OPTIMAL AUTOMATIC STABILIZERS

Alisdair McKay 1 $\,$ Ricardo Reis 2

 $^{1}\mathrm{FRB}$ Minneapolis

²London School of Economics

November 2020

- How generous UI?
- How progressive tax system?
- Design of the social insurance system incorporating roles for:
 - $\rightarrow\,$ Social insurance / redistribution
 - \rightarrow Incentives
 - $\rightarrow\,$ Macroeconomic stabilization
- Focus on automatic stabilizers:
 - $\rightarrow\,$ fixed UI replacement rate
 - $\rightarrow\,$ fixed tax progressivity

OUR CONTRIBUTIONS

- A formal definition of automatic stabilizers
 - $\rightarrow\,$ Tractable incomplete markets model with nominal rigidities and aggregate shocks.
 - \rightarrow For UI:
 - Baily-Chetty formula with macroeconomic stabilization term.
 - $\mathbb{E}_0\left[(dW_t/dM_t)(dM_t/db)\right] = E\left[\cdot\right]E\left[\cdot\right] + \text{Cov}$
- Characterization of macroeconomic stabilization term:
 - $\rightarrow\,$ Recessions are costly.
 - More idiosyncratic risk.
 - $\rightarrow\,$ Social programs stabilize cycle.
 - More idiosyncratic risk.
- Quantitative assessment in calibrated model:
 - $\rightarrow\,$ Unemployment benefits: replacement rate rises from 35% to 56%.
 - \rightarrow Income tax progressivity: barely changes.

Why do we care?

- Growing sense that heterogeneity shapes business cycle.
 - $\rightarrow\,$ Social insurance changes idiosyncratic risk and income distribution with macroeconomic consequences.
- In a low-interest-rate environment, larger role for fiscal policy.

2. Model

POPULATION, PREFERENCES, ENDOWMENTS

- Unit continuum of households
 - \rightarrow Productivity $\alpha_{i,t}$ and employment status $n_{i,t}$.
 - \rightarrow Every period, δ share dies, replaced by households with $\alpha_{i,t} = 1$.
- Preferences:

$$\mathbb{E}_{0} \sum_{t} \beta^{t} \left[\log(c_{i,t}) - \frac{h_{i,t}^{1+\gamma}}{1+\gamma} - \frac{q_{i,t}^{1+\kappa}}{1+\kappa} + \chi \log(G_{t}) - \xi \left(1 - n_{i,t}\right) \right].$$

IDIOSYNCRATIC RISK 1: PRODUCTIVITY

$$\log \alpha'_i = \log \alpha_i + \log \epsilon'_i$$
$$\epsilon'_i \sim F(\epsilon'; u)$$

- Cyclical income risk

e.g. Storesletten et al. (2004), Davis and von Wachter (2011), Guvenen et al. (2014).

IDIOSYNCRATIC RISK 2: EMPLOYMENT

- v searchers per period.
- Finding rate per unit of search: M_t .
- Non-employment is i.i.d. across households.

TECHNOLOGY

- Intermediate good: $y_{j,t} = \eta_t^A l_{j,t}$
- Final good is Dixit-Stiglitz aggregate of intermediate varieties

$$Y_t = \left(\int_0^1 y_t(j)^{1/\mu} dj\right)^{\mu}$$

- Using standard price index and demand for variety j:

$$Y_t = \underbrace{\frac{\eta_t^A}{S_t}}_{\equiv A_t} L_t.$$

where

$$S_t \equiv \int (p_t(j)/p_t)^{\mu/(1-\mu)} dj \ge 1$$
$$L_t \equiv \int h_{i,t} n_{i,t} \alpha_{i,t} di.$$

- Resource constraint: $Y_t - J_t = C_t + G_t$

MARKET STRUCTURE 1

- Risk-free, real bond with borrowing constraint $a_{i,t} \ge 0$.
- Labor income if employed is $\alpha_{it} w_t h_{it}$
 - \rightarrow Worker chooses hours given w_t
- Firms look for workers at a cost (Blanchard and Gali, 2010) \rightarrow Cost per hire: $\psi_1 M_t^{\psi_2}$
 - \rightarrow Aggregate hiring costs: $J_t \equiv \psi_1 M_t^{\psi_2} (\upsilon u_t)$

MARKET STRUCTURE 1

- Risk-free, real bond with borrowing constraint $a_{i,t} \ge 0$.
- Labor income if employed is $\alpha_{it} w_t h_{it}$
 - \rightarrow Worker chooses hours given w_t
- Firms look for workers at a cost (Blanchard and Gali, 2010) \rightarrow Cost per hire: $\psi_1 M_t^{\psi_2}$
 - \rightarrow Aggregate hiring costs: $J_t \equiv \psi_1 M_t^{\psi_2} (\upsilon u_t)$
- Wage rule:

$$w_t = w(\eta_t^A, u_t, b, \tau)$$

Market structure 2

- Competitive final-goods firm.
- Monopolistic competition for intermediates operating: desire constant markup over marginal cost.
- But markup fluctuates due to nominal rigidities.
- Entrepreneurial income sent to households proportional to their skills.

Social programs

- Progressive income tax
 - \rightarrow pre-tax income $\equiv z_{i,t}$
 - \rightarrow after-tax income = $\lambda_t z_{i,t}^{1-\tau}$
 - $\rightarrow 1 \lambda_t$ determines the level of taxes.
 - $\rightarrow~\tau$ determines the progressivity of taxes.
- Unemployment insurance
 - \rightarrow Paid in proportion to what would earn if employed: $b\lambda_t z_{i,t}^{1-\tau}$
 - $\rightarrow b \in [0, 1]$ is the generosity of benefits.
- Chosen ex ante, automatic stabilizers, not state-dependent.

OTHER GOVERNMENT POLICY

- Monetary policy:

$$I_t = \bar{I}\pi_t^{\omega_\pi} x_t^{\omega_x} \eta_t^I.$$

- Government purchases follow Samuelson (1954) rule

$$G_t = \chi C_t \eta_t^G$$

- Budget constraint

$$G_t + R_t B_t = \int n_{i,t} \left(z_{i,t} - \lambda_t z_{i,t}^{1-\tau} \right) - (1 - n_{i,t}) b \lambda_t z_{i,t}^{1-\tau} di + B_{t+1}.$$

VANISHING LIQUIDITY EQUILIBRIUM

- $B_t = 0 \ \forall t$.
- Degenerate wealth distribution: can't borrow so can't save.
- Agent with greatest willingness to save is on Euler equation, others are constrained.
- Krusell et al. (2011), Ravn and Sterk (2017), Werning (2015).
- Heterogeneity in α drops out of Euler equation due to homothetic preferences and unit root shocks. E.g. Constantinides and Duffie (1996).
- \Rightarrow Employed on Euler equation and unemployed constrained.

INEQUALITY AND HETEROGENEITY

LEMMA

All households choose the same asset holdings, hours worked, and search effort, so $a_{i,t} = 0, h_{i,t} = h_t$, and $q_{i,t} = q_t$ for all *i*.

- Distribution of wealth is not a state variable.
- Distribution of income and consumption $(z_{i,t}, c_{i,t})$ driven by $(\alpha_{i,t}, n_{i,t})$.

Aggregation for consumption dynamics

 $\tilde{c}_t \equiv$ consumption of employed individual with average productivity.

Lemma

Consumption dynamics obey:

$$\frac{1}{\tilde{c}_t} = \beta R_t \mathbb{E}_t \left\{ \frac{1}{\tilde{c}_{t+1}} Q_{t+1} \right\}$$

with: $Q_{t+1} \equiv \left[(1 - u_{t+1}) + u_{t+1} \mathbf{b}^{-1} \right] \mathbb{E} \left[\epsilon_{i,t+1}^{-(1-\tau)} \right]$

 Q_{t+1} is precautionary motive (dampened by social insurance).

Consumption distribution:
$$c_{i,t} = \left[\alpha_{i,t}^{1-\tau}(n_{i,t} + (1-n_{i,t})b)\right]\tilde{c}_t$$

POLICY DISTORTIONS

- Labor supply and distortionary income taxation:

$$h_t = \left[\bar{w}(1-\tau)\right]^{\frac{1}{1+\gamma}} M_t^{\frac{\zeta}{1+\gamma}}$$

- Search effort and distortionary unemployment benefits:

$$q_t^{\kappa} = M_t \left[\log(1/\mathbf{b}) - \frac{h_t^{1+\gamma}}{1+\gamma} + \xi \right].$$

POLICY DISTORTIONS

- Labor supply and distortionary income taxation:

$$h_t = \left[\bar{w}(1-\tau)\right]^{\frac{1}{1+\gamma}} M_t^{\frac{\zeta}{1+\gamma}}$$

- Search effort and distortionary unemployment benefits:

$$q_t^{\kappa} = M_t \left[\log(1/\mathbf{b}) - \frac{h_t^{1+\gamma}}{1+\gamma} + \xi \right].$$

SUMMARY

Equilibrium can be expressed as small number of endogenous variables and equations.

STRUCTURE OF THE LABOR MARKET

LEMMA

There are functions \mathcal{H}_h , \mathcal{H}_q , \mathcal{H}_u , \mathcal{H}_Y such that:

$$h_t = \mathcal{H}_h(b, \tau, M_t, \eta_t^A)$$
$$q_t = \mathcal{H}_q(b, \tau, M_t, \eta_t^A)$$
$$u_t = \mathcal{H}_u(b, \tau, M_t, \eta_t^A)$$
$$Y_t = \mathcal{H}_Y(b, \tau, M_t, \eta_t^A)$$

- Given M_t , can solve for other variables.
- M_t is a useful summary of the state of the business cycle.

4. Optimal choice of b and τ

TARGET

- Goal is to maximize utilitarian social welfare: $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t W_t$

$$W_t = \log(C_t) - (1 - u_t) \frac{h_t^{1+\gamma}}{1+\gamma} - v \frac{q_t^{1+\kappa}}{1+\kappa} + \chi \log(G_t) - \xi u_t$$
$$+ \mathbb{E}_i \log \left(\alpha_{i,t}^{1-\tau}\right) - \log \left(\mathbb{E}_i \left[\alpha_{i,t}^{1-\tau}\right]\right)$$
$$+ u_t \log b - \log \left(1 - u_t + u_t b\right).$$

- Choose b and τ ex ante.

Optimal unemployment insurance

PROPOSITION

The optimal choice of the generosity of unemployment insurance b satisfies:

$$\mathbb{E}_{0}\sum_{t=0}^{\infty}\beta^{t}\left\{\begin{array}{c}u_{t}\left(\frac{1}{b}-1\right)\left.\frac{\partial\log(b\tilde{c}_{t})}{\partial\log b}\right|_{M,q}\\+\left.\frac{\partial\log\tilde{c}_{t}}{\partial\log u_{t}}\right|_{M}\left.\frac{\partial\log u_{t}}{\partial b}\right|_{M}+\frac{dW_{t}}{dM_{t}}\left.\frac{dM_{t}}{db}\right.\right\}=0.$$

- Optimal policy trades off insurance, incentives, and macro stabilization
- Larger macro-stabilization term implies more generous insurance.

OPTIMAL INCOME TAX PROGRESSIVITY

PROPOSITION

The optimal progressivity of the tax system τ satisfies:

$$\mathbb{E}_{0}\sum_{t=0}^{\infty}\beta^{t}\left\{\begin{array}{c}\frac{\operatorname{Cov}\left(\alpha_{i,0}^{1-\tau},\log\alpha_{i,0}\right)}{\mathbb{E}_{i}\left[\alpha_{i,0}^{1-\tau}\right]}+\frac{\beta}{1-\beta}\frac{\operatorname{Cov}\left(\epsilon_{i,t+1}^{1-\tau},\log\epsilon_{i,t+1}\right)}{\mathbb{E}_{i}\left[\epsilon_{i,t+1}^{1-\tau}\right]}\\-\left(\frac{A_{t}}{C_{t}}-h_{t}^{\gamma}\right)\left(1-u_{t}\right)\frac{\partial h_{t}}{\partial b}\Big|_{M}\\+\frac{dW_{t}}{dM_{t}}\frac{dM_{t}}{d\tau}\end{array}\right\}=0.$$

- Optimal policy trades off insurance, incentives, and macro stabilization
- Larger macro-stabilization term implies more progressive tax.

THE MACROECONOMIC STABILIZATION TERM

$$\sum_{t=0}^{\infty} \beta^t \, \mathbb{E}_0 \left\{ \frac{dW_t}{dM_t} \frac{dM_t}{db} \right\} = \sum_{t=0}^{\infty} \beta^t \left\{ \mathbb{E}_0 \left[\frac{dW_t}{dM_t} \right] \mathbb{E}_0 \left[\frac{dM_t}{db} \right] + \operatorname{Cov} \left[\frac{dW_t}{dM_t}, \frac{dM_t}{db} \right] \right\}$$

The hallmark of an automatic stabilizer: activity more sensitive to policy when activity is inefficiently low.

ACTIVITY AND WELFARE

PROPOSITION

The effect of macroeconomic activity on welfare can be decomposed into:

$$\begin{split} \frac{dW_t}{dx_t} &= \underbrace{(1-u_t) \left[\frac{A_t}{C_t} - h_t^{\gamma} \right] \frac{dh_t}{dM_t}}_{labor-wedge \ (intensive)} + \underbrace{\frac{1}{C_t} \left. \frac{\partial C_t}{\partial u_t} \right|_x \frac{du_t}{dM_t} - \frac{1}{C_t} \left. \frac{\partial J_t}{\partial M_t} \right|_u}_{labor-wedge \ (extensive)} \\ &- \underbrace{\frac{Y_t}{C_t S_t} \frac{dS_t}{dM_t}}_{price-dispersion} \\ &- \underbrace{\left(\log(1/b) - \frac{h_t^{1+\gamma}}{1+\gamma} + \xi \right) \frac{\partial u_t}{\partial M_t} \right|_q}_{unemployment-risk} \\ &+ \underbrace{\frac{\beta}{1-\beta} \frac{d}{dM_t} \int \log \left(\frac{\epsilon^{1-\tau}}{\int \epsilon^{1-\tau} dF(\epsilon, u_t)} \right) dF(\epsilon, u_t)}_{income-risk} \end{split}$$

Social programs and activity

- Social programs affect activity through two channels:
 - $\rightarrow\,$ Social insurance channel: dampen precautionary savings motives
 - $\rightarrow\,$ Redistribution channel: transfers to high-MPC agents
- Both channels become stronger in a recession
 - $\rightarrow\,$ More idiosyncratic risk
 - $\rightarrow\,$ More unemployed people receiving transfers
- General equilibrium considerations are crucial
 - $\rightarrow\,$ If real interest rates adjust perfectly, then no role for aggregate demand policy.

▶ Details

5. Quantitative analysis

SOLVING MODEL

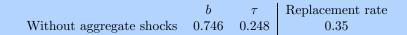
- Calibration:
 - \rightarrow Frisch elasticity of labor supply = 1/2.
 - $\rightarrow\,$ Average price duration of 3.5 quarters.
 - \rightarrow Micro elasticity of unemployment w.r.t. benefits = 0.5.
 - \rightarrow Estimated monetary rule: $I_t = \bar{I} \pi_t^{1.66} (1 u_t)^{0.13} \eta_t^I$.
 - \rightarrow Cyclical income process based on Guvenen-McKay-Ryan. \bigcirc Details
 - $\rightarrow~\zeta$ to match contribution of intensive margin to variance of hours.
 - → b = 0.81 to match consumption change in unemployment. Stephens (2004), Aguiar and Hurst (2005), Saporta-Eksten (2014), Chodorow-Reich and Karabarbounis (2016).
- Global solution method based on Maliar and Maliar (2015)

OPTIMAL POLICY

- (i) Compute optimal policy without aggregate shocks (deterministic steady state).
- (ii) Compute optimal policy with aggregate shocks.
 - $\rightarrow\,$ Assume steady state, but with anticipation of shocks in future.

- Comparing (i) and (ii) shows how business cycles affect optimal policy.

OPTIMAL POLICY



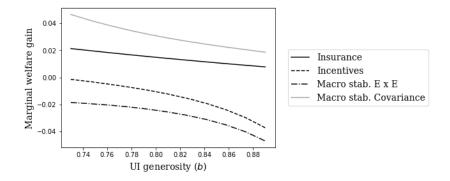
$$\left(\text{Replacement rate} \times \frac{1}{2} + \frac{1}{2} \right)^{1-\tau} = b$$

OPTIMAL POLICY

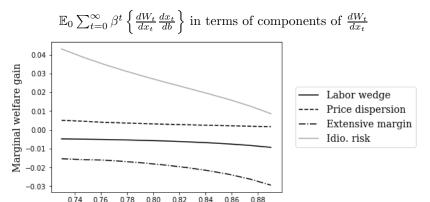
	b	au	Replacement rate
Without aggregate shocks	0.746	0.248	0.35
With	0.824	0.216	0.56

$$\left(\text{Replacement rate} \times \frac{1}{2} + \frac{1}{2} \right)^{1-\tau} = b$$

POLICY TRADE-OFFS



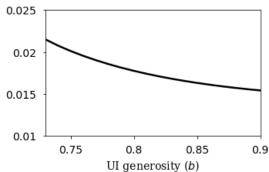
UNPACKING THE MACRO STABILIZATION TERM



UI generosity (b)

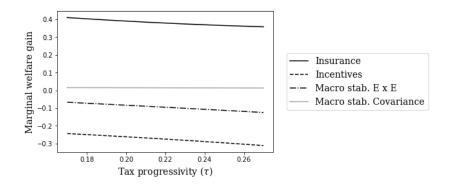
Stabilizing effect of b

- Unemployment risk creates a powerful, cyclical precautionary savings motive. Ravn and Sterk (2015), Den Haan et al. (2015), Heathcote and Perri (2017).
- Raising benefits has a strong stabilizing effect.



Standard deviation of log output

Why is τ (approximately) unchanged?



- Macro stabilization benefit is small relative cost of distortions.
- τ falls due to joint optimization over b and τ .

CONCLUSION:

The logic of automatic stabilizers

- Automatic stabilizers increase demand through redistribution and social insurance.
- These channels are more powerful in recessions as more unemployed and more risk.
- Automatic stabilizers more useful when risks are volatile and monetary policy is unresponsive.
- Aggregate stabilization considerations can have important effects on optimal policy calculations.

Conclusion: Outstanding issues

- Quantitative analysis with heterogeneity in unemployment risk.
- Structural determinants of cyclical earnings losses.
- Limits of rules.

HOUSEHOLD'S PROBLEM

$$V(a, n, \mathcal{S}) = \max_{c, a', h} \left\{ \log c - \frac{h^{1+\gamma}}{1+\gamma} + \beta \mathbb{E} \left[(1-\upsilon) V(a', 1, \mathcal{S}') + \upsilon V^q(a', \mathcal{S}') \right] \right\}$$

such that

$$c + a' = R(\mathcal{S})a + (n + (1 - n)b)\lambda(w(\mathcal{S})h + d(\mathcal{S}))^{1-\tau},$$

where for an employed individual h is a choice and for an unemployed worker h should be replaced by h(a, S), which is the equilibrium decision rule of employed workers.

The value of entering the period without a match is

$$V^{q}(a,\mathcal{S}) = \max_{q} \left\{ M(\mathcal{S})qV(a,1,\mathcal{S}) + (1 - M(\mathcal{S})q)V(a,0,\mathcal{S}) - \frac{q^{1+\kappa}}{1+\kappa} \right\}$$

Aggregate state $S \equiv (\eta^A, \eta^I, \eta^G, \mathbb{E}_i[\alpha_i^{1-\tau}], S_{-1}, \Phi]$

EQUILIBRIUM DEFINITION

Let $N(a, S) \equiv 1 - v + vq(a, S)M(S)$ be the probability that a worker with assets a is employed.

Define ${\mathcal H}$ as aggregate hours worked per employed worker and ${\mathcal Q}$ as average search effort.

Aggregate quantities, are then given by

$$C = \int c(a, 1, \mathcal{S}) N(a, \mathcal{S}) + c(a, 0) \left[1 - N(a, \mathcal{S})\right] d\Phi(a)$$
(1)

$$\mathcal{H} = \int h(a, \mathcal{S}) N(a, \mathcal{S}) d\Phi(a) / \int N(a, \mathcal{S}) d\Phi(a)$$
⁽²⁾

$$Q = \int q(a, S) d\Phi(a).$$
(3)

Equilibrium: 11 variables, three exogenous processes, solution to the household's problem, distribution of wealth.

The variables are $u_t, R_t, I_t, \pi_t, Y_t, G_t, w_t, S_t, \frac{p_t^*}{p_t}, J_t, M_t$. The exogenous processes are η_t^A, η_t^G , and η_t^I .

 $\P{}_{\rm Back}$

EQUILIBRIUM DEFINITION

$$\begin{split} u_t &= v(1 - q_t M_t) \\ J_t &= \psi_1 M_t^{\psi_2} (v - u_t) \\ w_t &= \bar{w} A_t (1 - J_t / Y_t) x_t^{\zeta} \\ \pi_t &= \left[(1 - \theta) / \left[1 - \theta \left(\frac{p_t^*}{p_t} \right)^{1/(1-\mu)} \right] \right]^{1-\mu} \\ I_t &= \bar{I} \pi_t^{\omega_\pi} x_t^{\omega_x} \eta_t^I \\ G_t &= \chi C_t \eta_t^G \\ S_t &= (1 - \theta) S_{t-1} \pi_t^{-\mu/(1-\mu)} + \theta \left(\frac{p_t^*}{p_t} \right)^{\mu/(1-\mu)} \\ Y_t &= A_t h_t (1 - u_t) \\ Y_t &= C_t + G_t + J_t \\ R_t &= I_t / \mathbb{E}_t \left[\pi_{t+1} \right] \\ \frac{p_t^*}{p_t} &= \frac{\mathbb{E}_t \sum_{s=t}^{\infty} R_{t,s}^{-1} (1 - \theta)^{s-t} \left(\frac{p_t}{p_s} \right)^{\mu/(1-\mu)} Y_s \mu \left(w_s h_s + \psi_1 M_s^{\psi_2} \right) / (A_s h_s)}{\mathbb{E}_t \sum_{s=t}^{\infty} R_{t,s}^{-1} (1 - \theta)^{s-t} \left(\frac{p_t}{p_s} \right)^{1/(1-\mu)} Y_s \end{split}$$

SAVINGS

Big picture:

- Allow for self insurance.
- Focus on unemployment risk and UI.
- A given level of insurance requires less social insurance.
- Wealth is very unequally distributed.
 - $\rightarrow\,$ Hard to match very rich with labor market shocks.
 - $\rightarrow\,$ We focus on consumption impact of unemployment not aggregate savings.

SAVINGS

Details:

- Positive stock of government debt so non-degenerate distribution of wealth.
- B_t is fixed across time and across policy changes.
- Adjust λ_t to pay interest on debt.
- Solve with Reiter (2009) method.

What if wages rise with social insurance (e.g. Hagedorn et al. 2016)? - $\mathbb{E}_0 \left[\frac{dW_t}{dx_t} \right] \mathbb{E}_0 \left[\frac{dx_t}{db} \right] < 0.$

- Lower b without aggregate shocks.

- Still Cov
$$\left[\frac{dW_t}{dx_t}, \frac{dx_t}{db}\right] > 0.$$

- b lower, but stabilization benefit still raises b with aggregate shocks.

Details:

- 10% elasticity of steady state wage with respect b.

What if wages rise with social insurance (e.g. Hagedorn et al. 2016)? - $\mathbb{E}_0 \left[\frac{dW_t}{dx_t} \right] \mathbb{E}_0 \left[\frac{dx_t}{db} \right] < 0.$

- Lower b without aggregate shocks.

- Still Cov
$$\left[\frac{dW_t}{dx_t}, \frac{dx_t}{db}\right] > 0$$

- b lower, but stabilization benefit still raises b with aggregate shocks.

Details:

- 10% elasticity of steady state wage with respect b.

	Baseline	Positive wage elasticity
b^* without aggregate shocks b^* with aggregate shocks	$0.773 \\ 0.853$	$0.527 \\ 0.733$

What if wages are more flexible?

- Employment volatility falls so less need to stabilize.
- Not clear this is interesting? Resulting model doesn't match:
 - $\rightarrow\,$ Unemployment volatility.
 - $\rightarrow\,$ Intensive margin hours drive the labor market.

Details:

- Double elasticity of wages with respect to x_t .

What if wages are more flexible?

- Employment volatility falls so less need to stabilize.
- Not clear this is interesting? Resulting model doesn't match:
 - $\rightarrow\,$ Unemployment volatility.
 - $\rightarrow\,$ Intensive margin hours drive the labor market.

Details:

- Double elasticity of wages with respect to x_t .

	Baseline	More cyclical wages
b^* without aggregate shocks b^* with aggregate shocks	$0.773 \\ 0.853$	$0.773 \\ 0.804$

BUDGET DEFICITS

Big picture:

- Balanced budget eliminates effect of tax progressivity on average tax rate.
- Now allow for budget deficits.
- Continue with no-trade equilibrium:
 - $\rightarrow\,$ Government borrows from for eigners.
- Minor effect on the results.
 - \rightarrow Budget deficits help to stabilize C_t but not u_t .

Details:

- Borrow at world interest rate R^* .
- New fiscal rule

$$\lambda_t = \bar{\lambda} \left(\frac{\lambda_t^*}{\bar{\lambda}} \right)^{-\ell_\lambda} - \ell_B \frac{B_t}{\bar{Y}},$$

- ℓ_λ calibrated to match volatility of budget deficits.
- ℓ_B close to zero to match high persistence of public debt.

BUDGET DEFICITS

	Baseline	Budget deficits
b^* without aggregate shocks b^* with aggregate shocks	$0.773 \\ 0.853$	$0.773 \\ 0.852$
$ au^*$ without aggregate shocks $ au^*$ with aggregate shocks	$0.267 \\ 0.260$	$0.267 \\ 0.263$

▲ Back

UNEMPLOYMENT BENEFITS AND ACTIVITY

PROPOSITION

 $Under \ the \ assumptions \ of \ this \ section:$

$$\frac{d\log x_0}{d\log b} = \Lambda^{-1} \left[\frac{u_0 b}{1 - u_0 + u_0 b} + \frac{u_1 b^{-1}}{1 - u_1 (1 - b^{-1})} - \frac{u_1 b}{1 - u_1 (1 - b)} \right]$$

where Λ is defined below.

- Redistribution: unemployed have higher MPC, effect of benefits on AD increasing in u_0 .
- Savings effects: higher UI lowers precautionary savings motive, but raises future taxes. Effect of benefits on AD increasing in u_1 (for $u_1 \in [0, 1/2]$).

SLOPES

LEMMA

Under the assumptions of this section :

$$\begin{split} \Lambda = & \frac{d\log R_0}{d\log x_0} + (1-\tau)^2 \sigma_{\epsilon}^2(x_0) \frac{d\log \sigma_{\epsilon}^2(x_0)}{d\log x_0} + \frac{1-b}{1-u_0+u_0 b} u_0 \frac{d\log u_0}{d\log x_0} \\ & - \frac{d\log S_0}{d\log \tau} + \frac{d\log(1-u_0)}{d\log x_0} + \frac{d\log(1-J_0/Y_0)}{d\log x_0} \end{split}$$

- Elasticities are lower with strong response of real interest rate to activity. E.g. flexible prices or aggressive monetary policy.
- Elasticities are larger with precautionary savings response and consumption multiplier.

TAX PROGRESSIVITY AND ACTIVITY

PROPOSITION

Under the assumptions of this section:

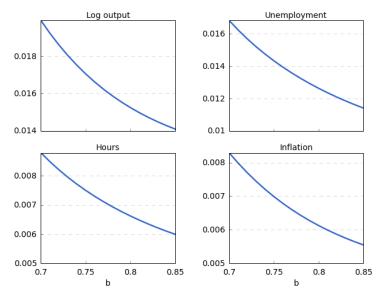
$$\frac{d\log x_0}{d\log \tau} = \Lambda^{-1} 2\sigma_\epsilon^2(x_0) \left(1 - \tau\right) \tau$$

where Λ is defined below.

- Progressive taxes dampen precautionary motive, more so when risk is high.

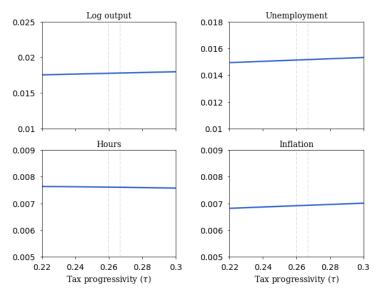
▲ Back

STANDARD DEVIATIONS

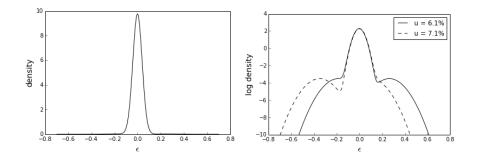


Back

STANDARD DEVIATIONS

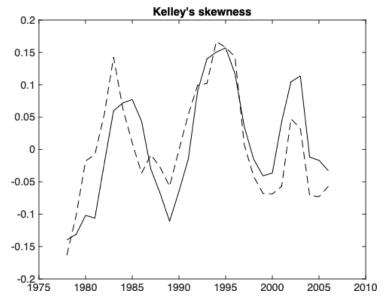


TIME-VARYING MIXTURE OF NORMALS



▲ Back

Skewness of five-year earnings growth rates



PROPOSITIONS WITH GENERAL WAGE RULE

- Wage given by general mechanism: $w(\eta_t^A, x_t, b, \tau)$. E.g. Nash bargaining.
- Hours per worker:

$$h_{t} = \left\{ (1-\tau) \left[\frac{\eta_{t}^{A}}{S(x_{t})} \left(1 - \frac{J_{t}}{Y_{t}} \right) \right]^{-1} w(\eta_{t}^{A}, x_{t}, b, \tau) \right\}^{1/(1+\gamma)}$$
$$h_{t} = \left\{ (1-\tau) H(\eta_{t}^{A}, x_{t}, b, \tau) \right\}^{1/(1+\gamma)}.$$

- For optimal b, additional term:

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t (1-u_t) \left[\frac{A_t}{C_t} - h_t^{\gamma} \right] \frac{dh_t}{dH_t} \left. \frac{\partial H_t}{\partial b} \right|_x.$$

- Similar term for optimal τ .
- Intuition: wage has two effects:
 - \rightarrow Incentives for job creation—already captured by dx_t/db .
 - \rightarrow Incentives for intensive hours—our wage rule only has effect through $x_t,$ but could be others.

Why is τ (approximately) unchanged?

