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1 Introduction

The 5-year-5-year (5y5y) forward expected inflation rate measures expected inflation in

five years’ time averaged over the following five years. It is a common indicator of

whether long-run inflation expectations are well anchored at the central bank’s target

(e.g., Gürkaynak, Levin and Swanson, 2010). Policymakers find it useful because it both

strips out current temporary fluctuations and averages over a long period of time, thereby

providing focus on what monetary policy can achieve. In speeches, they often point to the

approximate constancy of the 5y5y over the past 25 years (see figure 1) to claim success

at anchoring expectations, and even small changes in this measure can trigger large shifts

in policy: a decline in the EZ in 2011-14 justified the start of quantitative easing.1

However, the 5y5y rate is a point estimate of an average. The distribution of its val-

ues could be extremely tight or dispersed. Making decisions under uncertainty typically

requires knowing the whole distribution of future inflation rates, not just their expected

value. Especially important for risk management are probabilities of extreme inflation

realizations, which we will refer to as inflation disasters. It is these tail events that are

associated with large costs of inflation, both in models of monetary policy and in opinion

polls, as happened in 2021-24, or during the German hyperinflation of the 1920s, or the

stagflation of the 1970s.

This paper develops the methods to provide counterparts to figure 1 in the form of tail

probabilities of inflation disasters using traded option prices and minimal assumptions

about preferences for pricing risk or inflation dynamics. Our objects of interest are two

1Reporting from the August 2014 Jackson Hole meeting where the ECB justified its use of quantitative
easing, the Financial Times noted: “Mr Draghi had highlighted the inflation swap rate...never before Au-
gust’s Jackson Hole speech had a president of the ECB made such a clear link between its behavior and
policy action.”
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Figure 1: Expected 5y5y inflation
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probabilities:

Probt[πT,T+H/H > π̄ + d] and Prob[πT,T+H/H < π̄ − d]. (1)

Starting from the present t, a distant future is T years away, and a long horizon is denoted

by H further years. Future long-term inflation is πT,T+H, defined as the change in the log

of the price level between the two dates in the subscript, while π̄ is the inflation target,

and d is the size of the disaster. These probabilities answer the question: What is the

current market-perceived probability that inflation will be persistently above or below

the π̄% annual target between T and T + H? For example, what is the current probability

that average inflation will be above 4% (2pp above the 2% target on average) between 5

and 10 years from now?

In our empirical implementation, we provide 5y5y estimates of these probabilities for
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the United States (US) and the Eurozone (EZ) starting in October of 2009 and January

of 2011, respectively, until October 2024. For disasters, we consider both high inflation

and deflation, d = 0.02, or severe high inflation and deflation, d = 0.03.2 We use these

estimates to measure the success of monetary policy at anchoring market inflation expec-

tations, and to judge the impact of different frameworks and policies on the stability of

these anchors.

This paper makes a methodological contribution, which in turn leads to a revision of

the recent history of inflation expectations given new empirical estimates.

Methodological contribution: We provide steps to translate the prices of traded in-

flation derivatives into risk-neutral and physical-measure probabilities of inflation. We

show that using standard methods on options data to measure the goal in (1) results in

inaccurate estimates that can grossly over- or under-state the desired probabilities. Three

adjustments are required, which are conceptually understood when measuring expected

average inflation with yields data, but have not been appreciated when measuring ex-

pected tail probabilities of inflation with options data.

First, units have to be adjusted to match Arrow-Debreu probabilities. When inflation

is more likely, this raises the nominal payoff of a call option but it also lowers its real pay-

off. The conventionally-used nominal state prices are therefore too low for high inflation

states since a nominal payoff of $1 in a future high-inflation state is worth less. For low

inflation, the opposite is true.3

Second, traded options pay out based on realizations of inflation at π0,T and π0,T+H,

2Given the 5-year horizon, high inflation is a cumulative 10 log-point deviation of inflation from target,
and severely high is equal to 15 log-points, justifying the use of the word disaster. Higher choices of d are
hard to implement due to little trade of options further in the tails.

3This point applies to other derivatives as well, so our method can be used to adjust other financial-
market-based probabilities. However, for non-inflation options, this would require knowing the distribu-
tion of inflation conditional on the fundamental that the option is written on. For inflation options, that
conditional distribution is a trivial point mass, making the adjustment simple.
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but not for the desired forward horizon πT,T+H.4 If inflation expectations become unan-

chored gradually, this sluggishness implies that both the 5-year (5y) and the 10-year (10y)

probabilities can understate the probability of a 5y5y inflation disaster. Given our focus

on expectations, we innovate by estimating the perceived sluggishness revealed by the

pricing of options at different horizons, as opposed to using past sluggishness in inflation

realizations as has been done before.

Third, option prices imply probabilities adjusted for risk (or risk-neutral probabilities),

but since marginal utility is likely high during disasters, their prices will over-state the

actual, or physical-measure, tail probabilities. Building on recent work on rare output

disasters, we propose an adjustment that does not require specifying the full dynamics of

the stochastic discount factor that prices inflation risk, but instead uses prices of out-of-

the-money options.

Empirically, we find that the three adjustments can be large. For instance, during the

2021-23 period of rising US inflation, the median adjustment factors for inflation, horizon

and risk were 1.24, 0.38, and 0.66, respectively. As a result, while a simple reading of the

10y option prices would suggest a median 14.0% probability of a 5y5y inflation disaster,

the 5y5y actual probability was 4.2%.

As always, what adjustments should be made depends on the application. Only the

inflation adjustment is needed if the goal is to have risk-neutral probabilities of tails for

inflation disasters between the present and a distant future. Adding the risk adjustment

gives corresponding physical probabilities, and adding the horizon adjustment gives for-

ward physical probabilities between two distant futures. Alternatively, making only the

inflation and horizon (but not risk) adjustments provides estimates of risk-neutral for-

ward probabilities.5

4There are forward-starting options for one-year horizons (H = 1) (which we will later use) as opposed
to the longer horizon H = 5 that align with policymakers’ interest in the 5y5y horizon.

5The website https://r2rsquaredlse.github.io/web-inflationdisasters/ provides time series of the infla-
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Of independent interest, we provide estimates of the dynamic properties of inflation

as perceived by market participants. They show a fall in stochastic volatility in the last

decade, and a perception that disasters are short-lived. Likewise, we provide tail-focused

estimates of the inflation risk premium. We find that periods of high inflation carry a

large risk adjustment. In contrast, periods of deflation are associated with a smaller drop

in output, thus resulting in a correspondingly lower risk adjustment.

Contribution to the history of expectations: Our second contribution is an application

of the estimates to reassess whether or not inflation expectations have been anchored and

how monetary policy has affected anchoring. Our sample includes periods of elevated

probabilities for both future deflation and high inflation. We reach six conclusions.

First, we re-examine the market-perceived probability of the US falling into a defla-

tion trap in 2011-14. At the time, it was judged to be very high and justified expansionary

monetary policy to fight the liquidity trap. Estimates based on our new methodology

show that this probability was significantly lower than previously appreciated using con-

ventional measures. We find that the risk of short-term deflation was at times elevated,

but not the risk of a deflation trap at the 5y5y horizon.

Second, we find that the risk of an EZ deflation trap persisted throughout the sample

and is significantly higher than in the US. The unconventional monetary policies since

2014 and the ECB’s mission review of 2022 succeeded in lowering the probability of de-

flation in the near future, but not completely at lowering the perceived risk of a deflation

trap over the long run.

Third, we find a large increase in the probability of a high-inflation disaster in the US

between the third quarter of 2021 and the second quarter of 2022. The same is true in the

EZ, but starting later and more concentrated in the first half of 2022. The mean of the dis-

tribution of expected inflation moved little, leading policymakers at the time to conclude

tion disaster probabilities.
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that expectations were anchored and the observed increase in inflation would be tempo-

rary (Powell, 2021, Lagarde, 2021). But the tails showed deanchoring. The probability of

an inflation disaster peaked in the US at 10% in May 2022 and jumped from 1% to 6% in

the EZ between December of 2021 and June of 2022.

Fourth, we find that this deanchoring had a U-turn in 2022 that coincided almost to

the month with the U-turn in monetary policy and the hiking of policy rates. By the

end of 2022, the probability of a disaster had stabilized below 4% in the US, while it has

on average been 8.0% in the EZ in the last twenty-four months of the sample. Since the

deanchoring coincided with unusually loose monetary policy, and the reanchoring with

tightening policy, this provides support for a tight link between monetary policy and the

inflation anchor.

Fifth, the probabilities of an inflation disaster by the end of the sample are two to three

times higher than they were between 2011 and 2019. The inflation disaster of 2021-24 has

left scars in market perceptions. This supports theories where credibility depends on

realized outcomes.

Sixth and finally, we calculate how sensitive are the probabilities of disaster to tem-

porarily high inflation, either in the present or the near future. We find that in the US,

expected inflation is well anchored in the sense of being insensitive to inflation realiza-

tions, but this was less so until recently in the EZ.

Outline: The paper is organized as follows. Section 2 discusses our contributions relative

to the existing literature. Section 3 lays out our approach, using both a simple setup and a

general model, and defines the three adjustments. Section 4 presents the US and EZ data

and how we implement our method. Section 5 discusses summary statistics of the disaster

probabilities, and quantifies the three adjustments. Section 6 applies our estimates to

reassess the extent of anchoring of inflation expectations between 2011 and 2024 in the

US and the EZ. Section 7 concludes.
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2 Connection to the literature

This paper is related to three strands of the literature.

Other uses of inflation options data: Closest to our paper, a small literature has con-

structed inflation probability measures from the market prices of inflation options. Kitsul

and Wright (2013), hereafter KW, the first paper in this literature, uses US data over a

three-and-a-half year period starting in October of 2009 and estimates probabilities of

deflation at 1, 3, 5, and 10 year horizons (starting from today).

Methodologically, our paper begins where KW ends: we apply our three adjustments

to the state prices that they produce. While their measures could be used for the valu-

ation of nominal payoffs, to assess physical probabilities of inflation requires following

our method. In the applications, we use a much larger sample that includes the recent

inflation disaster and the other largest currency in the world; we revisit the probability of

deflation during the common sample (reaching a different conclusion from theirs); and

we study the connection between anchoring of expectations and monetary policy.

There are five important differences between KW and our paper. First, KW uses con-

ventional methods to extract state prices from options prices. We adjust for the effect of

inflation on the real payoffs, so that the state prices can match Arrow-Debreu probabilities

(our first adjustment).

Second, a main focus of our paper is the construction of forward probabilities (our sec-

ond adjustment). KW only present probabilities from today onwards. The overwhelming

focus of policymakers on the 5y5y measure testifies to the relevance of this forward ap-

proach, as do common debates on whether inflation is transitory or persistent.6 In our

applications, we find that this distinction is quite important for the key macroeconomic
6In the NBER working paper version, Kitsul and Wright (2012) present distributions of forward inflation

for four dates in 2011 and 12, but these are based on the very restrictive assumptions of risk neutrality and
inflation innovations being independent over time. These assumptions are not consistent with market
participants’ expectations nor the data on rare disasters.
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debates: in 2011-20, the probability of a short-lived deflation was very different from

the probability of a deflation trap, and when an inflation disaster actually happens, as

in 2021-24, assessing whether long-run expectations are anchored requires excluding the

near future.

Third, KW adjusted the probabilities for risk (as in our third adjustment) but by esti-

mating and using a statistical model for the stochastic discount factor with respect to in-

flation risk that depends on realizations of actual US inflation. Instead, we let the options

prices at different horizons tell us what the market believes are the dynamics of infla-

tion. We only use historical data from eighteen countries on inflation and GDP growth to

measure marginal utilities explicitly during inflation disasters. Moreover, KW study the

relation of their stochastic discount with inflation, but do not use it to construct physical

probabilities of disasters from the options data, which is our focus.

Fourth, our sample period is approximately four times as long. KW use data from an

options market that had just become active, while our sample includes many more years

when this market was mature. The longer sample also allows us to apply the estimates

to important debates surrounding inflation and monetary policy in the last ten years, and

especially to the recent period of dramatically elevated inflation where the question of in-

flation expectations becoming unanchored was central. Almost none of our applications

could have been studied using the KW sample period.

Fifth, and finally, we construct EZ inflation disaster probabilities and discuss how EZ

policy affected them. The challenge the ECB has faced in fighting deflation, as well as the

comparison between the US and the EZ are an important part of our paper.

Related, Fleckenstein, Longstaff and Lustig (2017) use US data on inflation swaps and

options through October 2015 to estimate a stochastic volatility model of inflation dynam-

ics that allows for time-varying risk premia. They also calculate probabilities of inflation

being low or high at various horizons. The differences relative to this paper are the same
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as for KW: the three adjustments, as well as the longer sample period and the inclusion

of the EZ allowing us to discuss a rich set of applications. Moreover, when adjusting for

risk, we allow for disaster-specific prices of risk. Fleckenstein, Longstaff and Lustig (2017)

instead have one inflation risk premium that is not state-specific.

Mertens and Williams (2021) fits a New Keynesian model to US data on interest rates

and option prices. It calculates forward probabilities assuming that inflation follows a

Gaussian random walk, an assumption which we show to be inconsistent with the mar-

ket’s expectations. Also, it does not make the inflation adjustment to nominal payoffs,

nor adjust for risk. As we show, each of these adjustments matters significantly.7

Term structure models: A large literature extracts information about inflation from mar-

ket prices by fitting term structure models to real and nominal yield data, sometimes

including inflation swap prices, e.g., Christensen, Lopez and Rudebusch (2010, 2015),

Haubrich, Pennacchi and Ritchken (2012), Hördahl and Tristani (2012). These papers fo-

cus on estimating the expected average inflation rate, with adjustments for inflation, hori-

zon, and risk that exploit the linearity of the expectations operators. We, instead, focus

on the tails of the distribution for inflation, and on using data from option prices, which

requires different methods altogether to deal with inflation, horizon, and risk.

Our adjustment for inflation is exactly 1 for expected average inflation, so it is not

relevant for that literature. In turn, adjusting for horizon is easy for expected inflation: the

5y5y expected inflation is just the 10y expected inflation minus the 5y expected inflation.

This is not so for the probability of an inflation disaster (or any percentile for that matter),

where the horizon adjustment requires the full distribution of outcomes, which we show

how to estimate using the options data alone. Finally, because of our focus on the tails, we

only estimate a risk adjustment that is specific to inflation-output disasters, as opposed to

7Gimeno and Ibanez (2018) is closer to us in goal but imposes more restrictive assumptions. Hilscher,
Raviv and Reis (2022) makes the inflation adjustment, but does not explain it or quantify its effect, nor does
it adjust for horizon and risk. It also discusses a very different set of issues.
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risk for any realisation of inflation as in typical term structure models.

Of course, any fully-specified time series model of inflation contains predictions for

the distribution of future outcomes. Many term structure models do so, even if they are

estimated using only the expectations of the average in yields. Because our options data

is for the tails, we provide estimates for the disasters directly without making all the

assumptions that come with specifying a full probability model for inflation dynamics.

Other measures of inflation risk premia: Our model of inflation risk draws on the lit-

erature on equity disasters (Barro, 2006, Gabaix, 2012, Barro and Liao, 2021), while we

focus on inflation disasters. Our method can also be used to construct probabilities for

the S&P500 or for currency changes, subject to knowing the probability that large changes

in those prices coincide with high or low inflation. But, options on equities or currencies

almost always have short horizons, between one week and one year, for which the ad-

justments are less quantitatively important.

Tail macroeconomic outcomes: A small literature focuses on tail outcomes for inflation

disasters, specifically inflation at risk (Kilian and Manganelli, 2007, Banerjee et al., 2020,

Andrade, Ghysels and Idier, 2012, Lopez-Salido and Loria, 2020). Estimates based on

empirical distributions have to pool across many countries and long periods of time with

different inflation regimes. Instead of outcomes of realized inflation, we measure market

perceptions of this risk. Because the possibility of extreme and persistent inflation events

is constantly traded, they provide many more observations on the likelihood of inflation

disasters that are region-specific.

Surveys: A few papers look at expectations of disasters in surveys (Reis, 2021, Ryngaert,

2022). We instead take the perspective of financial markets. Very few surveys ask respon-

dents about tail probabilities of distant-horizon inflation, and the few that do (the Survey

of Professional Forecasters for the United States) move little over time. Time series of dis-
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persion in surveys about long-horizon inflation are more useful, but disagreement, which

many surveys capture, and uncertainty, which we measure, are not the same (Reis, 2020,

Coibion et al., 2021).

3 Constructing probabilities of inflation disasters: theory

We explain the intuition behind our method in a stylized setting with only high-inflation

disasters before deriving its applicability in a general setup.

3.1 The intuition of the method in a simple setup

There are three periods, 0, 1, 2, and four possible realizations of inflation: low, target,

moderately high, and disaster. Let π̄ denote the inflation target and assume that inflation

is on target in period 0. After that, the probability that inflation is on target is pπ, and we

assume that expected inflation for periods 1 or 2 is equal to the target. Disaster inflation

is π̄ + d.

From today’s perspective, the probability of an inflation disaster in period 1 is pd. The

conditional probability that there is an inflation disaster in period 2 is pd if inflation was

on target, pmd if inflation was moderate in period 1, and pdd if inflation was a disaster.

Note that we assume that the economy does not enter a high-inflation disaster from the

low-inflation state. These are stylized assumptions that we make only for the purposes of

exposition in this section.

Finally: i(1) is the nominal interest rate between dates 0 and 1, r(1) its real counterpart,

and md is the (real) stochastic discount factor when there is an inflation disaster.
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3.1.1 The conventional measures

Imagine that we have data on options that pay one nominal unit if πd is realized in period

1, and zero otherwise. Assuming no arbitrage, the price of that option is equal to ad(1) =

pd exp(−π̄ − d)md: when the event with probability pd is realized, it pays $1, which in

real terms requires an inflation adjustment exp(−π̄ − d), that is discounted by the real

stochastic discount factor md, reflecting the marginal utility of the future payoff.

The conventional approach is to construct the price for the disaster state as: nd(1) =

ad(1) exp(i(1)). This can be thought of as a probability in the sense that it is non-negative

and summing it with the state prices for the other three states gives one. But what does it

measure?

3.1.2 First adjustment: risk-neutral (inflation-adjusted) probabilities

Arrow-Debreu securities pay one unit of consumption, not $1, in each future state. There-

fore, the price of the disaster A-D security is: pdmd. The associated A-D probability is

then qd(1) = pdmd exp(r(1)). This is the real risk-neutral probability.

It follows right away that:

qd(1) = nd(1) exp(r(1) + π̄ + d− i(1)) ≈ nd(1) exp(d). (2)

The first equality comes from the definition of nd(1), while the approximation comes from

the assumption that expected inflation—the gap between the nominal and the real interest

rates—is equal to the target inflation level. The conventionally-measured probabilities

from options nd(1) must therefore be adjusted by the disaster size d. This is our first

adjustment.

Intuitively, when the disaster happens, and the option pays, its $1 is now worth less in

real terms. Economic agents therefore pay less for this option than if they were suffering
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from money illusion. Researchers in turn need to adjust for this effect as well.

If we are calculating probabilities near the inflation target (so d is close to 0), as some-

times is done by central banks, then this adjustment factor is negligible. Likewise, even

for d = 0.03, if the horizon is short, then the adjustment factor is quantitatively not that

significant. However, if we are looking at disasters over long horizon, say 10 years, then

the adjustment factor is exp(10× 0.03) = 1.35. Reporting nd(1) based on the price of a

well out-of-the-money long-dated high inflation option thus significantly underestimates

the risk-neutral probability qd(1).

3.1.3 Second adjustment: forward (horizon-adjusted) probabilities

Imagine that our goal is to measure the probability of having a disaster in period 2. From

the perspective of the present, this is: pm pmd + pd pdd + pπ pd.

The price of an Arrow-Debreu security that paid one unit of consumption in period

2, if there is an inflation disaster in that period, would provide an estimate of the risk

neutral probability, qd(2).

However, we do not have the option prices that match this security. Looking at ei-

ther short-dated or long-dated cumulative inflation options does not capture the desired

probability. The short-dated option from the previous section that pays if there is a dis-

aster in the first period provides an estimate of pd via qd(1), while a long-dated option

that pays if there has been a disaster that lasts for two periods would give an estimate of

pd pdd. Since inflation moves sluggishly, pm pmd/pd is likely above one, so that both short

and long-dated options understate the desired forward probability.

To calculate the forward probability, we need information on the extent to which in-

flation is sluggish. Fortunately, there are traded forward-starting options, but for sub-

periods of our hypothetical period 2. Namely, in the data, there are forward contracts for

annual inflation within our 5-year desired periods. They provide the missing data.

13



3.1.4 Third adjustment: actual or physical measure (risk-adjusted) probabilities

Finally, with an estimate of md, we can go from the risk-neutral to the physical probabili-

ties. Importantly, to answer the question in this paper, one does not need a full model of

risk that gives the stochastic discount factor at all states. Only the risk that is correlated

with inflation in disaster times is relevant. Moreover, it is likely that the disaster state

adjustment will be the largest adjustment of the three states.

Imagine then that the main source of variation in the stochastic discount factor is

whether there is a consumption disaster or not. So, md is a function of consumption,

which can either be normal or in a disaster. Conditional on an inflation disaster, let p̃ be

the conditional probability that there is a consumption disaster as well. Because a con-

sumption disaster is a time of elevated marginal utility, then the ratio of md when there

is a consumption disaster to the marginal utility when there is none—call this ratio m̃—is

well above 1.

Continuing with the approximation that disasters are small-probability events, so that

the marginal utility without a disaster is approximately equal to the expected one, the

risk-neutral probability is:

q(1) ≈ [(m̃− 1) p̃ + 1] pd. (3)

Since m̃ > 1, the risk-neutral probability will over-state the probability of an inflation

disaster.

The rare disasters literature has argued that m̃ can be quite large. However, for in-

flation, the picture is a bit different. First, the relevant probability is p̃: that conditional

on an inflation disaster, there is a consumption disaster. This is well below one. There

are many times, especially outside the United States, where inflation has been reasonably

high or low without any sharp fall in economic activity. Second, m̃, which measures the

marginal utility of both an inflation and a consumption disaster relative to normal times
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is on average lower than in a ‘standard’ consumption disaster because, historically, there

are several episodes where an inflation disaster came with only a mild (or no) recession.

Therefore, the adjustment for risk is not as dramatic as the one in the literature on the

equity premium.

What the formula shows is that in order to calculate the necessary adjustment fac-

tor the two relevant quantities to measure are m̃ and p̃. Since there is already a well-

established literature measuring them for consumption disasters, and since we have cor-

responding data on inflation, combining them provides a path forward to identify the

two parameters.

3.2 The theoretical result

This section sets out a general framework and derives the key theoretical result on the

three adjustment factors to go from option prices to the probability of inflation disasters.

Uncertainty about inflation: Inflation is a random variable and has an associated proba-

bility distribution p(π).8

Inflation securities and inflation risk: The non-negative price in consumption units of an

Arrow-Debreu inflation security that pays one unit of the consumption good if inflation

is π at the future date is equal to:

b(π) = p(π)m(π), (4)

where m(π) measures the average marginal utility across states of the world where infla-

tion is the same. Since m(π) varies only with inflation, it has all the information relevant

8In the appendix, we use a setup that allows for different states of the world s that have the same level
of inflation but differ in other dimensions, e.g., consumption.
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to assess inflation risk.9

Risk-neutral Q-probabilities: The real risk-free security pays a constant one unit of con-

sumption. The inverse of its price is er, where r is the real interest rate. Since this se-

curity has an identical payoff as buying one inflation security for each possible value of

inflation, it follows that by no-arbitrage: e−r = ∑π b(π) = ∑π p(π)m(π).10 Defining

q(π) = b(π)er, it is non-negative and adds up to 1 across inflation rates. This is the

risk-neutral probability of this inflation rate.

N-probabilities: In order to match what is traded in the market, consider a security that

pays one nominal unit at the future state-date. Its price is a(π) = b(π)e−π. Importantly,

if inflation is high, this is lower than that of b(π), because the nominal unit delivered by

this security is worth less in real terms than that of the Arrow-Debreu inflation security.

The nominal interest rate i is likewise defined as the inverse of the price of a security that

pays one nominal unit for sure next period e−i = ∑π b(π)e−π. Combining these two, one

can define an N-probability (for “nominal risk neutral probability”) as n(π) = b(π)ei−π,

which is itself non-negative and adds up to 1.

Linking Q− and N− probabilities: Let πe = i− r, be the break-even expected inflation.

It immediately follows that risk-neutral and nominal probabilities are related according

to:

q(π) = n(π)eπ−πe
. (5)

The Q-probability of average expected inflation coincides with the N-probability. But as

we go towards the tails, away from that average they are increasingly apart.

9With other sources of risk in the economy, m(π) would average across them. The appendix generalizes
this. This pattern is present in the data—between 2000 and 2020, the US economy went through booms and
busts, but inflation was approximately unchanged.

10Also, as is standard, e−r is the expected SDF or marginal utility of consumption growth.
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Time and horizons: Starting from the present, the joint risk-neutral probability density of

inflation over the following T periods, and over the remaining H periods, is q(π0,T, πT,T+H).

From the definition of marginal and conditional distributions: q(πT,T+H) = ∑π0,T
q(π0,T, πT,T+H)

and q(πT,T+H|π0,T) = q(π0,T, πT,T+H)/q(π0,T). Finally, because of the definition of infla-

tion, πT,T+H H = πT,T+1 + πT+1,T+2 + ... + πT+H−1,T+H, and there is a joint distribution

of q(πT,T+1, πT+1,T+2, ..., πT+H−1,T+H). Combining all of these probabilities:

q(πT,T+H) = q(π0,T+H) ∑
π0,T

[
q(π0,T)

q(π0,T+H)
×

∑
πT,T+1,...,πT+H−1,T+H

q

(
πT,T+1, ..., πT+H−1,T+H|π0,T,

H

∑
j=1

πT+j−1,T+j = πT,T+H

)]
(6)

The expression in the bottom line takes into account the persistence of inflation across

successive periods within the interval of time (T, T + H). On the top line is the adjustment

for the sluggishness of inflation over the long horizons.

Final result: Combining all the steps, we get the result as a formula to obtain the desired

disaster probabilities:

Proposition 1. The probabilities of high and low inflation disasters are, respectively:
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∑πT,T+H>H(π̄+d) p(πT,T+H) and ∑πT,T+H<H(π̄−d) p(πT,T+H) where:

p(πT,T+H) = n(πT,T+H)︸ ︷︷ ︸
Options Data

×
(

e(πT,T+H−πe
T,T+H)H

)
︸ ︷︷ ︸

Real Factor

×
(

e−rT,T+H Hm(πT,T+H)
)

︸ ︷︷ ︸
Risk Factor

× ∑
π0,T

[(
∑

...=πT,T+H

q(πT,T+1, ..., πT+H−1,H|π0,T)

)
q(π0,T)

q(π0,T+H)

]
︸ ︷︷ ︸

Horizon Factor

(7)

4 Data and empirical implementation

The empirical implementation of the adjustment factors in proposition 1 requires data

from option prices, a statistical model of the incidence of economic disasters over hori-

zons, and an economic model of the stochastic discount factor when there is an inflation

disaster.

4.1 Data on inflation options

There is an active market for US and EZ inflation options. The same players that buy

and sell nominal and inflation-indexed government bonds, or that trade in the inflation

swap markets, are often present in these option markets to hedge some of their positions.

Therefore, even though trading volumes will differ, these data are as good as those behind

figure 1, which are used frequently.11

Price data exist for both call and put options for average inflation between the present

11Baumann et al. (2021) and Feldman et al. (2015) describe the use of these options data at the ECB and
the Fed, respectively.
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and up to 15 years in the future for strike prices between -2% to 6% with 0.5% jumps. The

typical call security with a strike price k pays at the future date the difference between the

gross inflation rate (eπ) until that date and the strike price k, if the difference is positive,

or zero otherwise. The price of that option today is a(k).

We use US options data from October of 2009 to October of 2024 from Bloomberg;

for the EZ, the sample starts in January of 2011. While option prices are available daily,

sometimes the data quality is low. To be conservative, we construct data at the monthly

frequency. We focus on horizons of 5 and 10 years, which are two of the more com-

monly traded markets for these securities. We also compare put-call-parity real rates with

those implied by the inflation swap contracts to confirm that prices are not only consis-

tent within the options market but also across inflation derivative markets. The appendix

describes how we construct the data.12

4.2 Inflation adjustment: risk-neutral probabilities

Recovering Q-probabilities is just as easy as recovering N-probabilities, as it relies on the

same methods from options pricing, and it should always be done.13

The no-arbitrage pricing condition for traded securities is:14

a(k) = ∑
π

(
p(π)m(π)max

{
eπ − k

eπ
, 0
})
≈
∫ ∞

k

(
eπ − k

eπ

)
b(π)dπ, (8)

where the approximation comes from assuming a continuum of inflation states and using

12These options are traded over the counter, so a valid concern is whether inflation disasters are also
times when there is a higher likelihood that the sellers of the options default on their contracts. If so, this
would show up in the price of other options sold by the same intermediaries. While this might have been a
concern at the start of our sample, there is no indication that it is significant for most of the period that we
cover.

13In the appendix, we compare our daily N-probabilities with those from KW in the overlap sample for
the US data (October 2009 to April 2013). They are almost identical.

14Note that the payoff of these securities only depends on inflation, not on the entire set of states; see the
appendix.
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the definition of the Arrow-Debreu prices in equation (4).

Following Breeden and Litzenberger (1978), take derivatives with respect to k recalling

that q(π) = b(π)er:

era′(k) = −
∫ ∞

k
e−πq(π)dπ. (9)

Taking another round of derivatives with respect to k, and using the definition of a distri-

bution function Q(π) gives a simple formula to build this distribution:

Q(k) = erka′′(k). (10)

Using this formula provides a way to build the Arrow-Debreu prices directly from the

option prices. The right-hand side can be measured for different strike prices: it is how

sensitive the price of the option is to the strike price. Since these strike prices are them-

selves inflation measures, one can easily build the whole distribution for different gross

inflation k.

How does this connect to the N(.) probabilities conventionally measured? Since n(π) =

b(π)ei−π, differentiating equation (8) with respect to k gives another simple formula to

build this distribution:

N(k) = 1 + eia′(k). (11)

These are the probabilities sometimes reported in the financial media, and one could al-

ternatively start from here to get Q(.) by multiplying by eπ−πe
.

This adjustment should always be made. Otherwise, from equation (4) and the defi-

nition of n(.), then n(π) = p(π) only if m(π)ei−π = 1. That is, for the conventionally-

calculated probabilities to match the actual physical probabilities, it must be that there is

not only risk neutrality (m(π)er = 1), but also that π = πe for every realization of π. But

this is only the case if there is no uncertainty about inflation, in which case the exercise
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of building a distribution of inflation is not interesting. Instead, from the definition of

q(π) = b(π)er and equation (4), we have that q(π) = p(π) as long as m(π)er = 1. This

is the case if people are neutral with respect to inflation risk, or if the classical dichotomy

holds, so inflation is uncorrelated with marginal utility. The adjustment is needed be-

cause, even if investors are risk neutral, they still care about receiving a payoff in a high-

inflation state that has lower real value.

4.3 Horizon adjustment: forward probabilities

Obtaining forward expectations of inflation is straightforward (figure 1). Starting with

measures of expected inflation between the present and a far-away date, T, and between

the present and a farther-away date T + H, the joint linearity of the expectations oper-

ator and of inflation (as a difference in logs) implies that Eq(πT,T+H) = Eq(π0,T+H) −

Eq(π0,T). Going from probabilities on cumulative inflation to probabilities over a for-

ward period is harder. As proposition 1 shows, it requires more data beyond the two

distributions for cumulative inflation, as well as a model for the time-series properties of

inflation as perceived by markets.

4.3.1 Data on forward starting options

There exist markets for forward-dated options at every date that will pay out depending

on the realizations of inflation in πT,T+1. These options are for inflation in one given year,

not on the average over a longer period H > 1, which is our focus.15

The markets in which these trade are less liquid, so we want to be conservative in us-

ing them. In the data, the five distributions covering the one-year ahead inflation starting

in 5 to 9 years are quite similar almost always. This indicates that a low-order Markov pro-

15These data were used to estimate general stochastic processes for inflation in Hilscher, Raviv and Reis
(2022), and are described there in detail, as well as in the appendix.
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cess with not too much persistence is an adequate model since, after 5 years, the marginal

risk-adjusted distribution of inflation seems to have settled at its ergodic state. Therefore,

and to allow for possible data concerns, we take the average of these 5 annual distribu-

tions and use that alone for estimation, making our approach more robust to the presence

of measurement noise. Using the adjustments discussed in section 4.2, this provides an

estimate of q(π5,6) ≈ ... ≈ q(π9,10).

4.3.2 A model of inflation persistence

Since the data is for risk-neutral inflation, the model of dynamics is for risk-neutral in-

flation as well. We assume that inflation is the sum of three parts: a deterministic part,

which has been constant at the inflation target during our sample π̄; a stochastic one cap-

turing the ups and downs during normal times ε; and a stochastic one capturing sharp

jumps during disasters, which may be positive dh or negative dl. Altogether, letting ∆ be

a time period:

πt+∆ = π̄ + εt+∆ + dh
t+∆ − dl

t+∆. (12)

We assume that dh
t and dl

t are two independent common disasters that arrive as Pois-

son processes. We then make two major assumptions on εt. First, that the variance of εt is

small relative to the size of the disaster jumps, so that inflation enters the disaster range

only as a result of a disaster, or if inflation in the previous year was just below disaster

levels. Second, that if ∆ was infinitesimally small, then εt would approximately follow a

mean-reverting Ito process with continuous sample paths in time. The result of these two

assumptions is that inflation follows a first-order Markov process with a particular set of

restrictions on the transition matrix.16

Because strike prices for inflation options come in jumps of 0.5%, our data comes in

16Mertens and Williams (2021) compute forward distributions under the much stronger assumption that
inflation follows a Gaussian random walk.
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8 bins: π(i) = {≤ −1, (−1, 0], (0, 1], (1, 2], (2, 3], (3, 4], (4, 5],> 5}. A discrete approxima-

tion of this process is a Markov chain over 8 states corresponding to these bins with an

8× 8 Markov transition matrix P:

P =



1− 5pl pl pl pl pl pl 0 0

pdl + pnn pml pmr 0 0 0 0 0

pdl pnn pm pmr 0 0 0 pdh

pdl 0 pnn pn pnn 0 0 pdh

pdl 0 0 pnn pn pnn 0 pdh

pdl 0 0 0 pmr pm pnn pdh

0 0 0 0 0 pmr pmh pdh + pnn

0 0 ph ph ph ph ph 1− 5ph



. (13)

Starting with the low-inflation disaster state in the first row, the economy exits it with

probability 5pl, which should be close to 1 to match the Poisson assumption on disas-

ters. When the disaster disappears, the economy will return to any one of the normal

(non-disaster) values, though not to the state opposite and closest to the other disaster.

We assume that they are equally likely reflecting the first-order Markov assumption that

where it was before the disaster would not affect where it ends up now. Symmetrically,

the same arguments explain the 8th row referring to the high-inflation disaster.

Turning to when inflation is close to 2%, in the third and fourth row, it may move up or

down according to its normal process symmetrically with probability pnn. This captures

the normal inflation dynamics. Inflation may be hit by the high-inflation disaster with

probability pdh, or with the low-inflation disaster with probability pdl.

Finally, in the 2nd and 3rd (and 6th and 7th) rows, a final ingredient appears, as there

is mean reversion in the normal inflation component. The probability of staying close
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to the target is pn, and the probability of staying above (or below) the target is pm.17 The

probability of reverting towards target is pmr, which in the data we find to be much higher

than the probability of staying at that level.18

4.3.3 Estimating the model

There are six parameters to estimate: the probabilities of entering a high and low disaster

pdh and pdl; the probabilities of exiting the disaster pd, pl; the probability of normal infla-

tion moving, pnn, which captures the local volatility of inflation; and the probability of

elevated or low normal inflation moving back to the target, capturing mean-reversion in

normal inflation pmr. Given a set of parameters, we simulate many paths to calculate the

probability distributions for inflation at the different horizons.

The data consist of 21 numbers per month, 7 for each of the three distributions: the cu-

mulative distributions q(π0,5) and q(π0,10), and the average forward distribution q(π5,6).

These are the moments that the model must hit, in a GMM procedure that assigns them

equal weight. The overall fit, which we report in the appendix, is quite good.

In principle, we could estimate the model separately at each month, and recover pa-

rameters that are specific to each date. For parsimony, instead, we kept three of the pa-

rameters fixed over the whole sample, while letting the other three vary across months.

We estimated several other candidate models, including models where four of the pa-

rameters vary over time, and where all 6 did so, as well as one where some parameters

move at an annual frequency while others move at a monthly frequency. The appendix

discusses these models, and why our results are robust to this choice, and why the parsi-

monious setup is preferable.

17Note that pn and pm are equal to combinations of the other parameters: pn = 1− 2pnn − pdl − pdh.
Similarly, pm = 1− pnH − pnn − pmr − pnL.

18For completeness, and again because probabilities have to add up to 1 within rows: pml = 1− pdl −
pnn − pmr and pmh = 1− pdh − pnn − pmr .
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The first constant parameter is pmr, which captures the extent of mean reversion. For

the US, the estimate is 0.50, while for the EZ it is 0.47, capturing the strong sluggishness

of inflation. The other two are the exit probabilities for disasters, pl, ph. The estimates are

almost exactly the same for the US (0.1990 and 0.1998), implying that, as soon as the US

enters a disaster state, it leaves it with a probability of 5× 0.199 ≈ 1 shortly after. For the

Eurozone, instead they are 0.1999 and 0.0617, so that a high-inflation disaster is perceived

to persist for more than one year in the EZ with a probability of 69%.

The three time-varying parameters are the probabilities of entering a disaster, the main

focus of our interest, and pnn, which captures local volatility and captures the changes in

inflation volatility over the sample. Figure 2 shows their estimates over time. The decline

in pnn for the US since the start of the decade captures a fall in the perceived volatility

of inflation, although since the pandemic that trend has reverted. Independently of this,

the probability of jumping to a low-inflation disaster was high at the start, but became

quite low after mid-2012, although with a significant jump in 2020. More erratic is the

pattern in the probability of jumping to a high-inflation disaster. It significantly declines

after 2015, but, since the start of the pandemic, it has risen significantly.

For the EZ, there is a similar decline in the stochastic volatility of inflation throughout

the decade, and a similar uptick since the pandemic. However, the probability of a de-

flation disaster hitting the economy is higher than in the US throughout the sample, and

varies significantly, including a significant rise during the pandemic. The probability of a

high inflation disaster stays small throughout, but rises at the very end of the sample.

4.4 Risk adjustment: physical probabilities

If the Phillips curve was vertical at the long horizons that we consider, inflation would

be uncorrelated with marginal utility. Therefore, m(π) would be a constant, equal to the

inverse of the real interest rate, and the risk-neutral probabilities would be equal to the
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Figure 2: Inflation dynamics: model parameter estimates

United States Eurozone
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Note: The figure plots time-varying Markov model transition probabilities estimates.

actual probabilities.19 However, it seems likely that inflation disasters are times where

marginal utility is high. Deflation and high inflation sometimes, even if not always, come

at the same time as economic recessions. If so, at the tail of the distribution, m(π) is high,

in which case risk-neutral probabilities will over-state the actual physical-measure prob-

abilities of disasters, because these events are particularly costly to investors. Relative to

a full model of risk, however, we only need a model to price inflation risk at the tails.

4.4.1 A model of risk in inflation disasters

To model risk, we supplement our model of inflation dynamics with a model of how it

co-moves with consumption ct:

πt+∆ = π̄ +

εt+∆︷ ︸︸ ︷
uπ

t+∆ + et+∆ +dh
t+∆ − dl

t+∆, (14)

log(ct+∆) = log(ct) + g + uc
t+∆ + β0et+∆ − βhdh

t+∆ − βldl
t+∆. (15)

19Note that people may still be arbitrarily risk averse: the stochastic discount factor may still be volatile
over all the states and there is plenty of risk in the economy. But, all of it would be orthogonal to inflation:
m(π) is constant.
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Consumption is expected to grow at rate g subject to some shocks uc
t+∆ that are in-

dependent of inflation shocks uπ
t+∆, but co-moving in normal times due to the common

shock et. This may be driven by multiple shocks, and may be correlated over time, but

the parameter determining inflation risk premia during normal times is the co-movement

scalar β0.

Our focus is on dh
t , dl

t, the disasters that strike inflation, and which are non-zero with

probabilities ph, pl. (Consumption disasters that do not come with high or low inflation

do not trigger the options, so they are included in uπ
t+∆ and uc

t+∆, respectively.) The coeffi-

cient βh measures the size of the consumption drop when there is a high inflation disaster,

while the coefficient βl measures the size of the drop following a deflation disaster.

We follow and modify the approaches of Gabaix (2012) and Barro and Liao (2021) to

model the size of the disaster. Defining the inverse fall in consumption by zh = 1/(1−

βhd), we assume that if a disaster strikes, then zh follows a Pareto distribution:

F(zh) = 1−
(

zh

zh
0

)−αh

with zh ≥ zh
0 > 1, αh > 0. (16)

The Pareto distribution has two parameters. The first, zh
0 is the minimum size of the

jumps. The higher it is, the more average consumption falls during inflation disasters.

The second is the exponent αh capturing how quickly the tail of the distribution thins out.

The lower it is, the more likely is a very large consumption disaster. The same applies for

deflations, (zd, zd
0, αd).

4.4.2 Estimating the model

We combine data on annual output from Barro (2006) (using real GDP per capita, as it

did) with data on inflation from Jordà, Schularick and Taylor (2016) between 1875 and

2015. The dataset covers 18 advanced economies, listed in the appendix, and we use it
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to identity periods where both inflation and output had disasters and estimate the Pareto

distribution as well as the co-movement parameters.

Details of the estimation and alternative estimation approaches are reported in the

appendix. In the sample, the unconditional probability of an inflation disaster (10 log

points above or below target for 5 years) is 12.9%, and they overlap with output disasters

in 20.0% of the cases. Therefore, p̃ = 0.20. Separating high and low inflation disasters,

then p̃h = 0.356 and p̃d = 0.085. For the Pareto distribution, we estimate that αh = 5.45

and zh
0 = 1.03 for high-inflation disasters and αl = 15.18, z0

d = 1.06 for deflation disasters.

That is, deflation disasters more rarely come with output disasters, and when they do, the

falls in output are on average higher, but with significantly thinner tails.

Given an estimated model of inflation-consumption disaster co-movement, we follow

the standards of the rare-disasters literature (Gabaix, 2012, Barro and Liao, 2021) by using

an Epstein-Zin model for marginal utility with a relative risk aversion coefficient of 3.

4.5 Assessing the uncertainty around the adjustments

Two of our adjustments—horizon and risk—required statistical estimates, so they come

with estimation uncertainty. For the risk adjustment, we estimated the parameters of

the Pareto distribution. A bootstrap over the inflation-output data provides confidence

bands. For the horizon adjustment, we estimated a statistical model using GMM. The co-

variance matrix of the parameter estimates has the standard GMM asymptotic formula.

Finally, the delta method translates these to estimates of the uncertainty around the prob-

ability of a disaster.

Figure 3 shows the 90% confidence band around the estimates of a high-inflation dis-

aster for the US. On the left panel are confidence bands treating the horizon adjustment

as known, so only for the Pareto estimates for the risk adjustment. The right panel zooms

in on the more recent period to be clearer, and considers the estimation uncertainty on

28



Figure 3: Confidence bands from the adjustments
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Note: The left panel shows the 90% confidence band for the US 5y5y inflation disaster (> 4%) probability
when standard errors take into account the uncertainty in the risk adjustment estimate; the right panel adds
uncertainty in the horizon adjustment.

horizon as well. The bands are relatively tight, between 1.5 and 2.5 percentage points in

width in the more recent period. This shows that the estimation uncertainty around our

two adjustment factors is relatively minor (there is no estimation needed when apply-

ing the inflation adjustment). More relevant is the time-series variation in the estimates,

which is driven by changes in the market expectations reflected in the options price data.

4.6 Using market data and liquidity

Empirical results always depend on data quality. In the case of price data, the common

concern is market liquidity. As always, this requires a brief discussion of the source of the

data to have the right care in using our estimates and interpreting our results.

The derivatives market for inflation started in 2002, and grew very quickly. Conserva-

tively, we follow several other studies (Kitsul and Wright, 2013, Fleckenstein, Longstaff

and Lustig, 2017, Mertens and Williams, 2021, Hilscher, Raviv and Reis, 2022, Nagel, 2016)

and only use data from 2009 onwards, when the market was quite liquid. Since then,
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Chipeniuk and Walker (2021) report that the volume of trading for inflation caps and

floors quadrupled between 2009 and 2017. Since 2021, some claim that the US inter-dealer

market has virtually disappeared, while others report that since the pandemic, the mar-

ket has been driven by clients’ increased demand for inflation protection, predominantly

through inflation caps in the dealer-to-client market.20 The variation in our estimates

during these times is reasonable and related to policy events.

Since the inflation options are actively used to hedge positions in inflation swaps, their

liquidity concerns should be related. Bahaj et al. (2023) estimate liquidity premia in the

swaps market, and find that they are moderate at the long horizons that we focus on in

this paper, and that fundamentals drive more than 90% of the variation in prices.21 Nev-

ertheless, to be conservative, in our analysis of the recent history of US and EZ inflation,

we will focus on trends across many months, rather than month-to-month fluctuations,

since these are likely to be more robust to liquidity changes.

Policy institutions use inflation options data regularly, to provide public data (the Fed-

eral Reserve Bank of Minneapolis produces a weekly series), research (Kozlowski, 2024),

and in speeches justifying policies (e.g., Schnabel, 2022, Lane, 2022). Policy interventions

themselves can sustain liquidity in markets (Allen, Carletti and Gale, 2009, Kargar et al.,

2021, Falato, Goldstein and Hortaçsu, 2021). An example of such proactive involvement

is the creation of the FX options market by the Bank of Israel during the high inflation

period of the 1980s (Fischer, 2006).

An alternative to market-based data is to use household and professional surveys (Ar-

mantier et al., 2022, Grishchenko and Wilcox, 2024, Fofana, Patzelt and Reis, 2024). How-

20(Williams, 2023) and https://www.risk.net/awards/7955889/inflation-derivatives-house-of-the-year-
citi report

21Ideally, future work would propose a fourth adjustment factor that captures potentially time-varying
illiquidity of the option contracts. The literature is still far from delivering this, and the direction of its
impact is not obvious: since all option prices move together with the real risk-free rate, only movements in
the differential liquidity of options with strike prices that are nearer or more out of the money would affect
the constructed probabilities.
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ever, the tails of surveys reveal the extent of disagreement, while the tails from market

options reveal perceptions of rare disasters. The two are conceptually very different. In

the same way that market prices may be affected by liquidity, surveys can be affected by

biases in answering, so that combining them to extract as much information as possible

is likely preferred (Nagel, 2024).

5 Quantifying the adjustment factors in the US and the EZ

We now summarize the impact of the three adjustments for inflation, horizon and risk to

build disaster probabilities.

Table 1 presents summary statistics of the various steps in finding the probabilities.

Panels A and B focus on high-inflation disasters, both their final probabilities and the

adjustment factors to get to them, respectively. We show the medians for the full sample,

and for a period in the US, between September 2021 and August 2023 when realized

inflation reached 9.1%, and the high-inflation disaster probabilities were large. Panels C

and D show the US deflation probabilities between January 2011 until December 2012, a

time when there were heightened deflation fears and the Fed undertook QE rounds two

(in November 2010) and three (September 2012) as well as operation twist (September

2011).

5.1 Inflation adjustment

The first four (two) columns in panel A (B) show the inflation adjustment. During the

recent period, the median 5-year N-probability was 20.7%, while the risk-neutral Q-

probability was higher at 22.8%. The median adjustment factor to move from N to Q

31



Table 1: Three inflation disaster probability adjustments

N_5y Q_5y N_10y Q_10y Q_5y5y P_5y5y
US, 9/21-8/23, median 20.7% 22.8% 14.0% 17.2% 6.3% 4.2%
US, 90th percentile 21.0% 23.0% 23.6% 29.1% 10.7% 7.1%
EZ, 90th percentlie 14.0% 16.4% 16.2% 20.9% 14.8% 9.8%

Q, 10y to 5y5y Q to P, 5y5y
US, 9/21-8/23, median 0.38 0.66
US, median 0.43 0.66
EZ, median 0.99 0.66

N_5y Q_5y N_10y Q_10y Q_5y5y P_5y5y
US, 1/11-12/12, median 6.7% 5.6% 6.9% 4.8% 6.4% 6.2%
US, 90th percentile 7.0% 5.9% 6.4% 4.7% 7.2% 6.9%
EZ, 90th percentlie 11.4% 10.0% 10.5% 7.8% 12.1% 11.6%

Q_10y to Q_5y5y Q_5y5y to P_5y5y
US, 1/11-12/12, median 1.41 0.96
US, median 1.28 0.96
EZ, median 2.25 0.96

N to Q, 10y

This table reports summary statistics for various inflation disaster probabilities. We focus attention on six measures. In 
columns 1-4 of Panel A we report probabilities of average inflation lying above 4% over the next five (5y) or 10 (10y) 
years. N denotes nominal risk-neutral probabilities, Q denotes risk neutral probabilities, i.e. probabilities after adjusting 
for the effect of inflation (inflation adjustment). Column five reports forward risk-neutral probabilities of five-year 
forward probabilities, that is the probability of inflation lying above 4% in five years for five years (horizon adjustment). 
The final column adjusts that probability for risk, and is denoted by P (risk adjustment). Panel B reports adjustment 
factors: Adjusting for inflation and therefore moving from N to Q probabilities (5y and 10y); adjusting for horizon, i.e. 
moving from Q_10y to Q_5y5y probabilities; and moving from Q_5y5y to P_5y5y probabilities. Panels C and D report 
deflation probabilities and adjustment factors.

N_5y to Q_5y N_10y to Q_10y
0.84 0.69
0.85
0.90

0.72
0.80

Table 1: Three inflation disaster probability adjustments

Panel A: High inflation disaster (>4%) probabilities, 9/21 - 8/23

Panel B: High inflation disaster probability adjustment factors

Panel C: Deflation (<0%) probabilities, 1/11 - 12/12

Panel D: Deflation probability adjustment factors

1.12
1.18

1.23
1.33

1.09 1.24
N to Q, 5y

is 1.09.22 As expected, the effect is larger for the 10y horizon, with a median adjustment

factor of 1.24, as the median N-probability was 14%, but the Q-probability was 17.2%.

For deflation, in panels C and D, the adjustments work in the opposite direction. The

median 5-year N deflation probability over the 24-month period when it was heightened

was 6.7%, compared to 5.6% for the Q-probability, while for the 10y horizon, the differ-

ence was larger; median adjustment factors were 0.84 and 0.69 for the two horizons.

22The adjustment factor depends on the probability density, which is not constant, so neither is the ad-
justment factor.
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In the full sample, the adjustment sizes are a little smaller because extreme inflation

and therefore adjustments are less likely. Still, the adjustments are higher the longer is

the horizon, and they also turn out to be larger for the US than for the EZ. Overall, N-

probabilities overstate the risks of deflation and understate the risks of high inflation.

5.2 Horizon adjustment

The next adjustment is for the horizon; we use it to get the 5y5y forward probability. Pan-

els A and C report the median 10y (column 4) and 5y5y (column 5) disaster probabilities,

while Panels B and D report median adjustment factors (column 3).

This adjustment is the largest of the three. In the 2021 to 2023 US high-inflation sub-

sample, the median forward Q−probability of an inflation disaster is 6.3% compared to

the 10y probability of 17.2%. Similarly, in the full sample, the median forward Q−probability

(5.2%) is smaller than the 10y probability, which is 11%. Reflecting this, the median ad-

justment factor is 0.41. According to the estimates, when US inflation is high, market

participants do not expect it to persist.

In contrast, in the EZ, the adjustment factors are much higher, reflecting a higher

market-perceived persistence of inflation. As a result, if one were to look at the 10y prob-

abilities, one would think the US is much more likely to have a disaster than the EZ. In

fact, at the forward horizon, the two are quite close to each other.23

In contrast, for deflation, forward probabilities are higher than 10y probabilities, both

when deflation risk is elevated and for the full sample. When inflation is low, there is

a worry that it may continue to be low in the future. The median EZ forward deflation

Q−probability is 6.6% compared to a 10y deflation Q−probability of 4.2%, and the me-

dian adjustment factor for the EZ is 2.26. These high numbers reflect persistent long run

23Note that 10y and 5y5y probabilities as well as adjustment factors are all time-varying and that we
report medians for each measure separately; there is thus not a one-to-one mapping in adjustment factor
and e.g. the relative size of the 10y and 5y5y probability.
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deflation fears by market participants.

5.3 Risk adjustment

We estimate separate risk adjustment factors (P/Q ratios) for high-inflation and deflation

states using data for 18 advanced economies between 1875 and 2015. In the data, the

output disasters associated with high and low inflation are of different sizes. Namely,

episodes of deflation, like in the late 19th century, have not come with particularly severe

depressions.24 The adjustment factor is a mere 0.96. Instead, high inflation more often

came with deep recessions, as in most countries during the 1970s, so the adjustment factor

is substantial at 0.66.

If, following the literature, we assumed a common adjustment factor, then we estimate

it to be 0.82. This is still large, so that not taking risk into account leads to an overstate-

ment of the physical probability of an inflation disaster.

Of course, like any other empirical estimate, these factors depend on the sample.

When we estimate our model with data post 1910, so that we do not include the fre-

quent deflations of the late 19th century, then the adjustment factor for deflation falls to

0.91. Deflations are now associated with more serious recessions. At the same time, in this

sample, the adjustment factor for high-inflation disasters is also smaller (0.62). Therefore,

the difference between the two tails is almost the same, and high inflation still comes with

significantly larger output disasters than deflations.

To compare these estimates to the literature, we calculate the corresponding risk pre-

mia rp, defined as q(π + rp) = p(π): the increase in inflation to equate risk-adjusted and

actual probabilities. Note that they are positive for high inflation and negative for defla-

tion, but we will refer to their absolute value. We find only moderately high inflation risk

24As Atkeson and Kehoe (2004) write using different historical data for 17 countries: “the only episode
in which there is evidence of a link between deflation and depression is the Great Depression (1929–1934).”
Bordo and Filardo (2014) reach the same conclusion.
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premia averaging 0.23%.

This is in line with the literature that used very different methods. Fleckenstein,

Longstaff and Lustig (2017, 2016) estimate risk premia in the range of 0.2-0.25% by taking

the difference between subjective expectations from analyst forecasts and market expec-

tations from inflation swap rates. The FRB Cleveland estimates the affine term structure

model of Haubrich, Pennacchi and Ritchken (2011) and during our common sample its

average was 0.39%. However, because we separate high inflation and deflation episodes,

we find a significant variability within this average. The average risk premium for high-

inflation disasters is 0.61%, while the risk premium for deflation is close to zero.

5.4 Comparing disaster probabilities

Combining all the adjustments leads to the final inflation disaster physical probability in

the last column of panels A and C. In the US 2021-23 sample, the median 5y5y inflation

disaster physical probability was 4.2%, elevated relative to its median of 3.5% in the US

full sample and 3.2% in the EZ full sample. These are all below 5%, indicating the suc-

cess of the Fed and the ECB at convincing market participants that inflation will hover

around its target. These probabilities are asymmetric, but in different directions for the

two regions. In the US, the probability of deflation in the full sample is lower, at 2.4%,

but in the EZ it is higher at 6.3%. Outside of the short period in 2011-12, the probability

of deflation in the US is always small, but for the EZ it is significantly higher. As a result,

adding the two, the probability of a disaster is lower in the US, 5.9%, relative to the EZ,

9.5%, entirely driven by the higher probability of a deflation disaster for the latter. The

next section decomposes these medians into the evolution of the probabilities over time.
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6 A history of the anchoring of inflation expectations

A priority in the pursuit of an inflation target is to anchor inflation expectations. Estimates

of the market-perceived probability of inflation disasters give an objective measure of

success. Ideally, the estimates should be always close to zero. This section shows that

they are not, relates their variation over time to the major events in monetary policy since

2010, and compares the success of the Fed and the ECB at anchoring expectations.

6.1 The fear of deflation

Between 2010 and 2020, both the Fed and the ECB feared that the binding zero lower

bound for policy rates would give rise to inflation expectations being stuck persistently

below target (Blanchard, Dell’Ariccia and Mauro, 2010). Expectations might have been

anchored below the 2% target as had likely happened in Japan (Borağan Aruoba, Cuba-

Borda and Schorfheide, 2017) and was predicted by some theory (Benhabib, Schmitt-

Grohé and Uribe, 2002). This situation justified the use of quantitative easing (Eggertsson

and Woodford, 2003) together with many other unconventional monetary and fiscal poli-

cies, all with the aim of moving the anchor back to 2% (Eggertsson, 2020). The mission

reviews of the Fed in 2020 and the ECB in 2021 were partly justified by the fear of deflation

(Federal Reserve System, 2020, European Central Bank, 2021, Reichlin et al., 2021).

Figure 4 shows the evolution of the probability of deflation and serious deflation (less

than −1%) at the 5y5y horizon over time. For the US, on the left-hand side, we zoom in

on the 2011-14 period because the probabilities are very close to zero after that (with the

exception of the pandemic, as discussed below).

At the start of our sample, the US probabilities were high and rising. Investors were

perhaps doubtful of the Fed’s ability to steer inflation back on target after actual deflation

in 2009. Yet, by the end of 2012, the probability of persistent deflation had fallen below
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Figure 4: Probabilities of a deflation disaster

United States, 2011-14 Eurozone, 2011-24
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5%, and the probability of serious deflation was close to 0, staying there afterwards.

Christensen, Lopez and Rudebusch (2015), Kitsul and Wright (2013), Fleckenstein,

Longstaff and Lustig (2017), writing near this time, reported much higher probabilities of

deflation. There are three reasons behind the discrepancy in this particular episode. First,

those papers mostly focused on deflation in the near horizon, and over a single year, so

without the large horizon adjustment factor. Our estimates instead are for the probability

of a deflation trap, a persistent period of deflation over 5 years in the long run, the event

that policymakers worry most about.25 Second, and as already indicated in table 1, the

inflation adjustment is significant over this long horizon, and without it the probabilities

are overstated. Third, as discussed in section 5.3, the risk premium for deflation is smaller

in our estimates than in the affine models used in previous work that impose a uniform

risk-premium. This last adjustment goes in the opposite direction of the other two, since a

25During this time, the 10-year actual probability (persistent long-term deflation) was even lower than
the 5y5y deflation probability, while the forward risk-neutral probability of deflation in a single year was
higher and more volatile. The latter is closer to those in the earlier work. Our estimated Markov model of
inflation dynamics shows both strong mean reversion and a high probability of leaving the disaster state as
soon as the economy has entered it. Therefore, while deflation was likely, a deflation trap was not.
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larger deflation risk premium would make our estimates even smaller, and so even more

distant from the previous literature.26

The right panel of figure 4 shows the estimates for the EZ. There are several noticeable

differences compared to the US. First, the probability of far-away deflation dropped by

less in 2011-14. The ECB justified the use of negative interest rates, quantitative easing,

and other unconventional policies starting in 2014 with the aim of fighting deflation.27

This justification is supported by our estimates, and the policy was initially successful in

bringing the estimates persistently below 5% for a little more than one year.

However, second, after a short-lived spike at the end of 2016, the estimates started

rising in the middle of 2018 and peaked with the pandemic, exceeding 20% in the second

quarter of 2020. A very short-lived spike is also present in the US data for 2020. Both cen-

tral banks drastically increased quantitative easing and forward guidance in 2020, and the

estimates suggest that the fear of a deflation trap caused by the pandemic was reflected

in market expectations.

Third, the EZ estimates have since fallen, and have again stabilized below 5% by the

end of the sample. This is persistently higher than for the US, where this probability has

been very close to zero since the start of 2021. Arguably, the market continues to perceive

a higher chance that the Eurozone will fall into a deflation trap, in spite of the mission

review.

Fourth, figure 4 shows a third series, for a deflation disaster over the next five years

to focus on the near term, as in Boninghausen, Kidd and de Vincent-Humphreys (2018).

Until 2016, this tracked the 5y5y probability and was slightly above it. That is, the percep-

26The appendix shows a version of figure 4 using a pooled risk factor that is constrained to be the same
for inflation and deflation. The qualitative conclusions in this section are the same, even if the quantitative
estimates are different.

27In its 2021 mission review the ECB writes: The deployment of unconventional monetary policy measures,
especially since 2014, has made a significant contribution to countering disinflationary pressures, dispelling deflation
concerns and averting a more pronounced downward drift in inflation expectations.
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tion in markets of the probability of an inflation disaster was roughly the same over the

next five years as over the following five. But, after that (with the exception of the spike

in 2020) the probability of near deflation has been significantly lower than of long-run

deflation. Therefore, the fear of deflation in the future is arguably driven not by the cur-

rent levels of deflation, but by a perception by financial markets that there is something

structural in the EZ economy, or in the ECB’s mandate and actions, that makes it different

from the US and prone to fall into a deflation trap.

6.2 The 2021-24 inflation disaster

After three decades of inflation close to 2%, the three-year period between 2021 and 2024

saw an explosion in the price level in the US and the EZ. Inflation was so high that

the 2021-26 five-year period will likely classify as an inflation disaster—average infla-

tion above 4%—in both the US and the EZ. In December of 2016, the markets had put a

probability of this happening at only 2.0% and 1.2%, for the US and the EZ respectively.

The reasons behind the disaster were a combination of supply shocks (Blanchard and

Bernanke, 2025), drifting inflation expectations from loose monetary policy (Reis, 2023)

and fiscal stimulus (Bianchi and Melosi, 2022), with their relative weights still being de-

bated (Dao et al., 2024). Common to all of them, for the inflation spike to be transitory, it

was key that long-run inflation expectations would stay anchored. Policymakers referred

to the estimates in this paper in real time (first released in February of 2021, and updated

regularly on our websites), and variants of them, to assess this risk (for two examples, see

Schnabel (2022) and Gopinath (2022)).

We now have the benefit of hindsight to revisit this turbulent period. The top-left plot

of figure 5 shows the 5y5y probabilities of a high-inflation disaster, for the US and the EZ.

The estimates tell a story in three stages.

First, throughout 2020, the probability of a high-inflation disaster was low and similar
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Figure 5: Perceptions of a future inflation disaster during the 2021-24 inflation disaster

(a) Probability of a high-inflation disaster
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Note: Top panels: 5y5y (forward) and 5y (near term) inflation disaster (> 4%) probability. Bottom pan-
els: 10y horizon risk neutral (Q) densities.

in the two regions, hovering between 0% and 3%. By 2021, the probability started rising

for the US alone, reaching 5% by the end of the year, while in the EZ, it stayed low and

constant. As both central banks kept monetary policy loose, the market-perceived proba-

bility of high-inflation in the US rose in tandem with the sharp increase in actual inflation

at the time. From the perspective of economic theory, this evolution suggests that even

long-horizon expectations are sensitive to extreme current realizations.

Second, in the first half of 2022, the US probability kept rising, peaking at 10% in May.
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The Fed reacted aggressively to the rise in inflation with a 50 basis point hike on May 5th,

that was followed by several more so that rates between the start of May and the end of

December that year increased by 400 basis points. At the same time, likely in response, the

US probability of a disaster sharply fell, reaching 3% by the end of 2022. It has remained

close to that value since. The sharp policy adjustment, from being highly accommodative

to aggressively fighting inflation, came with a corresponding change in inflation expec-

tations. Expectations were unanchored for more than one year, but reanchored once the

policy priorities were reestablished.

Turning to the EZ, as inflation took off, so did the EZ disaster probabilities. Since July

of 2022, they have been above those of the US, averaging 7.6%. Similar to the US, this

increase coincided with the change in monetary policy, as the ECB raised its policy rates

for the first time in 11 years at its 27th of July 2022 meeting.

Third, at the end of our sample, at the start of 2024, the probability of an inflation

disaster is hovering between 3% and 4% in the US, but it is much higher in the EZ. In

the last 6 months of 2024, the 5y5y EZ probability rose because the 5-year probability fell,

while the 10-year probability was almost unchanged. Both for the US and the EZ, the

probability of an inflation disaster is significantly larger at the end of of 2024 than it was

before 2021, when these probabilities had been near 1% in both regions for many years.

The inflation disaster has left scars for the future.

To summarize, our estimates show that (i) inflation expectations deanchored in 2021-

22, (ii) the tightening of policy had a noticeable effect in stopping or reversing that dean-

choring, and (iii) there is a scar from the episode into the future as the probability of an

inflation disaster has been permanently higher than before.

The top-right panel of figure 5 digs deeper by looking at the 5y probabilities, to assess

the market perceptions of an immediate disaster. Interestingly, they increased in 2021 and

2022 together with actual inflation and with the baseline far-away disaster probabilities,
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but by much more (the axis scale is doubled). Probabilities peaked at 31% in the US and

25% in the EZ, both in March of 2022. This suggests a tight link between actual inflation,

forecasts of inflation, and anchoring of expected inflation. It is consistent with models

where the credibility of the central bank depends on its current performance.

The bottom row of figure 5 shows instead the 10-year risk-neutral distributions (so

without horizon or risk adjustment) at different points in time, to understand the shifts

behind the movements in the tails. In 2021-22, the increase in the tails of the distributions

was much more pronounced than the increases in the median. Skewness rose signifi-

cantly. Then, by 2024, distributions shifted back, but not to where they started in 2020-21.

Looking at the prices of the 10-year inflation swaps, which match the mean of these dis-

tributions, gave an impression of only a slight unanchoring during this time (recall figure

1). Looking instead at the probabilities of a disaster provided in this paper shows a much

more worrying drift, and a clear impact of monetary policy.28

Based on the experience of the 5y5y inflation swaps (figure 1) one might assume that

inflation expectations stayed anchored throughout. Indeed, Powell (2024) concludes that

this contributed to inflation stabilizing quickly after monetary policy tightened, with little

impact on unemployment. The estimates in this paper support a different interpretation:

expectations deanchored, policy had to and partially succeeded in reanchoring them, but

even now they have not gone back to their initial state.

6.3 Measures of anchoring

The simplest definition of anchored expectations is that, unconditionally, they do not

move at all. The equivalent for our disaster probabilities is that these are close to zero

almost always. A conditional statement of anchoring is instead whether expectations of

future inflation are insensitive to realizations of inflation. The discussion of the 2021-24
28The distribution of survey expectations of inflation in the 1970s shows similar behavior (Reis, 2021).
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episode suggests that they are not, and that this depends on the stance of monetary policy.

We now explore this further by taking advantage of our methods that give probabilistic

measures for the tails.

The baseline estimates of the probability of a high-inflation disaster in a month are

conditional on what inflation was in that month (as well as the parameters of the model,

some of which are time-varying). Given the estimated model of inflation dynamics, we

calculated what that probability would have been if this initial inflation was a different

value. The top row of figure 6 plots the answers for two hypothetical initial inflation

rates: between 2% and 3% and between 3% and 4%. It does so from 2022 onwards, when

inflation was well above the two hypothetical ranges: before that, for much of the sam-

ple, as inflation was in these ranges, baseline and one of the hypotheticals coincide. The

hypotheticals ask to what extent was the heightened probability of an inflation disaster

not the result of currently elevated inflation, but of the updated probabilities on future

shocks and persistence of inflation embedded in the option prices.

For the US, on the left, the hypotheticals are practically indistinguishable from the

baseline. This suggests that initial conditions have little impact on the market-perceived

probability of an inflation disaster five years down the line. On the one hand, this im-

plies that the higher perceived probability of a disaster in the US was not just the result

of inflation being high, but rather was driven by changes in perceived future shocks and

dynamics. This explains why, even as inflation fell back near its target in 2024, the prob-

ability of an inflation disaster remained unchanged. On the other hand, this shows that

changes in disaster probabilities can be interpreted as reflecting changes in future pol-

icy credibility. Inflation expectations in 2021-22 therefore were temporarily unanchored,

since the increase in the disaster probability was not driven by high inflation realizations.

Overall, one might say that expectations can be quick to unanchor in the US, but also

quickly reanchor.
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Figure 6: The conditional anchoring of expectations

(a) The influence of initial conditions in the US
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(b) The influence of initial conditions in the EZ
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(c) Conditioning on the near future in the US
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(d) Conditioning on the near future in the EZ
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Note: The figure reports various conditional 5y5y inflation disaster (> 4%) probabilities. Top row: Baseline,
based on actual current inflation, and varying current inflation (over the previous year) to being in different
ranges, either 2%-3% or 3%-4%; bottom row: Changing, in addition, inflation over the next two years.

For the EZ, the opposite is true. Had inflation been lower, then the market-perceived

probability of an inflation disaster would have been significantly lower. This only stops

being the case from the second half of 2023 onwards. Before that, disaster probabilities

were high mainly because of high inflation realizations, not because of a change in ex-

pected future policy.

The bottom row of figure 6 calculates two separate counterfactuals. Taking as given
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that inflation was high, it asks what would have been the market-perceived probability of

a disaster conditional on knowing that inflation would stay high in the next year, as well

as the year after. These conditional probabilities measure anchoring by showing whether

the option prices at different horizons expect high inflation to persist.

Again, for the US, the conditional and unconditional probabilities are quite similar.

Even if markets were convinced in 2022 that inflation would stay high for the next two

years, that would not change their trust that the Fed would prevent a disaster in 2027-

32. But this is not the case for the EZ before the middle of 2023. Markets expect that if

inflation persists for one or two years, the willingness or ability of the ECB to prevent a

far-ahead inflation disaster is lower. From this perspective as well, inflation expectations

were less well-anchored in the EZ than in the US.

7 Conclusion

This paper develops methods to use inflation options data to back out market-perceived

probabilities for tail events in inflation at distant horizons. We show that producing ac-

curate estimates requires taking into account that: (i) inflation options’ nominal payoffs

need to be adjusted to get real Arrow-Debreu probabilities; (ii) disaster probabilities for

forward horizons can differ from short or long horizons because of the sluggishness of in-

flation; and (iii) the risk premium for inflation is not the same at its two tails compared to

the center of the distribution. We provide simple, but we hope robust, methods to make

all of these adjustments. We show that the adjustments are quantitatively large relative to

constructing probabilities using conventional methods.

We apply our methods to data from the US and the Eurozone between 2009 and Octo-

ber of 2024. Starting with the market perceptions of a deflation trap, contrary to previous

wisdom, we find that they were low and short-lived in the US 2011-14, but have per-
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sisted in the EZ and unconventional monetary policies only provided temporary respite.

Turning to high inflation, we find a significant deanchoring of inflation expectations that

peaked in mid 2022, and then reanchored as monetary policy tightened. By the end of the

sample, we find scars of the high-inflation episode in persistently elevated probabilities

of a future inflation disaster. Finally, temporary shocks to inflation, either in the recent

past or recent future, have a larger influence on the expectations anchor in the EZ than in

the US.

In the future, we hope that our methods will allow researchers and policymakers

to measure the risk of inflation disasters more accurately, and use them to assess how

changes in policy, economic fundamentals, or temporary or permanent shocks affect in-

flation expectations and the inflation anchor.
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ica, Aidan Meyler, Benjamin Böninghausen, Friedrich Fritzer, Riccardo Trezzi, Jana Jonck-
heere, et al. 2021. “Inflation expectations and their role in Eurosystem forecasting.” ECB Occa-
sional Paper 264.
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This appendix consists of four sections. Section A fills in additional details for the the-

ory that, for the sake of brevity, were not included in the main text. Section B discusses

how we obtain the probability distributions for inflation from option prices; this section

also includes a detailed comparison with probabilities reported by Kitsul and Wright

(2013). Section C provides additional detail and discussion on how we estimate inflation

dynamics to adjust for the horizon, while Section D does the same for the risk adjustment

factor.

A Theory

This section extends and clarifies the setup leading to proposition 1. Note that the follow-

ing is designed to be read together with the main paper; the discussion in this appendix

is not meant as a stand alone summary.
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A.1 Multiple sources of uncertainty

In the main text we assumed that inflation was a random variable and the only source of

uncertainty. We now generalize this to many sources of uncertainty.

Every date, there is a state of the world s drawn from a countable set S with a prob-

ability distribution p̂(s), so that p̂(s) > 0 for all s and ∑s∈S p̂(s) = 1. Inflation is one of

many random variables, so it is a function of the state s and has an associated probability

distribution p(π). This is given by the standard formula: p(π) = ∑s:π(s)=π p̂(s) which is

calculated over the set of all possible values of inflation Π.

The cardinality of Π may be lower than that of S because there may be some states s′

and s′′ such that π(s′) = π(s′′). This paper is about the probability of inflation disasters

alone, not about disasters more generally. Therefore, the goal is to recover p(.), not p̂(.),

so that we recover the probability of an inflation disaster. That probability may well be an

average over states of the world where there are non-inflation disasters and others.

A.2 Arrow Debreu and inflation securities

The price in consumption units of an Arrow-Debreu security that pays one unit of con-

sumption only if state s is realized is b̂(s) = p̂(s)m̂(s), where m̂(s) is the discounted

marginal utility in that state relative to today. This is because the consumer in an Arrow-

Debreu world must be indifferent between consuming one unit today, or buying 1/b̂(s)

securities that with probability p(s) pay m(s) utility units relative to today. Arrow-Debreu

prices twist probabilities by the marginal utility of consumption.

Assuming a full set of Arrow-Debreu securities, i.e. complete markets, is a strong data

requirement. However, consider a related set of inflation securities that pay off one unit

of the consumption good if inflation is π at that future date. What we assume throughout

is that there is no arbitrage in trading inflation risk. Inflation is an aggregate variable, on
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which there is little inside information by any particular investor, and which is monitored

by some of the largest passive investors, as well as by many speculators. By no-arbitrage,

it must be that their price is b(π) = ∑s:π(s)=π b̂(s).

But then, it follows that:

b(π) = p(π)m(π), (A1)

where m(π) = ∑s:π(s)=π p̂(s)m̂(s)/p(π): the average marginal utility across all the states

of the world where inflation is the same. The average arises because there may be states

with the same level of inflation but different marginal utility: s′ and s′′ such that π(s′) =

π(s′′) but for which m(s′) 6= m(s′′). As a result, m(π) will vary only with inflation, or

carry inflation risk, while averaging across all other sources of risk in the economy.

To complete the discussion, note that the risk-neutral probabilities then follow the

same steps as in the text, in spite of this broader setup. Consider an alternative security

that pays one unit of consumption, no matter what the state of the world is. The inverse

of the price of this security is er, where r is the net real interest rate. Since this security has

an identical payoff as buying one inflation security for each possible value of inflation, it

follows that by no-arbitrage: e−r = ∑π b(π) = ∑π p(π)m(π). Therefore, as is standard,

e−r is the expected SDF or marginal utility of consumption growth. Because prices are

non-negative, then we can define q(π) = b(π)er. It is non-negative and adds up to 1. It is

the risk-neutral probability of this inflation rate.

The securities described so far do not exist and so their prices cannot be easily ob-

served in the data. As we describe in detail in the main text, a different security, that

matches what is traded in financial markets, pays not one unit of consumption, but

rather one nominal unit at the future state-date. Again, by no-arbitrage, its price is

a(π) = b(π)e−π.
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B Data: constructing marginal distributions of inflation

The paper uses data on two sets of distributions. First, with zero-coupon inflation caps

and floors options, we construct distributions of cumulative inflation for 5 and 10 year

horizons using the formula in section 3 in the paper. Second, using year-on-year caps and

floors on inflation we construct forward distributions for one-year periods starting in five

to nine years. The data are from Bloomberg, for the United States (US) and the Eurozone

(EZ). Our data cleaning and construction process closely follows Hilscher, Raviv and Reis

(2022). Relative to their work, we use fewer maturities, have a higher frequency (monthly

rather than annual), and build distributions for the EZ as well as the US.

B.1 Data pre-cleaning

The raw data includes both data errors as well as data points that are based on trades at

different times of the day. This lack of simultaneity means that option prices may not pass

some basic screens. We only use data if it passes the following requirements: (1) cap and

floor premia are monotonic in the strike price, (2) cap and floor premia increase mono-

tonically with maturity, (3) butterfly spreads, which represent one way of constructing

nominal Arrow-Debreu security payoffs, have positive prices, and (4) the put-call parity

implied real rates are consistent across strike prices. As an additional check we also com-

pared the put-call-parity implied real rates to the inflation swap real rates. Differences

were very small, implying across market consistency of pricing.

B.2 Implied volatility smoothing

Next, we transform the data and calculate Black and Scholes (1973) implied volatilities.

This nonlinear transformation makes it easier to adjust for data inaccuracies and errors.

Black and Scholes (1973) implied volatilities of the cap and floor contracts are smoother
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than the prices of the options. We therefore follow Shimko (1993) and use implied volatil-

ities to interpolate and smooth the data. We fit the SABR model, the four-factor stochastic

volatility model developed by Hagan et al. (2002) for each maturity. We search for the

set of parameters that minimizes the norm of the difference between model and actual

volatilities. We constrain the SABR parameters to ensure that the smoothing does not in-

troduce any arbitrage opportunities in option prices. In this way we construct a smoothed

maturity-specific implied volatility function, which we then use to convert back to option

prices.

For the year-on-year data, we first extract individual caplet and floorlet prices from

the market prices of caps and floors. We then use the Rubinstein (1991) transformation

to price forward starting options based on their specific option tenor, which is the time

between reset dates. We discount using the real interest rate which is extracted from the

put-call parity relationship of the zero coupon options (Birru and Figlewski, 2012). For

the individual caplet and floorlet prices we then follow the same SABR implied volatility

smoothing procedure with the same constraint that smoothing cannot introduce arbitrage

opportunities.

B.3 Strike prices

The zero-coupon cap and floor data for the five and ten year maturities that we are in-

terested in has strike prices from 1% to 6% (caps) and from -2% to 3% (floors), in 0.5%

increments. At times, individual data points may be missing or the range may be slightly

smaller. Using our smoothing algorithm, we can calculate implied prices for the missing

data points and we can also extrapolate to strike price above and below the maximum

and minimum strike price levels. Starting in August 10, 2021, data availability for the US

drops and we only have 1% increments. For the EZ, the lowest cap strike price is 1.5%.
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B.4 Constructing distributions

The quality of the data is not constant over time. In order to construct accurate distribu-

tions, we require a combination of many observed option prices and those option prices

passing the pre-screening outlined above. Each month, we choose one (or sometimes

more) trading days that have the most observations and is as close as possible to the start

of the month. We ensure that spacing between observations is stable, so that we do not

end up, for example, with a day at the end of February followed by a day at the beginning

of March.

For the year-on-year data, for the EZ it is common that only the five, seven and ten-

year maturities are available. This means that we can observe the price of the portfolio

of two year-on-year caplets (or floorlets) for the one-year periods starting in five and six

years and one portfolio for the following three one-year periods. For the US, we have data

for the different maturities but only until June of 2018, after which available maturities

also decline. We linearly interpolate the implied volatility for the missing years. Based on

data for which the various maturities are available, we know that the year-on-year for-

ward distributions from years five to nine are quite stable, supporting our interpolation

technique.

B.4.1 Periods of sparse data on US YOY

When constructing the distributions we use the put-call-parity-implied real interest rate

for calculation of the option implied volatility. If there are sparse data, sometimes there

are no overlapping observations. This happens only in the case of the YOY data for the

US starting in June 2021. Before this time and for all other distributions (5Y and 10Y zero

coupon), we have the necessary data. For these cases we use the Bloomberg swap rate

for the relevant period. Comparing the nominal rate to the swap rate, we recover the real
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rate for the period.

Another data issue starting in June 2021 is that there are not sufficient data to construct

the 1Y distribution, which is needed for construction of the YOY distributions. In those

cases, the one-year implied volatility function is linearly extrapolated from the two- and

three-year implied volatility functions. Given that we are using data for the 6 to 10-year

horizons, this adjustment has little effect.

C Comparison of N−probabilities with those in Kitsul and

Wright (2013)

Kitsul and Wright (2013) obtained their probabilities from BGC Partners. At the time,

as the market was starting, these data were not easily available. Instead, we obtained

data from a standard Bloomberg terminal. Also, because data quality is much higher

today, our data cleaning procedures reported in the previous section were significantly

stricter. Finally, they approximated the n(.) density away from the bins using a locally

linear regression, while we avoided any approximation and simply stuck to a Markov

chain for the data.

Figure 1 compares their estimates with ours. We cannot reproduce their results (the

BCG data is not available anymore), but we copy and paste the figures in their paper,

which show the probabilities of average inflation lying above 4% or below zero over the

5y and 10y horizons from October 6, 2009 until April 1, 2013. We then also plot our

own measure of the N−probabilities. In our analysis, to be conservative, we constructed

monthly disaster probabilities. For the purposes of this comparison, we have also con-

structed a daily series.

It is easy to confirm visually that the data are almost the same. Not only the correlation

is high, the average level is very similar. For a representative subset of points, which we
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quantify visually, we find an average absolute difference only of 0.25pp.

D Horizon factor model

The Markov model that we use to model inflation dynamics has six parameters: symmet-

ric movements in the middle of the distribution, pnn, entering the high or low inflation

disaster, pdh and pdl, exiting the high or low inflation disaster, pnH and pnL and a probabil-

ity capturing mean reversion, pmr. The transition matrix is reported in the main text. We

chose this model because it fits well, with parameters that have clear interpretations, and

it is sufficiently rich to capture the dynamics well, but not so complicated that it becomes

difficult to interpret movements in the parameter estimates.

In our baseline model, the first three parameters are time-varying. This captures time

varying volatility and time-varying probabilities of entering a disaster, which is the vari-

ation that this paper is interested in estimating. The other three parameters are not time-

varying. The probabilities of leaving a disaster are close to constant when estimated in

an unconstrained setting and the mean reversion parameter is, if left to vary freely, quite

unstable due to the difficulty of identifying it relative to the local movement probability,

both of which affect medium-term volatility. Pooling the data in this way means that we

move from estimating six parameters for all of the months in our sample period to esti-

mating three time-varying parameters plus three constant parameters all in one model.

The main model is estimated at the quarterly frequency. Estimating the model using

monthly frequency data proved to be computationally too costly relative to the small

potential benefit of higher-frequency estimates of the time-varying parameters based on

the full model. To obtain monthly estimates, we re-estimate the model separately at each

month, maximizing fit only over the three time-varying parameters, while keeping fixed

the three constant parameters estimated with the quarterly data. We verify that in the
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Figure 1: Comparison with Kitsul and Wright’s estimates of N-probabilities at 5y and 10y

(a) Kitsul-Wright deflation

(b) Ours deflation

Kitsul and Wright (2013) 5y and 10y risk neutral probability of defla�on between Oct 6 2009 and 
April 1, 2013: 

 

Our ‘N’ probability of 5y and the 10y risk neutral probability of defla�on for the same sample period.  

         

Kitsul and Wright (2013) 5y and 10y risk neutral probability of infla�on: 

 

Our ‘N’ probability of high infla�on (above 4%) for the same sample period. 

        

 

0.0%

10.0%

20.0%

30.0%

40.0%

03/10/2009 07/11/2010 12/12/2011 15/01/2013

5y deflation probability (below 0%)

0.0%

10.0%

20.0%

30.0%

40.0%

03/10/2009 07/11/2010 12/12/2011 15/01/2013

10y deflation probability (below 0%)

0.0%

10.0%

20.0%

30.0%

40.0%

24/09/2009 29/10/2010 03/12/2011 06/01/2013

5y probability of high inflation (above 4%)

0.0%

10.0%

20.0%

30.0%

40.0%

24/09/2009 29/10/2010 03/12/2011 06/01/2013

10y probability of high inflation (above 4%)

(c) Kitsul-Wright inflation above 4%

(d) Ours inflation above 4%

Kitsul and Wright (2013) 5y and 10y risk neutral probability of defla�on between Oct 6 2009 and 
April 1, 2013: 

 

Our ‘N’ probability of 5y and the 10y risk neutral probability of defla�on for the same sample period.  

         

Kitsul and Wright (2013) 5y and 10y risk neutral probability of infla�on: 

 

Our ‘N’ probability of high infla�on (above 4%) for the same sample period. 
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Note: Panels c) and d) are copied and pasted from Kitsul and Wright (2013). Panels (c) and (d) are daily
estimates over the same sample using our procedures.
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months in the middle of the quarter, the quarterly and monthly estimates are very close

to each other.

Finally, in order to calculate the model average inflation for 5y and 10y, we need to

choose a value for average inflation in the high and low inflation disaster states (below

-1% and above 5%); we set these equal to -2% and 6%.

D.1 Model fit

The model is estimated by GMM. We fit three sets of moments: (i) the five-year zero-

coupon distribution, (ii) the ten-year zero-coupon distribution, and (iii) the average of

the t + 6 to t + 10 year-on-year distributions. Each set of moments has eight moments

associated with it. Each of the sets has an equal weight when minimizing the squared

deviations of the model from the actual probability. As an illustration, figure 2 presents

data and model distributions for the first quarter of 2021.

We next compare model fit of our main model (Model 101) to the fit of an alterna-

tive model (Model 1) for which all parameters vary freely over time. The top panel of

figure 3 plots the root mean squared error of the model and model R2 over time as well

as average model fit. Though there is some heterogeneity over time, with a spike in the

early days of the pandemic, overall fit is quite good. Importantly, though overall fit de-

clines when moving from the flexible time-varying model (Model 1) to the more restricted

model (Model 101), for R2 this is driven primarily by poor fit early in the sample period.

It is also useful to note that fit, as measured by the RMSE, move together for both mod-

els. It is therefore not the model but rather time variation in the data that leads to time

variation in fit.

The bottom panel reports results for the EZ. The pattern is similar to the US, with

overall fit being comparable for both models, though again a little better for the flexible

model, as expected. Time variation in model fit is also similar, with the exception of the
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Figure 2: US model-implied densities and actual data in 2021Q1

(a) 5-year cumulative distribution

<-1%
-1-0%

0-1%
1-2%

2-3%
3-4%

4-5% >5%
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%
Dis of Avg Inf t+5 in Q1/2021, US, Model (101)

Data
Model

(b) 10-year cumulative distribution
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Figure 3: Model fit
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(b) Model with 6 time-varying parameters
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(c) Baseline model
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(d) Model with 6 time-varying parameters
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early days of the pandemic, during which model 101 underperforms by a little more.

We also explore another model in which the parameters that are held fixed in model

1 are allowed to vary at the annual frequency, rather than at the monthly frequency,

which is what we assume in the fully flexible model. This approach, which we refer

to as model 101A, results in a substantial increase in parameters relative to model 101,

our main model, and it also improves fit a bit, but it has the same feature as the monthly
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Figure 4: Model fit compared to model with slow-moving mean reversion probability
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model, which is an inability to clearly identify long-term trends in volatility through the

probability of local changes. This is because this model allows for slow-moving changes

in mean reversion, which also affects long-run volatility, itself slow-moving. Figure 4

shows model fit compared to the fully flexible monthly model.

D.2 More alternative models

We considered several other candidate models. These models either had too few param-

eters to have adequate model fit or they had more parameters than were necessary. For

completeness, we briefly discuss some of them here.

First, we considered a model with only three parameters – the probability of a local

change in inflation, one probability of entering either disaster, and one for leaving it. The

model fit was poor. We tried varying the jump size (into and out of disaster) and the

13



number of bins used, with no clear improvement.

The next model had four more parameters: the probabilities of jumping to either disas-

ter and leaving disaster, one probability of local movements in inflation and a probability

capturing mean reversion. As is apparent from the estimated parameters of entering ei-

ther disaster in our main model or in the flexible six-parameter model, the assumption of

the disaster probability being the same for both disasters is too restrictive. It also does not

allow us to separately identify disaster probabilities, which is one focus of this work.

In a third model, the probability of entering a disaster was allowed to depend on

the distance from the disaster state. This added unnecessary flexibility that made little

difference in practice.

In a fourth model, we allowed the probability of jumping to disaster to depend on

the distance from disaster, either by estimating separate probabilities depending on the

distance or by assuming that the probability is a function of the number of bins between

the current state and disaster. Again this proved to be more complicated than necessary.

Finally, as a separate robustness check we estimated a model in which parameters

varied at different frequencies. The parameters assumed to be constant in our main

model now vary at annual frequency and the time-varying parameters vary at monthly

frequency. The model has the advantage of being able to include monthly data. How-

ever, it has the same disadvantage as the fully time-varying model in that low-frequency

movements in volatility and disaster probabilities are harder to detect.

To conclude, across models, the different parameter movements were broadly compa-

rable, though, as discussed, the long run decline in volatility cannot be observed as easily

since more than one time-varying parameter affects volatility.
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E Model of inflation risk

This section of the appendix describes the estimation of the distribution of joint output-

inflation disasters. The data on inflation comes from Jordà, Schularick and Taylor (2016),

which is then merged with the output data in Barro (2006). The list of 18 covered countries

is: Australia, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan,

Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, and the

United States.

E.1 Identifying disasters: baseline

Starting with one country’s inflation series, we date sequential peaks and troughs by look-

ing for local maxima and minima in 5-year rolling windows: if the midpoint is lower

(higher) than all other values in the window, that point is classified as a trough (peak).

More formally:

Date t is:


a peak , if πt > πt̃ ∀ t̃ ∈ {t− 2, t− 1, t + 1, t + 2}

a trough , if πt < πt̃ ∀ t̃ ∈ {t− 2, t− 1, t + 1, t + 2}

neither , otherwise

All observations after some preceding trough/peak up to (and including) the next

local extremum are classified as one cycle. These cycles, often spanning several years,

are the unit for evaluating whether there is a disaster. The inflation of an entire cycle

C = {tC, tC + 1, . . . , tC + TC} is the aggregation of yearly inflation within the cycle; we

use the cumulative growth rate πC =
(

∏t∈C(1 + πt)
)
− 1 as aggregator.

Then, we compare the average value of inflation in a 5-year window centered around

the peak (or trough), with the target level, which is taken as the trend from a band-pass
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Figure 5: 150 years of inflation disasters
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filter that isolates fluctuations of frequency lower than 20 years. If inflation is sufficiently

away from the target we call this a disaster. More specifically, a cycle is classified to be in

a disaster state πd if this inflation value deviates from some target by some threshold. For

the baseline results, the target is given by applying a 20 year-Butterworth square-wave

highpass filter on the inflation series.

Figure 5 shows the identified disasters across the sample. The results accord with

the economic history of the time: many deflation disasters across the world in the last

quarter of the 19th century and again in the 1930s, as well as three waves of high inflation

disasters, after each of the World Wars and in the 1970s.

Finally, a cycle is classified as a joint inflation-and-output disaster if it has been clas-

sified as an inflation disaster, and additionally contains at least one year that has been

classified as an output disaster in Barro (2006).

E.2 Estimating the Pareto distribution

Pooling positive and negative joint inflation-consumption disasters, figure 6 plots the his-

tograms of the observations of annual output growth for the years of joint inflation and

consumption disasters, together with a simple kernel density estimate. In blue are the
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Figure 6: Inverse fall in GDP (z) during an inflation and consumption disaster
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results from fitting the Pareto distribution, but pooled for both high and low inflation

disasters (so imposing that zh and zl have the same distribution). The resulting estimates

are α = 6.38 and z0 = 1.03. For comparison, Barro and Liao (2021) report α’s in the range

of 6 to 8, and set z0 = 1.03.

Separating high and low inflation disasters, the estimates are reported in the main text

(and further reported below in table 2).

E.3 Alternatives to identifying disasters

We explored alternatives to both identifying cycles and to setting the target. Starting with

the target, beyond the baseline (method T3), we also use the mean of inflation censored

at the [0.25, 0.75]-quantiles for each country, with the exception of the US, where we use

2%. Here the inflation target is a country-specific constant. This is method T1. Another

alternative was, for each country, to compute the mean of censored inflation as above,

but using the past 20 years in a rolling window, imputing for the first 19 observations

the values from method T1. Here the inflation target is a country-specific constant for the

first 19 years and time-moving afterwards, and we call this method T2. The threshold

for deviation is chosen as the inflation target, which in the case of (T2) and (T3) is itself
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moving with time.

Relative to the baseline, beyond the baseline (method C2), we considered partitioning

the observed time period using peaks/troughs. For each country, annual inflation and in-

flation target (using sub-methods T1-T3) are smoothed with a five-year leading window.

Moving with the direction of time, if in some year inflation deviates from target, that and

the next four years are classified as inflation disasters; the evaluation then continues with

the year following this cycle. This procedure yields disaster cycles with a fixed length of

five years, and we call it method C1.

E.4 Results under alternatives

Overall, with two methods to partition the time period into cycles, and three methods

to define an inflation target, this yields six alternative ways in total. Table 1 presents the

unconditional probability of an inflation disaster, and the probability of a joint inflation-

and-output disaster conditional on an inflation disaster p̃, for method {C1, C2} x {T1, T2,

T3}. Then, the table also reports estimated parameters of a Pareto fit on the (transformed)

changes in output z = 1/(1 + g) during joint disasters. Table 2 presents conditional

probabilities where a distinction was made between high and low inflation disasters.

Across the 6 possible methods that result from combining these, the results are quite

similar. Recall that the baseline is in the last column, method C2.T3.

E.5 Risk premia

As discussed in the text, following Gabaix (2012), Barro and Liao (2021), we use an Epstein-

Zin model for marginal utility, with a relative risk aversion coefficient of 3. We then

calculate risk premia defined as q(π + rp) = p(π): the increase in inflation to equate risk-

adjusted and actual probabilities (see main text). Figure 7 plots the resulting estimates of
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Table 1: Unconditional and conditional probabilities, Pareto fits

Method
C1: fixed disaster length C2: peak/trough cycles

C1.T1 C1.T2 C1.T3 C2.T1 C2.T2 C2.T3

unconditional probability of an infla-
tion disaster

21.3% 20.7% 13.2% 20.6% 21.3% 13.4%

probability of output disaster condi-
tional on inflation disaster p̃

16.7% 18% 21.3% 16.9% 18.6% 20%

estimated z0 1.04 1.03 1.04 1.03 1.03 1.03

estimated α 5.73 5.7 6.77 6.11 6.67 6.38

Figure 7: US inflation risk premia
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the 10-year US inflation risk premia that come from this procedure.
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Table 2: With distinction between deflation and inflation: unconditional and conditional
probabilities, and Pareto fits

Method
C1: fixed disaster length C2: peak/trough cycles

C1.T1 C1.T2 C1.T3 C2.T1 C2.T2 C2.T3

High-inflation disasters only

unconditional probability of a high-
inflation disaster

13.3% 12.9% 6.3% 12.4% 13.1% 5.7%

probability of output disaster condi-
tional on low-inflation disaster

20.3% 23.0% 30.3% 22.7% 25.1% 35.6%

estimated z0 1.07 1.03 1.05 1.03 1.03 1.03

estimated α 5.4 5.11 5.73 5.4 6.09 5.45

Low-inflation disasters only

unconditional probability of a low-
inflation disaster

10.5% 10.2% 7.8% 10.5% 10.8% 8.6%

probability of output disaster condi-
tional on low-inflation disaster

12.1% 11.4% 14.2% 8.5% 8.5% 8.5%

estimated z0 1.04 1.03 1.04 1.06 1.06 1.06

estimated α 10.84 8.62 11.55 15.18 15.18 15.18

E.6 Deflation probabilities using a pooled risk factor

Figure 8 shows a version of the deflation probabilities but with a risk factor that uses the

pooled estimates from the previous section. Note that the conclusions on the trends in

deflation probabilities, their comparison with previous estimates in the literature, and the

impact of monetary policy remain the same.
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Figure 8: Probabilities of a deflation disaster with a common risk factor

United States, 2011-14 Eurozone, 2011-24
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Note: The figure plots 5y5y deflation and extreme deflation probabilities and inflation and risk-adjusted
5y deflation probabilities. However, unlike in the main text, we use a pooled estimate for the inflation risk
factor.
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