LEARNING FROM POTENTIALLYBIASED STATISTICS
 BY CAVALLO, CRUCES, PEREZ-TRUGLIA

Ricardo Reis
LSE and Columbia University

Brookings Spring meeting
 Washington, DC
 IOth of March 2016

- Say I asked you:

What do you think was the annual U.S. inflation rate with respect to one year ago?

- Would get a distribution:
- Some of you better informed.
- Some of you more confident.
- Some of you interpret question in one way, others somewhat differently.
- Learn that people disagree, aren't perfectly informed.

I/3) According to official indicators published by the BLS, the annual inflation rate with respect to a year ago was approximately 0.1\%.

1/3) According approximately I.4\%.
I /3) According approximately 2.2\%.
What do you think was the annual inflation rate with respect to one year ago?

- My guess: bottom I/3 give higher answer than top I/3.

ALTERNATIVELY TELLYOU...

1/3) According to other indicators published by the BEA, the annual inflation rate with respect to a year ago was approximately -2.0\%.

I/3) According approximately 0.3\%
I/3) According approximately I.0\%
What do you think was the annual inflation rate with respect to one year ago?

- My guess: still increasing, but differences across slides
I) From information having an effect on your answer.
- Authors: You don't ignore the piece of information.
- But, Bayesian would only ignore completely useless data
- All numbers true, just not for CPI or GDP deflator.
- If survey gives you information, infer it must be useful.
- But, non-Bayesian even considers useless piece of data
- Cues and anchoring
- Hawthorne effect.

WHAT CANWE LEARN

2) From different response to BLS and BEA.

- Authors: Know one of them is biased by a constant, $\mathbf{x} \sim(\pi-b, \sigma)$ so rationally subtract estimate of \boldsymbol{b} from forecasts.
- But, bias is not the same as cheating
- I know that CPI suffers from substitution bias.
- But, can you reject alternative bias:
- Bias that is multiplicative: $\mathbf{x \sim (a \pi , \sigma)}$.
- But, can you reject unbiasedness:
- Different in precision/informativeness so $\mathbf{x} \sim\left(\pi, \mathbf{c} \sigma^{2}\right)$.

WHAT CANWE LEARN

3) From responding more to positive rather than negative information.

- Authors: I distrusted BLS as understating inflation.
- Not in their model, which is symmetric.
- Maybe because if higher, must be really bad, respond more.
- But, same asymmetry for official and unofficial data
- So, not about the data, rather about the person
- But, arguably better alternative, asymmetric loss function:
- Because higher inflation means losses, and concave utility.
- Even more if some loss aversion.

Authors isolated the effect of information?

- Their statistical approach:
- They never elicited priors. Ideally want to calculate:

$$
\sum_{i \in \mathbf{T}}\left(\pi^{\text {post }}(\mathrm{i})-\pi^{\text {prior }}(\mathrm{i})\right)-\sum_{i \in \mathbf{C}}\left(\pi^{\text {post }}(\mathrm{i})-\pi^{\text {prior }}(\mathrm{i})\right)
$$

- But calculated instead:

$$
\sum_{i \in \mathbf{T}} \pi^{\text {post }}(\mathrm{i})-\sum_{i \in \mathbf{C}} \pi^{\text {prior }}(\mathrm{i})
$$

- Correct if randomization ensures that

$$
\sum_{i \in \mathbf{T}} \pi^{\text {prior }}(\mathrm{i})=\sum_{i \in \mathrm{C}} \pi^{\text {prior }}(\mathrm{i})
$$

- But, source of differences across \mathbf{T} and \mathbf{C} group:
- Proportion of women (?)
- Income, marital status, economic literacy.

CAN WE CONCLUDETHAT...

There is a constant inflation bias in official data?

- Persuasive that can't reject null (move away from prior) that there is a constant inflation bias of I 0% and that people discount it.
- But, with only their data I have:
- Freedom picking loss function people use $L\left(\pi^{\text {post }}-\pi\right)$
- Freedom picking distributions of the two signals $\boldsymbol{x} \sim$ $\boldsymbol{G}(\pi-b,$.$) and \boldsymbol{y} \sim F(\pi,$.$) .$
- I can get any estimate for \boldsymbol{b} consistent with Bayes rule

Agents are sophisticated Bayesians?

- Results are even stronger:
- support theories of inattention.
- against behavioral theories of expectations (natural, adaptive, diagnostic, ...).
- But, let me take the other side:
- In Argentina, why so unsophisticated inattentive?
- In Argentina, why such loose priors? Large effect of information.
- In the time series, why such persistence? Perceptions are the same as expectations.

SECOND PART OF PAPER

- Ask shoppers about the change in the prices of goods you just bought.
- Not asking about inflation.
- Different issue altogether relative to first part.
a. Actual price changes

b. Remembered price changes

CONTROLLEDVERSUS NOT

- Clear that while difference in controlled versus non controlled in prices, not in expectations
a. Actual price changes

b. Remembered price changes

- But must control for large versus small.
- Massive upward bias in prices remembered. Not just pessimistic, really unsophisticated.

b. Remembered price changes

- Did they pay attention to the question?

SUGGESTION

- Right now report

$F^{c}(\Delta p(j)), F^{u}(\Delta p(j))$ and $G^{c}\left(\Delta p^{e}(j)\right), G^{u}\left(\Delta p^{e}(j)\right)$

- But I think a better comparison would be between:

$$
H^{c}\left(\Delta p(j)-\Delta p^{e}(j)\right) \text { and } H^{u}\left(\Delta p(j)-\Delta p^{e}(j)\right)
$$

- Also, try at least to see if using expenditure weights makes a difference (see if relevant).

CONCLUSION

Two very different readings of this paper

- Paper about Argentina, testing hypothesis that in spite of government manipulation of statistics and prices, people are not easily fooled. Convincing.
- Paper about how people form of inflation expectations, how much they trust different sources of data, and how they recall past prices. Less so.

