THE PEOPLE VS. THE MARKETS: A PARSIMONIOUS MODEL OF INFLATION EXPECTATIONS

Ricardo Reis LSE

> 6th of December, 2021 RIDGE virtual forum workshop international macro

People disagree about long-run inflation

Within people (Michigan)

Across people (Households - Dealers)

The people versus the markets

Subjective long-run expected inflation risk premium $\phi_t = \mathbb{E}_t^*(\pi_{t,T}) - \mathbb{E}_t^p(\pi_{t,T})$

Quarter

The last few years

2.A parsimonious model of people's expectations

$$v_t \sim F_t(.) = Exp_t + Gaussian_t$$

Fundamental anchor

• Want to forecast inflation over long horizon: $\pi = \pi_{t,T}$

• Fundamental rational expectation is π^e

• Properties:

$$\mathbb{E}_t(\pi_{t,T}) = \pi_{t,T}^e \quad \text{and} \quad \mathbb{E}_t(\pi_{t,T}^e(\pi_{t,T} - \pi_{t,T}^e)) = 0$$

• Household expectation: vh

First property: incomplete information

• People do not know π^e . They have a (dynamic) prior with mean π^*

• Receive idiosyncratic noisy signal(s) with error:

$$\mathbb{E}^{h}(\pi^{e} + e^{h}|\pi^{e}) = \pi^{e}$$
 and $Var(e^{h}|\pi^{e}) = \sigma^{2}$

• <u>Empirically:</u> match dispersion of expectations, under-reaction of average inflation expectations to news

• Simplification: distribution of signals is normal

Second property: over-confidence

· Agents behave as if their signals were more precise than they really are

• Responsiveness may be higher than what precision would entail (and >1):

$$\frac{\partial v^h}{\partial (\pi^e + e^h)} = \theta$$

• Empirically: over-reaction to news in the cross-section

• Simplification: linear relation

Third property: learn from experience

• Bias in beliefs. Type-specific scars.

Added constant to expectation

$$z_c$$

• Empirically: evidence of long scars of high inflation times, systematic biases

• Simplification: the bias is linear in group c = 0, 1, 2, ...

$$z_c = c\pi^z$$

Fourth property: sticky information

• Groups infrequently update, transitions across biases is a ladder over which a small share updates

• Fraction of individuals in group c:

$$\lambda(1-\lambda)^c$$

• Empirically: slow dissemination of news, endogenous disagreement

• Simplification: exponential distribution

Parsimonious model of expectations

• Full model, conditional on (π^*, π^e) ,

$$v_t^h = c_t \pi_t^z + \pi_t^* + \theta_t (e_t^h + \pi_t^e - \pi_t^*)$$

$$e_t^h | \pi_t^e \sim N(0, \sigma_t^2) \text{ and } c_t \sim Exp(\lambda_t)$$

follow an EMG distribution $F_t(.)$

• 3 identified parameters, 3 non-zero moments

$$\theta, \sigma^2, \lambda/\pi^z$$

Identification and over-identification

Checks on the model:

- I. Both positive always
- 2. Kurtosis and higher-order moments are zero
- 3. Adjusted mean

$$\mu_t \equiv Mean_t - StDev_t(0.5Skew_t)^{1/3}$$

$$\lim_{T \to \infty} \frac{\sum_t \mu_t}{T} = \pi^*$$

2.3% full sample 1.9% since 2010

4. A parsimonious model of traders' beliefs and market prices

$$\mathbb{E}^{b}(.) = \mathbb{E}(.|v^{median}, q)$$

$$\mathbb{E}^{m}(.) = \mathbb{E}(.|v^{*}, q)$$

$$\mathbb{E}^{*}(.) = 1/q(\pi^{e}, \sigma)$$

The traders' information and beliefs

- Continuum in [0,1], indexed by i, drawn from household prior v^i from F(.)
- Trade nominal bond, costs q today, gives I next period, Bayesian update:

$$p(\pi^e|v^i,q) \propto g(q|\pi^e)f(\pi^e|v^i)$$

• Goal is to choose b^i given an sdf m(.)

$$\max \int \left[m(\pi)e^{-\pi} - q \right] b^i p(\pi^e|v^i, q) d\pi^e$$

Optimal trading

- Simplifications
 - Start with some wealth, cannot short: $b^i \in [0, w_i]$
 - SDf is common across all, given by representative agent, so risk aversion does not depend on choices, payoff $y(\pi^e) = E(m(\pi)e^{-\pi} \mid \pi^e)$.

• MLRP of $F_t(.)$: those with high signal, choose $b_i=0$; those with low signal, choose $b_i=w_i$, marginal trader is indifferent, has signal v^* :

$$\int y(\pi^e)p(\pi^e|v^*,q)d\pi^e = q$$

Market clearing and noise

Market clearing

$$F(v^*|\pi^e) = B/w \equiv \omega$$

Noise from behavioral biases, noise, liquidity frictions, supply of bonds, habitats.
 Contaminates signal from price, prevents revelation, produces high volatility

• Simplification: Symmetric Beta distribution, mode 1/2, parameter β

• Two parameters: π^* shift price q one-to-one, β how informative prices are

Market prices and the discrepancy

• Property: the threshold v^* is a sufficient statistic for (π^e, ω) . Equilibrium price:

$$q(\pi^e, \omega) = Q(v^*) = \frac{\int y(\pi^e)g(v^* - \pi^e)f(v^* - \pi^e)d\pi^e}{\int g(v^* - \pi^e)f(v^* - \pi^e)d\pi^e}$$

- Monotonic in (π^e, ω) spans real line, so can fit data.
- Parameters: π^* shifts q 1-to-1, β informativeness of market prices
- Model justifies a decomposition of the discrepancy

$$\phi_t = \underbrace{\mathbb{E}_t^b(\pi_{t,T}) - \mathbb{E}_t^p(\pi_{t,T})}_{\text{disagreement across}} + \underbrace{\mathbb{E}_t^m(\pi_{t,T}) - \mathbb{E}_t^b(\pi_{t,T})}_{\text{disagreement within}} + \underbrace{\mathbb{E}_t^*(\pi_{t,T}) - \mathbb{E}_t^m(\pi_{t,T})}_{\text{risk compensation}}$$

A model to combine data into fundamental RE

$$v_t^h = \pi_t^* + c_t^h + \theta_t(e_t^h + \pi_t^e - \pi_t^*)$$
with $c_t^h \sim E(\lambda_t)$, $e_t^h | \pi_t^e \sim N(0, \sigma_t^2)$
cross-sectional distribution $v_t^h \sim F_t(\pi_t^e)$

$$q_{t} = \frac{\int y_{t}(\pi_{t}^{e})g_{t}(F_{t}^{-1}(\omega_{t}))f_{t}(F_{t}^{-1}(\omega_{t}))d\pi_{t}^{e}}{\int g_{t}(F_{t}^{-1}(\omega_{t}))f_{t}(F_{t}^{-1}(\omega_{t}))d\pi_{t}^{e}}$$
with: $\omega_{t} \sim B(\beta), \quad \pi_{t}^{e}|q_{t} \sim G(\pi_{t}^{e})$

$$E_t^b = \mathbb{E}_t(\pi_t | v_t^{\text{median}}, q_t)$$

Households: biased from experiences, sluggish average, over-react individually

Markets: more information, sensitive to news, filled with noise

Professionals: median is misleading, not marginal traders.

Data inputs: three moments from household survey distribution, one market price, median professional

Model outputs: reaction, dispersion and bias $(\theta, \sigma, \lambda)$, market noise (ω) , fundamental expected inflation (π^e)

5. Measuring US and EZ long-run inflation expectations

Model's mechanics

Parameters: only two $\pi^* = 2\%$, and $\beta = 2$

Inputs: Five series in introduction.

Outputs: fundamental π^{e_t} , marginal trader \mathbf{v}^* , decomposition of discrepancy

Expected inflation post-2011 and post-2000

Marginal trader and decomposition

Application to the Euro-area: inputs

Application to the Euro-area: anchor

United States 1967-71

The drifting anchor

At first, markets seen as maybe reflecting noise

But, disagreement across households showed the fund. expectation shifting

Later, sluggish response of medians of professionals confirms it

Late 1960s and 2021

26 Source: Reis (2021)

6. Monetary policy, inflation, and the discrepancy

Inflation GE: policy, expectations, outcomes

· Solve for expected and actual inflation, given log-linear model

$$\frac{dp_t}{p_t} = \pi_t^e dt + \alpha' dZ_t \qquad \qquad \phi_t = -\alpha' \alpha + \chi_\pi (\pi_t^e - \pi^*) + \chi_\omega \hat{\omega}_t$$

Transmission mechanism on natural rate

$$g_t = \ln(\zeta) + i_t^{CB} - \pi_t^e - \delta \phi_t$$

Monetary policy response

$$di_t^{CB} = -\rho(i_t^{CB} - i^*)dt + \eta\left(\frac{dp_t}{dt} - \pi^*\right) + \gamma d\phi_t$$

• Natural rate and financial shocks both OU processes.

Basics of anchoring: determinacy

Proposition: Inflation is determinate as long as:

$$\eta/\rho > 1 + \delta \chi_{\pi}$$
 and $\chi_{\pi}(\gamma - \delta) < 1$

- Stronger than Taylor condition if higher expectation of inflation lowers discrepancy (markets think higher inflation).
- This lowers market real rates, pushes inflation up. Need extra tightening to keep anchoring.

Trade-off in volatility of expected inflation

Proposition: Expected inflation is given by:

$$\pi^{e} = \pi^{*} + \frac{(\rho - \kappa_{g})(g_{t} - g^{*})}{\eta - \rho - \rho\delta\chi_{\pi} + \kappa_{g}(1 - \chi_{\pi}(\gamma - \delta))} + \frac{\chi_{\omega}[\kappa_{\omega}(\gamma - \delta) + \rho\delta]\hat{\omega}_{t}}{\eta - \rho - \rho\delta\chi_{\pi} + \kappa_{\omega}(1 - \chi_{\pi}(\gamma - \delta))}$$

- Benefit: offset transmission of markets, exploit the extra signal. Cost: transmits financial shocks
- Optimal policy response to discrepancy γ higher if
 - higher direct effect of discrepancy on economy δ
 - less responsiveness of discrepancy to financial shocks χ_{ω}
 - less volatility of financial shocks σ_{ω}
 - stronger signal of expected inflation χ_{π}
 - more volatility of natural rate shocks σ_{g_0}

Who is right: the people or the markets?

• Traders observe prices: more information, but also noise.

- GE effect of dovish monetary policy
 - η low, $\pi^{\rm e}$ more volatile, people worse forecasters. But markets more informative, better forecasters.

• Back to policymaker: wants to respond more to discrepancy.

7. Conclusion

How are expectations of macro variables formed?

I. Parsimonious model of subjective expectations and market prices for business-cycle fluctuations of long-horizon expectations

2. US un-anchoring of inflation expectations, with a drift down 2014-19, revealed by skewness and discrepancy. EZ more pronounced.

3. Policy tradeoff in reacting to different measures of expectations, as both financial and fundamental shocks

1980s...

(a) Actual and survey first-order moments

(b) Survey disagreement

35 Source: Reis (2021)

The discrepancy

$$\phi_t = \mathbb{E}_t^*(\pi_{t,T}) - \mathbb{E}_t^p(\pi_{t,T})$$

Choices:

- Country (US)
- Frequency, **t** (monthly)
- Horizon, **T** (5 years)
- Market for * (swaps)
- Population for p (Michigan survey of households)
- Alternatives: countries, quarterly, 10 years, TIPS, SPF

Fact I: large business cycle fluctuations

StDev = 0.50% (vs. 0.57%)

Fact I: large business cycle fluctuations

Power fraction: 44%

Fact I: large business cycle (robustness)

Fact I: large business cycle (longer sample)

Fact 2: related to monetary policy

Table 1: The proximate determinants of the discrepancy

	Determinants	Policy shocks
	(1)	(2)
2-year yield	0.149***	
	(0.0273)	
Inflation	0.177***	
	(0.0233)	
Squared change	-0.200	
inflation	(0.159)	
Monetary		6.717
shocks		(3.884)
Observations	111	43
R-squared	0.512	0.068

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

Fact 2: related to monetary policy

