30.25%	Sum	30.25%

Notes: Each cell shows the average of a component of the budget as a ratio of GDP

- Neoclassical core: Ramsey model.
- Two key imperfections or ingredients:
 - $\rightarrow\,$ incomplete markets for idiosyncratic income shocks a la Bewley-Aiyagari.
 - $\rightarrow\,$ nominal rigidities a la Calvo.
- With complete markets \rightarrow 3-equation new Keynesian model
- Flexible prices \rightarrow Krusell and Smith (1998)

- Infinite lives, closed economy, no life-cycle, no health.
- Population:
 - $\rightarrow\,$ unit-measure patient households
 - $\rightarrow\,$ mass ν of impatient households
- Firms:
 - $\rightarrow\,$ competitive final-goods firm
 - \rightarrow unit-measure intermediate-good monopolists
 - $\rightarrow\,$ competitive capital-investment firm

Patient households

- Preferences:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\log c_t - \psi_1 \frac{n_t^{1+\psi_2}}{1+\psi_2} \right]$$

- Income:

$$x_t = (i_t/p_t)b_t + w_t\bar{s}n_t + d_t$$

- Wealth:

$$\left(\frac{\hat{p}_t}{p_t}\right)c_t + \frac{b_{t+1} - b_t}{p_t} = x_t - \bar{\tau}^x(x_t) + T_t^e$$

- Personal income tax:

$$\bar{\tau}^x(x) = \int_0^x \tau^x(x') dx'.$$

McKay & Reis (BU & Columbia)

Impatient households

- Preferences: same, but less patient $\hat{\beta} \leq \beta$.
- Income:

$$x_{t,i} = \begin{cases} i_t \frac{b_{t,i}}{p_t} + w_t s_{t,i} n_{t,i} & \text{if employed};\\ i_t \frac{b_{t,i}}{p_t} + T^u_{t,i} & \text{if unemployed};\\ i_t \frac{b_{t,i}}{p_t} & \text{if needy}. \end{cases}$$

- Unemployment benefits:

$$T_{t,i}^u = \min\left\{\bar{T}^u s_{t,i}, \bar{t}\bar{s}^u\right\}$$

- Wealth:

$$\left(\frac{\hat{p}_t}{p_t}\right)c_{t,i} + \frac{b_{t+1,i} - b_{t,i}}{p_t} = x_{t,i} - \bar{\tau}^x(x_{t,i}) + \frac{T_{t,i}^s}{p_t}$$

- SNAP payments:

$$T_{t,i}^s = \overline{T}^s$$
 if needy

McKay & Reis (BU & Columbia)

Final goods firm

- Technology:

$$y_t = \left(\int_0^1 y_t(j)^{1/\mu} dj\right)^{\mu}.$$

- By cost minimization:

$$p_t = \left(\int_0^1 p_t(j)^{1/(1-\mu)} dj\right)^{1-\mu}$$

•

- Sales tax:

$$\hat{p_t} = (1 + \tau^C) p_t$$

- Production function:

$$y_t(j) = a_t k_t(j)^{\alpha} \ell_t(j)^{1-\alpha}.$$

- Nominal rigidities a la Calvo (1983) with parameter $\theta.$
- Maximize after-tax profits

$$\left(1-\boldsymbol{\tau}^{\boldsymbol{K}}\right)\left[\frac{p_t(j)}{p_t}y_t(j)-w_t\ell_t(j)-(\upsilon r_t+\delta)k_t(j)-\boldsymbol{\xi}\right]-(1-\upsilon)r_tk_t(j)$$

- Corporate income tax: τ_k

Capital goods firm

- Representative firm, after-tax profit:

$$d_t^k = r_t k_t - \Delta k_{t+1} - \frac{\zeta}{2} \left(\frac{\Delta k_{t+1}}{k_t}\right)^2 k_t - \tau^p v_t$$

- Value of firm is:

$$v_t = \max\left\{d_t^k + \mathbb{E}_t\left[\lambda_{t,t+1}v_{t+1}\right]\right\}$$

- Tobin's q:

$$v_t = q_t k_t$$

- Property income tax τ^p

- Government budget:

tax revenue - benefits =
$$g_t + \frac{i_t}{p_t}B_t - \frac{B_{t+1} - B_t}{p_t} + T_t^e$$

- Rule for paying deficits:

$$T_t^e = -\gamma \log\left(\frac{B_t/p_t}{\bar{B}}\right)$$
$$\log\left(\frac{g_t/y_t}{\bar{g}/\bar{y}}\right) = -\gamma \log\left(\frac{B_t/p_t}{\bar{B}}\right).$$

- Deficits: how fast, γ , and with what, g or T^e , are they paid.

- Monetary policy:

$$i_t = \bar{i} + \phi_p \Delta \log(p_t) + \phi_y \log(y_t/\bar{y}) + \varepsilon_t$$

- Shocks to productivity and monetary policy are AR(1).
- Idiosyncratic shocks are discrete-state Markov chain with aggregate shocks to employment.
- Markets clear with both households supplying labor and holding bonds, but only patient households owning the capital stock via capital firm.

Evaluation of the stabilizers

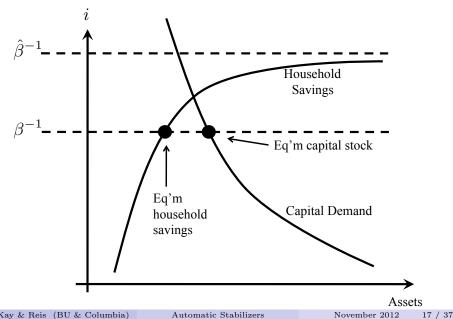
- Seven stabilizers in four groups
 - \rightarrow Proportional taxes,
 - $\rightarrow\,$ Progressive income taxes,
 - $\rightarrow\,$ Safety-net transfers,
 - \rightarrow Budget deficits.
- Calculate ergodic distribution and evaluate Smyth measure of effectiveness of stabilizers

$$S = \frac{\operatorname{Var}(\log \hat{Y}_t)}{\operatorname{Var}(\log Y_t)} - 1.$$

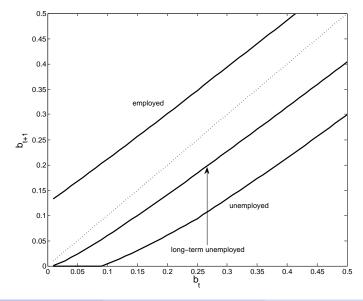
- Representative-agent model, with complete markets.

Proposition: If all households trade a full set of Arrow securities and are equally patient, there is a representative agent solving:

$$\max \mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \left\{ \log(c_{t}) - (1+E_{t}) \psi_{1} \frac{n_{t}^{1+\psi_{2}}}{1+\psi_{2}} \right\},$$
$$\hat{p}_{t}c_{t} + b_{t+1} - b_{t} = p_{t} \left[x_{t} - \bar{\tau}(x_{t}) \right] + T_{t}^{n}$$
$$x_{t} = \frac{i_{t}}{p_{t}} b_{t} + w_{t}s_{t}(1+E_{t})n_{t} + d_{t} + T_{t}^{u}$$
$$s_{t} = \left[\frac{1}{1+E_{t}} \bar{s}_{t}^{1+1/\psi_{2}} + \frac{E_{t}}{1+E_{t}} \int_{0}^{\nu} s_{i,t}^{1+1/\psi_{2}} di \right]^{\frac{1}{1+1/\psi_{2}}},$$

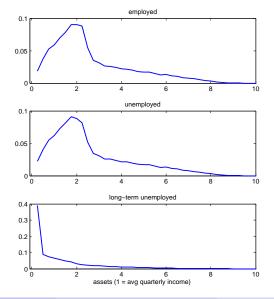

where $1 + E_t$ is total employment.

- Representative-agent model, with complete markets.
 - $\rightarrow\,$ The new Keynesian model with lots of distortionary taxes.
 - $\rightarrow\,$ Redistribution and social insurance channels are shut off.
- Hand-to-mouth impatient households $(\hat{\beta} \to 1)$ who choose labor supply optimally but consume all of their income:


$$\to (1+\tau^C)c_{t,i} = w_t s_{t,i} n_{t,i} + T^u_{t,i} + T^s_{t,i} - \bar{\tau}^x(.).$$

- $\rightarrow\,$ The savers-spenders model
- $\rightarrow\,$ Maximizes the disposable income channel.
- Our full model, with redistribution and precautionary savings.

How the steady state works



Savings decisions

McKay & Reis (BU & Columbia)

Wealth distribution

McKay & Reis (BU & Columbia)

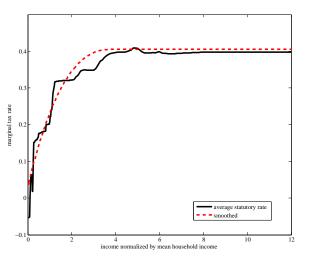
A benchmark with a warning

Assumptions:

- Complete markets.
- $\hat{\beta} = \beta$.
- The personal income tax is proportional.
- The probability of being employed is constant over time.
- The Calvo probability of price adjustment $\theta = 1$, so prices are flexible.
- There are infinite adjustments costs, $\gamma \to +\infty$, and no depreciation, $\delta = 0$, so capital is fixed.
- There are no fixed costs of production, $\xi = 0$.

Proposition:

 $\operatorname{Var}(\log Y_t) = \operatorname{Var}(\log a_t) \Rightarrow S = 0$ and stabilizers are ineffective.


- Must solve for aggregate dynamics with cross-sectional distribution as a state variable *and* nominal rigidities.
- Our approach: use method of Reiter (2008,2009)
 - $\rightarrow\,$ Approximate distribution with a histogram.
 - $\rightarrow\,$ Approximate household decision rules discretely.
 - $\rightarrow\,$ Number of variables and equations: 10,236.
 - \rightarrow Linearize: decision rules are linear in aggregate states.
 - $\rightarrow\,$ Model reduction to reduce number of variables.
 - $\rightarrow\,$ Then apply your standard solver.

Calibration strategy

- Preference/technology parameters to match tax base.
- Tax rates to match average revenue.

Symbol	Parameter	Value	Target (Source)
Panel A	A. Tax bases and rates		
τ^c	Tax rate on consumption	0.054	Avg. revenue from sales taxes (Table 1)
β	Discount factor of stock owners	0.989	Consumption-income ratio $= 0.689$ (NIPA)
τ^p	Tax rate on property	0.003	Avg. revenue from property taxes (Table 1)
α	Coefficient on labor in production	0.296	Capital income share $= 0.36$ (NIPA)
τ^k	Tax rate on corporate income	0.282	Avg. revenue from corporate income tax (Table 1)
ξ	Fixed costs of production	1.32	Corporate profits / $GDP = 9.13\%$ (NIPA)
μ	Desired gross markup	1.1	Avg. U.S. markup (Basu, Fernald, 1997)
Panel 1	B. Government outlays and debt		
\bar{T}^u	Unemployment benefits	0.185	Avg. outlays on unemp. benefits (Table 1)
\overline{T}^{s}	Safety-net transfers	0.169	Avg. outlays on safety-net benefits (Table 1)
G/Y	Steady-state purchases / output	0.130	Avg. outlays on purchases (Table 1)
γ	Fiscal adjustment speed	2.2	Autocorrel. net public savings / $GDP = 0.966$ (NIPA)
B/Y	Steady-state debt / output	1.66	Avg. interest expenses (Table 1)

Calibration: progressive income tax

- Marginal tax rates from TaxSim
- Federal and state income taxes
- Average over:
 - 1988 to 2007
 - U.S. states weighted by pop.
- Smoothed with cubic polynomial

Calibration: idiosyncratic uncertainty

- Transitions across e: government programs.
- Skill shocks and difference across agents to match wealth and income distribution and wage dynamics.

Panel C. Labor-force status

- Steady-state transition prob. E-U π_{en} Steady-state transition prob. U-E π_{ne}
- π_{up} Steady-state transition prob. U-P
- Steady-state transition prob. P-E π_{pu} π_{eu}^{y}
- Cyclical transition prob. E-U
- π^y_{ue} Cyclical transition prob. U-E
- π^y_{yn} Cyclical transition prob. U-P
- Panel D. Income and wealth distribution
- Non-participants / stock owners ν
- β^h Discount factor of households
- Skill level of stock owners \overline{s}
- E(s)Mean of non-participants skill

- Avg. insured unemp. rate = 0.023 (BLS) 0.026
- 0.571Avg. UE flow quarterly = 0.813 (Shimer, 2007)
- Avg. SNAP ratio = 0.077 (USDA) 0.297
- 0.087SNAP exit hazard = 0.03 monthly (Mabli et al., 2011)
- -1.75St. dev. of unemp. rate = 0.009 (BLS)
- 9.70 St. dev. of UE flows = 0.053 (Shimer)
- St. dev. of SNAP ratio = 0.020 (USDA) 0.00
- 4
- Wealth of top 20% by wealth 0.983
- Income of top 20% by wealth (SCF) 4.66
- Avg. income in economy normalized to 1 1.08

- Standard business cycle facts.

- Aggregate shock processes to fit inflation and output dynamics.

Panel E. Business-cycle parameters

- θ Calvo price stickiness
- ψ_1 Labor supply
- ψ_2 Labor supply
- δ Depreciation rate
- ζ Adjustment costs for investment
- ρ_z Autocorrelation productivity shock
- σ_z St. dev. of productivity shock
- ρ_m Autocorrelation monetary shock
- σ_m St. dev. of monetary shock
- ϕ_p Interest-rate rule on inflation
- ϕ_y Interest-rate rule on output

- 0.286 Avg. price spell duration = 3.5 (Klenow, Malin, 2011)
- 21.6 Avg. hours worked = 0.31 (Cooley, Prescott, 1995)
- 2 Frisch elasticity = 1/2 (Chetty, 2011)
- 0.114 Annual depreciation expenses / GDP = 0.046 (NIPA)
- 15.0 Corr. of Y and C = 0.88 (NIPA)
- 0.880 Autocorrel. of log GDP = 0.864 (NIPA)
- 0.004 St. dev. of $\log \text{GDP} = 1.539$ (NIPA)
- 0.500 Largest AR for inflation = 0.85 (Pivetta, Reis, 2006)
- 0.005 Share of output variance due to shock = 0.2
- 1.55 St. dev. of inflation = 0.638 (NIPA)
- 0.010 Correl. of inflation with log Y = 0.198 (NIPA)

- Cut proportional taxes by 10%
- Cut transfers by same amount of GDP
- Cut intercept of personal income tax by same amount of GDP
- Replace progressive tax by a flat tax
- Balance the budget or have purchases adjust
- All of the above

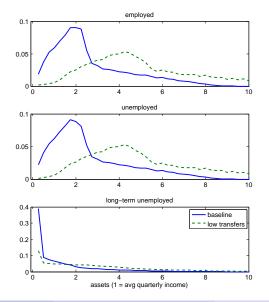
Table: The effect of proportional taxes on the business cycle

	Full model		Represent	Representative agent		Hand-to-mouth	
	variance	average	variance	average	variance	average	
output	-0.0074	0.0118	0.0003	0.0115	0.0030	0.0117	
hours	0.0007	0.0004	0.0038	0.0015	0.0022	0.0006	
consumption	-0.0077	0.0093	-0.0178	0.0090	0.0288	0.0092	

Note: Proportional change caused by cutting the stabilizer

- Ineffective on cycle and harmful on average.
- Induce little change in intertemporal relative prices.

Unemployment and poverty benefits


Table: The effect of transfers on the business cycle

	Full model		Represent	ative agent	Hand-to	Hand-to-mouth		
	variance	average	variance	average	variance	average		
output	0.0994	-0.0004	-0.0069	0.0002	-0.0095	-0.0042		
hours consumption	$0.1698 \\ -0.0743$	-0.0097 -0.0005	-0.0033 -0.0133	$0.0002 \\ 0.0002$	$0.0051 \\ 0.1278$	-0.0018 -0.0048		

Note: Proportional change caused by cutting the stabilizer

- Redistribution in labor supply pushes hours.
- Volatility of household consumption rises by 91%.
- No effect w/o response of precautionary savings.

Wealth distribution

McKay & Reis (BU & Columbia)

Eliminating progressivity in income tax

Table: The effect of progressive taxes on the business cycle

	Full model		Repres	entative agent	Hand-t	Hand-to-mouth		
	variance	average	varianc	e average	variance	average		
output	0.0255	0.0446	-0.045	7 0.0383	-0.0930	0.0500		
hours	-0.0274	0.0390	-0.016	1 0.0383	-0.0453	0.0330		
consumption	-0.0671	0.0508	-0.0118	8 0.0436	0.0123	0.0570		

Note: Proportional change caused by cutting the stabilizer

- Precautionary savings: volatility of household consumption increases by 70%.
- Marginal incentives channel: hours of high-skill become more pro-cyclical without countervailing rise in marginal tax rate.

Table: The effect of the level of tax rates on the business cycle

	Full model		Represent	Representative agent		Hand-to-mouth	
	variance	average	variance	average	variance	average	
output hours consumption	0.0020 -0.0142 -0.0207	0.0078 0.0037 0.0089	-0.0064 -0.0063 -0.0133	0.0076 0.0076 0.0087	-0.0339 -0.0126 -0.0297	0.0075 0.0034 0.0086	

Note: Proportional change caused by cutting the stabilizer

- Across-the-board income tax cut of 2 percentage points.

Table: The effect of budget deficits on the business cycle

	Balanced	l-budget	Purcha	ses adjust
	variance	average	variance	average
output hours consumption	-0.0022 -0.0010 -0.0048	0.0000 0.0000 0.0000	0.0772 0.0427 -0.4587	$0.0000 \\ 0.0001 \\ 0.0002$

Note: Proportional change from altering the fiscal adjustment rule

- Close to Ricardian Equivalence with lump-sum tax.
- Purchases rule leads to amplification through multiplier.

Table: The effect of all stabilizers on the business cycle

	Full model		Represent	Representative agent		Hand-to-mouth		
	variance	average	variance	average	variance	average		
output hours consumption	0.0356 -0.0126 -0.0361	$\begin{array}{c} 0.0563 \\ 0.0344 \\ 0.0598 \end{array}$	-0.0440 -0.0120 -0.0276	$0.0513 \\ 0.0409 \\ 0.0541$	-0.0843 -0.0316 0.1905	$0.0569 \\ 0.0316 \\ 0.0606$		

Note: Proportional change caused by cutting the stabilizer

Conclusion

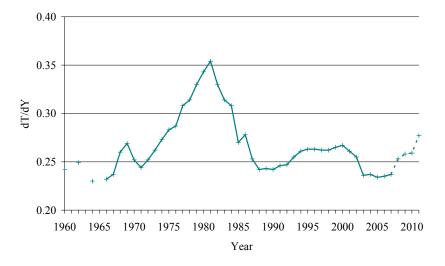
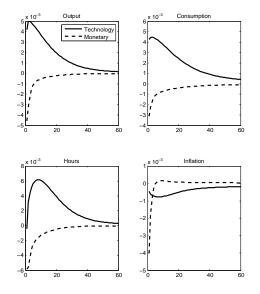

- Proportional taxes are ineffective.
- Progressive income taxes and safety-net transfers are quite effective at lowering volatility of output.
- Progressive income taxes have potentially large negative effects on average level of economic activity.
- Safety-net transfers stabilize household consumption, but destabilize aggregate consumption.
- Redistribution and social insurance are crucial to the workings of these policies.
- Overall, great potential of automatic stabilizers, but partly unfulfilled.

Table: Labor supply elasticity for all stabilizers experiment


	elasticity $= 1/2$		elasticity $= 1/5$		elasticity = 1		
	variance	average		variance	average	variance	average
output hours consumption	0.0356 -0.0126 -0.0361	$0.0563 \\ 0.0344 \\ 0.0598$		0.0255 -0.0009 -0.0485	$\begin{array}{c} 0.0326 \\ 0.0166 \\ 0.0331 \end{array}$	0.0406 -0.0248 -0.0288	$\begin{array}{c} 0.0811 \\ 0.0531 \\ 0.0876 \end{array}$

Note: Proportional change caused by cutting the stabilizer

Extra–Pechman measures

Extra–Properties of model

McKay & Reis (BU & Columbia)