COMMENT TO ANGELETOS, HUO, AND SASTRY'S "IMPERFECT MACROECONOMIC EXPECTATIONS: THEORY AND EVIDENCE"

Ricardo Reis LSE

> 3rd of April, 2020 NBER Macroeconomics Annual NBER, Cambridge via zoom

COMMENT TO ANGELETOS, HUO, AND SASTRY'S "IMPERFECT MACROECONOMIC EXPECTATIONS: THEORY AND EVIDENCE"

YES, BUT, WE DISAGREE

Ricardo Reis LSE

> 3rd of April, 2020 NBER Macroeconomics Annual NBER, Cambridge via zoom

Twenty years of progress in modeling expectations

- <u>Models:</u> dispersed private info and higher order beliefs, inattention, sticky info, least-squares learning, memory, over-extrapolation, cognitive discounting, ...
- <u>Empirics</u>: aggregate time-series, survey evidence, disagreement within survey, disagreement across surveys, info treatments, markets vs people, horizons, ...

Current state: wilderness of alternatives

- Two conflicting facts: under-reaction versus over-reaction
- Missing a CRRA, or a Cobb-Douglas, or a Calvo.

Yes: a parsimonious model

Underlying process

$$z_t = R(L)\varepsilon_t$$

Perceived process

$$z_t = \hat{R}(L)\varepsilon_t$$

Bayesian beliefs with noisy signals

$$\hat{E}_{i,t} \left[z_t \right] = \mathbb{E}_{i,t} \left[z_t | z_t + \tau^{-1/2} u_{i,t} \right]$$

Equilibrium

$$z_t = f\left(\left\{\hat{E}_{i,t}\left[z_t\right]\right\}_{i \in [0,1]}\right)$$

Yes: a new regression

Survey data to build

$$Error_{i,t} = z_{t+1} - \mathbb{E}_{i,t} [z_{t+1}]$$
 $Revision_{i,t} = \mathbb{E}_{i,t} [z_{t+1}] - \mathbb{E}_{i,t-1} [z_{t+1}]$

Regression

$$Error_{i,t} = \kappa AvRevision_t + \chi \left(Revision_{i,t} - AvRevision_t\right) + u_{i,t}$$

Intuition (on the conflicting fact: under-react versus over-react)

- If average over agents, get $\kappa > 0$ the "stickiness of expectations".
- If forget the average, get $\chi < 0$ the over-reaction or over-representativeness.
- Together: time-series versus cross-sectional variation!

Yes: new empirical pattern

- Forecast crosses outcome from below
- Errors first +, then -.

Caveats:

- 1) not precisely estimated
- 2) interpretation

$$\mathbb{E}_{t} \left[\frac{\partial}{\partial \varepsilon_{t}} \hat{E}_{i,t+h}(z_{t+h+4}) \right]$$

$$\neq \frac{\partial}{\partial \varepsilon_t} \mathbb{E}_{i,t}(z_{t+h+4})$$

Yes, but, we disagree

But

Needed features to fit the inflation data

- With an exogenous autoregressive model, find: $(1-\rho \mathbb{L})z_t = r\varepsilon_t$
 - I. Slow learning: τ is small
- 2. Over-extrapolation: $\hat{\rho} > \rho$

Intuition for why using the exogenous AR model:

- From regression estimates: $\kappa > 0$, learning $\chi < 0$ over-reaction
- From the crossing fact: expectations on average first under react because of learning, but then overreact because of over-extrapolation

But, can see persistence from horizon

In their model, outcomes versus expectation

$$\mathbb{E}_{i,t}(z_{t+1}) = \hat{\rho}\mathbb{E}_{i,t}(z_t)$$

$$\mathbb{E}_{i,t}(z_{t+T}) = \hat{\rho}^T\mathbb{E}_{i,t}(z_t)$$

Long-horizon expectations:

$$\frac{\sum_{h=1}^{H} \mathbb{E}_{i,t}(z_{t+h})/H}{\mathbb{E}_{i,t}(z_{t+1})} = \frac{1}{H} \frac{1 - \hat{\rho}^{H}}{1 - \hat{\rho}}$$

- Redo regression using 5-year-ahead expectations from same survey
- Still support for over-extrapolation:

$$\rho = 0.26, \quad \hat{\rho} = 0.81$$

But, look further

$$\pi_t = \pi_t^P + \pi_t^T$$

$$\pi_t^P = \pi_{t-1}^P + u_t^P$$

$$\pi_t^T = u_t^T$$

$$\Rightarrow \pi_t = \pi_{t-1} + \varepsilon_t - \theta \varepsilon_{t-1}$$
Long-horizon outcome

Long-horizon outcome reveals persistent RW

$$\rho \approx 1$$

Long-horizon expectation mistake transitory WN

$$\hat{\rho} \approx 0$$

People under-extrapolate

Yes, but, We disagree

Disagreement in the literature

Important part of the expectations literature of the last twenty years

- Disagreement, Communication, and Transparency
- <u>In theory</u>: strategic complementarities, inattention models. <u>In policy</u>: policy statements, changes in regime. <u>In data</u>: look at second moment of surveys

From that literature learned that:

- Shocks raise disagreement temporarily
- Policy communication lowers disagreement that results from the shock
- Regime changes that raise transparency can permanently lower disagreement
- So, need model where disagreement is endogenous

Disagreement in the current model

Equations:

$$V_t = \int \left(\mathbb{E}_{i,t}(z_{t+1}) - \int \mathbb{E}_{i,t}(z_{t+1}) di \right)^2 di$$

$$V_t = \hat{\lambda}^2 V_{t-1} + (\hat{\rho} - \hat{\lambda})^2$$

No shocks, so stay forever in steady state

- Disagreement is constant: does not depend on ε_t .
- Communication makes no difference: does not depend on r.
- Transparency regime switch: raises disagreement as blow-up differences, lower λ

Disagree constructively

Modified model (still very parsimonious)

• Fraction θ knows current state, makes unbiased forecasts of future:

$$\mathbb{E}_t^I(z_{t+1}) = \rho z_t$$

- Fraction I- θ looks just like the Angeletos-Huo-Sastry agents
- Added one parameter (had subtracted one earlier)
- In literature this is: neoclassical model; canonical imperfect information model

Law of of motion for disagreement:

$$(1 - \hat{\lambda})^2 V_t = \theta (1 - \theta) \hat{\lambda}^2 r^2 \varepsilon_t^2 + (1 - \theta) (\hat{\rho} - \hat{\lambda})^2$$

Disagree constructively

Law of of motion for disagreement:

$$(1 - \hat{\lambda})^2 V_t = \theta (1 - \theta) \hat{\lambda}^2 r^2 \varepsilon_t^2 + (1 - \theta) (\hat{\rho} - \hat{\lambda})^2$$

Predictions:

- Disagreement varies over time and is affected by shocks: it follows an AR(2) after a shock ε_t .
- Policy communication lowers disagreement: lower *r* lowers disagreement on impact and in the steady state
- Transparency regime switch: lower λ but higher θ will lower disagreement

Conclusion

YES, BUT, WE DISAGREE