LEARNING FROM POTENTIALLY-BIASED STATISTICS BY CAVALLO, CRUCES, PEREZ-TRUGLIA

Ricardo Reis

LSE and Columbia University

Brookings Spring meeting Washington, DC 10th of March 2016

FORGET ABOUT ARGENTINA

Say I asked you:

What do you think was the annual U.S. inflation rate with respect to one year ago?

- Would get a distribution:
 - Some of you better informed.
 - Some of you more confident.
 - Some of you interpret question in one way, others somewhat differently.
- · Learn that people disagree, aren't perfectly informed.

NOW I RANDOMIZE AND ASK

1/3) According to official indicators published by the BLS, the annual inflation rate with respect to a year ago was approximately 0.1%.

```
1/3) According .... approximately 1.4%.
```

1/3) According approximately 2.2%.

What do you think was the annual inflation rate with respect to one year ago?

• My guess: bottom 1/3 give higher answer than top 1/3.

ALTERNATIVELY TELL YOU...

1/3) According to **other indicators** published by **the BEA**, the annual inflation rate with respect to a year ago was approximately -2.0%.

1/3) According approximately 0.3%

1/3) According approximately 1.0%

What do you think was the annual inflation rate with respect to one year ago?

• My guess: still increasing, but differences across slides

WHAT CAN WE LEARN

1) From information having an effect on your answer.

- Authors: You don't ignore the piece of information.
- But, Bayesian would only ignore completely useless data
 - All numbers true, just not for CPI or GDP deflator.
 - If survey gives you information, infer it must be useful.
- But, non-Bayesian even considers useless piece of data
 - Cues and anchoring
 - Hawthorne effect.

WHAT CAN WE LEARN

2) From different response to BLS and BEA.

- Authors: Know one of them is biased by a constant, $\mathbf{x} \sim (\pi b, \sigma)$ so rationally subtract estimate of \mathbf{b} from forecasts.
- But, bias is not the same as cheating
 - I know that CPI suffers from substitution bias.
- But, can you reject alternative bias:
 - Bias that is multiplicative: $\mathbf{x} \sim (\mathbf{a}\pi, \sigma)$.
- But, can you reject unbiasedness:
 - Different in precision/informativeness so $\mathbf{x} \sim (\pi, \mathbf{c}\sigma^2)$.

WHAT CAN WE LEARN

3) From responding more to positive rather than negative information.

- Authors: I distrusted BLS as understating inflation.
 - Not in their model, which is symmetric.
 - Maybe because if higher, must be really bad, respond more.
- But, same asymmetry for official and unofficial data
 - So, not about the data, rather about the person
- But, arguably better alternative, asymmetric loss function:
 - Because higher inflation means losses, and concave utility.
 - Even more if some loss aversion.

CAN WE CONCLUDE THAT...

Authors isolated the effect of information?

- Their statistical approach:
 - They never elicited priors. Ideally want to calculate:

$$\sum_{i \in \mathbf{T}} (\pi^{post}(i) - \pi^{prior}(i)) - \sum_{i \in \mathbf{C}} (\pi^{post}(i) - \pi^{prior}(i))$$

But calculated instead:

$$\sum_{i \in T} \pi^{post}(i) - \sum_{i \in C} \pi^{prior}(i)$$

Correct if randomization ensures that

$$\sum_{i \in T} \pi^{prior}(i) = \sum_{i \in C} \pi^{prior}(i)$$

- But, source of differences across **T** and **C** group:
 - Proportion of women (?)
 - Income, marital status, economic literacy.

CAN WE CONCLUDE THAT...

There is a constant inflation bias in official data?

- Persuasive that can't reject null (move away from prior) that there is a constant inflation bias of 10% and that people discount it.
- But, with only their data I have:
 - Freedom picking loss function people use $L(\pi^{post} \pi)$
 - Freedom picking distributions of the two signals $x \sim G(\pi-b,.)$ and $y \sim F(\pi,.)$.
 - I can get **any** estimate for **b** consistent with Bayes rule

CAN WE CONCLUDE THAT...

Agents are sophisticated Bayesians?

Results are even stronger:

- support theories of inattention.
- against behavioral theories of expectations (natural, adaptive, diagnostic, ...).

But, let me take the other side:

- In Argentina, why so unsophisticated inattentive?
- In Argentina, why such loose priors? Large effect of information.
- In the time series, why such persistence? Perceptions are the same as expectations.

SECOND PART OF PAPER

- Ask shoppers about the change in the prices of goods you just bought.
 - Not asking about inflation.
 - Different issue altogether relative to first part.

b. Remembered price changes

CONTROLLED VERSUS NOT

 Clear that while difference in controlled versus non controlled in prices, not in expectations

b. Remembered price changes

But must control for large versus small.

AMAZING HOW CLUELESS...

• Massive upward bias in prices remembered. Not just pessimistic, really unsophisticated.

• Did they pay attention to the question?

SUGGESTION

Right now report

$$F^{c}(\Delta p(j))$$
, $F^{u}(\Delta p(j))$ and $G^{c}(\Delta p^{e}(j))$, $G^{u}(\Delta p^{e}(j))$

• But I think a better comparison would be between:

$$H^{c}(\Delta p(j) - \Delta p^{e}(j))$$
 and $H^{u}(\Delta p(j) - \Delta p^{e}(j))$

• Also, try at least to see if using expenditure weights makes a difference (see if relevant).

CONCLUSION

Two very different readings of this paper

- Paper about Argentina, testing hypothesis that in spite of government manipulation of statistics and prices, people are not easily fooled. **Convincing**.
- Paper about how people form of inflation expectations, how much they trust different sources of data, and how they recall past prices.
 Less so.